
UNIVERSITY OF PADUA

MASTER THESIS

Contacts prediction of linear peptides
from genomic data

Author:
Damiano CLEMENTEL

Supervisor:
Prof. Damiano PIOVESAN

Co-Supervisor:
Prof. Silvio TOSATTO

A thesis submitted in fulfillment of the requirements
for the degree of Data Science

in the

Department of Mathematics
Data Science

April 29, 2021

http://

Abstract of thesis entitled

Contacts prediction of linear peptides from genomic data

Submitted by

Damiano CLEMENTEL

for the degree of Data Science

at The University of Padua

in April, 2021

The rise of metagenomics and the technological improvements in the fields of
bioinformatics and computational biology led to an exponential increase in the amount
of biological data available to be studied. However, the rate at which biological data
are studied is much slower than the rate at which they are stored.

This issue pushed the development of programs capable of extracting significant
information from newly sourced data without the need of human intervention. More
specifically, some of these programs have been developed to infer structural informa-
tion from protein sequences. Since the structure of a protein is strictly bound to its
function, it is easy to understand the importance of such task.

Among the structural information which can be inferred looking at a protein se-
quence, there are contact maps. Contact maps define whether two residues are func-
tionally linked within the same protein chain or two different ones.

Despite much work has been carried out for intra-chain contact maps prediction
using sequence information, less can be found about inter-chain contact maps. More-
over, methods are usually presented and tested on benchmark dataset generated for
such purpose.

In this, a whole pipeline for both intra-chain and inter-chain contact predictions is
presented. Instead of using a generic benchmark set of protein sequences as input, the
pipeline starts from predictions of linear interacting peptides at residues level.

Linear interacting peptides are regions in a protein sequence which are thought
to not have a fixed folding, but to adapt their structure to the functional needs of the
protein itself. Needles to say, fewer studies have been conducted about this specific
issue in literature.

Finally, an analysis of the results is carried out. The analysis focuses on the eval-
uation of methods implied for contact predictions over the given dataset. Particular
attention is paid to the comparison of the performances on inter-chain alignments with
respect to the ones achieved on intra-chain alignments. Furthermore, the effect of linear
interacting peptides is taken into account.

Contacts prediction of linear peptides
from genomic data

by

Damiano CLEMENTEL

B.S. University of Trento
M.S. University of Padua

A Thesis Submitted in Fulfilment
of the Requirements for the Master’s Degree in

Data Science

at

University of Padua
April, 2021

ii

Acknowledgements

I would like to thank Prof. Tosatto and the whole BioCompUP laboratory for the op-
portunity offered to me. Special thanks go to Prof. Piovesan for his time and patience
in the supervision of this work and for all his useful discussions. Thanks also to Dr.
Micetic, for the helpful technical advice.

Moreover, I would like to thank my whole family, especially my parents and my
sister who have always supported and encouraged me during my entire academic ca-
reer so far. Thanks also to Sara for always being by my side when needed an to her
family as well.

Last but not least, I am particularly grateful to my friends Domenico, Francesco,
Laura, Martino, Nicolò and Paolo for the effort put in answering all of my questions
and for never miss the chance to offer their valuable point of view.

Damiano CLEMENTEL

University of Padua
April 29, 2021

iii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1
1.1 Introduction to proteins . 2
1.2 Properties of amino acids . 5
1.3 Sequence similarity and homology searching 7
1.4 Linear Interacting Peptides (LIPs) . 10
1.5 Tools for searching sequence databases 12

1.5.1 BLAST . 12
1.5.2 PSI-BLAST . 13

1.6 Databases for biological entities . 14
1.6.1 UniProt Knowledgebase . 15
1.6.2 Protein Data Bank . 17
1.6.3 Structure Integration with Function, Taxonomy and Sequences . 19

1.7 Tools for protein contacts prediction . 21
1.7.1 Covariance . 23
1.7.2 Shannon’s entropy and mutual information 25
1.7.3 Decomposition of mutual information sources 28
1.7.4 Mutual information normalization 29
1.7.5 Mutual information correction for phylogeny 30
1.7.6 PSICOV . 34

2 Methods 37
2.1 Application of mutual information

to multiple sequence alignments . 37
2.1.1 Covariance . 38
2.1.2 Shannon’s entropy and mutual information 39
2.1.3 Pseudocount for low number of sequences 41

2.1.4 Entropy normalized mutual information 41
2.1.5 Phylogeny corrected mutual information 41

2.2 Pipeline . 42
2.2.1 Initialization of output dataset . 43
2.2.2 Linking residue-level information between external resources . . 45
2.2.3 Distance matrices calculation . 47
2.2.4 Multiple sequence alignments generation 50
2.2.5 Hobohm clustering algorithm . 51
2.2.6 Prediction of intra-chain and inter-chain contact maps 53
2.2.7 Generation of summary tables . 54

3 Results 57
3.1 Retrieved linearly interacting protein structures 57
3.2 Choice of the best threshold for prediction methods 68

3.2.1 Choice of threshold values for mutual Information 69
3.2.2 Choice of threshold values for PSICOV 75

3.3 Evaluation of contact prediction methods 79

4 Conclusions 83

Bibliography 85

v

List of Figures

1.1 Quaternary structure of human Hemoglobin, with PDB identifier 1A3N.[22] 3
1.2 Amino acid scheme [https://it.wikipedia.org/wiki/Amminoacido] . . . 5
1.3 Amino acid chain with dihedral angles ϕ and ψ 6
1.4 An hypothetical phylogenetic tree. All genes descend from a common

ancestor . 8
1.5 Relationship between protein sequence, structure and function. [15] . . . 10

3.1 Number of items in initial dataset . 58
3.2 Distribution of the resolution of the protein (PDB) structures. 58
3.3 Distribution of the number of chains in each PDB structure 59
3.4 Distribution of the number of chains for each UniProt entry 60
3.5 Distribution of the width for protein chains, also called chain width. . . 61
3.7 Distribution of the size of input alignments. 63
3.8 Number of output obtained through different contact prediction methods 65
3.9 Distribution of the width of the alignments 66
3.10 Alignments height distribution. 67
3.11 Distribution of the Z-scores for different prediction methods applied on

the training dataset. 70
3.12 Correlation matrix between both the features of the input alignments

and the statistics of mutual information. 71
3.13 Variation of average standardized mutual information with the width of

the alignment. 72
3.14 Distribution of average mutual information for intra-chain and inter-

chain alignments, separately. 72
3.15 Mean precision, sensitivity and F1-score for contact prediction methods

based on mutual information applied on the training set. 73
3.16 Correlation matrix between the features of the input alignments 76
3.17 Distribution of the target contact map density computed between carbon

atoms or heavy atoms, conditioned by the the type of input alignment . 76
3.18 Distribution of the positive predicted values. 77
3.19 Distribution of the positive predicted values. 77
3.20 Distribution of precision, sensitivity and Fβ-score on the test set 79
3.21 Distribution of precision, sensitivity and Fβ-score on inter-chain align-

ments of the test set . 80

https://it.wikipedia.org/wiki/Amminoacido

vii

List of Tables

1.1 Summary alignments table . 22

2.1 Matrix defining the identifiers of both inter-chain and intra-chain align-
ments between reference chains in the PDB structure 1cxp. 47

2.2 First 10 residues mapped between PDB, UniProt and LIP predictions for
chain A in PDB structure 3m91 . 48

2.3 Atom coordinates for the first 10 residues mapped between PDB and
UniProt for chain A in PDB structure 3m91 48

2.4 Atomic distances between the 7th and 10th residue in chain A of the PDB
structure 3m91 . 50

2.5 Example of Hobohm-1 algorithm result. 52
2.6 Example of percent identity computation. 53
2.7 Summary chains table . 54
2.8 Summary alignments table . 55

3.1 Best parameters for methods based on mutual information, computed
on training partition . 74

3.2 Best parameters for PSICOV. 78

ix

List of Abbreviations

MSA Multiple Sequence Alignment

LIP Linear Interacting Peptides

IDP Intrinsically Disordered Protein

IDR Intrinsically Disordered Region

PDB Protein Data Bank

BLAST Basic Local Alignment Search Tool

PSI-BLAST Position-Specific Iterative BLAST

SIFTS Structure Integration with Function, Taxonomy and Sequence

PSICOV Precise structural contact prediction using Sparse Inverse COVariance estimation

1

Chapter 1

Introduction

In this chapter, some biological notions strictly related to the task of contact predictions
are explained. This includes the definition of what a protein is and the reason for which
it is a key element in any living organisms. Other concepts strictly related to proteins
such as amino acids and sequence homology are taken into account, as well.

The generation of multiple sequence alignments is a key step in contact prediction
and is closely related to sequence homology. Hence tools involved in the retrieval of
such resources are introduced below and a particular attention is paid on their algo-
rithmic aspect. The first tool introduced is BLAST. It is a pairwise sequence search an
alignment tool. Despite not being used in the pipeline described in Chapter 2.2, it is
important to understand PSI-BLAST. The latter is an enhancement of BLAST and is the
tool actually used in the pipeline to produce multiple sequence alignments.

Another important element in the prediction of contacts at residue level are the
datasets. In this section, thee databases are described. The first one is the Protein Data
Bank (PDB). It contains three dimensional structure of the proteins to be analyzed. The
second one in UniProt, which contains biological sequences, instead. The third one is
Sequence Integration with Function, Taxonomy and Structure. It plays a key role in
mapping resources between the former two databases.

2 Chapter 1. Introduction

1.1 Introduction to proteins

Proteins are biological macromolecules made of a large number of smaller molecules
called amino acids, which are the building blocks of the protein. Amino acids compos-
ing a protein are organized in one or more long sequences, known as protein chains
or simply chains. The amino acidic sequence of each protein chain forms the primary
structure of the protein itself. The primary structure of a protein can be represented as
a sequence of characters. Each position in such sequence holds an amino acid, which
is encoded with a specific character. Every amino acid is uniquely identified by one
character, also called one-letter-code. There are 20 different one-letter-codes, 20 being
the number of the amino acids in the standard genetic code.

The function of the proteins is of key importance for the metabolism of the cells in
living organisms. Most of them carry out enzymatic functionalities, hence the increase
in the rate of specific chemical reactions through catalysis. However, proteins are in-
volved in other tasks as well. Some proteins have a structural function, since they are
involved in maintaining the shape of the cell. Some others have a mechanical function,
since they influence the contraction ability of the muscles. Moreover, proteins take part
in the duplication process of the cells, play a key role in the immune response and are
involved in both the communication and the interaction between different cells as well.

The functionality of a protein is associated to its overall physical and chemical
properties, which are bound to the three dimensional conformation it assumes in the
three dimensional space, also known as its folded structure. Given a protein chain, its
structure is mainly influenced by the physical and chemical properties of the amino
acids which compose it, hence its primary structure, and by the physical interactions of
such amino acids between each other and with the other chains inside the same protein.

It is possible to associate a sub-sequence within the primary structure of a pro-
tein chain to a specific, well known three dimensional structure, called structural motif.
The set of all the structural motifs internal to all the chains in a protein makes up its
secondary structure. Among said three dimensional sub-structures, the most common
ones are α-helices and β-strands, each with different characteristics which influence the
functionality of the protein itself. As suggested by the name, the amino acid strand in
an α-helix is arranged in a spiral shape. This implies that the sites in its primary struc-
ture are in contact with the ones coming three to four positions earlier. In a β-strand, in-
stead, only a few amino acids are arranged in a stretch. More than one of those strands
connected together by a turn motif such as a β-turn and positioned on the same three
dimensional plane compose a β-sheet. Moreover, β-sheets are thought to be involved
in fibrils, which in turn are related to human diseases such as Alzheimer.

By taking a higher level look at the folded structure of a single protein chain and
taking into account its interactions with other chains in the same protein, we get its
tertiary structure. Quaternary structure considers the whole protein structure and its

1.1. Introduction to proteins 3

Figure 1.1: Quaternary structure of human Hemoglobin, with PDB identifier 1A3N.[22]

interactions with other proteins, instead. An example of quaternary structure can be
found in Figure Fig. 1.1. Protein chains are clearly distinguishable by their color.

Proteins loss and production inside every cell is balanced through a process called
protein biosynthesis. Such process starts from DNA strands, obtained by splicing one
DNA helix, which can be found in each living organism, being it either prokaryotic and
eukaryotic. Simplifying, a DNA strand can be considered as a sequence of molecules
called nucleotides, each of which is composed and identified by a nucleic base: cytosine
(C), guanine (G), adenine (A) and thymine (T). Sub-sequences in DNA strands which
encode for a protein are known as genes. The first step of protein biosynthesis is gene
transcription indeed, and takes places inside the nucleus of the cell. During this phase,
a gene is transcribed into a mRNA strand by means of mRNA polymerase enzyme.
Last step is the synthesis of mRNA sequence into the protein sequence itself, which is
carried out by ribosomes.

Once protein primary structure has been synthesized, it must fold to the correct
three dimensional structure in order to carry out its functionality as expected. Such
conformation is known as the netive fold of the protein. Protein folding happens spon-
taneously, mostly driven by physical forces arising from the properties of the amino
acids which compose its primary structure, including hydrophobic interactions, Van

4 Chapter 1. Introduction

der Waals forces and hydrogen bonds. For example, a protein being surrounded by
water molecules will cause hydrophobic amino acids to move to the internal core of
the protein structure itself, while being shielded by hydrophilic ones. Moreover, some
proteins called chaperones are capable of helping other proteins to fold and to correct
folding errors. However, it is possible that issues happen either during protein biosyn-
thesis and folding anyway, resulting in wrongly folded proteins. This, in turn, can
possibly lead to the death of the cell and consequently to diseases of the organism to
which they belong.

Theoretically, it should be possible to find the exact fold of a protein by considering
the thermodynamic energy function linked to its primary structure and to the physical
properties of its components. Therefore, the native conformation of the structure of
the protein can be computed by finding the minimum value of such function. Various
methods that solve this problem through an optimisation algorithm are available and
classified as de-novo protein structure prediction methods. In contrast, ab-initio mod-
els predict the structure of the protein by first finding sequences with similar primary
structure and whose three dimensional structure is known, then optimize its fold a
posteriori.

1.2. Properties of amino acids 5

1.2 Properties of amino acids

An amino acid is a molecule whose atoms are structured in three different functional
groups, namely an amino terminus, a carboxyl terminus and a side chain. While the
first two are ever the same for each amino acid, the side chain can change and its com-
position gives the name to the amino acid itself.

The amino terminus, also known as N-terminal end, is composed of two atoms of
hydrogen (H) bound to the same nitrogen atom (N) forming an amine group (−NH2).
The carboxyl terminus, or C-terminal end, is a carboxyl group (−COOH) instead. There-
fore, it is composed of one carbon atom (C) bound to two different oxygen atoms (O),
among which one is bound to an hydrogen atom. Carbon atom inside the carboxyl
terminus is commonly referred to as beta (β) carbon.

Figure 1.2: Amino acid scheme [https://it.wikipedia.org/wiki/Amminoacido]

In proteinogenic amino acids, the nitrogen atom inside the amino terminal is at-
tached to a carbon atom, which is in turn attached to the carbon atom inside the car-
boxyl terminus. The carbon atom connecting both amino and carboxyl terminus is
called alpha (α) carbon and it plays a key role in the structure of the amino acid, since it
bonds with another hydrogen atom and with the side chain as well. All atoms involved
in the amino acid structure are attached together by means of covalent bonds.

By convention, functional groups in amino acids are read left to right, with the N-
terminal end on the left hand side of the alpha carbon atom attached to the side chain.
On its right hand side the C-terminal end is found instead. Two adjacent amino acids
can be bound together through a peptidic bond between the carboxyl terminus of the
first one and the amino terminus of the second one. Peptidic bond happens when the
diatomic molecule composed of oxygen and hydrogen in C-terminal end reacts with
an hydrogen atom in the N-terminal end, producing one water molecule H2O. As a
consequence of this reaction, the carbon beta atom in C-terminal end of the first amino
acid and the nitrogen atom in N-terminal end of the second amino acid result to be
attached together by means of a covalent bond. When a few amino acids are attached

https://it.wikipedia.org/wiki/Amminoacido

6 Chapter 1. Introduction

together in sequence through peptidic bonds, the whole molecule can be classified as
peptide. Instead, if the amino acid involved are many, for example in a protein chain,
it can be classified as a polipeptide.

The physical and chemical properties of an amino acid, along with his name, are
associated to its side chain. As we already mentioned, in proteinogenic amino acids
their side chain is attached to alpha carbon atom, therefore they are classified as alpha
amino acids. According to its side chain composition and to the solution in which it is
measured, the amino acids can have either have a positive charge, a negative charge,
be polar or nonpolar. Since a water molecule is polar, an amino acid is considered
hydrophilic when it is polar as well, since its positively charged pole will attract the
negatively charged pole of the water molecule and vice versa. A nonpolar amino acid
is considered as hydrophobic instead. Moreover, by measuring the electric charge of
an amino acid in a solution at physiological pH, is is possible to classify them in five
different groups.

The three dimensional structure of protein chains is influenced by angles occurring
inside each amino acid between its N-terminal end and its side chain and between
its side chain and its C-terminal end, as well as between its C-terminal end and the
N-terminal end of the next amino acid. Such angles are called, phi (ϕ), psi (ψ) and
omega (ω) respectively. Since the peptide bond connecting two amino acids together
is planar, the latter is a planar angle, hence its value is constrained to be either 0 or
180 degrees. Instead, Phi and psi angles are strongly influenced by the composition of
the side chain. Only a few of their combinations have a significant probability of being
found in nature. Moreover, it has been shown that the value assumed by those two
angles in a polipeptide strongly correlates with its motif, i.e. its three dimensional local
conformation. [1]

Figure 1.3: Amino acid chain with dihedral angles ϕ and ψ

1.3. Sequence similarity and homology searching 7

1.3 Sequence similarity and homology searching

Living organisms are constantly pushed to adapt to their environment by evolutionary
forces. Among these forces there are mutation and genetic recombination. Both muta-
tion and genetic recombination involve changes in the genome which lead to changes
in the phenotype as well. Hence, those individuals showing a characteristics particu-
larly suitable to the environment they live in will be favoured over those not showing
it.

Looking at the adaptation phenomenon under the point of view of genetic se-
quences, changes in the genome result in changes in their product, being it a sequence
of mRNA or a protein. Those changes can then accumulate as evolution and time goes
on. When a sufficient number of changes in the genetic material accumulated as to
produce an observable difference in some individuals, then a new species arise.

Different biological sequences, being them DNA, RNA or proteins, are said to
be homologous when they share a common ancestor sequence. Homology can have
shared ancestry because of different reasons. Among those reasons, the most relevant
ones are orthology and paralogy. The concept of homology in protein sequences in
strictly related to the concept of co-evolution.

Orthology occurs when two sequences share the same common ancestor after a
speciation event. As the name suggests, in a speciation event two populations diverges
the one from the other, each one generating a new species. Despite being two different
species, these species still have many genes in common. These genes and their products
are then said to be orthologous.

Instead, paralogy is intended as homology due to a duplication event. When a
gene is duplicated in the last common ancestor, both the original and the duplicated
ones will mutate separately. After a speciation event, both the paralogous genes will
be carried on to the different species. Therefore, two protein sequences are said to be
paralogs when they are the product of two genes which originated from the same one
in the last common ancestor.

In the biological field, orthology is supposed to provide more functional similarity
than paralogy, while is still discussed. This means that the same gene carried on from
last common ancestor to two different species should fulfil the same function, despite
being it mutated independently form the other due to genetic forces. Since the func-
tion of protein synthesised from the gene is strictly bound to its native fold, structural
similarity can be inferred through orthology as well. [14]

Sequence homology is strictly bound to sequence similarity. However, these two
terms do not indicate the same concepts, nor one can be used in substitution of the
other. While there are homologous protein sequences which are not similar, it is possi-
ble to use similarity to infer homology. Instead, it is not possible to infer whether two
sequences are not homologous even if they are different.

8 Chapter 1. Introduction

Figure 1.4: An hypothetical phylogenetic tree. All genes descend from a common an-
cestor

Similarity search tools like FASTA, PSI-BLAST and HMMER have been developed
to search for homologous sequences. The first two, namely BLAST and PSI-BAST, have
been described in Section 1.5. The principle upon which these tool are based to infer
homology is the excess of similarity. Therefore, homology is assessed if the observed
similarity is significantly higher than the score which would be expected by chance.

Usually, pairwise similarity search tools produce a similarity score whose distri-
bution is explained by Equation (1.1), like in the case of FASTA and BLAST. However,
these tools usually rely on a bit-score, rather the raw score. Bit-score does not suffer
from normalization issues which affect the raw score, instead. Moreover, bit-score can
be easily converted to a probability by means of Equation (1.1), with m, n the lengths of
the sequences involved.

p(s ≥ x) = 1 − exp(− exp(−x)) (1.1)

p(b ≥ x) = 1 − exp(−mn2−s) (1.2)

The tools reported before are not intended to search whether a query sequence

1.3. Sequence similarity and homology searching 9

is homologous to single target sequence, rather to a lot of target sequences stored in
database such as UniProt, described in Section 1.6. Hence, it is important to find out
which are the sequences more likely to be homologous. These information can be found
through the expectation value, usually referenced as E-value. Being b the bit score
obtained comparing two sequences, the expectation value is defined as the number of
times such bit-score is expected to be observed by chance in the whole target dataset.
Given D the number of all target sequences, the E − value can be computed as follows:

E(b) ≤ p(b)D (1.3)

The introduction of the multiplier D in the computation of the score reported by
the sequence similarity search tools, makes it dependent form it. This means that the
same score retrieved by searching against a large dataset will be less significant than
the same score retrieved from a smaller dataset. Then, if a target sequence is found to
be homologous to a query sequence in the smaller dataset, it is not granted that such
homology will persist in the larger one. Therefore, it should be easier to infer homology
correctly in the former, with respect to the latter. [19]

10 Chapter 1. Introduction

1.4 Linear Interacting Peptides (LIPs)

As already mentioned in Section 1.1, the function of a protein is strongly related to its
folding, hence its three dimensional structure. It has been already discussed how both
the tertiary and the secondary structures of a protein can be inferred from its primary
sequence. Furthermore, this relationship between a protein sequence and its structure
can be exploited to determine the structure of others with a similar sequence. [15]

Figure 1.5: Relationship between protein sequence, structure and function. [15]

However, some proteins or protein regions are not able to fold in a globular struc-
ture due to the physical and chemical properties of their amino acids. Protein regions
or proteins not associated to any specific folding are known as intrinsically disordered
regions (IDR) or proteins (IDP), respectively. Intrinsically disordered regions were
thought to be useful only as a connection between two structured regions.

Recently, new functionality has been associated to intrinsically disordered regions.
Indeed, these regions provide to the protein with the ability to change its structure
and adapt to a binding site. Hence, their fold is no more fixed but changes over time.
Disordered regions usually miss an hydrophobic core and assume a linear structure
when they are not bounded to anything. Instead, their fold changes when bounded to
some specific molecule. Therefore, they are also known as linearly interacting peptides
(LIP).

Linear interacting peptides are usually found as connection between two protein
chains. Due such importance in with respect to protein interaction, some tools have
been developed to predict disordered regions. Among those tools there is FLIPPER,
which predicts linear interacting regions within a protein chain starting from its struc-
ture. [17]

1.4. Linear Interacting Peptides (LIPs) 11

A few databases are currently storing information about linear interaction pep-
tides. One of such databases is DIBS. This database contains manually curated details
about linear interactions, as well as structural and functional annotations. In addition,
data retrieved by running the FLIPPER predictor against the whole PDB is stored by
another database, namely MobiDB 4.0. [21] [17]

12 Chapter 1. Introduction

1.5 Tools for searching sequence databases

Methods used for contact predictions discussed in Chapter 2 apply on multiple se-
quence alignments. Such alignments can be generated through various homology
search and sequence alignment tools. Among the method cited in the scientific liter-
ature about contact prediction the most common ones are BLAST, PSI-BLAST and HM-
MER. In this section the second one is described, since it is the tool used in the pipeline
presented in Chapter 2. However, it must be noticed that PSI-BLAST can be considered
as an iterative evolution of the first method. Since understanding BLAST is required to
understand PSI-BLAST as well, the former method is described beforehand.

1.5.1 BLAST

The Basic Local Alignment Search Tool, abbreviated BLAST, is a heuristic for searching
databases and generate multiple sequence alignments. Being a heuristic, it does not
retain the best solution as dynamic programming does. Instead, it sacrifices the optimal
solution in order to save computational resources. This allows BLAST to retrieve good
results quickly even on less powerful machines.

In BLAST, a query sequence is searched against each target sequence by means of
a local similarity measure. Local similarity measures are used to align only portions of
two sequences showing high conservation between each other. Instead, global similar-
ity measures are used to favor the overall alignment, hence allowing long regions with
low conservation to occur in the resulting alignment.

Taking into account two segments of the same length in both the query and the
target sequences, their similarity score can be computed by summing the similarity
scores of each site. The similarity score for a given site can be defined by means of a
similarity matrix such as PAM120 or BLOSUM62.

The key concept in blast is the Maximal Segment Pair, abbreviated MSP. Given all
the pairs of segments of the same length in the query and target sequence, the MSP is
the one with the highest similarity score. Despite the length must be the same in both
segments, it is bounded only by the length of the smallest sequence. Therefore an MSP
is defined as locally maximal if its score can not increase by increasing its length in any
direction.

Given two sequences, their MSP score can be computed in O(n ∗ m) by means of
dynamic programming, with n, m the lengths of the query and target sequence respec-
tively. As already mentioned, BLAST approximates the MSP instead of calculating the
optimal solution, making it O(n) or O(m), depending on the longest sequence.

The approximation of the MSP between the query and any target sequence which
is carried out by BLAST is based on the estimation of a similarity score S, below which
it is likely to observe similarities due by chance. Then, the S score is used by BLAST

1.5. Tools for searching sequence databases 13

to skip sequences which are unlikely to meet such similarity score and hence to be
significant matches.

Before scanning a target dataset, BLAST defines a window length w. Then, a word
is defined as a segment of length w in larger sequence. Hence, a word pair is defined
as two segments of the same length w, one in the query sequence and the other in the
target one. Therefore, it is straightforward to assess if two sequences share a word pair
whose score exceeds a threshold T. If such word is found, it is then stretched to define
whether it can exceed the S threshold.

Consequently, the execution time of the BLAST algorithm is dependent from both
the length of the target dataset, i.e. the number of the target sequences, and the chosen
parameter T. Setting T to a low value produces a high number of hits, increasing the
number of word pair to test against the threshold value S and the execution time as
well. Instead, setting T too high could prevent any homologous sequence to be found.

The number of words that score at could have a similarity score above the thresh-
old T, given a fixed query sequence, is bounded. Therefore, words which exceed that
threshold are defined before scanning the dataset in BLAST. Once the list of words
scoring at least T against the query sequence has been generated, scanning the whole
dataset can be done in O(nD), with n length of the largest target sequence and D the
length of the target dataset. [5]

1.5.2 PSI-BLAST

Position-Specific Iterated BLAST, abbreviated PSI-BLAST is an extension of the BLAST
method explained previously in Section 1.5.1. PSI-BLAST tries to get better results with
respect to standard BLAST program both in term of computational resources required
and sensitivity of its results. To do so, it implements three adjustments: it uses a new
two-hit method, allows gaps to occur and involves automated profiles search.

In blast, the query sequence is compared to all the sequences in the target database.
Then, those target sequences whose score is above a given threshold T are selected.
Among these sequences, the ones which contain a MSP scoring at least S are returned.

The two-hit method substitutes the way in which sequences selection is made. As
for BLAST, words which scores more than T against the query sequence are computed
a priori. However, in PSI-BLAST a target sequence is selected only if two words exceed
the threshold T within it. Moreover, the matching words must further apart than A
positions. The parameter A is defined by the user as well.

For a given threshold similarity score T, the two-hits method is stricter when se-
lecting sequences with respect to the method involved in BLAST. Then, the parameter
T should be lowered in PSI-BLAST, leading to a higher number of hits. However, this
does not imply that more sequences are selected, since two hits have to be found on the
same target sequence.

14 Chapter 1. Introduction

The BLAST program could produce more than one alignment between the query
and the target sequence. When multiple of such local alignments for the same target
sequence are generated, the information in the resulting alignment could be biased.
To avoid this issue, only significant sequences should be selected by setting a high S
threshold score. Hence, PSI-BLAST considers gaps when extending the MSP region
in the query and target sequences. This produces significant alignments of the target
sequence against the whole query sequence, rather than small regions inside it.

PSI-BLAST borrows some ideas form methods based on profiles as well. Profiles
are simple statistical models defining the probability of a given sequence of amino acids
to be observed. Programs involving such methods usually require user intervention
to work properly. Therefore, PSI-BLAST provides an automated way of computing
profiles as Position-Specific Scoring Matrices, abbreviated PSSM.

PSI-BLAST can either use a PSSM as input as well. If a sequence is issued, the
PSSM is computed during the first iteration instead. Then, a new PSSM is generated
at each iteration. This enables PSI-BLAST to find homologous sequences even if they
have low similarity with respect to the query sequence. [6]

1.6 Databases for biological entities

Predicting contacts between residues of a single protein chain or between those of two
different interacting protein chains involves various information sources. All predic-
tion methods exploited in chapter 2 are based on multiple sequence alignments which
require a significant number of proteins whose primary structure is known, in order to
work properly.

Moreover, true residues contact maps must be developed, so that prediction meth-
ods can be evaluated. To do so, the coordinates of every atom in all residues must
be extracted and the euclidean distance between them can thus be computed. Once
a distance matrix has been computed, applying a threshold over its values allows the
definition of a contact map. A contact map holds boolean values defining whether two
residues are in contact or not.

Furthermore, since various information sources are involved, each one can possi-
bly be developed by a different curator and stored in a different format. Therefore, a
mapping between all those sources is required in order to put them together and finally
retrieve correct and consistent information.

In this section,a detailed description of all the information sources employed in
the development of the contacts prediction and evaluation pipeline, later defined in
Section 2.2 are provided. Among cited databases, the most important and well-known
are the UniProt Knowledgebase for primary structures and the Protein Data Bank for
secondary and tertiary structures.

1.6. Databases for biological entities 15

1.6.1 UniProt Knowledgebase

UniProt Knowledgebase, abbreviated UniProtKB, is a large database of protein se-
quences. An entry of the database is made mainly by the primary structure of the
protein sequence, i.e. its amino acidic sequence, and by some complementary infor-
mation. Such complementary information of is referenced as annotation and provides
functional information about the protein itself. Annotations can be either in human
readable or machine readable format, respectively as free-text or as structured vocabu-
laries. An example of the latter are the references to Gene Ontology and ChEBI external
information sources.

Each protein sequence which can be found inside UniProt Knowledgebase is asso-
ciated to a proteome, which is the set of all proteins found in a given organism. The pro-
teome is the product of the genome by means of protein biosynthesis. A genome is the
whole genetic material of a given organism, instead. Most of the entries in the UniProt
Knowledgebase are derived from projects focusing on genome sequencing carried out
by the International Nucleotide Sequence Database Collaboration (INSDC). INSDC is a
consortium of DNA and RNA databases, which puts together resources from the DNA
Data Bank of Japan (DDBJ), the European Nucleotide Archive (ENA) and GenBank.

The amount of protein sequences entering UniProtKB in the last decades saw a
great increase due to large scale sequencing and the rise of metagenomics. In metage-
nomics, genetic material is studied directly by taking environmental samples, instead
of relying on cultivation-based methods. This allowed to discover much more genetic
material, yielding to discovering new proteomes as well.

Frequently, various strains of the same species are retrieved from environmental
samples, leading to a redundancy issue within the database. To account for that prob-
lem, UniProtKB adopts a redundancy removal process. Such process allows to identify
duplicated proteomes inside the database and to remove them. When a duplicated
proteome is found, it gets discarded by moving it into the UniParc database. Uni-
Parc Archive, abbreviated UniParc, stores all protein sequences which are available in
UniProtKB, without accounting for redundancy.

Moreover, a subset of non redundant proteomes held into UniProtKB composes
the reference proteomes set. The goal of the reference proteomes set is to achieve a
coverage over the tree of life which is as broad as possible, while limiting the number
of proteomes. Proteomes in such set belong to organisms which are either very well-
annotated or are of significant interest for their phylogeny and for the biomedical field.

Not only does redundancy affect proteomes, but sequences as well. To mitigate
this problem, UniProt Knowledgebase provides databases containing its set of protein
sequences clusterized at various similarity levels. These databases are named UniRef,
followed by the percentage of similarity used to produce them. UniRef databases cur-
rently available are three, namely UniRef100, UniRef90 and UniRef50. The computa-
tion of these databases is a cascading process which starts from the highest similarity.

16 Chapter 1. Introduction

First of all, UniRef100 gets computed. Then, UniRef90 is computed over UniRef100.
Finally, UniRef50 is computed starting from UniRef90.

Protein sequences can be stored in the UniProt Knowledgebase in one among two
different partitions, namely Swiss-Prot and TrEMBL. The former is both the oldest and
the smallest of such partitions, since it was established in 1986 and contains approxi-
mately half a million entries. The protein sequences stored in the Swiss-Prot database
are granted to have the highest quality possible, being their annotations manually cu-
rated by hand by the personnel of the UniProt consortium. Members of the consortium
which carry out the manual curation tasks are therefore called curators.

Manual curation implies the retrieval of information from scientific literature, by
reading the most significant lines of text and interpreting the most important images.
While this process is certainly slow and involves human manpower, on the other hand
it has proven multiple times to be the most accurate method for data extraction which
is currently available.

While some annotations for a protein sequence can be easily predicted through
specific prediction tools or integrated from external resources, it is harder for others.
Manual curation of annotations in Swiss-Prot focuses on those functional annotations
which are harder to predict, since the database provides functional data used in the
development and enhancement of prediction tools in bioinformatics, being it used as
ground truth. Moreover, functional information about one protein sequence in Swiss-
Prot is automatically transferred to similar protein sequences in TrEMBL due to tran-
sitive property. Therefore, it is important that protein sequences in Swiss-Prot and
their functional annotations are kept up to date with scientific literature, as knowledge
evolves through time.

The TrEMBL database has been established in 1996, ten years later with respect to
Swiss-Prot. It is also the largest, since it contains around 120 million entries. It was
developed to tackle the data deluge issue due to the increase of biological sequences
made available by technological progress. Protein sequences in TrEMBL are automat-
ically classified and their functional annotations are automatically generated as well.
As a consequence, the human intervention is no longer required and the whole process
is much less time consuming.

Automatic annotation process uses external information sources such as Interpro
for the classification of protein sequences in families, sub-families and super-families.
Moreover, Interpro is used for predicting both functional domains and important re-
gions inside protein sequences. Interpro contains various predictive models of protein
function and databases, such as Prosite Profiles, SMART and Pfam, to achieve these
goals. Among predictive models there are both Hidden Markov Models (HMM) and
profiles, which easily allow to generate domain annotations.

Furthermore, UniProt implements its own automated annotations systems. There

1.6. Databases for biological entities 17

are two of such systems, which are complementary, namely UniRule and Statistical Au-
tomatic Annotation System (SAAS). First of all, these two systems provide annotations
on the protein, e.g. the name and the functions of the protein, its catalytic activity, its
interaction with other proteins, the effect of such interactions on the cell and its sub-
cellular location. Moreover, they generate predictions regarding the protein sequence
itself, e.g. the identification of active sites and positions of post-transactional modifica-
tions. [8] [23]

1.6.2 Protein Data Bank

The Protein Data Bank, abbreviated PDB is a database containing information about
the observed structures of biological macromolecules. It was first established in 1971 at
the Brookheaven National Laboratory, abbreviated BNL, in the Unites States. When it
was born, it contained only seven structures. However, this number rapidly increased
starting from 1980, mainly due to the huge amount of data produced by genomics
initiative which nowadays leads the influx of data into the PDB database.

While PDB is usually referenced as a single database, it is actually composed
of an heterogeneous set of resources. The most important one is the core relational
database which stores data about the experiments and their outcome as coordinates
in the three dimensional space of the experiment itself. Moreover, both native and de-
rived properties of the structures are contained in a database relying on Property Object
Model (POM) specifications. Instead, information derived from literature about macro-
molecules and crystals involved in experiments, as well as summaries, is stored in the
relational Biological Macromolecule Crystallization Database (BMCD).

At its origin, PDB information could be accessed only through magnetic media.
With the rise of the internet new distribution method were adopted. This allowed a
broader range of users to access PDB data, coming from different fields such as biology
and computer science. Nowadays, the most popular ways of retrieving data from the
PDB database is through its FTP archive or web page.

New experimental observations can be inserted into the PDB database through a
procedure involving three steps which can be done either by e-mail or directly through
a program called AutoDep Input Tool (ADIT). First of all, structure must be submitted
by the author of the experiments. Secondly, the submitted structure is inserted into the
database and an unique identifier is assigned to it. Lastly, the structure goes through
an iterative validation process, before being made available to users of PDB. ADIT is
involved alongside Macro-molecular Exchange Input Tool (MAXIT) in the iterative val-
idation process mentioned above. It uses the specifications for the PDBx/mmCIF ontol-
ogy to check the correctness of submitted data.

The primary data that is contained inside the PDB database for each protein struc-
ture is the list of atoms belonging to its residue and their coordinates inside the three

18 Chapter 1. Introduction

dimensional space. Three dimensional coordinates can be observed by means of exper-
iments. Nowadays, these experiments can be carried out by means of different tech-
niques, e.g:

1. X-Ray Crystallography

2. Nuclear Magnetic Resonance (NMR) spectroscopy

3. Cryo-electron microscopy

Data is stored in PDBx/mmCIF format inside the PDB resource. This format is an
ontology of more than 1700 terms derived from the Crystallographic Information File
(CIF) format. PDBx/mmCIF stands for macro-molecular CIF and extends the function-
alities of legacy CIF format to large molecular structures, allowing to describe complex
chemistry experiments, possibly carried out through hybrid methods.

A PDBx/mmCIF formatted file stores atomic level data of biological macromolecules
hierarchically, as follows:

1. Atom: it is the smallest object stored inside the file, for which coordinates have
been retrieved;

2. Residue: it usually represents a proteinogenic amino acid, which contains multi-
ple atoms;

3. Chain: is is a sequence of residues which have a peptidic bond. There could be
multiple chains in a single model, many of those share the same sequence but are
located in different positions inside the three dimensional space where they were
observed.

4. Assembly: also called biological assembly, it describes one of the various config-
uration which an experimental outcome could have.

Information about a specific atom and both the residue and the chain to which
it belongs are stored inside the atom record. This record is a text line, which could
start either with the key word ATOM or HETATM. The former defines the entries for
proteinogenic amino acids and nucleic acids, the latter identifier atoms which are found
in small molecules such as water, instead. After the key, an entry is composed of six to
seven value fields, as described below:

1. Sequential number of entry in file;

2. Name of the atom;

3. Name of the residue;

4. Sequential number of the residue;

5. Code of the chain;

6. Three dimensional coordinates of the atom;

7. Temperature factor.

1.6. Databases for biological entities 19

Different experimental technique produce slightly different information. For ex-
ample, X-ray crystallography is the only method which provides the temperature fac-
tor. Moreover, it provides also a resolution value, measuring the level of detail pro-
vided by the experiment carried out on a specific protein or nucleic structure. Res-
olution is measured in Angstrom and is said to be higher for lower values. In PDB
structures with resolution lower than 1 Angstrom it is easy to identify each atom sep-
arately, while it is possible to observe only the contour of structures with more than 3
Angstrom of resolution.

Value of the resolution for PDB structures observed through NMR spectroscopy is
always set to 0 Angstrom, instead. However, this technique often provide more than
one macro-molecule for each experiment. Therefore, the MODEL key is used to index
a specific molecule in a PDBx/mmCIF file.

Moreover, SEQRES key holds the list of residues which compose the polymeric
molecules contained in the PDBx/mmCIF file, each represented by a three letters code.
Not only this comprehends covalently bonded residues in each backbone of all chains
and other molecules linked to such backbone as well.

Often, residues referenced in ATOM and the ones present in SEQRES do not match,
due to various reasons. For example, the terminal part of the chains or loops could be
missing or not observed through the experiment. Hence, residues not observed are
those which are available in the SEQRES entry but not indexed by any ATOM ones.

Other keys are used for mapping a residue found inside a PDB structure to an
external resource. The key DBREF defines an external resource itself. The key SEQADV
express the differences that occur between the sequence stored in the PDB file and the
one stored in the external resource indexed by DBREF. [2] [18] [20]

1.6.3 Structure Integration with Function, Taxonomy and Sequences

Structure Integration with Function, Taxonomy and Sequences, abbreviated SIFTS is
a resource whose goal is to provide cross-references between sequences in the Protein
Data Bank (PDB) and the UniProt Knwoledgebase (UniProtKB), as well as other re-
sources in the bioinformatics environment, such as Pfam, InterPro and Gene Ontology
(GO).

SIFTS was established in 2002 as a joint project between UniProt and PDB in Eu-
rope (PDBe) groups, both hosted by the European Bioinformatics Insititute (EBI). More-
over, all the subjects involved are part of the ELIXIR consortium. Furthermore, SIFTS
was included into PDBe in 2018.

As already mentioned in the previous chapters, both the two main databases in-
volved in the project, namely UniProtKB and PDB, saw a dramatic increase in the
amount of data entering their systems. The main reasons behind such phenomenon are

20 Chapter 1. Introduction

the progress in technology and the arise of metagenomics. Therefore, SIFTS was devel-
oped as a mean of transferring annotations retrieved by protein structures on protein
sequences and vice-versa.

Since the number of protein sequences contained in the UniProtKB is too large,
most of them will never be manually annotated. Hence, UniRule is being used to obtain
annotations without needing any manual intervention. As its name suggests, UniRule
is a rule-based automatic annotation system trained on the set of manually annotated
sequences in the UniProtKB, held inside the SwissProt partition. Then, it is straightfor-
ward that the process for automatically annotate protein sequences, held in the TrEMBL
partition, can take advantage of information derived from protein structures. [4]

In SIFTS, both sequence-level and residue-level cross-references are generated be-
tween the PDB and the UniProtKB. The first one maps the sequence of a protein chain
from a PDB structure to one or multiple protein sequences in UniProtKB. The second
one maps a protein sequence in the UniProtKB with its three dimensional model in
PDB, instead.

In the latest version of SIFTS, three different type of cross-references are available:

1. Mapping of a protein sequence from the PDB to a canonical sequence in the
UniProtKB. Canonical form is the most frequent protein sequence of a set of
highly similar ones, while an isoform is one of the less similar ones;

2. Mapping of a protein sequence from the PDB to all the isoform available for a
canonical sequence in the UniProtKB.

3. Mapping of a protein sequence from the PDB to a cluster of the UniRef90 database.

SIFTS provides cross-reference between multiple bioinformatics resources as up-
to-date as possible. It does so through a pipeline which is run weekly, at the same pace
at which PDB releases new entries. Such pipeline is made of two main components, one
fore each level of the cross-references: a semi-automated process for mapping protein
sequences in the UniProtKB to the ones in the PDB and a fully automated process that
maps residues between sequences in UniProtKB and the ones in the PDB. Moreover, a
third process in involved to provide cross-references between other resources such as
Pfam, InterPro or GO.

The first step of the semi-automated process for generating sequence-level map-
pings is performed when a new PDB structure is deposited. At that time, the name of
the organism to which the entry is associated is sent to the taxonomy service of UniProt
which retrieves the taxonomy identifier, also known as TaxID, according to a similarity
score. Afterwards, NCBI’s taxonomy database is used to retrieve the whole taxonomic
lineage related to such identifier, i.e. the series of biological entities such as organisms,
cells and genes on the same phylogenetic branch.

The second step is carried out a week before a PDB entry must be released. The
sequence contained in the PDB entry is searched against UniProtKB through BLAST.

1.7. Tools for protein contacts prediction 21

By taking advantage of the higher conservation of the protein structure with respect
to its sequence, the whole taxonomic linkage is then assigned to the hits retrieved by
querying results.

Finally, the correct entry in UniProtKB is identified through a scoring system which
assigns a weight to various characteristics of the sequences retrieved from BLAST, such
as the distance inside the phylogenetic tree, and the sequence similarity. Manual cura-
tion is involved to handle PDB sequences for which no hit have been retrieved through
BLAST in UniProtKB and to resolve discrepancies in UniProtKB accession number orig-
inally assigned to the PDB structure.

Residue-level mapping is a process which analyzes and annotates discrepancies
between sequences in the PDB and the one mapped in the UniProtKB. When a PDB se-
quence maps to a canonical protein sequence, then the mapping and annotation proce-
dure is easy. However, there could be cases in which some residues in the experimental
setting can not be observed, leading to gaps in the protein sequence. Such gaps, would
eventually lead to errors in the output of sequence alignment algorithms.

In order to generate correct sequence alignments, gaps are considered as segment
delimiters. Each segment is a sub-sequence of the original sequence whose left end and
right end are referenced as amino-terminus and carboxyl-terminus, respectively. Af-
ter being defined, the segments composing a sequence are searched separately against
UniProtKB through BLAST and then reassembled together. Finally, annotations for
amino-terminus, carboxyl-terminus, unobserved and mismatching residues are pro-
vided automatically. [3]

Cross-references are distributed per PDB entry, as XML formatted files. These files
can be retrieved from the FTP service made available by PDBe. Despite being formatted
in XML, the main information contained in a PDB file for each residue can be summa-
rized as described in Table 1.1

1.7 Tools for protein contacts prediction

One of the open problems in structural bioinformatics is the prediction of intra-chain
residues contacts with sufficient precision using an amino acidic sequence as input.
This issue is strictly connected to the more general problem of protein folding predic-
tion, i.e. inferring the whole tertiary structure of a protein starting from its primary
structure.

Generally, methods already developed for intra-chains contact predictions take as
input multiple sequence alignments. Those alignments are generated searching for
a protein chain against a protein sequences database. Each method takes different as-
pects of input alignments into account: the simplest ones consider just the mutual infor-
mation (MI) matrix and its possible regularizations and normalization. Some describe
the contact matrix as a network and try to solve it through Graphical Lasso. Moreover,

22 Chapter 1. Introduction

Attributes

Name Type Description

pdb_id String Identifier of the PDB structure to which current
residue belongs. The file itself is named after it

pdb_chain String Identifier of the chain to which current residue be-
longs

is_observed Bool Boolean flag, true when the current residue has been
observed in PDB structure, false otherwise

seqres_index Int Index of the current residue on the experimental
structure

uniprot_residue_name String One-letter-code for the residue as mapped by the
UniProtKB

residue_name Char One-letter-code for the residue, as mapped by the
PDB

residue_name_3lett String Three-letters-code for the residue, as mapped by the
PDB

pdb_residue_id String Identifier of the current residue on the PDB se-
quence

uniprot_index Int Index of the current residue on the UniProtKB se-
quences

uniprot_id String Accession number in the UniProtKB to which cur-
rent residue is mapped

Table 1.1: Summary alignments table

1.7. Tools for protein contacts prediction 23

Neural Networks have been involved in intra-chain contact predictions, taking advan-
tage of the outcomes of the methods cited before and trying to put all their information
together in order to obtain better results.

However, while it is certainly true that intra-chains contact predictions has been
a quite explored issue, it is sightly less common for inter-chains contact predictions,
i.e. the inference of contacts between pairs of residues in different chains. This latter
issue is similar to the former one, although with some restrictions. For example, one
parameter used as input for intra-chain contacts prediction and for their evaluation is
their distance in term of sequence positions, especially as regards Neural Networks.
These features are clearly not applicable to inter-chains contacts predictions instead.

In this chapter different methods for intra-chain contact predictions are described.
These methods are also suitable for inter-chain contact predictions as well. The de-
scription takes into account the theoretical concepts which underpin contact prediction
methods. The application of such notions to multiple sequence alignments is later ex-
amined in Section 1.7.

1.7.1 Covariance

Two contacting functional sites in a multiple sequence alignment are thought to co-
evolve. This means that when one in a pair of contacting residues changes due to evo-
lutionary forces, the other residue changes as well. Such change is required to balance
its chemical and physical differences, allowing the full sequence to maintain its native
fold and therefore its functionality.

Two different sites in a multiple sequence alignment can be defined as categorical
independent random variables X and Y. They can take value among the 20 standard
IUPAC amino acid one letter codes. Therefore, the simplest prediction method which
can be used to establish if two residues represented by variables X and Y are in contact
is covariance. By computing their covariance cov(X, Y), their correlation coefficient
ρX,Y can be obtained, as well as their partial correlation coefficient ρX,Y·Z.

Covariance between two random variables X and Y provides a quantitative mea-
sure of their joint variability. If both the variables tend to increase together, then covari-
ance will be positive. Conversely, if one tends to decrease when also the other does,
then covariance will be negative. Instead, if their behaviour is not linked then covari-
ance will be close to zero.

Given two random variables X and Y covariance between them can be computed
as the expected value of the product of their deviation from their expected values [9],
i.e:

Cov(X, Y) = σXY = E[(X − E[X])(Y − E[Y])] (1.4)

24 Chapter 1. Introduction

By applying linearity of the expected value to covariance definition in Equation
1.4, the standard identity of the covariance can be expressed as follows:

Cov(X, Y) = E[(X − E[X])(Y − E[Y])] (1.5)

= E[XY − XE[Y]− E[X]Y + E[X]E[Y]] (1.6)

= E[XY]− E[X]E[Y]− E[X]E[Y] + E[X]E[Y] (1.7)

= E[XY]− E[X]E[Y] (1.8)

In addition, if two random variables X, Y are binary the following holds, constrain-
ing their covariance within the interval [−1, 1]:

X, Y ∼ Bin ∈ 0, 1 (1.9)

E[X], E[Y] ∈ [0, 1] (1.10)

(X − E[X]), (Y − E[Y]) ∈ [−1, 1] (1.11)

Cov(X, Y) = E[(X − E[X])(Y − E[Y])] ∈ [−1, 1] (1.12)

Once covariance has been obtained, Pearson’s correlation coefficient can be com-
puted. This allow to normalize covariance within the range [−1,+1]. This keeps the
meaning of a positive, negative or null covariance unaltered. Given two random vari-
ables X, Y and their standard deviations σX , σY, correlation coefficient ρX,Y can be for-
mulated as follows:

ρX,Y =
σX,Y

σXσY
(1.13)

Taking into account the structure of multiple sequence alignments particular im-
portance is assumed by partial correlation coefficient. In fact, by computing covariance
between any two variables X and Y as well as their correlation coefficient, the effect
that another random variable Zi has on such relationship is not considered. Instead,
in the partial correlation coefficient the effect of those controlling random variables is
removed, yielding a quantitative score for the relationship between variables X and Y
only.

Partial correlation coefficient ρXY·Z, with Z = Zi, ..., Zn set of controlling variables
and X, Y random variables, can be computed by first performing linear regressions X ∼
Z and Y ∼ Z against all the controlling variables. Then, residuals of both correlations
eX and eY must be retrieved, respectively. Finally, the correlation coefficient between
them has to be calculated.

However, it might be very expensive to compute it through linear regression,
particularly in high dimensional context such as the one involving multiple sequence
alignments. Instead, it is better to exploit the fact that n-th order partial correlation co-
efficient, |Z| = n, can be computed using just three (n − 1)-th correlation coefficients.
Therefore, by defining base case as correlation between random variables X and Y with

1.7. Tools for protein contacts prediction 25

no controlling one, i.e. ρXY·∅ = ρXY, we can rewrite partial correlation coefficient re-
cursively, as follows:

ρXY·Z =
ρXY·Z\{Z0} − ρXZ0·Z\{Z0}ρYZ0·Z\{Z0}√︂

1 − ρ2
XZ

√︂
1 − ρ2

YZ

∀Z0 ∈ Z (1.14)

This last formulation can then be computed in O(n3) by properly implementing
caching, therefore avoiding computing more than one time the result for a given subset
of controlling variables.

Last but not least, given a set of random variables with cardinality n, X = {X1, ..., Xn},
it is possible to compute the whole matrix of partial correlation coefficients, i.e. partial
correlation coefficient between any pair of variables in set X, in O(n3). To do so, it is
required that the covariance matrix Σ is positive definite and invertible, in order to de-
fine precision matrix as its inverse, Θ = Σ−1. Therefore, matrix of partial correlation
coefficients can be computed as follows:

ρXiXj ·X\{Xi ,Xj} = −
Θij√︂
ΘiiΘjj

(1.15)

Unfortunately, observed multiple sequence alignments rarely contain all residues
in every column. Thus, sample covariance matrix S is guaranteed to be singular and
consequently not invertible. This makes partial correlation not directly calculable in
this context. However, as will be shown later, some workaround can be applied in
order to estimate partial correlation matrix.

1.7.2 Shannon’s entropy and mutual information

Another common and simple tool used to infer contact maps starting from a multi-
ple sequence alignment (MSA) is mutual information (MI). This method tries to infer
contacting residues by exploiting co-evolution of those sites which are supposed to be
functionally related, similarly to covariance.

Mutual information is a quantitative measure of dependence between two random
variables X and Y, defined as the reduction of uncertainty about one, given that the
other has been observed. However, mutual information heavily relies on the notion of
Shannon’s entropy and cross-entropy. Hence, their definitions are given below, before
going through mutual information itself.

Shannon’s entropy measures uncertainty of a random variable. By first defining
a discrete random variable X, with probability mass function is p(x), entropy can be
defined as minus the sum of each possible value x ∈ X times its logarithm in base b [9],
i.e:

Hb(X) = − ∑
x∈X

p(x) logb(x) (1.16)

26 Chapter 1. Introduction

In the particular case the logarithm base in entropy expression is set to two, i.e.
b = 2, entropy is said to be measured in bits.

One useful property of entropy arises from the definition of probability, for which
it is known that p(x) ∈ [0, 1], which implies log(p(x)) ≤ 0. Therefore entropy is always
non-negative, i.e:

Hb(X) ≥ 0 (1.17)

Another property which can be useful for the implementation of methods based
on entropy is the change of logarithm base. By defining Ha(X) as entropy computed
for random variable X using logarithm base a, switching to base b can be done through
the properties of the logarithm as follows:

Hb(X) = logb(a)Ha(X) (1.18)

After that entropy for a single random variable X has been defined, the joint en-
tropy between two random variables X, Y as H(X, Y) has to be defined as well. By
considering the joint random variable (X, Y), the two definitions are equal. Hence, the
former can be considered as a special case of joint entropy, i.e. H(X, X) = H(X). For-
mally, the joint entropy in base b of two random variables X, Y, with joint probability
distribution p(x, y), is defined as:

Hb(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(x, y)) (1.19)

= −E[logb(p(X, Y))] (1.20)

Moreover, it is useful to define conditional entropy of a random variable X over
another random variable Y as the expected value of the conditional distributions en-
tropies, averaged over the conditioning variable X. Hence, given X, Y random vari-
ables with joint distribution (X, Y) ∼ p(x, y), conditional entropy H(Y|X) can be de-
fined as:

Hb(Y|X) = ∑
x∈X

p(x)Hb(Y|X = x) (1.21)

= − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) logb(p(y|x)) (1.22)

= − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(y|x)) (1.23)

= −E[logb(p(Y|X))] (1.24)

1.7. Tools for protein contacts prediction 27

Relationship between joint and conditional entropy is very important in the defi-
nition of mutual information and is exploited by the chain rule theorem, i.e:

Hb(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(x, y)) (1.25)

= − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(y|x)p(x)) (1.26)

= − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(x))− ∑
x∈X

∑
y∈Y

p(x, y) logb(p(y|x)) (1.27)

= − ∑
x∈X

p(x) logb(p(x))− ∑
x∈X

∑
y∈Y

p(x, y) logb(p(y|x)) (1.28)

= Hb(X) + Hb(Y|X) (1.29)

Finally, given two random variables X and Y, mutual information between them
I(X, Y), i.e. the amount of information a random variable contains about the other, can
be defined as follows:

Ib(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) logb

(︃
p(x, y)

p(x)p(y)

)︃
(1.30)

It can be important for the implementation of methods related to mutual informa-
tion to recall the relationship which exists between entropy and mutual information
itself. By means of logarithm properties, Bayes theorem, entropy and mutual informa-
tion definitions, mutual information can be rewritten as the reduction in uncertainty of
X given that we can observe Y, i.e:

Ib(X, Y) = ∑
x∈X

∑
y∈Y

logb

(︃
p(x, y)

p(x)p(y)

)︃
(1.31)

= − ∑
x∈X

∑
y∈Y

p(x, y) logb

(︃
p(x|y)
p(x)

)︃
(1.32)

= − ∑
x∈X

∑
y∈Y

p(x, y) logb(p(x)) + ∑
x∈X

∑ y ∈ Yp(x, y) logb(p(x|y)) (1.33)

= − ∑
x∈X

p(x) logb(p(x))−
(︄
− ∑

x∈X
∑
y∈Y

p(x, y) logb(p(x|y))
)︄

(1.34)

= Hb(X)− Hb(X|Y) (1.35)

By definition, mutual information is symmetric, i.e. Ib(X, Y) = Ib(Y, X). This
means that X contains as much information about Y as Y does about X. Then, the
following equalities hold:

Ib(X, Y) = Hb(X)− Hb(X|Y) (1.36)

= Hb(Y)− Hb(Y|X) (1.37)

28 Chapter 1. Introduction

Moreover, using chain rule theorem defined above and given two random vari-
ables X, Y, it is possible to rewrite mutual information as the sum of the entropies
H(X), H(Y) of both the variables, from which joint entropy H(X, Y) is removed:

Ib(X, Y) = Hb(X)− Hb(X|Y) (1.38)

= Hb(X)− (Hb(X, Y)− Hb(Y)) (1.39)

= Hb(X) + Hb(Y)− Hb(X, Y) (1.40)

1.7.3 Decomposition of mutual information sources

The value of mutual information computed over a multiple sequence alignment can
arise from different sources. In Wollenberg and Atchley [24] four different sources of
mutual information have been identified:

Isi := Structural interactions (1.41)

Ifc := Functional constraints (1.42)

Irn := Random noise (1.43)

Isa := Shared ancestry (1.44)

The latest two sources Irn, Isa represent background noise, hence they are grouped
together as Ib. Also inter-site associations resulting from either structural interactions
or functional constraints are grouped together as Isf.

Isf = Isi + Ifc := Structural and functional constraints (1.45)

Ib = Irn + Isa := Background noise (1.46)

Therefore, the mutual information for multiple sequence alignments can be refor-
mulated. Taking the sum of each different factor from which it is influenced as defined
above, the following formulation can be obtained:

I = Isi + Ifc + Irn + Isa (1.47)

= Isf + Ib (1.48)

Wollenberg and Atchley [24] analyze the definition of mutual information in Equa-
tion 1.48 through artificial alignments generation. The idea behind this approach is
simple: first of all, define a statistic over mutual information. Then, compute it over
a real alignment and over a simulated one. Simulated alignment is parametrized to
guarantee that the only source of mutual information in it is phylogeny or chance, i.e.
alignment sites are independent.

Therefore, the distribution of the previously defined statistic computed on the ar-
tificial alignment can be used as a threshold value, above which it will have a specific

1.7. Tools for protein contacts prediction 29

probability of not arising from background noise Ib. Therefore, comparing such dis-
tribution with empirical one, its probability of arising from structural or functional
constraints Isf can be inferred.

Method used to sample artificial alignments involves two tools. The firs is a phylo-
genetic tree, which can be derived by applying a neighbor-joining algorithm with mean
pairwise distances to a real multiple sequence alignment. The second is an amino acid
substitution algorithm. The chosen substitution algorithm is the Jones–Taylor–Thornton
(JTT) in this specific case. This algorithm has the advantage of accounting for underly-
ing phylogeny when calculating amino acid substitution probabilities. Hence, associa-
tion scores computed on sequences generated through such method are guaranteed to
be influenced only by background noise, i.e. by chance or due to shared ancestry.

In Martin et al. [16] correlation between background noise and number of aligned
sequences is analyzed instead. Again, simulated alignments are involved, this time
with independent columns, mutation probability u and two different substitution ma-
trices: one with uniform amino acid probabilities and another with sampled ones. In
both cases, observed mutual information decreases as number of aligned sequences n
increases. Moreover, it can be noticed that higher mutation probability u involves also
higher mutual information. This means, on the other side, that alignments with high
similarity tend to have lower mutual information.

1.7.4 Mutual information normalization

Mutations should arise independently to the largest part of the residues in a sequence.
Instead, most of the residues in a sequence are inherited as a block from the ancestor
sequence. Therefore, even if mutations observed within a multiple sequences align-
ment are assumed to be independent, mutual information is greatly influenced by the
phylogenetic history of the query sequence itself. [16]

To account for phylogenetic influence in contacts prediction applied to multiple
sequence alignments, it is useful to understand its relation to both entropy and cross
entropy computed among alignment columns. Recalling the definitions of mutual in-
formation for two random variables X, Y, the following hold:

I(X, Y) = H(X)− H(X|Y) (1.49)

I(X, Y) = H(Y)− H(Y|X) (1.50)

I(X, Y) ≤ max{H(X), H(Y)} (1.51)

I(X, Y) = H(X) + H(Y)− H(X, Y) (1.52)

Inequality 1.51 and Equality 1.52 underline the strong correlation of mutual infor-
mation with either entropy and cross entropy of the columns. However, such upper
bounds mean that mutual information will be higher in columns which tend to vary

30 Chapter 1. Introduction

often, while being low if columns vary together, but infrequently. Such behavior is not
useful for contacts prediction and hence must be corrected somehow.

In Martin et al. [16], simulated alignments with correlated mutations have been ex-
ploited to better understand the problem and find a solution. In such alignments, some
column pairs have been constrained to mutate together, while other columns were free
to mutate independently. As expected, mutual information computed over co-evolving
columns was not significantly higher than the one computed over independent ones in
most cases.

Therefore, mutual information normalization methods have been empirically tested
over artificially generated alignments. Dividing mutual information by cross entropy
performed the best both in specificity, i.e. number of true positive values over all pos-
itively predicted ones, and sensibility, i.e. number of true negative values over the
number of actually negative ones. Hence, given two discrete random variables X and
Y and recalling the definition of mutual information with respect to entropy, normal-
ized mutual information, Ir, is defined as follows:

I(X, Y) = H(X) + H(Y)− H(X, Y) (1.53)

Ir(X, Y) = I(X, Y)/H(X, Y) (1.54)

Usefulness of normalized mutual information applied to multiple sequence align-
ments can be understood by observing its behaviour with respect to the raw score.
Defining unique amino acid pairs as pairs of amino acid whose elements are not shared
with any other pair, it can be noticed that mutual information score tends to zero when
all possible amino acid pairs are observed in two columns of the alignment. Instead,
normalized score tends to zero if all the amino acid pairs observed in two columns are
unique, independently from their variability.

1.7.5 Mutual information correction for phylogeny

In Section 1.7.3, the influence of entropy in mutual information has been partially re-
moved by applying normalization in Equation 1.54. However, mutual information
computed over an alignment of homologous sequences is thought to arise as the sum
of four different sources, as explained in Equation 1.47 and Equation 1.48.

Dunn, Wahl, and Gloor [10] proposes another simple method to approximate back-
ground noise, hence mutual information arising from either phylogeny or chance. This
method does not rely on simulations, which can be very resource consuming when a
lot of biological sequences are involved.

Such method is based on the estimation of background noise, Ib, by assuming that
each position in alignment may have a particular propensity toward it, related to phy-
logenetic history and its entropy. Moreover, it assumes that given any pair of positions

1.7. Tools for protein contacts prediction 31

in the alignment and their propensities to such noise, their joint propensity can be cal-
culated as the product of the propensities of each single position.

When no signal is present in mutual information due to structural or functional
constraints, hence Isf = 0, mutual information itself is composed of noise term Ib

only. Average product correction (APC) is introduced to approximate such noise term.
Hence for any two sites X, Y in the alignment the following holds:

I(X, Y) = Ib(X, Y) + Isf(X, Y) (1.55)

= Ib(X, Y) (1.56)

≈ APC(X, Y) (1.57)

Furthermore, it is assumed than mutual information without the influence of struc-
tural and functional constraint between any two sites in the alignment can be approx-
imated by the average mutual information of both those sites with respect to all other
positions, divided by average mutual information computed over all positions in the
set. Therefore, APC estimation can be computed between any column X1, ..., Xn ∈ X in
multiple sequence alignment as follows:

APC(Xi, Xj) = I(Xi, X̄)I(Xj, X̄)/ Ī(X) (1.58)

With I(Xi, X̄) mean mutual information for any site Xi with respect to the others
and Ī(X) mean mutual information computed over all sites, the following holds:

m = n − 1 (1.59)

I(Xi, X̄) =
1
m ∑

j ̸=i
I(Xi, Xj) (1.60)

Ī(X) =
2

nm

m

∑
i=1

n

∑
j=i+1

I(Xi, Xj) (1.61)

APC approximation to mutual information can be demonstrated starting by defin-
ing the product of average mutual information product of any two sites Xi, Xj with all
the others, i.e:

I(Xi, X̄)I(Xj, X̄) =

(︄
1
m ∑

k ̸=i
I(Xi, Xk)

)︄(︄
1
m ∑

k ̸=j
I(Xj, Xk)

)︄
(1.62)

32 Chapter 1. Introduction

Thus, by recalling the definition of mutual information at 1.40 the following is
obtained:

I(Xi, X̄) =
1
m ∑

k ̸=i
I(Xi, Xk) (1.63)

=
1
m ∑

k ̸=i
(H(Xi) + H(Xk)− H(Xi, Xj)) (1.64)

=
1
m

(︄
mH(Xi) + ∑

k ̸=i
H(Xk)− ∑

k ̸=i
H(Xi, Xk)

)︄
(1.65)

= H(Xi) +
1
m ∑

k ̸=i
H(Xk)−

1
m ∑

k ̸=i
H(Xi, Xk) (1.66)

Then, the mean entropy of any site Xi with respect to all other sites in the alignment
can be formulated:

H(Xi, X̄) =
1
m ∑

k ̸=i
H(Xi, Xk) (1.67)

In addition, when the number of columns m is large the mean entropy computed
on all sites but one can be approximated to the mean entropy computed on all sites, i.e:

H̄(X) ∼ 1
m ∑

k ̸=i
H(Xk) for m large (1.68)

By combining Equation 1.67 and Equation 1.68 in Equation 1.66 the following can
be obtained:

I(Xi, X̄) = H(Xi) +
1
m ∑

k ̸=i
H(Xk)−

1
m ∑

k ̸=i
H(Xi, Xk) (1.69)

≈ H(Xi) + H̄(X)− H(Xi, X̄) (1.70)

To successfully define APC approximation, it is of fundamental importance to as-
sume that mean joint entropy contains an additive component, such that:

H(Xi, Xj) ≈ H(X̄) + δXi + δXj (1.71)

Note that by definition of mean joint entropy, additive components are guaranteed
to sum up to zero, hence:

n

∑
i=1

δXi = 0 (1.72)

∑
k ̸=i

δXk = −δXi with i ∈ 1, ..., n (1.73)

1.7. Tools for protein contacts prediction 33

Therefore, using the definition of the average entropy for a specific site in Equation
1.67 it can be rewritten taking into consideration Equation 1.71 and Equation 1.73 as
follows:

H(Xi, X̄) = H(X̄) + δXi −
1
m

δXi (1.74)

≈ H(X̄) + δXi (1.75)

Thus, each factor in the average mutual information product from Equation 1.62
can be redefined introducing Equation 1.75 into Equation 1.70 along with a new term
HXi for convenience:

I(Xi, X̂) = H(Xi) + H̄ − H(Xi, X̄) (1.76)

= H(Xi) + H̄ − H(X̄)− δXi (1.77)

= (H(Xi)− H̄ − δXi) + 2H̄ − H(X̄) (1.78)

= HXi + 2H̄ − H(X̄) (1.79)

Hence, the Equation 1.62 for the average mutual information product can be rewrit-
ten as well, by substituting factors with the definition in Equation 1.79:

I(Xi, X̂)I(Xj, X̂) = (HXi + 2H̄ − H(X̄))(HXj + 2H̄ − H(X̄)) (1.80)

= HXi (HXj + 2H̄ − H(X̄)) + (2H̄ − H(X̄))(HXj + 2H̄ − H(X̄))

(1.81)

= HXi HXj + HXi (2H̄ − H(X̄)) + HXj(2H̄ − H(X̄)) + (2H̄ − H(X̄))2

(1.82)

= HXi HXj + (2H̄ − H(X̄))(HXi HXj + 2H̄ − H(X̄)) (1.83)

Considering the definition of mutual information between any two positions Xi, Xj

in an alignment, it can be reformulated by introducing the approximation for the en-
tropy form Equation 1.71 into Equation 1.40 and using terms XXi , HXj defined within
Equation 1.79:

I(Xi, Xj) = H(Xi) + H(Xj)− H(Xi, Xj) (1.84)

= H(Xi) + H(Xj)− H(X̄)− δXi − δXj (1.85)

= (H(Xi)− H̄ − δXi) + H̄ + (H(Xj)− H̄ − δXi) + H̄ − H(X̄) (1.86)

= HXi + HXj + 2H̄ − H(X̄) (1.87)

34 Chapter 1. Introduction

Mean mutual information overall Ī(X) can be redefined as well, by using approx-
imation in Equation 1.71:

Ī(X) =
2

mn ∑
i,j

I(Xi, Xj) (1.88)

=
2

mn ∑
i,j

(︁
H(Xi) + H(Xj)− H(Xi, Xj)

)︁
(1.89)

=
2

mn

(︄
mH(Xi) + nH(Xj)− ∑

i,j
H(Xi, Xj)

)︄
(1.90)

= H̄(X) + H̄(X)− H(X̄) (1.91)

= 2H̄(X)− H(X̄) (1.92)

Finally, Equation 1.87 and Equation 1.92 can be used to rewrite equation 1.83:

I(Xi, X̄)I(Xj, X̄) ≈ HXi HXj + Ī(X)I(Xi, Xj) (1.93)

I(Xi, Xj) =
I(Xi, X̄)I(Xj, X̄)

Ī(X)
−

HXi HXj

Ī(X)
(1.94)

The First term in right part of the Equation 1.94 represents APC correction term.
Such equation approximates mutual information well when second term is close to
zero. This happens for columns with entropy close to mean entropy of the alignment,
since by definition HXi = H(Xi)− H̄(X)− δXi .

1.7.6 PSICOV

PSICOV stands for precise structural contact prediction using sparse inverse covariance
estimation. This method uses covariance to infer contacts between two residues inside
the same sequence alignment. As the name suggests, it tries to be as precise as possible
by tackling indirect coupling effect through regularization. Instead, methods based on
mutual information described above take into account only phylogenetic bias through
normalization or correction.

Sample covariance computed between all the amino acids in all the sites of a multi-
ple sequence alignment is must be computed to define the matrix of partial correlation
coefficients. The components of such matrix have already been described in Equation
1.15. Considering multiple sequence alignments, a pair of sites showing a high level of
partial correlation between each other are likely to be in contact.

However, in order to obtain partial correlation coefficients it is required that the
sample covariance matrix obtained from a multiple sequence alignment is invertible.
This is not guaranteed in this particular setting. Instead, it is almost certainly singular
since not all amino acid combinations are observed in any two sites of the alignment.
This results in a number of observations which is smaller than the number of variables,
thus matrix can not be inverted.

1.7. Tools for protein contacts prediction 35

Instead of computing it directly, PSICOV estimates the sparse inverse covariance
matrix. Since the percentage of contacts in a true contacts map was empirically ob-
served to be around zero, imposing a similar target sparsity level should produce more
precise results.

The sparse inverse covariance matrix can be estimated by means of graphical Lasso.
Given a set of m observed random variables x1, ..., xm with xi ∈ Rn, Graphical Lasso ap-
proximates the inverse covariance matrix by minimizing the following objective func-
tion:

∑
ij

SijΘij − log(det(Θij)) + ρ ∑
ij
|Θij| (1.95)

where S ∈ Rm,m is a squared matrix whose values contain the empirical covariance
computed between all the m observed random variables, recalling Equation 1.4.

Assuming that the distribution of the observed variables is a multivariate nor-
mal with mean µ ∈ Rm and standard deviation Σ ∈ R(m,m) and distribution X =

x1, ..., xm ∼ N (µ, Σ), the first two terms in the objective function shown in Equation
1.95 can be defined as the negative log-likelihood function of the inverse covariance
matrix Θ.

Instead, the rightmost component of the objective function is the regularization
term known as ℓ1-norm. Such regularization term allows to impose a certain sparsity
coefficient to the estimated inverse covariance matrix ˆ︁Θ. The sparsity coefficient of the
solution can be tweaked through the coefficient ρ ≥ 0. When ρ is set to zero, the number
of non-zero values in the solution matrix ˆ︁Q is maximized. Instead, when ρ increases the
number of non-zero components decreases. When ρ is set to extremely high values, the
third term in the objective function becomes the most important, leading to a solutionˆ︁Q whose values are all set to zero.

Graphical Lasso could be slow to reach convergence. In some other cases, it could
never reach convergence. PSICOV tries to solve this issue by substituting the sample
covariance matrix S in Equation 1.95 with the matrix S′ defined as follows:

S′ = λF + (1 − λ)S (1.96)

λ ∈ [0, 1] (1.97)

F = diag(S̄, ..., S̄) (1.98)

Matrix F is a highly structured unbiased estimator and λ is the shrinkage parameter.
The shrinkage parameter λ is automatically increased until S′ is not singular anymore.
After such matrix S′ has been chosen, a solution to the dual problem can be found
through block coordinate gradient descent.

As already mentioned, theoretical methods described above work when random
variables considered follow a normal distribution N (µ, Σ). The solution of the dual op-
timization problem can be extended to binary variables as well. When the input data
is represented by a multiple sequence alignment, this requires transforming each of its

36 Chapter 1. Introduction

sites in a one-hot-encoded random variable with 20 levels, since there are 20 proteino-
genic standard amino acids.

Therefore, for each position i, j in the alignment a sub-matrix Θij ∈ R(20,20) is found
through Graphical Lasso. Then, the sum over all amino acids combinations in positions
i, j is taken as contact score Scontact

ij , i.e:

Scontact
i j = ∑

ab
|ˆ︁Θab

ij | (1.99)

Furthermore, PSICOV allows to apply APC correction similarly to mutual information.
Hence, the final score is computed as follows:

PCij = Scontact
ij −

Scontact
i· Scontact

·j

S̄contact (1.100)

Scontact
i· = ∑

j
Scontact

ij (1.101)

Scontact
·j = ∑

i
Scontact

ij (1.102)

S̄contact
= ∑

ij
Scontact

ij (1.103)

Finally, scores normalized within interval [0, 1] can be obtained by applying a logistic
activation function over all the residue-residue scores PCij. [13]

37

Chapter 2

Methods

This chapter takes into account the prediction methods involved in the final stage of
the pipeline for the prediction and evaluation of contact maps. Moreover, the pipeline
itself is described in detail.

For prediction methods, a general introduction is given first. Then, methods based
on mutual information are introduced. Among these, there is entropy normalized mu-
tual information, APC and ASC corrected mutual information. The last method pre-
sented is PSICOV, which does not rely on mutual information instead. Theoretical con-
cepts underlying prediction methods are introduces as well as their implementation.

Afterwards, the whole pipeline is analyzed. Each step is described in detail on its
own. Among the details provided there is the description of the input and the input.
The methods involved for information storage are described as well. Moreover, each
process employed in the transformation of the input data into the output information
is analyzed.

2.1 Application of mutual information

to multiple sequence alignments

Before describing the implementation of methods related to the mutual information, it
is useful to formally define a multiple sequence alignment. In its simplest form, it can
be thought as a matrix with N rows and M columns whose elements are characters.
Each row in the matrix is an aligned sequence, while each its columns are referenced as
alignments sites, i.e. positions within the amino acidic sequence. Its entries can assume
one value among twenty characters, i.e. IUPAC one letters amino acidic codes, plus
one characters which represents a gap "-". Using an alignment as a dataset, its sites are
random variables and its sequences are their realizations.

However, it is well known that these variables must be one-hot-encoded, being
them categorical with 20, excluding gaps. Therefore, recalling that N is the number of
sequences, M the number of aligned residues and Q = 20 the given number of amino
acidic one letter codes, a multiple sequence alignment matrix A can be formally defined

38 Chapter 2. Methods

as follows:
A = {0, 1}(N,M,Q) (2.1)

Ai,j,k = 1 if k-th residue is present in the j-th site of the i-th sequence; (2.2)

Ai,j,k = 0 otherwise. (2.3)

With multiple sequence alignment matrix so defined, random variables can be
identified with the index of each amino acid k for each site index j. Hence, their re-
alizations are defined as follows:

{Ai,j,k∀i ∈ N} ∈ 0, 1N (2.4)

2.1.1 Covariance

Therefore, sample covariance matrix S ∈ R(M,Q,M,Q) for alignment A will hold sample
covariance scores between any two amino acid indexed by k1, k2 in any two alignment
sites indexed j1, j2 and is defined as:

Sj1,k1,j2,k2(A) =
1

N − 1

N

∑
i=1

(Ai,j1,k1 − Āj1,k1)(Ai,j2,k2 − Āj2,k2) (2.5)

However, recalling the standard identity for covariance from Equation 1.5, i.e.
cov(X, Y) = E[XY] − E[X]E[Y], and assuming that the random variables are binary,
i.e. X, Y ∈ 0, 1N , the expectation of a random variable is equal to the probability of a
positive observation, i.e. E[X] = p(x = 1). Then, it is possible to rewrite sample an
entry in the sample covariance matrix S for an alignment A as follows:

Sj1,k1,j2,k2(A) = E[Aj1,k1 Aj2,k2]− E[Aj1,k1]E[Aj2,k2] (2.6)

= f (Aj1,k1 Aj2,k2)− f (Aj1,k1) f (Aj1,k1) (2.7)

=
1
N

N

∑
i=1

Ai,j1,k1 Ai,j2,k2 −
1
N

N

∑
i=1

Ai, j1, k1
1
N

N

∑
i=1

Ai, j2, k2 (2.8)

=
1
N

Aj1,k1 Aj2,k2 − Āj1, k1 Āj2,k2 (2.9)

Moreover, by fixing alignment sites indices j1, j2, it is possible to compute a fre-
quencies matrix F ∈ [0, 1](Q,Q) with just one cross product operation. Since binary

2.1. Application of mutual information
to multiple sequence alignments

39

variables are taken into account, the following holds:

Fj1,j2(A) =
1
N

AT
j1 · Aj2 ∈ [0, 1](Q,Q) (2.10)

f j(A) = diag(Fj1,j2) ∈ [0, 1]Q (2.11)

Sj1,j2 = Fj1,j2(A)− f j1(A)⊗ f j2(A) (2.12)

(2.13)

Starting from the matrix of standard deviations D(A) ∈ R(M,Q) computed for
each amino acid indexed by k ∈ 1, ..., Q, in each alignment site indexed by j ∈ 1, ..., M,
correlation matrix P(A) ∈ [−1, 1](M,Q,M,Q) can be easily calculated as well, i.e:

Dj,k(A) =

⌜⃓⃓⎷ 1
N − 1

N

∑
i=1

(︂
Ai,j,k − Aj,k

)︂2
(2.14)

Pj1,j2 = Sj1,j2 /Dj1 ⊗ Dj2 (2.15)

2.1.2 Shannon’s entropy and mutual information

Given an alignment matrix A, the observed binary vector associated to k-th amino acid
in j-th alignment site represents the realizations of a binary random variable. Recalling
that the expected value of a binary random variable X is equal to its probability of being
true, i.e. E[X] = p(X = 1) and that the sample mean f is an unbiased estimator of the
expected value, the entropy of such binary vector can be written as follows:

f j,k(A) =
1
N

N

∑
i=1

Ai,j,k (2.16)

Hj,k(A) = f j,k log f j,k (2.17)

Cross-entropy between all k = 1, ..., Q amino acid indices in j-th alignment site
is also called conservation. It gives information about the variability of amino acids
inside the given site and tends to 1 when all residues are conserved, i.e. no amino acid
changes and no gap has been observed, 0 when there are many gaps or high variability
instead. This measure can be computed as the entropy of the amino acid pairs, i.e:

f j,k1,k2(A) =
1
N

N

∑
i=1

Ai, j, k1 · Ai, j, k2 (2.18)

Hj(A) = − ∑
k1∈Q

∑
k2∈Q

f j,k1,k2(A) log
(︂

f j,k1,k2(A)
)︂

(2.19)

40 Chapter 2. Methods

Similarly, cross-entropy between any two sites in the alignment, indexed by j1, j2
respectively, can be computed as follows:

f j1,j2,k1,k2(A) =
1
N

N

∑
i=1

Ai, j1, k1 · Ai, j2, k2 (2.20)

Hj1,j2(A) = − ∑
k1∈Q

∑
k2∈Q

f j1,j2,k1,k2(A) log
(︂

f j1,j2,k1,k2(A)
)︂

(2.21)

Finally, mutual information between any alignment site j1 and any other j2 can be
calculated by first defining joint frequencies for amino acid indices k1 and k2 in such
sites as f j1,j2,k1,k1(A) and marginal frequency for amino acid index k in any site j as f j,k.
Hence, mutual information Ij1,j2(A) becomes:

Ij1,j2(A) = − ∑
k1∈Q

∑
k2∈Q

f j1,j2,k1,k2(A) log

(︄
f j1,j2,k1,k2(A)

f j1,k1 · f j2,k2

)︄
(2.22)

The computation of entropy and mutual operation can benefit from matrix opera-
tions on some architectures. Hence, it could be worth using them as much as possible.
To do so, the dot product between two binary vectors Aj,k ∈ {0, 1}N can be exploited,
since it implicitly returns the count of joint observations:

f j1,k1,j2,k2(A) =
1
N

N

∑
i=1

Ai, j1, k1 · Ai, j2, k2 (2.23)

=
1
N

(︂
AT

j1,k1
· Aj2,k2

)︂
(2.24)

By applying the same strategy to binary matrix at the j-th alignment site, i.e. Aj ∈
{0, 1}(N,Q), one can easily compute joint frequencies among all amino acid pairs as a
matrix Fj1,j2(A) ∈ [0, 1](Q,Q) whose components indexed by k1 and k2 are defined as
follows:

Fj1,j2;k1,k2(A) =
1
N

N

∑
i=1

Ai, j1, k1 · Ai, j2, k2 (2.25)

Fj1,j2(A) =
1
N

AT
j1 · Aj2 (2.26)

Therefore, it is simple to implement cross entropy matrix for any two sites j1 and
j2 in alignment A as matrix H(A) ∈ [0, 1](M,M), whose elements are defined as follows:

Hj1,j2(A) = − ∑
k1∈Q

∑
k2∈Q

Fj1,j2;k1,k2 log(Fj1,j2;k1,k2) (2.27)

Mutual information matrix I(A) ∈ R(M,M), whose elements are indexed by two
sites j1, j2 in the alignments, contains mutual information computed between those two

2.1. Application of mutual information
to multiple sequence alignments

41

sites. Recalling the definition of entropy computed between two sites of the alignment
Hj1,j2(A), and noticing that marginal entropy is equal to cross entropy between one
alignment site and itself, i.e. Hj(A) = Hj1=j2=j(A), the elements of the mutual infor-
mation matrix can be computed as follows:

Ij1,j2(A) = Hj1(A) + Hj2(A)− Hj1,j2(A) (2.28)

2.1.3 Pseudocount for low number of sequences

In Buslje et al. [7] a pseudocount parameter λ is introduced in the formula for both
marginal and joint frequencies. This parameter corrects for low number of observa-
tion. Given two columns indexes j1, j2 and two amino acid indexes k1, k2 in the input
alignment A, their marginal frequencies can be computed as follows:

Fj1,j2;k1,k2 =
λ + ∑N

i=1 Ai,j1,k1 · Ai,j2,k2

∑k1,k2 λ ∑N
i=1 Ai,j1,k1 · Ai,j2,k2

(2.29)

Correction for low number of observation can be introduced in marginal frequen-
cies similarly to joint ones. Given a column index j1 and any amino acid index k1 in the
input alignment A, it becomes:

f j1;k1 =
λ + ∑N

i=1 Ai,j1,k1

∑k λ ∑N
i=1 Ai,j1,k

(2.30)

The pseudocount λ has limited influence on frequency when a large number of
aligned sequences are present in the alignment. Conversely, it plays a key role in
columns with a small number of observed residues and a high number of gaps. Opti-
mal pseudocount value for contacts prediction has been found to be λ = 0.05.

2.1.4 Entropy normalized mutual information

Normalized mutual information matrix Ib(A) ∈ R(M,M) can be computed dividing
mutual information matrix Ij1,j2 by cross entropy. Therefore, its elements are defined as
follows:

Ibj1,j2
(A) =

Ij1,j2(A)

Hj1,j2(A)
(2.31)

=
Hj1(A)

Hj1,j2(A)
+

Hj2(A)

Hj1,j2(A)
− 1 (2.32)

2.1.5 Phylogeny corrected mutual information

Once mutual information matrix I(A) has been obtained, it is easy to compute APC
correction defined in Equation 1.58 as well. First, an array for mean mutual information
between each site in alignment A and all the others except self, Ij̄ ∈ RM, has to be

42 Chapter 2. Methods

defined. Hence, its elements Ij̄,j1(A) can be computed as follows:

Ij̄,j1(A) =
1

n − 1 ∑
j2 ̸=j1

Ij1,j2 (2.33)

Moreover, the mean mutual information overall must be defined for alignment A,
Ī(A) ∈ R, as the mean values of non diagonal entries in mutual information matrix,
i.e:

Ī =
1

n(n − 1)

n

∑
j1=1

∑
j2 ̸=j1

Ij1,j2(A) (2.34)

Therefore, by recalling Equation 1.58, APC regularized mutual information ma-
trix for alignment A, Ir(A) ∈ R(M,M), can be computed by subtracting from mutual
information between two positions indexed by j1, j2 respectively, the multiplication of
their mean mutual information divided by overall mean mutual information. Hence,
by noticing that the subtracted term is APC(A) regularization term, the following is
obtained:

Ir(A) = I(A)−
Ij̄(A)⊗ Ij̄(A)

Ī(A)
(2.35)

= I(A)− APC(A) (2.36)

Furthermore, background noise can be estimated through an additive model, in-
stead of the multiplicative one used by APC. Such additive model is called Average
Sum Correction (ASC). ASC corrected mutual information Ip is defined as follows:

Ip(A) = I(A)−
[︂

Ij̄(A)⊕ Ij̄(A)− Ī(A)
]︂

(2.37)

= I(A)− ASC(A) (2.38)

2.2 Pipeline

In this section, the pipeline built to generate and analyze contact predictions over lin-
early interacting peptides (LIPs) is described. Each step is associated to a specific script,
which has been developed in python. The scripts were developed to be run in the same
order in which they are presented below. The description covers each different step
separately, describing its input and the output that it produced.

The first step in the pipeline the dataset initialization. This step takes as input a
file containing predictions for linear interacting peptides over protein chains in PDB.
Then, it initializes the folder structure for the whole input dataset. The folder structure
is generated in a way that allows computations on each different PDB structure to be
executed separately. This allows to execute the subsequent steps in parallel, exploiting
the computational capacity of a cluster at its best.

2.2. Pipeline 43

The second step is intended to be executed on a single PDB structure or a batch of
such structures, as well as the next steps. The goal of this step is to define a mapping
between each chain in the protein structures, the LIP predictions and the UniProt en-
tries. Moreover, in this step the three dimensional coordinates of each all the atoms in
each residue are retrieved.

The third step uses the atomic coordinates retrieved in the previous step to gener-
ate two different distance matrices: one between heavy atoms and one between carbon
atoms only. After the distance matrices have been generated, a threshold value is ap-
plied on them to obtain the contact maps.

In the fourth step, multiple sequence alignments are generated. Differently form
the other points in the pipeline, this one involves two scripts. The first one executes
PSI-BLAST on all the UniProt sequences obtained in the second step, producing their
multiple sequence alignments. The following one maps back the columns in the gen-
erated alignments to protein chains. The latter is responsible to produce joint sequence
alignments as well.

The fifth step runs prediction methods on both intra-chain and inter-chain multiple
sequence alignments to obtain contact predictions. Although just one script has been
developed for that purpose, it can be set up to predict contacts either through mutual
information based method or by means of PSICOV.

The last step involves the generation of various summary tables. The associated
script takes as input the folder initialized in the first step. It is not meant to be executed
in parallel with any other script, therefore it scans the whole dataset sequentially. The
final analysis has been carried out through interactive Jupyter Notebooks, starting from
the tables generated in this step. The results of such analysis can be found in Chapter
3.

2.2.1 Initialization of output dataset

The dataset initialization phase is carried out by the init_db.py script. It takes as
input a file containing residue level predictions of linear interacting peptides made
on different protein chains in PDB. Hence, for each of such predictions it contains the
reference to the chain in the PDB database and its amino acidic sequence as well.

The format of the input file is similar to the FASTA one. A FASTA formatted file
contains one or more protein sequences. Each protein sequence is expressed as an or-
dered string where each residue is expressed with the one letter code of its amino acid.
In FASTA, each sequence can lay on one or more consecutive lines in the file. More-
over, each sequence is preceded by a description line. A description line starts with
the character >, followed by free text. Usually, such text is formatted according to the
database where the FASTA file is stored. The description line is often referenced as
FASTA header and works also as a separator between different sequences.

44 Chapter 2. Methods

1 >1a6b_B

2 GERRRSQLDRDQCAYCKEKGHWAKDCPKKPRGPRGPRPQT

3 0000000111111111111111111110000000000000

4 >1ar7_4

5 GAQVSSQKVGAHESTINYTTINYYRDSASNAASKQDFSQDPSKFTEPIKDV

6 111111000000000011111111111111111111111111111111111

7 >1a93_B

8 ---MRRKNHTHQQDIDDLKRQNALLEQQVRAL

9 00111111111111111111111111111111

10 ...

Listing 2.1: Few lines in an input file example.

Listings 2.1 shows two entries in an example of input file. Differently from a com-
mon FASTA file described above, an entry does not end with its amino acidic sequence.
Instead, such sequence of one letter codes is followed by another alphanumeric se-
quence of the same length, representing boolean predictions. Each value in the latter
sequence is 1 if the residues in that position has been predicted as linearly interactive,
0 otherwise. Moreover, the third entry shows some gaps in the sequence of residues at
line 8. This could happen because of a mismatch in the mapping between LIP predic-
tions and and PDB sequences, produced by the LIP predictor itself.

The script init_db.py requires two parameters to be set by the user. The first is
the path to an output directory, where the whole dataset will be generated and stored.
The other is the path to an input file formatted as shown in Listings 2.1. These two
parameters are hereby defined as /out/dir and /in/path.

The script generates the output directory if it is not already existent. Then, it goes
through each entry in the input file sequentially, i.e. taking into account one entry
at a time. Each entry has a header which starts with the > character, as for FASTA
files. Then, the header contains both the identifier of the protein structure in within the
PDB dataset and the identifier of the protein chain upon which predictions were made.
These two identifier are separated by an underscore character. Hence, the script defines
these identifiers separately by means of regular expressions. Taking the first entry in
Listings 2.1 as example, its protein structure identifier is 1a6b, while the protein chain
identifier is B. Both have been retrieved from the header of the entry in the first line.

For each scanned entry, its protein structure and chain identifier in the PDB database
are defined as pdb_id and chain_id respectively. A sub-folder is then created within
the output directory and named after the PDB structure identifier, if not already exis-
tent. In the example above, the folder associated to the first entry would be
/out/dir/pdb_1a6b.

Then, the script copies the whole entry in a file named after the protein chain

2.2. Pipeline 45

identifier. The file is placed in a folder within the one created for the protein struc-
ture. The folder contains other files as well, each one containing input entries for
different chains in the structure taken into account. These files are named after their
chain identifier. Recalling the same example as before, the path to the file would be
/out/path/pdb_1a6b/lips/B.fasta.

Other than the one containing LIP predictions, another folder is created within the
folder associated to the protein structure. That folder is empty and named /aligns. As
the name suggests, this folder is used to store both intra-chain and inter-chain align-
ments in the following steps of the pipeline. Taking into account the example entry, the
path to the alignments sub-folder would be /out/dir/pdb_1a6b/aligns/.

2.2.2 Linking residue-level information between external resources

The dataset building step retrieves information about PDB structures identified in the
previous one. It retrieves and stores the residue level mapping between every chain in
these structures and both the entries in the UniProt database and the LIP predictions.
To do so, it exploits the SIFTS dataset, already mentioned in Section 1.6.3. Moreover,
given a protein chain, it retrieves the coordinates of its atoms by looking into PDB files.

This step is implemented by the script make_db.py. The script takes as input the
path to a folder associated to a protein structure initialized by the script init_db.py,
or a batch of them. Each of these folders are taken into account sequentially within the
same batch. Nevertheless, the script can be executed on multiple batches either on the
same or different machines without any conflict.

The information retrieved by the script make_db.py for each input protein structure
is stored in a HDF5 file. Given a specific protein structure, the file is named .h5 and
is created within the folder of the structure initialized by the script init_db.py. For
example, the information for the PDB structure 1a6b would be stored at
/out/dir/pdb_1a6b/.h5.

HDF5 stands for Hierarchical Data Format 5. As the name suggests, it is a hierar-
chical format. Hence, similarly to the JSON format it allows to retrieve data quickly.
Differently from the former, POSIX-like syntax can be used to retrieve specific values.
Moreover, HDF5 allows to easily store large arrays and multi-dimensional matrices.
Moreover, it natively handles data compression, saving up some disk space. Other
than these useful features provided under the hood by HDF5, a file in this format can
be though as a common dictionary.

Each path given as input to the script make_db.py points to a folder, which is in
turn associated to a specific PDB structure. Since the folders were initialized by the
script init_db.py, it is possible to extract the identifier of the PDB structure directly
from its path. Given the PDB identifier of a structure, the information about its chains
is retrieved from SIFTS files. These files are available form either the SIFTS website or
FTP service in XML format. However, since many SIFTS files were already available in

46 Chapter 2. Methods

MJSON format, these were used instead. The path to the folder containing SIFTS files
has to be user defined.

Given a PDB structure, the script make_db.py looks into the related SIFTS file to
define its protein chains and their identifiers. Then, it goes through a protein chain
at a time. For each chain contained in a PDB structure, SIFTS provides the mapping
between its residues and other resources. Often, just one UniProt sequence can be
mapped on a PDB chain. However, it might happen that two different UniProt se-
quences map on the same PDB chain. In the latter case, only the UniProt sequence
which has the best coverage over the PDB chain was kept, while the others were dis-
carded.

Once the associated UniProt entry has been defined for a given protein chain, the
scrips generates a FASTA file within an alignments folder defined by the user. The
FASTA file is named after the UniProt entry which maps the protein chain. Since only
one alignment is generated for each UniProt entry, all the times the make_db.py script
is executed, it should point to the same alignments folder.

Moreover, for each residue in a PDB chain many atoms can be observed, each with
its own three dimensional coordinates. Atom coordinates are stored within PDBx/MMCIF

files, usually provided through the FTP service of wwPDB. The script make_db.py al-
lows to define a folder where those files can be found for each PDB structure and to
automatically download them if they were not available.

The script initializes a list of 100 atoms for each residue in a protein chain. The
initial values of these coordinates are all set to infinite. Doing so, residues for which no
atoms were found are guaranteed to produce an infinite distance and any false contact.
Then, the coordinates for the first and second atoms are filled with the coordinates of
carbon-alpha and carbon-beta atoms, respectively. The coordinates for the other atoms
are stored in the following positions, instead. Since not all the positions in the initial
list will probably be filled, the ones which are found to be empty for all the residues are
trimmed out, with exception of the first two.

Then, the script maps the predictions of the linear interacting peptides over each
PDB chain. Given a protein structure and a chain within it, the script init_db.py gener-
ated a file of LIP predictions for that chain only. Taking the chain B of the PDB structure
1a6b as an example, its LIP predictions file would be stored at
/out/path/pdb_1a6b/lips/B.fasta. Some predictions could be mismatching with re-
spect to the residues sequence defined in SIFTS. In this case, no residue is defined to be
linearly interacting.

Table 2.2 and Table 2.3 show the first residue level mappings stored for the protein
chain A belonging to the PDB structure 3m91. It can be noticed that the first six entries
do not have a valid mapping from UniProt to PDB, therefore their atom coordinates
are all set to infinite. The first three residues with matching correctly between PDB and

2.2. Pipeline 47

UniProt are not predicted to be linear interacting. Instead, the residues number nine
and ten have been predicted as LIP.

Chains

A B C D

C
ha

in
s

A A A AC AC

B A A AC AC

C CA CA C C

D CA CA C C

Table 2.1: Matrix defining the identifiers of both inter-chain and intra-chain alignments
between reference chains in the PDB structure 1cxp.

The script defines the reference chains within each protein structure as well. Given
a group of protein chains which share the same protein sequence, the reference chain is
one chain used to identify the entire group. In this case, it is the protein which comes
first in alphanumeric order. Afterwards, the joint alignments between reference chains
are defined by concatenating their identifiers.

Reference chains are stored in matrices, such as the one shown in Table 2.1 for
the PDB structure 1cxp. The structure contains four different chains: A, B, C, D. Since
chains A and B share the same amino acidic sequence, the former has been defined
as reference. The same happens between protein chains C and D. It can be observed
that join alignments are made only between reference chains. This allows to reduce
redundancy in the generation on multiple sequence alignments.

2.2.3 Distance matrices calculation

To evaluate contact prediction methods, true contact maps have to be developed. Con-
tact maps can be obtained by applying a threshold over distance matrices. Distance
matrices contain euclidean distances between residues in two protein chains. These
matrices are guaranteed to be squared and symmetric when a protein chain is com-
pared with itself.

Three dimensional coordinates are not available at residue level. Instead, they are
available at atomic level. Euclidean distance between any two atoms A1, A2 can be
computed as follows:

datom(A1, A2) =
√︂
(A1,1 − A2,1)2 + (A1,2 − A2,2)2 + (A3,1 − A3,3)2 (2.39)

=

⌜⃓⃓⎷ 3

∑
i=1

(A1,i − A2,i)2 (2.40)

Each residue contains many atoms. Therefore, the distance between two residues
must be defined as a function of the distances of their atoms. Any two residues R1, R2

48 Chapter 2. Methods

Attributes

seqres_ix pdb_ix uniprot_ix is_aligned is_observed is_amino is_standard is_lip resnames

1 - 46 False False False False False S

2 - 47 False False False False False H

3 - 48 False False False False False A

4 - 49 False False False False False P

5 - 50 False False False False False T

6 - 51 False False False False False R

7 52 52 True True True True False S

8 53 53 True True True True False A

9 54 54 True True True True True R

10 55 55 True True True True True D

...

Table 2.2: First 10 residues mapped between PDB, UniProt and LIP predictions for
chain A in PDB structure 3m91

Atom coordinates

Attributes 1st atom (Cα) 2nd atom (Cβ) 3rd atom ...

seqres_ix pdb_ix uniprot_ix x y z x y z x y z ...

1 - 46 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

2 - 47 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

3 - 48 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

4 - 49 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

5 - 50 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

6 - 51 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ ...

7 52 52 −7.6 −784.4 −56.0 −8.4 −784.8 −57.2 −7.4 −786.0 −54.2 ...

8 53 53 −5.3 −787.5 −55.2 −4.3 −788.2 −56.2 −4.6 −787.5 −52.9 ...

9 54 54 −3.2 −785.1 −53.1 −2.3 −784.0 −53.6 −0.2 −782.8 −53.0 ...

10 55 55 −6.3 −783.6 −51.5 −7.5 −782.8 −52.3 −6.9 −784.5 −49.4 ...

...

Table 2.3: Atom coordinates for the first 10 residues mapped between PDB and UniProt
for chain A in PDB structure 3m91

2.2. Pipeline 49

can be represented by two vectors containing N, M atoms, respectively. Each item in
these two vectors is a three dimensional coordinate, i.e. R1 ∈ RN,3 and R2 ∈ RM,3.
Hence, it is possible to define the distance between R1, R2 as the minimum euclidean
distance between their atoms, i.e:

dresidue(R1, R2) = min
{︁

datom(Ai, Aj)∀j∈1,..,M∀i∈1,..,N
}︁

(2.41)

In the pipeline, distance matrices are computed by the make_dmat.py script. The
script takes as input a batch of directories, each associated to a different PDB struc-
ture. Each directory must contain the HDF5 file generated beforehand by the script
make_db.py. Then, make_dmat.py takes advantage of the atomic coordinates stored
inside such file. According to scientific literature, two distance matrices have been
computed between each pair of chains. On each of such distance matrices, a different
threshold has been applied to obtain a specific contact map.

The carbon atom distance matrix takes into account only carbon-β and carbon-α
atoms for each residue. It defines the distance between two residues as the distance
between their carbon-β atoms. Instead, if coordinates for both carbon-β atoms are
not available, then the distance between carbon-α atoms is considered. The first two
positions in the array of atomic coordinates are always assigned to the carbon-α and
carbon-β atoms respectively, as described in Section 2.2.2. Therefore, retrieving their
values is straightforward.

Heavy atoms in a residue are defined as the set of all atoms excluding hydrogen
ones. In an heavy atoms distance matrix only heavy atoms are considered. Hence,
given any pair residues within such matrix, its value is computed as the minimum
euclidean distance between all their heavy atoms. Atomic coordinates are retrieved
only for heavy atoms by the script make_db.py. Thus three dimensional coordinates
needed to compute heavy atoms distance matrices are easily retrievable.

In order to turn distance matrices in contact maps, it is required to apply a thresh-
old on them. Distances contained in distance matrices are expressed in Angstrom (Å).
Two residues are considered to be in contact in carbon atoms distance matrices if they
are closer than 8Å. Instead, this threshold value lowers to 6Å in case of heavy atoms
distance matrices.

Once computed, both distance matrices and contact maps are stored in the same
HDF5 file defined by the make_db.py script. Note that different chains within the same
protein structure can share the same sequence but not the same position in space. Then
distance matrices are computed between all possible pairs of chains, ignoring whether
they are reference chains or not. Later, the contact map for a reference chain can be
obtained as the sum of all contact maps referencing to it.

50 Chapter 2. Methods

x −6.3 −7.5 −6.9 ...

y −783.6 −782.8 −784.5 ...

x y z −51.5 −52.3 −49.4 ...

−7.6 −784.4 −56.0 4.75 4.03 6.64 ...

−8.4 −784.8 −57.2 6.19 5.37 7.95 ...

−7.4 −786.0 −54.2 3.78 3.72 5.05 ...

...

Table 2.4: Atomic distances between the 7th and 10th residue in chain A of the PDB
structure 3m91

2.2.4 Multiple sequence alignments generation

Generating the multiple sequence alignments is the most cumbersome step of the pipeline.
Unlike the other ones, this step requires multiple scripts to be executed in the same or-
der as they are presented here. The first script fetches query sequences from UniProt.
The second script is required to search each of those query sequences against UniProt
to find homologous sequences and generate multiple sequence alignments. The latest
one maps those multiple sequence alignments back to protein chains.

The first script, namely /bash/fetch.sh, calls an utility which automatically fetches
the required protein sequences from an instance of the UniProt database already avail-
able on the cluster where the pipeline has been executed. The second script, namely
run_blast.py, is executed for each of the fetched UniProt entries. It searches an UniProt
entry against the whole UniProt dataset. It uses the PSI-BLAST algorithm already men-
tioned in Section 1.5.2. The result obtained through these two step is a list of FASTA
files, each containing the pairwise alignment of a query sequence against the signifi-
cant one found in UniProt. All those files are stored in the same folder, which is hereby
defined as /out/dir/aligns/.

Once the alignments for the UniProt sequences have been obtained and are avail-
able at /out/dir/aligns/, the alignment for each protein chain has to be generated.
This task is performed by the script parse_aln.py. Similarly to the ones performing
the previous steps, it takes as input a batch of folders associated to different PDB struc-
tures initialized beforehand using init_db.py and make_db.py.

Given a protein structure in the input batch, the script parse_aln.py retrieves the
residue level mappings between its reference chains and the UniProt sequences de-
fined in the previous steps. Then, it uses these mappings to generate a new alignment
for each chain selecting some columns form the alignment of the associated UniProt
sequence. The columns selected are those which map on the PDB chain. After the
alignment for the PDB chain has been made, the rows with an occupancy score lower
than 50% are trimmed out.

2.2. Pipeline 51

Once the alignments for the reference chains of protein structure have been done,
joint alignments between them must be developed. In an ideal case, a joint alignment
would concatenate any pair of chains from the input alignments which are known to be
interacting. Unfortunately, this information is not available. Therefore, the interaction
between two sequences in the input alignments has been approximated by the fact that
they belong to the same organisms. Hence, the taxonomy identifier of each sequence
has been chosen as the join feature, since it is available for each UniProt entry. As
for intra-chain alignments, sequences with occupancy score lower than 50% have been
removed.

It is possible that more than one sequence within the alignment of a reference chain
is associated to the same taxonomy id. Although it is improbable, given two alignments
whose sequences belong to the same organism would produce an enormous alignment
with a number of sequences equal to the product of their sequences. Then, the number
of sequences have been limited to one for each taxonomy identifier in the alignment.
Hence, for a given taxonomy identifier, only the sequence with the highest E-value
has been kept within the input alignments. Since the sequences in the alignments are
ordered from lower to higher E-value, this task is straightforward. Moreover, it guar-
antees that the resulting alignments contain at most the same number of sequences of
the input ones.

Furthermore, it could be useful to reduce the number of sequences contained in the
alignments to reduce the computational burden of the contact prediction methods as
well, while keeping the initial information unaltered. Hence, only one sequence is kept
for any group of sequences which share an identity score higher than a fixed threshold
value. This optimization step has been implemented through the Hobohm-1 clustering
algorithm described in Section 2.2.5. The identity score threshold has been fixed to 60%.

After being clusterized, both intra-chain and inter-chain alignments are stored in
FASTA formatted files. Since each alignment is generated for one or two joint chains in
the same protein structure, it will be stored in the folder associated to the protein struc-
ture itself. Taking as example the PDB structure 1a6b, the alignments made for its chain
A would be stored at /out/dir/pdb_1a6b/aligns/A.fasta. All the other alignments
would be stored in the same folder, as well.

2.2.5 Hobohm clustering algorithm

Sequence clustering algorithms allow to define a few representative sequences among
many others, according to a sequence similarity score. A cluster is a partition of the
initial set of sequences, identified by the representative sequence itself. In this sec-
tion, two iterative sequence clustering algorithms are presented, namely Hobohm-1
and Hobohm-2. While being essentially the same algorithm, they differ in the defini-
tion of representative sequences. [12]

52 Chapter 2. Methods

The Hobohm-1 clustering algorithm takes as input a sorted list of protein sequences.
It iterates until all the sequences within the input list have been assigned to a cluster.
At each iteration, the algorithm initializes a new empty cluster. The representative se-
quence of such cluster is the first sequence in the list. Then, all the other sequences are
compared with the representative one, by means of a similarity score. If the similarity
score exceeds a given threshold, the sequence is assigned to the current cluster. Then,
sequences belonging to such cluster are removed from the list and a new iteration is
done.

As already mentioned, the Hobohm-2 sequence clustering algorithm is slightly dif-
ferent to the Hobohm-1 algorithm described above. Given a list of sequences as input,
it does not select the first one as reference sequence at each iteration. Instead, it chooses
as representative the sequence which has the highest number of neighbors. A neigh-
bor is another sequence in the list which exceeds the similarity score threshold defined
beforehand. Then, the list of neighbors for each sequence in the list must be computed
initially and kept up to date at each iteration. This increases the computational burden
with respect to the first version of the algorithm.

Cluster Score

F R P N K V 1 1.00

F R - N K V 1 1.00

F A S N K V 1 0.66

F A - - - V 1 0.66

A B E N K A 5 1.00

- R P N K - 1 1.00

A B S N K - 5 1.00

Table 2.5: Example of Hobohm-1 algorithm result.

Hobohm-1 has been implemented within the pipeline in Section 2.2.4. In this par-
ticular setting, it takes as input multiple sequence alignments. The chosen sequence
similarity function was percent identity. Given a pair of aligned sequences, percent
identity is the fraction of aligned positions containing the exact same residue, exclud-
ing those positions with gaps.

Table 2.5 shows an example multiple sequence alignment with 6 columns and 7
rows. Clusters have been computed using percent identity as similarity score and set-
ting the threshold value to 0.60. Each resulting cluster is defined by the index of its
representative sequence. Moreover, the score columns contains percent identity of any
sequence with respect to the representative one. There are two clusters in the table, one
represented by the first sequence and one by the fifth.

Table 2.6 presents in detail how the percent identity between the first and the
fourth sequences in the example above has been computed. The identity score does

2.2. Pipeline 53

F R P N K V

F A - - - V Sum

Equal 1 0 0 0 0 1 2

Gap 1 1 0 0 0 1 3

Table 2.6: Example of percent identity computation.

not take into account the positions where there are gaps. Hence, positions from third
to fifth are excluded. Instead, in two of the three non-gapped positions there are pairs
of equal residues. Therefore the resulting identity score is 2/3 = 0.66. Since it is higher
than the threshold value 0.60, the second sequence has been assigned to the first cluster.

2.2.6 Prediction of intra-chain and inter-chain contact maps

Contact predictions step applies method introduced in Section 1.7 on multiple sequence
alignments generated in Section 2.2.4 to estimate contact maps. While predictions can
be obtained either PSICOV or methods based on mutual information, all the computa-
tions are carried out through the script pred_cmap.py.

The script pred_cmap.py takes as input one or more folders associated to a PDB
structure, similarly to the majority of the other scripts in the pipeline. The script goes
through each folder sequentially. Hence, predictions are made for a single PDB struc-
ture at a time.

Given a protein structure, a contact map must be estimated for all the possible
chain pairs, whether an input alignment is available. Moreover, it must be estimated
for single chains as well. The pred_cmap.py script takes advantage of the information
defined previously by the make_db.py to avoid redundant estimations. Protein chains
having the identical sequence are grouped by reference chain. Hence, a contact map is
computed if the input alignment involves only reference chains.

Predicted contact maps are stored in HDF5 formatted files, different from the one
defined in make_db.py. A different file is created for a different prediction method.
Considering the example PDB structure 1a6b, the path to the HDF5 file containing
PSICOV predictions would be /out/dir/pdb_1a6b/.psi.h5, while the one for mutual
information results would be /out/dir/pdb_1a6b/.mi.h5.

Inside the resulting HDF5 file, an estimated contact map is indexed by the identi-
fier of its chain. If the contact map involves two different chains, it is indexed by the
concatenation of their identifiers. The script stores estimated contact maps involving
only reference chains first. In case of inter-chain contact maps, the transposed one is
stored as well and indexed by the inverted concatenation of the chains identifiers. For
predictions involving non-reference chains, a pointer to the associated contact map is
generated. This allows to save either storage space and computational resources since
no prediction is made on the same alignment more than one time.

54 Chapter 2. Methods

Recalling the example showing reference chains in the PDB structure 1a6b in Table
2.1, predictions would be generated for alignments of chains A, C and for their joint
alignment indexed by AC. Then, predicted matrix for joint alignment CA would be made
by transposing the former one. Finally, for alignments of the other chains a reference
to previously predicted contact maps is made. In the case of chain B, a reference to the
results obtained for chain A would be made.

2.2.7 Generation of summary tables

All the previous steps in the pipeline store most of the information in HDF5 files, as
well as FASTA files for alignments. Storing information is such a sparse way within the
folder initialized in Section 2.2.1 allows multiple parallel execution of the same script in
the same step of the pipeline. On the other hand, retrieving overall information about
the dataset is not an immediate task.

To overcome this issue, the script scan_db.py has been developed. As the name
suggests, it scans the whole dataset and looks into both HDF5 formatted files and mul-
tiple sequence alignments. Then, it retrieves three tables containing statistics for pro-
tein chains, alignments and alignments between reference chains, respectively. Finally,
those table are made available as tab separated files.

Attributes

Name Type Description

pdb_id String ID of the PDB structure

pdb_resol Float Resolution of the experiment, zero if Nuclear Magnetic
Resonance (NMR) was used

chain_id String ID of the protein chain

align_id String ID of the reference chain

uniprot_id String ID of the UniProt entry which best maps the PDB struc-
ture

crystal_len Int Number of residues in the crystal used during the exper-
iment

num_aligned Int Number of residues mapped by either PDB and UniProt
on crystal

num_lips Int Number of LIP predictions mapped by either PDB and
UniProt on crystal

Table 2.7: Summary chains table

Table 2.7 contains information for every protein chain contained in the PDB struc-
tures initialized by the script init_db.py. All the information retrieved is obtained
from the mappings between PDB and UniProt generated by the script make_db.py

through SIFTS.

2.2. Pipeline 55

Attributes

Name Type Description

pdb_id String ID of the PDB structure

left_id String ID of the left chain in alignment

right_id String ID of the right chain in alignment

align_id String ID of the alignment

has_fasta Bool Whether alignment is available as FASTA file

fasta_height Int Number of sequences in the FASTA file

fasta_width Int Number of residues in the query sequence in the FASTA
file

has_distance Bool Whether distance matrix is available

avg_distance Float Average value of distance matrix

std_distance Float Standard deviation of distance matrix

has_contacts Bool Whether contact maps are available

num_contacts Int Area of the contact map

all_contacts Int Number of heavy atom contacts

cab_contacts Int Number of carbon atom contacts

has_predicts Int Whether predictions are available

predicts_mi Int Whether mutual information matrices are available

predicts_psi Int Whether PSICOV estimates are available

Table 2.8: Summary alignments table

Table 2.8 exposes the attributes of the alignments table created by the script scan_db.py.
Each row contains the identifier of the PDB structure and the identifiers of both the pro-
tein chains in the alignment. In case of intra-chain alignments the left and right chain
identifiers are equal. Features of the FASTA alignment file are retrieved from the file it-
self. Instead, information about the PSICOV and mutual information estimated contact
maps are retrieved from the respective HDF5 formatted files.

57

Chapter 3

Results

In this chapter, the results obtained by executing the pipeline described in Section 2.2
are presented. First of all, the features of the initial dataset are described. Since such
dataset undergoes modifications as long as it flows through each step in the pipeline,
the output of such steps are described as well. This includes an analysis of the align-
ments in the final dataset, used as input for all the prediction methods.

Secondly, methods based on either mutual information or PSICOV for residue con-
tact predictions are applied on the training partition of the final dataset. In this step,
best values for hyper-parameters are found by looking at their behaviour when applied
on the training dataset itself. Moreover, such parameters are compared with the theo-
retical ones, retrieved from the scientific literature closely related to methods taken into
account.

Finally, different prediction methods are compared between each other on the test
partition of the final dataset. At this stage, such methods are evaluated by looking at the
distributions of some fundamental statistics, such as precision, sensitivity and F-score.
Such statistics have been chosen in order to limit the influence of true negative values
in confusion matrices, since the latter are obtained by using contact maps as ground
truth. In addition, the effects of different characteristics of the input alignments on the
distribution of chosen statistics are analyzed. Moreover, when evaluation prediction
outcomes, we take into consideration that methods based on mutual information have
different and less stringent requirements on input alignments, with respect to PSICOV.

3.1 Retrieved linearly interacting protein structures

Initial dataset was generated starting from two datasets, namely FLIPPER and DIBS.
Both these datasets contain predictions for LIP residues over protein chains inside var-
ious PDB structures. DIBS can be considered as a subset of FLIPPER, since it contains
a smaller number of predictions. Predictions stored in DIBS define whether the en-
tire protein chain is linearly interactive or not. Instead, predictions on FLIPPER define
whether a specific region in the protein chain is linearly interactive or not. Therefore,

58 Chapter 3. Results

FLIPPER is considered to be more precise with respect to DIBS in the the prediction of
linearly interacting residues.

Figure 3.1: Number of items in initial dataset

As Fig. 3.1 shows, initial FLIPPER and DIBS datasets contain LIP predictions over
60070 and 722 different chains, respectively. Since two or more different chains can
belong to the same structure in PDB, this leads to a total amount of 19778 different
protein structures in the first dataset and 755 in the second one. Considering all such
protein structures, the total number of chains raises to 113675 in FLIPPER dataset and
to 2735 in DIBS.

Figure 3.2: Distribution of the resolution of the protein (PDB) structures.

The histogram in Fig. 3.2 represents the distribution of the resolution of all the
unique protein structures contained in FLIPPER. Outliers are defined as all those struc-
tures having a resolution exceeding the 99th percentile. Among those outliers, there are
structures whose resolution is above 50Å. However, the majority of the PDB structures
have been observed with a resolution value lower than 5Å.

3.1. Retrieved linearly interacting protein structures 59

Figure 3.3: Distribution of the number of chains in each PDB structure

Fig. 3.3 shows the distribution of the number of chains belonging to all the protein
structures in FLIPPER. The upper histogram considers all the chains, independently
form their similarity. The mean number of chains for each PDB structure is around 6.
Furthermore, the majority of the PDB structures contain less than 25 chains. Instead, the
lower histogram takes into account only one among a group of protein chains having
the same amino acidic sequence, here defined as reference chains. As expected, there
are fewer reference chains for each PDB structure, with a mean value around 4 and the
99th percentile falling at 14.

All chains in each protein structure are mapped to one or more UniProt entries
through SIFTS. However, only the UniProt entry which better covers the amino acidic
sequence of the protein chain is considered in this setting, making it a one-to-one re-
lationship. The upper histogram in Fig. 3.4 shows the distribution of the number of
chains to which each UniProt entry is mapped. Instead, the histogram on the bottom
shows the number of reference chains mapped to each UniProt entry. This means that
there are on average 6 chains for which an alignment can be produced out of a UniProt
query sequence.

The number of residues which make a protein chains are referenced as its size.
Hence, histograms in Fig. 3.5 show the distribution of the chain’s size contained in
PDB structures within FLIPPER. It must be noticed that distributions have been com-
puted considering only reference chains. This allows to exclude the effect that multiple
identical protein chains could have on the distribution itself. Starting from the top, the
first distribution takes into account all reference chains. In the second distribution only

60 Chapter 3. Results

Figure 3.4: Distribution of the number of chains for each UniProt entry

reference chains for which no residue has been predicted as linearly interacting have
been considered. Conversely, only reference chains with linearly interacting peptides
were taken into account by the last distribution in the figure. As expected, non-LIP
chains tend to be larger than LIP chains, showing an higher mean value with respect to
the latter.

Developing distance matrices and true contact maps could be computationally ex-
pensive. Therefore, to avoid bottlenecks that increased the computation time for this
step as it was empirically observed, a subset of all the protein structures contained in
FLIPPER was defined. The subset has been determined by looking at the distribution
of the statistics showed in the figures above.

Among all the PDB structures in the initial FLIPPER database, a partially random
subset of 5000 has been selected. The decision rules used to define such subset are the
following:

1. The resolution of each PDB structure must be lower or equal than 5.0Å, accord-
ing to the 99th percentile in Fig. 3.2 and to the minimum distance threshold for
contacts, which is 6.0Å in case of heavy atoms;

2. The number of chains in each PDB structure must be lower or equal than 10. This
upper bound is useful to avoid computing more than 102 = 100 distance matrices
and 200 contact maps;

3. The number of reference chains in each PDB structure must be between 2 and 5,
both included. This upper bounds the number of alignments to be computed for

3.1. Retrieved linearly interacting protein structures 61

Figure 3.5: Distribution of the width for protein chains, also called chain width.

each PDB structure to 5 · 4 = 20;

4. The minimum number of residues in a chain of each PDB structure must be
greater or equal than 20, while the maximum must be lower or equal than 2000,
according to distributions in figure Fig. 3.5. This allows to contain the size of
the input alignment on which predictions must be performed, partially avoiding
memory leak issues;

5. Structures in DIBS have the priority: the list of PDB structures has been shuffled
and then the ones that belong to DIBS have been selected first. In this way, all the
structures satisfying all the other properties and belonging to DIBS are selected,
while the remaining entries in the subset are taken from FLIPPER.

Fig. 3.6(a) contains two histograms. Both the histograms present the density com-
puted on intra-chain contact maps. In the first one, density has been computed between

62 Chapter 3. Results

(a) Distribution of the density of true contact maps for intra-chain alignments

(b) Distribution of the density of true contact maps for inter-chain alignments

3.1. Retrieved linearly interacting protein structures 63

carbon atoms. In the second one, density has been computed between heavy atoms in-
stead.

Fig. 3.6(b) is similar to Fig. 3.6(a) but it contains density computed for inter-chain
contact map. By comparing histograms for intra-chain and inter-chain alignments it is
clear that density is much lower in the latest case. The first reason for this behaviour is
that contacts between two different chains are fewer with respect to contacts between
residues in the same chain. Moreover, a chain does not make contact with all the other
chains in the same PDB structure, pushing the distribution towards zero.

Figure 3.7: Distribution of the size of input alignments.

As already mentioned in the description of the pipeline in Section 2.2.4, generating
the multiple sequence alignments is the most resource demanding step, since it requires
to scan the UniProt database. Moreover, after each multiple sequence alignment has
been generated, it needs to be mapped back to one or two concatenated protein chains
in the same PDB structure and finally clustered. These steps are executed within the
same script, adding computational burden.

64 Chapter 3. Results

Therefore, to limit the number of multiple sequence alignments which must be
generated, a subset of 100 PDB structures was defined starting from the 5000 ones for
which distance matrices and contact maps were computed beforehand. Such smaller
subset has been defined following the only rule of prioritizing PDB structures con-
tained in both FLIPPER and DIBS datasets, rather than the ones contained only in the
former one.

Fig. 3.7 shows information about the FASTA files obtained from the subset of 100
PDB structures defined above. The scatterplot in the first row shows the relationship
between the number of residues and the number of sequences in each alignment. The
number of residues and the number of sequences in an alignments are also referenced
as its width and height, respectively. The last two histograms show the distribution of
the number of residues and the number of sequences in the alignments, respectively.
The alignments taken into account were already clusterized through the Hobohm al-
gorithm mentioned in Section 2.2.5. Hence, most of the alignments produced have 213
residues and 915 sequence clusters on average. Furthermore, most of them contain
fewer than 712 residues and 5043 sequence clusters.

Once that multiple sequence alignments in FASTA format were generated for all
the chain pairs in each selected PDB structure, each of them has been assigned to either
the training or test dataset through a 60/40 partitioning. Then, all alignments have
been fed as input to contact prediction methods based on either mutual information or
graphical lasso. However, not all alignments are guaranteed to produce a valid output,
especially when PSICOV is applied.

Fig. 3.8 shows the number of alignments associated to either one or two concate-
nated sequences. In the whole dataset there are 455 different input alignments, of which
241 are intra-chain and 214 are inter-chain. Prediction methods based on mutual infor-
mation retrieve valid results for all the 241 (100%) intra-chain input alignments but
only for 208 (97%) inter-chain ones. Instead, PSICOV retrieves valid results for only
185 (77%) intra-chain input alignments and 41 (19%) inter-chain ones.

It can be observed that PSICOV struggles to converge on inter-chain alignments,
given the low number of result it produces in this case. Inter-chain alignments are
composed of two concatenated protein chains. This leads to large alignments, which
makes convergence too slow to converge within the given time interval.[13]

The distribution of the width of the alignments is presented in Fig. 3.9. In the first
plot, distributions take into account all the multiple sequence alignments, divided in
intra-chain and inter-chains ones. Instead, the second and the third plots take into ac-
count the training and test partitions respectively. Methods based on mutual informa-
tion were able to retrieve an output for almost all input alignments. This is the reason
why the distribution of the alignments’ width for those methods resembles the overall
one. Instead, it can be noticed that PSICOV reached convergence on alignments with a
smaller number of residues in all the partitions of the input dataset.

3.1. Retrieved linearly interacting protein structures 65

Figure 3.8: Number of output obtained through different contact prediction methods

In Fig. 3.10 the distribution of the height of the alignments can be observed. The
first plot show the distribution within the whole dataset. Instead, the second and the
third show the distribution for both its partitions. Again, mutual information produced
a result for each of the input alignments, the distribution of the alignments’ height for
this method matches the overall one. Instead, PSICOV was able to reach convergence
only on alignments with an higher number of sequence clusters.

66 Chapter 3. Results

Figure 3.9: Distribution of the width of the alignments

3.1. Retrieved linearly interacting protein structures 67

Figure 3.10: Alignments height distribution.

68 Chapter 3. Results

3.2 Choice of the best threshold for prediction methods

In this section all the different contact prediction methods are applied on the training
dataset. As explained in the previous Section 3.1, the training dataset contains 268
alignments for which mutual information could be computed. Among these align-
ments, 142 are intra-chain and 126 are inter-chain. Taking into account PSICOV, the
number of alignments for which it produced a valid output in the training dataset drops
to 136, of which 110 are intra-chain and 26 are inter-chain.

Both the methods based on mutual information and PSICOV estimate contact maps.
Contact maps are matrices whose values could be different according to either the input
fed to the prediction methods or the methods themselves. For example, while mutual
information takes value inside the interval [0, 1], corrected mutual information assumes
values in R.

Furthermore, intra-chain and inter-chain contact maps are different. The former
are squared, symmetrical and diagonal. Since contacts between close residues are guar-
anteed, a band of 6 residues is excluded around the diagonal when evaluating intra-
chain contacts prediction. In addition, symmetry allows to select only upper triangular
contact maps in such setting. Instead, inter-chain contact maps are not symmetrical nor
diagonal and the size of their edges matches the size of the chains involved. They can
be retrieved either as the upper right or lower left sub-matrix in a prediction involving
two concatenated chains. This means that inter-chain contact maps contain the furthest
points from the diagonal, making it a harder target to predict with respect to intra-chain
ones.

Therefore, it is important to find a threshold function to define which predicted
values should be considered as positive contact predictions and which ones should
not, instead. To define such threshold function, the distribution of the values of all
predicted contact maps were taken into account. In addition, prediction results are
strongly dependent on the input alignment. Hence, threshold function could be in-
fluenced by the characteristics of the alignments themselves, e.g. the number of their
sequences, the number of residues in their query sequence or whether they were gen-
erated from a single sequence or two concatenated ones. These features were included
in the analysis for the identification of the best threshold function.

There are various scores that can be computed to compare prediction methods.
Scientific literature linked to mutual information and PSICOV often uses precision, also
known as Positive Predictive Value (PPV). Given the number of true positives (TP) and
false positives (FP) in a confusion matrix, precision can be computed as follows:

PPV =
TP

TP + FP
(3.1)

Precision allows to pursuit maximization of true positives without taking into ac-
count residues which are not in contact. Contact maps have are guaranteed to have

3.2. Choice of the best threshold for prediction methods 69

low density, typically around 3%. Therefore, maximizing the number of true negatives
would lead to predicting all the residues pairs as not in contact.

Another way of maximizing the number of true positives without taking into ac-
count true negative values is through sensitivity, also known as recall, hit rate or True
Positive Rate (TPR). Considering false negatives (FN) in a confusion matrix, sensitivity
can be computed as follows:

TPR =
TP

TP + FN
(3.2)

Both precision and sensitivity can be considered together by considering the Fβ-score.
In the Fβ-score, the parameter β defines how many times sensitivity is significant with
respect to precision. Fβ-score is 1.0 when both precision and sensitivity are maximized.
Instead, when at least of these two values is close to 0.0, it will tend to 0.0. For both
methods, precision has been chosen to be four times as important as sensitivity, i.e:

Fβ-score =
(1 + β2) · PPV · TPR

β2 · PPV + TPR
with β = 0.25 (3.3)

3.2.1 Choice of threshold values for mutual Information

The prediction methods based on mutual information which have been applied on the
training dataset have been described in Section 1.7.2. They are mutual information
(MI), entropy normalized mutual information (MI/H) and both APC (MI-APC) and ASC
corrected mutual information (MI-ASC).

For each method, a contact map has been computed for every alignment in the
training dataset. Then, 30 simulations were made with randomization over rows in
the alignment as suggested in Dunn, Wahl, and Gloor [10]. Simulations have been
used to define a sample mean and standard deviation of results of methods applied on
alignments without co-evolving sites. Hence, Z-score has been computed using such
statistics. Therefore, Z-score can be used as a test for defining a significant predicted
value over a pair of residues. The number of simulations has been chosen empirically
in order to limit the time required to compute the time taken by this step.

In Fig. 3.11, the distribution of the Z-scores is shown for each prediction method
based on mutual information in the range [−10, 10], i.e. within ten standard deviation
in absolute value. Being them histograms, the frequency of a given Z-score is on the
vertical axis, while the value of the Z-score itself is on the horizontal axis. Given a
prediction method, the blue line represents the distribution of the Z-scores for all the
training alignments. Instead, the orange and the green lines represent the distribu-
tion of the Z-scores for pairs of residues in contact, defined between carbon and heavy
atoms respectively. It can be observed that such distribution for residues in contact is
moved to the right with respect to one considering all residues pairs. This behaviour is
particularly emphasized in the latest two plots, for both APC and ASC corrected mu-
tual information. Therefore, it should be possible to define a threshold over Z-scores

70 Chapter 3. Results

Figure 3.11: Distribution of the Z-scores for different prediction methods applied on
the training dataset.

3.2. Choice of the best threshold for prediction methods 71

such that the number of true positive contact predictions is maximized through a score
such as precision.

Figure 3.12: Correlation matrix between both the features of the input alignments and
the statistics of mutual information.

Finding a suitable threshold for contact prediction methods based on mutual in-
formation depends strongly on the distribution of the latter. Thus, it is important to
investigate the influence which some features of the input alignments exert on it. The
correlation matrix in Fig. 3.12 was computed between the features of the input align-
ments and some statistics of the mutual information distribution. Such statistics are the
mean and standard deviation of non standardized mutual information.

The first feature which seems to have a relevant influence on the mean mutual
information value is the height of the alignment. Confusion matrix suggests that the
value for mutual information decreases as as the number of sequences in the alignment
increases. Fig. 3.13 clearly shows that mutual information decreases rapidly as the
number of sequences in the alignment increases.

Another feature which appears to be relevant for the value of mutual information
is the fact that an alignment is concatenated or not. Correlation matrix in Fig. 3.12

72 Chapter 3. Results

Figure 3.13: Variation of average standardized mutual information with the width of
the alignment.

Figure 3.14: Distribution of average mutual information for intra-chain and inter-chain
alignments, separately.

3.2. Choice of the best threshold for prediction methods 73

shows that mutual information is higher for inter-chain alignments with respect to
intra-chain ones. This behaviour is confirmed by the plot in Fig. 3.14. Hence, parame-
ters for intra-chain and inter-chain contact predictions have been defined separately to
exploit such difference.

Figure 3.15: Mean precision, sensitivity and F1-score for contact prediction methods
based on mutual information applied on the training set.

In Fig. 3.15, the mean value of various statistics is plotted against the chosen thresh-
old values. These statistics are precision, sensitivity and Fβ-score and are shown in the
first, second and third plots respectively. Mean values have been chosen over single
values computed for each threshold value in order to exclude influence of the size of
the contact maps. One hundred Z-scores has been evaluated as threshold values taking
value in the interval −10,+10 standard deviations.

By looking at the plot for Fβ−score, APC and ASC corrected mutual information
methods score the best, followed by entropy normalized mutual information. The same

74 Chapter 3. Results

observations can be made about precision. Instead, sensitivity is higher for entropy
normalized mutual information.

Average stat. Conf. matrix

Pred. method Contact map Is concat. Thres. value PPV TPR Fβ-score TP FP FN

MI Cαβ False 2.4 7% 13% 4% 7448 573248 27330

MI Cαβ True 5.8 6% 3% 2% 162 47160 5774

MI H False 2.4 9% 12% 5% 10433 570263 39420

MI H True 2.6 2% 14% 2% 1461 409703 8085

MI/H Cαβ False 3.2 8% 24% 6% 14384 812046 20394

MI/H Cαβ True 3.6 1% 19% 1% 1033 527799 4903

MI/H H False 3.2 11% 20% 7% 19888 806542 29965

MI/H H True 3.6 2% 16% 2% 1670 527162 7876

MI-APC Cαβ False 5.6 17% 6% 9% 3876 41697 30902

MI-APC Cαβ True 5.8 2% 3% 1% 86 17860 5850

MI-APC H False 5.2 20% 5% 10% 5630 48339 44223

MI-APC H True 3.8 2% 4% 2% 353 77324 9193

MI-ASC Cαβ False 5.8 17% 7% 8% 4469 52622 30309

MI-ASC Cαβ True 5.6 2% 3% 1% 116 27891 5820

MI-ASC H False 5.6 20% 6% 10% 6137 55668 43716

MI-ASC H True 3.8 2% 5% 2% 397 92545 9149

Table 3.1: Best parameters for methods based on mutual information, computed on
training partition

The choice of the best parameters has been made for intra-chain and inter-chain
mutual information matrices separately. Table 3.1 shows the chosen threshold values
which maximizes mean Fβ-score, for each method, type of contact and type of align-
ment.

3.2. Choice of the best threshold for prediction methods 75

3.2.2 Choice of threshold values for PSICOV

PSICOV produces covariance estimates by means of graphical lasso. It has various
hyper-parameters, already presented in Section 1.7.6. Most of those parameters were
fixed beforehand for the algorithm to be sufficiently permissive, hence retrieve the
largest number of contact predictions within the given time limit.

Specifically, ρ parameter defining the convergence threshold was set to 0.001 as
suggested by the author, low-scoring filters were activated, minimum occupancy thresh-
old was set to 0.8, and sequence separation was set to 6.0 to avoid predicting contacts
on the backbone. Moreover, positive predicted values were required instead of raw
scores, i.e. values in the interval [0, 1] defining the likelihood of a pair of sites to be in
contact.

Even if using the parameters described above were quite permissive, the number
of alignments for which PSICOV successfully estimated the covariance matrix is 136
on the total of 273, as shown in Fig. 3.8. In the same figure, it can be also observed
that the number of estimations is unbalanced towards the intra-chain alignments, with
respect to the inter-chain ones. This, and the distribution of the width of the alignments
for which PSICOV predictions were successfully generated in Fig. 3.9, highlights the
slower convergence of PSICOV when applied to wider alignments.

The density of the target contact map to be predicted by PSICOV is the only pa-
rameter which has been fine-tuned.. Given two different protein chains A, B within
the same structure, the target contact map will be computed comparing residues in the
concatenated chain C = A+ B between themselves. Instead, considering a single chain
A the contact map is computed by comparing only its residues among each other.

Since setting correctly the density of the target contact maps could influence pos-
itively the estimation of covariance, correlation matrix in Fig. 3.16 was developed. In
such correlation matrix, various features of the input alignments were compared with
the target density of the contact maps computed either between carbon atoms or heavy
atoms. In both cases, low correlations were found, with a maximum score of 0.11 be-
tween the density of heavy atoms contact maps and the width of the alignment.

In Fig. 3.17, an alignment being intra-chain or inter-chain was used as a proxy for
alignment width. However, no significant variation in the distribution can be observed.
Mean density value is 2% for contact maps computed between carbon atoms, while it
is 3% for the ones computed between heavy atoms. 3% was chosen as target density
for PSICOV estimates.

Fig. 3.18 shows the distribution of the positive predicted values through PSICOV.
It is an histogram: the predicted values themselves are displayed on the horizontal
axis, while the relative frequencies are displayed on the vertical axis. The line in blue
represents the distribution of all the predicted values greater than 0.0. Instead, green
and orange lines represent the same distribution taking into account only contacting
residue pairs, define between either carbon or heavy atoms.

76 Chapter 3. Results

Figure 3.16: Correlation matrix between the features of the input alignments

Figure 3.17: Distribution of the target contact map density computed between carbon
atoms or heavy atoms, conditioned by the the type of input alignment

Taking into account the distribution in figure Fig. 3.18, a threshold value had to be
defined over positive predicted values in order to obtain boolean predictions. Given

3.2. Choice of the best threshold for prediction methods 77

Figure 3.18: Distribution of the positive predicted values.

Figure 3.19: Distribution of the positive predicted values.

78 Chapter 3. Results

that the positive predicted values range in the interval [0.0, 1.0], ten evenly spaced
threshold values have been considered in Fig. 3.19.

As expected, mean precision increases as the threshold value increases. Consider-
ing either contacts computed between carbon or heavy atoms, mean precision exceeds
50% after a predicted positive value of 0.7. Instead, the value for sensitivity is always
very low. It is around 1% when all residues pairs with a positive predicted values over
0.0 are considered to be in contact. Then, it rapidly decreases toward 0% as the value
for the threshold increases. Lastly, the value of the Fβscore reaches its highest peak
between 0.3 and 0.4 predicted values.

Average stat. Conf. matrix

Pred. method Contact map Is concat. Thres. value PPV TPR F1-score TP FP FN

P Cαβ False 0.6 52% 2% 15% 1187 706 16496

P Cαβ True 0.3 6% 3% 4% 21 466 938

P H False 0.6 57% 2% 13% 1342 551 24605

P H True 0.3 6% 3% 4% 26 461 1429

Table 3.2: Best parameters for PSICOV.

In Table 3.2 the best threshold values are listed. The table contains also the mean
statistics obtained for all the alignments in the training dataset. Moreover, the sum of all
the confusion matrices generated by looking at prediction results are made available.
By looking at the number of both true and false positives in concatenated alignments,
it can be noticed that they are almost one thousandth with respect to the same values
for intra-chain alignments. This underlines the difficulty in applying this method on
inter-chain alignments, since the contacts which must be predicted are far away from
the backbone where predictions tend to accumulate.

3.3. Evaluation of contact prediction methods 79

3.3 Evaluation of contact prediction methods

Both methods based on mutual information and PSICOV have been evaluated against
each other on the test partition. First, each prediction method has been considered sep-
arately. Statistics have been computed on all the contact predictions retrieved through
it. In this setting, PSICOV produces better results with respect to the ones based on mu-
tual information when looking to precision. However, it must be noticed that the num-
ber of results obtained through PSICOV are fewer, especially when only inter-chain
alignments are considered as input.

Figure 3.20: Distribution of precision, sensitivity and Fβ-score on the test set

Fig. 3.20 shows precision, sensitivity and Fβ-score for every method involved in
the analysis. In this case, only alignments for which both PSICOV and method mutual
information produced a result have been taken into account. Again, methods based
on mutual information perform worse than PSICOV. Among these, APC and ASC cor-
rected mutual information have the highest average precision.

80 Chapter 3. Results

Furthermore, methods based on mutual information have a higher mean value for
precision on this subset rather than on the whole test dataset. In the first case mean
precision is around 10% for both APC and ASC corrected mutual information, while in
the latter it exceeds 20%. This suggests that PSICOV produced results for alignments
with higher quality, on average.

Figure 3.21: Distribution of precision, sensitivity and Fβ-score on inter-chain align-
ments of the test set

The distribution of the statistics for contact predictions sightly changes when intra-
chain and inter-chain alignments are considered separately. Statistics showed in Fig. 3.21
have been calculated only on alignments for which both PSICOV and APC corrected
mutual information were able to predict contact maps. In this case, the precision of the
former method is around 15%, while it drops around 10% for the latter. Sensitivity is
sightly below 10% for both methods and so does Fβ-score.

Precision observed in Fig. 3.20 for APC corrected mutual information shows a
mean value resembling the one presented for the best 100 predictions in Jones et al.

3.3. Evaluation of contact prediction methods 81

[13] and Dunn, Wahl, and Gloor [10]. In the first case, intra-chain alignments were gen-
erated through three iterations of Jackhmmer [11] against the UniProt dataset, while in
the latter high quality alignments were borrowed from Pfam. Instead, the behaviour of
the statistics observed in Fig. 3.21 shows clearly that predicting contacts between two
different chains is harder than predicting contacts within residues of the same chain.
Moreover, it suggests that producing high quality input alignments play a key role in
contact predictions. However, this task has proven to be difficult, given the statistics
observed above.

83

Chapter 4

Conclusions

A complete pipeline for the prediction and evaluation of both intra-chain and inter-
chain contacts prediction has been developed. The pipeline takes as input predictions
of linear interacting peptides on protein chains in PDB. It maps information from PDB
to UniProt and back by means of SIFTS in order to obtain multiple sequence align-
ments. Then, it computes true contact maps computed over both carbon atoms and
heavy atoms. Finally, it produces contact predictions using methods based on mutual
information or PSICOV and evaluates them against the associated contact maps.

Usually, benchmark datasets containing good quality alignments are used to eval-
uate methods for intra-chain chain contacts prediction. Nevertheless, fewer applica-
tions of contacts prediction methods to inter-chain alignments can be found in scientific
literature. Even less material has been produced with respect to linear interacting pep-
tides. In this work both tasks of intra-chain and inter-chain contacts prediction have
been exploited over sequences containing linear interacting peptides.

In order to limit the computational resources required by the whole pipeline to run
in such high dimensional settings defined by multiple sequence alignments, a careful
selection of a batch of 100 PDB structures has been carried out. The analysis which led
to the definition of such subset took into account various of their features, e.g. their
resolution, the number and the size of their chains.

Finally, the results obtained by all the contact prediction methods have been an-
alyzed. The results obtained from intra-chain contacts prediction were similar to the
ones found in literature. Instead, the difficulty of inter-chain contact prediction meth-
ods has been assessed, given that worse results have been obtained through the same
methods.

Among the contact prediction methods involved, PSICOV proved to perform sightly
better in both intra-chain and inter-chain settings. However, PSICOV requires more
computational resources to converge with respect to the ones required by the compu-
tation of the mutual information and its regularizations. This led PSICOV to converge
only on alignments with higher quality. However, considering only those alignment it
still perform better than any method based on mutual information.

84 Chapter 4. Conclusions

The first reason why the same contacts prediction methods perform better on intra-
chain alignments with respect to inter-chain can be found in the model linking primary
structures to tertiary and quaternary ones. In fact, co-evolution is much stronger when
two residues are in contact within the same protein chain, since those contacts are fun-
damental for its folding. Instead, residues involved only in inter-chain contacts are
subject to fewer functional constraints.

Another reason behind the observed performance of contact predictors lie in the
generation of joint alignments. Joint alignments concatenate sequences which are sup-
posed to have an interaction. Such interaction is approximated by the fact that two
sequences belong to the same organism. Moreover, only one sequence for each organ-
ism has been kept, in order to avoid producing enormous alignments which would be
difficult to handle. Both these solutions introduce loss of information. To avoid this
issue some other ways for generating joint alignments could be taken, such as the one
proposed in the mapping between UniProt and the PDB.

Furthermore, tools such as mutual information and PSICOV could be used as input
for a more sophisticated contacts predictor. For example, a meta-estimator involving
a deep neural network could be trained by utilizing the whole initial dataset instead
of just one batch as done during this work. However, it would require a lot more
computational resources.

85

Bibliography

[1] G. R. et al. “Stereochemistry of polypeptide chain configurations”. In: J. Mol. Biol.
7.1 (1963), pp. 95–99. DOI: 10.1016/s0022-2836(63)80023-6.

[2] H. B. et al. “The Protein Data Bank”. In: Nucleic Acids Res. 28.1 (2000), pp. 235–242.
DOI: 10.1093/nar/28.1.235.

[3] J. D. et al. “SIFTS: updated Structure Integration with Function, Taxonomy and
Sequences resource allows 40-fold increase in coverage of structure-based anno-
tations for proteins”. In: Nucleic Acids Res. 47.D1 (2019), pp. 235–242. DOI: 10.
1093/nar/gky1114.

[4] S. V. et al. “SIFTS: Structure Integration with Function, Taxonomy and Sequences
resource”. In: Nucleic Acids Res. 41.D1 (2013), pp. D483–D489. DOI: 10.1093/nar/
gks1258.

[5] S. A. et al. “Basic local alignment search tool”. In: J. Mol. Biol. 215.3 (1990), pp. 403–
410. DOI: 10.1016/S0022-2836(05)80360-2.

[6] S. A. et al. “Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs”. In: Nucleic Acids Res. 25.17 (1997), pp. 3389–3402. DOI: 10 .
1093/nar/25.17.3389.

[7] C. M. Buslje, J. Santos, J. M. Delfino, and M. Nielsen. “Correction for phylogeny,
small number of observations and data redundancy improves the identification
of coevolving amino acid pairs using mutual information”. In: Bioinformatics 25.9
(Mar. 2009), pp. 1125–1131. ISSN: 1367-4803. DOI: 10.1093 /bioinformatics/
btp135. eprint: https://academic.oup.com/bioinformatics/article-pdf/
25/9/1125/532215/btp135.pdf. URL: https://doi.org/10.1093/bioinformatics/
btp135.

[8] T. U. Consortium. “UniProt: a worldwide hub of protein knowledge”. In: Nucleic
Acids Res. 47.D1 (2018), pp. D506–D515. DOI: 10.1093/nar/gky1049.

[9] T. M. Cover. Elements of Information Theory. Vol. 1. Wiley, 1991.
[10] S. Dunn, L. Wahl, and G. Gloor. “Mutual information without the influence of

phylogeny or entropy dramatically improves residue contact prediction”. In: Bioin-
formatics 24.3 (Dec. 2007), pp. 333–340. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/
btm604. eprint: https://academic.oup.com/bioinformatics/article-pdf/
24/3/333/16883955/btm604.pdf. URL: https://doi.org/10.1093/bioinformatics/
btm604.

[11] S. R. Eddy. “Accelerated Profile HMM Searches”. In: PLOS Computational Biology
7.10 (Oct. 2011), pp. 1–16. DOI: 10.1371/journal.pcbi.1002195. URL: https:
//doi.org/10.1371/journal.pcbi.1002195.

https://doi.org/10.1016/s0022-2836(63)80023-6
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gky1114
https://doi.org/10.1093/nar/gks1258
https://doi.org/10.1093/nar/gks1258
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/bioinformatics/btp135
https://doi.org/10.1093/bioinformatics/btp135
https://academic.oup.com/bioinformatics/article-pdf/25/9/1125/532215/btp135.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/9/1125/532215/btp135.pdf
https://doi.org/10.1093/bioinformatics/btp135
https://doi.org/10.1093/bioinformatics/btp135
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1093/bioinformatics/btm604
https://academic.oup.com/bioinformatics/article-pdf/24/3/333/16883955/btm604.pdf
https://academic.oup.com/bioinformatics/article-pdf/24/3/333/16883955/btm604.pdf
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1093/bioinformatics/btm604
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1002195

86 Bibliography

[12] U. Hobohm, M. Scharf, R. Schneider, and C. Sander. “Selection of representative
protein data sets”. In: Protein Science 1.3 (1992), pp. 409–417. DOI: https://doi.
org/10.1002/pro.5560010313. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/pro.5560010313. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1002/pro.5560010313.

[13] D. T. Jones, D. W. A. Buchan, D. Cozzetto, and M. Pontil. “PSICOV: precise struc-
tural contact prediction using sparse inverse covariance estimation on large mul-
tiple sequence alignments”. In: Bioinformatics 28.2 (Nov. 2011), pp. 184–190. ISSN:
1367-4803. DOI: 10.1093/bioinformatics/btr638. eprint: https://academic.
oup.com/bioinformatics/article-pdf/28/2/184/16908913/btr638.pdf.
URL: https://doi.org/10.1093/bioinformatics/btr638.

[14] E. V. Koonin. “Orthologs, paralogs, and evolutionary genomics”. In: Annu. Rev.
Genet. 39.1 (2005), pp. 309–338. DOI: 10 . 1146 / annurev . genet . 39 . 073003 .
114725.

[15] R. van der Lee, M. Buljan, B. Lang, R. J. Weatheritt, G. W. Daughdrill, A. K.
Dunker, M. Fuxreiter, J. Gough, J. Gsponer, D. T. Jones, P. M. Kim, R. W. Kriwacki,
C. J. Oldfield, R. V. Pappu, P. Tompa, V. N. Uversky, P. E. Wright, and M. M. Babu.
“Classification of Intrinsically Disordered Regions and Proteins”. In: Chemical Re-
views 114.13 (2014). PMID: 24773235, pp. 6589–6631. DOI: 10.1021/cr400525m.
eprint: https://doi.org/10.1021/cr400525m. URL: https://doi.org/10.
1021/cr400525m.

[16] L. C. Martin, G. B. Gloor, S. D. Dunn, and L. M. Wahl. “Using information the-
ory to search for co-evolving residues in proteins”. In: Bioinformatics 21.22 (Sept.
2005), pp. 4116–4124. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/bti671.
eprint: https://academic.oup.com/bioinformatics/article-pdf/21/22/
4116/485803/bti671.pdf. URL: https://doi.org/10.1093/bioinformatics/
bti671.

[17] A. M. Monzon, P. Bonato, M. Necci, S. C. Tosatto, and D. Piovesan. “FLIPPER:
Predicting and Characterizing Linear Interacting Peptides in the Protein Data
Bank”. In: Journal of Molecular Biology 433.9 (2021), p. 166900. ISSN: 0022-2836.
DOI: https://doi.org/10.1016/j.jmb.2021.166900. URL: https://www.
sciencedirect.com/science/article/pii/S0022283621000942.

[18] PDB-101. https://pdb101.rcsb.org//.
[19] W. R. Pearson. “An Introduction to Sequence Similarity (“Homology”) Search-

ing”. In: Curr. Protoc. Bioinformatics 42.1 (2013), pp. 311–318. DOI: 10.1002/0471250953.
bi0301s42.

[20] RCSB. https://www.rcsb.org//.
[21] E. Schad, E. Fichó, R. Pancsa, I. Simon, Z. Dosztányi, and B. Mészáros. “DIBS: a

repository of disordered binding sites mediating interactions with ordered pro-
teins”. In: Bioinformatics 34.3 (Oct. 2017), pp. 535–537. ISSN: 1367-4803. DOI: 10.
1093/bioinformatics/btx640. eprint: https://academic.oup.com/bioinformatics/
article-pdf/34/3/535/25117200/btx640.pdf. URL: https://doi.org/10.
1093/bioinformatics/btx640.

https://doi.org/https://doi.org/10.1002/pro.5560010313
https://doi.org/https://doi.org/10.1002/pro.5560010313
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.5560010313
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pro.5560010313
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.5560010313
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.5560010313
https://doi.org/10.1093/bioinformatics/btr638
https://academic.oup.com/bioinformatics/article-pdf/28/2/184/16908913/btr638.pdf
https://academic.oup.com/bioinformatics/article-pdf/28/2/184/16908913/btr638.pdf
https://doi.org/10.1093/bioinformatics/btr638
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1021/cr400525m
https://doi.org/10.1021/cr400525m
https://doi.org/10.1021/cr400525m
https://doi.org/10.1021/cr400525m
https://doi.org/10.1093/bioinformatics/bti671
https://academic.oup.com/bioinformatics/article-pdf/21/22/4116/485803/bti671.pdf
https://academic.oup.com/bioinformatics/article-pdf/21/22/4116/485803/bti671.pdf
https://doi.org/10.1093/bioinformatics/bti671
https://doi.org/10.1093/bioinformatics/bti671
https://doi.org/https://doi.org/10.1016/j.jmb.2021.166900
https://www.sciencedirect.com/science/article/pii/S0022283621000942
https://www.sciencedirect.com/science/article/pii/S0022283621000942
https://pdb101.rcsb.org//
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1002/0471250953.bi0301s42
https://www.rcsb.org//
https://doi.org/10.1093/bioinformatics/btx640
https://doi.org/10.1093/bioinformatics/btx640
https://academic.oup.com/bioinformatics/article-pdf/34/3/535/25117200/btx640.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/3/535/25117200/btx640.pdf
https://doi.org/10.1093/bioinformatics/btx640
https://doi.org/10.1093/bioinformatics/btx640

Bibliography 87

[22] J. R. H. Tame and B. Vallone. “The structures of deoxy human haemoglobin and
the mutant Hb Tyrα42His at 120K”. In: Acta Crystallographica Section D 56.7 (July
2000), pp. 805–811. DOI: 10.1107/S0907444900006387. URL: https://doi.org/
10.1107/S0907444900006387.

[23] UniProt. https://www.uniprot.org//.
[24] K. R. Wollenberg and W. R. Atchley. “Separation of phylogenetic and functional

associations in biological sequences by using the parametric bootstrap”. In: Pro-
ceedings of the National Academy of Sciences 97.7 (2000), pp. 3288–3291. ISSN: 0027-
8424. DOI: 10.1073/pnas.97.7.3288. eprint: https://www.pnas.org/content/
97/7/3288.full.pdf. URL: https://www.pnas.org/content/97/7/3288.

https://doi.org/10.1107/S0907444900006387
https://doi.org/10.1107/S0907444900006387
https://doi.org/10.1107/S0907444900006387
https://www.uniprot.org//
https://doi.org/10.1073/pnas.97.7.3288
https://www.pnas.org/content/97/7/3288.full.pdf
https://www.pnas.org/content/97/7/3288.full.pdf
https://www.pnas.org/content/97/7/3288

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction to proteins
	Properties of amino acids
	Sequence similarity and homology searching
	Linear Interacting Peptides (LIPs)
	Tools for searching sequence databases
	BLAST
	PSI-BLAST

	Databases for biological entities
	UniProt Knowledgebase
	Protein Data Bank
	Structure Integration with Function, Taxonomy and Sequences

	Tools for protein contacts prediction
	Covariance
	Shannon's entropy and mutual information
	Decomposition of mutual information sources
	Mutual information normalization
	Mutual information correction for phylogeny
	PSICOV

	Methods
	Application of mutual information to multiple sequence alignments
	Covariance
	Shannon's entropy and mutual information
	Pseudocount for low number of sequences
	Entropy normalized mutual information
	Phylogeny corrected mutual information

	Pipeline
	Initialization of output dataset
	Linking residue-level information between external resources
	Distance matrices calculation
	Multiple sequence alignments generation
	Hobohm clustering algorithm
	Prediction of intra-chain and inter-chain contact maps
	Generation of summary tables

	Results
	Retrieved linearly interacting protein structures
	Choice of the best threshold for prediction methods
	Choice of threshold values for mutual Information
	Choice of threshold values for PSICOV

	Evaluation of contact prediction methods

	Conclusions
	Bibliography

