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SUMMARY: 
Climate change is increasing the frequency and intensity of weather-related disasters such as 
hurricanes, wildfires, floods and droughts. Understanding resilience and vulnerability to these 
intense stressors and their aftermath may reveal adaptations to extreme environmental change. 
In 2017, Puerto Rico suffered its worst natural disaster, Hurricane Maria, which left 3000 dead 
and provoked a mental health crisis. Cayo Santiago Island, home to a population of rhesus 
macaques (Macaca mulatta), was devastated by the same storm. We compared social networks 
of two groups of macaques before and after the hurricane and found an increase in affiliative 
social connections, driven largely by monkeys most socially isolated before Hurricane Maria. 
Further analysis revealed monkeys invested in building new relationships rather than 
strengthening existing ones. Social adaptations to environmental stochasticity may predispose 
rhesus macaques to success in rapidly-changing anthropogenic environments.  
 
 
INTRODUCTION 

The quality and quantity of social relationships predicts morbidity and mortality in humans and 
other mammals [1]. Yet precisely how social relationships improve health and fitness outcomes 
remains poorly understood [2]. One model, the “Social Buffering Hypothesis” [3], proposes that 
social relationships are critical mitigators of the negative consequences of exposure to adversity. 
In humans, the presence of strong social support predicts recovery from illness [4] and resilience 
to mental health disorders following terrorist attacks [5] or loss of a loved one [6]. Social 
relationships in nonhuman primates also play a critical role in weathering adversity. For example, 
female chacma baboons (Papio ursinus) with a network of strong and stable bonds showed 
attenuated physiological responses compared to females with weaker bonds during periods of 
social instability [7]. 

A tremendous source of instability for humans and other animals alike are natural disasters such 
as earthquakes and tsunamis, and massive weather events such as hurricanes [8,9]. Extreme 
weather can cause widespread destruction of the natural landscape, resources, and infrastructure 
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[10], all of which can disrupt the lives of humans and other animals [11]. With the intensifying 
climate crisis, devastating storms are expected to become less predictable [12] and increase in 
both frequency and force [13,14]. Understanding how individuals adjust and survive in severely 
transformed landscapes may inform species conservation and human adaptation to increasingly 
unstable environments by providing evidence regarding which factors promote resilience and 
survival [15,16]. According to the social buffering hypothesis, social relationships may be crucial 
for surviving extreme environmental challenges. Yet how societies re-organize and how 
individuals adjust their social relationships in response to catastrophic climatic events remains 
largely unexplored. This is, in part, due to the unpredictable character of natural disasters and the 
rarity of having longitudinal data collected on individuals both before and after these events.  

Here, we examined changes in social relationships following a natural disaster within a population 
of free-ranging rhesus macaques on Cayo Santiago island, Puerto Rico. On September 20th, 
2017 Hurricane Maria, then a category 4 hurricane, made landfall on Puerto Rico and caused 
widespread physical and environmental destruction. The human death toll from the hurricane in 
Puerto Rico numbers in the thousands [17], making it among the deadliest storms on record. A 
surge in mental health disorders, including depression and anxiety, attests to the lingering impacts 
of physical, financial, and social devastation [18]. Cayo Santiago also suffered catastrophic 
damage. Following the hurricane, green vegetation declined by 63% (t-test, p = 3.7 x 10-25, Figure 
1A.) and nearly all research and husbandry infrastructure was destroyed by the storm. Although 
the adult death rate peaked in the month following the hurricane (more than triple the expected 
death rate based on October months in previous years, >99.99%CI or p<0.001), it returned to 
expected levels in subsequent months when compared to previous years (Figure 1B). 
Furthermore, the population of rhesus macaques experienced relatively few deaths due to the 
storm itself, compared to previously studied animal populations following natural disasters [19–
24] (2% of the Cayo population died immediately after the hurricane, 7% in the six following 
months, compared to 30-65% mortality in prior studies; see Suppl. Table 1). This is consistent 
with a recent study showing no overall increase in mortality following major hurricanes compared 
to non-hurricane years for the past decades in this population (Hurricanes Hugo 1989, Georges 
1998 and Maria 2017)  [25]. Food and water provisioning ensured that monkeys’ basic nutritional 
needs were generally met before and after these disasters. 

Our study uses rarely available data to investigate how a nonhuman primate population, with 
similar physiology and behaviors to humans [26,27], adapted socially to an environmental 
catastrophe and its lingering impact in the absence of mass mortality. Mass mortality precludes 
the ability to assess social network changes outside of the direct consequences of group size 
reduction [19,28]. That relatively few monkeys were killed in the aftermath of Hurricane Maria is 
an unusual circumstance that allows us to draw parallels with human responses to disasters, in 
which whole communities have their homes and livelihoods destroyed but relatively few 
individuals are killed directly by the events themselves (e.g., Hurricane Harvey [29]). Furthermore, 
because the monkeys live on an island, their behavioral responses to the hurricane may inform 
predictions of behavioral responses by humans who are unable or unwilling to move following a 
disaster, as well as the behavioral responses of animal populations living in protected habitat 
“islands” without migration corridors. 
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Figure 1. Hurricane Maria’s impact on vegetation and mortality. (A) Foliage cover from Cayo 
Santiago Island, as measured by greenness, decreased by 63% following Maria (t-test, p = 3.7 x 10-25). 
Images are Digital Globe aerial photos of Cayo Santiago island, Puerto Rico, before Hurricane Maria (left) 
and after (right). (B) The death rate per 100 adults per month, from 1998 to 2018. We plot adult death rates 
because the exact date of death of infants and juveniles had an estimated error margin of up to 8 months 
due to the difficulty in individually recognizing and tracking young animals who had not yet received their 
unique ID tattoos. Color code: 2017 post-hurricane in dark orange and 2018 in yellow. Grey lines are years 
1998 to 2017 pre-hurricane. The October 2017 death rate was more than triple what was expected based 
on October months in previous years (> upper bound for 99.99% CI, p<0.0001). Peak in March corresponds 
to a Shigella outbreak in 2010. The red vertical lines indicate the date when Hurricane Maria made landfall 
on Cayo Santiago. 

We investigated whether and how monkeys adjusted their investment in social relationships in 
response to Hurricane Maria, drawing on a detailed dataset that encompasses behavioral 
observations occurring three years prior to, and one year immediately following, Hurricane Maria. 
Our study had 5 main questions: 1) We tested whether individuals changed their probabilities of 
engaging in affiliative (prosocial) behaviors after the hurricane compared to before. We predicted 
that rhesus macaques would show an increase in affiliative behavior, consistent with the social 
buffering hypothesis. 2) We investigated inter-individual differences in social responses to the 
hurricane. Specifically, we asked whether pre- to post-hurricane changes in probabilities of 
affiliative behaviors were similar for all monkeys and, if not, whether inter-individual differences 
were predicted by gregariousness prior to the hurricane [30], the loss of a grooming partner as a 
result of the storm [31], or clustering around newly-scarce resources like shade [11,32]. In prior 
studies, gregariousness and loss of a partner influenced individual social responses to a mass 
predation event in wild mice [30] and female chacma baboons [33]. 3) We explored which social 
strategies individual monkeys adopted. In particular, we asked whether individual monkeys 
increased their number of social partners or strengthened their existing connections (or both), two 
strategies that potentially provide different benefits after catastrophic events [7,22,30].  

Our results confirmed that rhesus macaques engaged more in affiliative interactions after the 
storm and that this effect was driven by an increase in their number of partners rather than 
intensifying existing relationships. These findings motivated us to explore the final 2 of our 5 
questions: 4) because partner selection may provide critical insights into the function of social 
relationships [34–36], we asked which partners monkeys associated with after the disaster. We 
predicted that monkeys would preferentially invest in relationships with kin and high-ranked 
individuals, which may be best placed to help them cope with the physical challenges and 
potentially increased competition for resources unleashed by the hurricane and its aftermath (i.e., 
vegetation-based food or shade; Figure 1A) [7,37]. 5) We asked whether simple association 
heuristics (reciprocity and closure of triangles) and shared space use (i.e. proximity) predicted 
formation of new relationships. 
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RESULTS 
 
We focused our investigation on adult males and females in two study groups for which we had 
behavioral data both before and after Hurricane Maria (KK: n = 66 and V: n = 93). Group V ranged 
alone on “Small Cayo”, an area that was severed from the main island (“Big Cayo”) after the 
hurricane (Suppl. Figure 1) and which was the least defoliated. By contrast, Group KK ranged on 
Big Cayo with other groups, mostly on the eastern part of the island which was the most defoliated 
after the hurricane. The groups also had divergent demographic characteristics: the male to 
female ratio was 1:2 in group KK and almost 1:1 in group V. These two important differences 
could lead to diverging responses to the Hurricane and its aftermath. Furthermore, three out of 
five of the statistical analyses we used did not permit the inclusion of group membership as a 
covariate (see STAR Methods). Therefore, in order to assess the potential differences in social 
response to the hurricane between groups while maintaining analytical consistency, we analyzed 
all our results separately by group. We also focused our investigation on affiliative behaviors and 
excluded aggressive behaviors, due to differences in how aggression was recorded before and 
after the hurricane (see STAR Methods). 
 

1. Probability of affiliative interactions increased after the hurricane. 
To evaluate the influence of Hurricane Maria on rhesus macaques’ probability of exhibiting 
affiliative behavior, we focused on two measures commonly used to quantify affiliation amongst 
non-human primates [38]: sitting within two meters of another monkey [39,40] (henceforth 
‘proximity’) and grooming each other’s fur (henceforth ‘grooming’). We used a sub-sampling 
procedure to account for differences in the way data were collected before and after the hurricane 
(see STAR methods). This procedure allowed us to match pre- and post-hurricane observations 
across individuals, time of year and time of day. We found that macaques were more than four 
times more likely to be found in proximity to another monkey after the hurricane compared to 
before (binomial general linear mixed-effects model [GLMM], group KK proximity odds ratio (OR) 
= 5.71, 95%CI = {4.74, 6.90}, group V proximity OR = 6.49, 95%CI = {5.84, 7.19}, Suppl. Table 2; 
Figure 2A). They were also >50% more likely to be found grooming after the hurricane compared 
to before (binomial GLMM, group KK grooming OR = 2.01, 95%CI = {1.52, 2.63}, group V 
grooming OR =1.46, 95%CI = {1.22, 1.75}; Suppl. Table 2; Figure 2B).  
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Figure 2. Rhesus macaques showed higher probabilities of affiliative behaviors after 
Hurricane Maria. Distribution of the probability of being in proximity (A) and grooming (B) pre- (red) and 
post-hurricane (blue) for study groups V and KK. Pre-hurricane violin plots summarize multiple years of 
data collection (2015-2017). 2017 data only includes observations up to Hurricane Maria (September 20th). 
Stars indicate statistical significance (95% confidence intervals of model estimates do not include the null 
value, i.e., p<0.05, Suppl. Table 2). 
 

2. Monkeys that were socially isolated before the hurricane showed the greatest 
increase in affiliation after it 

Although on average monkeys were more affiliative in the year following the hurricane, there was 
variability in the extent to which individuals changed their probability of grooming (mean change 
in probability of grooming = 0.014, std. = 0.06, Suppl. Figure 2A.) and proximity (mean=0.357, 
std.=0.163, Suppl. Figure 2B.). Some monkeys increased their probability of affiliation more than 
others, and some monkeys decreased their probability. We evaluated three potential factors that 
may explain this variation: 1) Group members’ level of integration before the hurricane, defined 
as overall time spent grooming (seconds/hrs observed) and the frequency of proximity events 
(freq/hour) - referred to as “gregariousness” in STAR methods. 2) Whether individuals lost 
members of their pre-hurricane social network (i.e. a pre-storm grooming partner who died within 
six months after the hurricane) [30,31,33]. Although the island did not suffer from mass mortality 
as a result of the storm, the death rate was higher in the month following the hurricane (October 
2017) than in this month in previous years (Figure 1B) - which may impact probabilities of affiliation 
beyond what was expected from normal demographic processes [31]. 3) For the grooming 
probability model only, whether increased grooming reflected increased use of shared space (i.e. 
proximity to others) after the disaster.  
 
We found that both the amount of time spent grooming and the frequency at which individuals 
were in proximity to others before the hurricane predicted the extent to which an individual 
increased their engagement in affiliative behaviors after the hurricane. Specifically, the less time 
monkeys spent grooming or in proximity to other monkeys before the hurricane, the greater the 
increase in their probability of engaging in grooming and proximity afterwards (Linear Mixed Model 
or LMM, proximity model, group KK = -0.105, 95%CI = {-0.134, -0.074}, group V = -0.023, 95%CI 
= {-0.033, -0.012}; grooming model, group KK = -0.051, 95%CI = {-0.064, -0.037}, group V = -
0.016, 95%CI = {-0.02, -0.012}; Figure 3B., Suppl. Table 3). This effect was stronger than what 
would be expected by regression to the mean alone (Pitman T test, p<0.0001). An individual’s 
pre-storm strength of connections (measured by time spent grooming) to monkeys who died after 
the hurricane did not predict their hurricane-related changes in affiliation (LMM, proximity model, 
group KK = 0.006, 95%CI = {-0.007, 0.018}, group V = 0.000, 95%CI = {-0.009, 0.008}; grooming 
model, group KK = -0.006, 95%CI = {-0.014, 0.003}, group V = -0.002, 95%CI = {-0.006, 0.002}; 
Figure 3C, Suppl. Table 3). Monkeys who increased their probability of being in proximity after 
the storm, relative to their pre-storm baseline, also displayed a pre-to-post disaster increase in 
grooming behavior (LMM, group KK = 0.074, 95%CI = {0.016, 0.134}, group V = 0.08, 95%CI = 
{0.034, 0.138}; Figure 3D., Suppl. Table 3).  
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Figure 3. Pre-disaster social integration, but not loss of a partner, predicted changes in the 
probability of engaging in grooming after Hurricane Maria. (A) Distribution of pre-to-post-
hurricane changes in an individual’s probability of grooming (for one sub-sampling iteration, see Suppl. 
Figure 2A for all 500 subsampling iterations). (B-D) Pre-to-post hurricane change in an individual’s 
probability of grooming (based on one sub-sampling iteration) as a function of: (B) pre-disaster levels of 
individual social integration (measured by time spent grooming); (C) standardized strength of relationship 
to lost partners (measured by pre-disaster time spent grooming lost partners); (D) the change in an 
individual’s probability of being in proximity to others after the hurricane compared to before. Red lines in 
(B), (C) and (D) are regression lines using ggplot geom_smooth in R. Correlation coefficients (r) and p-
values are computed using cor.test in R.  n.s.=non-significant. 
 

3. Monkeys increased the quantity but not intensity of their social relationships after 
the hurricane 

Monkeys may be observed to engage in affiliative behaviors at higher probabilities either because 
they have more partners or because they spend more time with specific partners (or both). To 
test whether monkeys formed new connections, or strengthened the ones they already had, we 
examined connections at the dyadic level. We focused on grooming because, unlike proximity 
where many individuals can sit near one another due to mutual attraction to a third party or a 
common resource, grooming interactions are almost exclusively dyadic in the rhesus macaque 
[41] and partner choice is active and clear.  
 
We examined network density, the proportion of unique pairwise connections observed over all 
possible pairwise connections [42]. We found that grooming networks were denser after the 
hurricane in both groups (sub-sampling-based grooming networks; mean pre-to-post hurricane 
difference in network density = 0.008, 95%CI = {0.003, 0.012}; see Suppl. Table 4 for statistics 
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by year). As such, macaques had a greater number of unique grooming partners after the 
hurricane (Figure 4, see Suppl. Figure 3 for all groups and years). In contrast, there was no 
evidence that pairwise grooming relationships were stronger following the hurricane (linear mixed 
models [LMM], group KK estimate = -0.039, 95%CI = {-0.088, 0.012}, group V estimate = -0.036, 
95%CI = {-0.088, 0.015}; Suppl. Table 5). Even relationships to familiar partners, i.e. partners that 
monkeys interacted with at least once in the years preceding the hurricane, were not strengthened 
following the hurricane and actually became weaker in group V (LMM group KK estimate = 0.018, 
95%CI = {-0.20, 0.29}, group V estimate = -0.175, 95%CI = {-0.33, -0.013}; Suppl. Table 5). 
 

 
Figure 4. Grooming networks were denser after Hurricane Maria. Example grooming networks 
based on one sub-sampling iteration for group KK before the hurricane in 2017 (A) and after in 2018 (B); 
group V in 2017 (C) and in 2018 (D). 2017 networks include data up to Hurricane Maria (Sept 20th 2017). 
See Suppl. Figure 3 for all groups and years. Note: network plots have average values of connectedness 
and are representative of other sub-sampling iterations. Each node is an individual. Males, green; Females, 
purple. Edges indicate a grooming relationship, and arrows indicate the direction of grooming. Edge 
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thickness indicates relationship strength based on proportion of grooming (number of scans a pair was 
observed grooming /total number of scans featuring animals from that pair). Node size scales with the 
number of unique partners. Network layout was held constant for pre and post-hurricane epochs to make 
the comparison clearer. Note: we estimated the precision of our pre-hurricane grooming networks based 
on [43] (see STAR Methods for details). This method estimates the correlation between the observed and 
true interactions probabilities between dyads within a network. Correlations >0.4 are generally considered 
to indicate useful representations of the underlying social structure [43]. In our networks, correlation 
estimates for all groups and years range between 0.714 and 0.862 (Suppl. Table 8).  
 

4. Individuals interacted with different types of partners following the hurricane 
Partner selection may provide insights into the function of social relationships. We investigated 
how grooming within a group was distributed amongst specific partner types following Hurricane 
Maria. Dyads were categorized according to kinship, sex, gregariousness and social status (see 
STAR methods). ‘Gregariousness’ here represents how sociable an individual was relative to their 
group in a given year pre-hurricane and does not necessarily indicate a stable personality trait.  
 
We found that monkeys were less likely to groom kin after the hurricane compared to before in 
group V, with group KK showing a non-significant result in the same direction (group V mean pre-
to-post hurricane difference in proportion of time spent grooming kin = -0.13, 95%CI = {-0.30, -
0.003}; Suppl. Table 6; Figure 5; group KK, mean difference = -0.045, 95%CI = {-0.14, 0.04}). 
Females from both groups were more likely to groom males following the hurricane (group KK 
mean difference = 0.143, 95%CI = {0.08, 0.21}, group V mean difference = 0.13, 95%CI = {0.06, 
0.24}; Suppl. Table 6; Figure 5). Males from group KK, but not group V, were less likely to groom 
females after the hurricane compared to before (group KK mean difference = -0.087, 95%CI = {-
0.16, -0.02}). In group V but not KK, ‘less gregarious’ individuals (i.e., who groomed or were 
groomed relatively less before the storm) had a higher likelihood of grooming each other after the 
hurricane compared to before, while ‘more gregarious’ individuals had a lower likelihood of 
grooming each other (less gregarious to less gregarious: group KK mean difference = 0.125, 
95%CI={-0.02, 0.26}, group V mean difference = 0.21, 95%CI = {0.002, 0.42}; More gregarious 
to more gregarious: group KK mean difference = -0.02, 95%CI = {-0.05, 0.01}, group V mean 
difference = -0.11, 95%CI = {-0.19, -0.003}; Suppl. Table 6, Figure 5). Finally, we found no 
evidence for increased likelihood of grooming from low- to high-ranking individuals following the 
hurricane (group KK mean difference = 0.043, 95%CI = {-0.02, 0.04}, group V mean difference = 
-0.02, 95%CI = {-0.11, 0.06}; Suppl. Table 6, Figure 5).  
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Figure 5. Monkeys groomed different types of partners after Hurricane Maria. Violin plots 
summarize changes in proportion of grooming directed from one type of partner to another pre-to-post 
hurricane for individuals in group KK (orange) and group V (blue). Dotted red lines mark the “no change” 
limit. Stars indicate a significant change (p<0.05) in proportion of grooming from before the hurricane to 
after. “Male→Female” indicates grooming from males to females. HighR: high-ranking; LowR: low-ranking. 
Note: The bi- or tri-modal shape of the violin plots reflect the pre-hurricane year used for comparison (2 for 
KK and 3 for V). We plotted all years together to facilitate presentation of results. Only differences robust 
to the pre-hurricane year used for comparison are ultimately detected as statistically significant.  
 

5. Reciprocity and closure of triads drove the formation of new network edges from 
pre- to post-hurricane networks 

Finally, we tested whether new grooming-based relationships were driven by simple association 
heuristics (closure of triads and reciprocity) or shared use of space (i.e., probability of being in 
proximity). Note that in macaques, grooming relationships are not necessarily reciprocal and can 
be instead a “commodity” exchanged for agonistic support or tolerance while feeding [44,45]. We 
used a Temporal Exponential Random Graph Model (TERGM) [46]. These models are designed 
to test hypotheses related to how and why social interactions occur [47]. TERGMs can directly 
test the role of emergent network properties, like transitivity, in structuring interactions, which is 
not possible with other modelling frameworks [47]. Including closure of triads as a predictor 
enabled us to ask whether monkey A was more or less likely to become connected to monkey B 
if both shared a common partner [48]. Reciprocity allowed us to test whether A was more likely to 
groom B after the hurricane if B groomed A before the event. Finally, including proximity as a 
factor permitted us to test whether the probability of A and B to be in proximity after the hurricane 
rendered grooming between them more likely. Importantly, contrary to our previous analysis of 
predictors of changes in individual probability of grooming, our test of the role of shared space 
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use in relationship formation here is at the dyadic level. Previously, we tested whether individuals 
who had a higher probability of being in proximity to other monkeys also had a higher probability 
of grooming after the hurricane. Here we specifically test whether proximity to a partner renders 
grooming more likely with that specific partner. We also controlled for network density, which 
could drive triadic closure or reciprocity effects [47].  
 
We found that reciprocity and triadic closure had strong positive effects on the likelihood of 
relationship formation after the hurricane (sub-sampling-based TERGM, group KK: triad closure 
estimate = 0.38, 95%CI = {0.092, 0.632}, reciprocity estimate = 1.35, 95%CI= {0.746, 1.933}; 
group V: triad closure estimate = 0.66, 95%CI = {0.338, 0.994}, reciprocity estimate = 2.41, 95%CI 
= {1.61, 2.99};  Figure 6.). In other words, network edges were more likely to form if they closed 
a triangle or reciprocated a pre-storm edge. By contrast, probability of being in proximity between 
dyads did not predict grooming relationship formation after the hurricane (sub-sampling-based 
TERGM, group KK proximity estimate = -0.3, 95%CI = {-0.54, 0.32}, group V estimate = -012, 
95%CI = {-1.51, 0.83} ; Figure 6). In other words, sharing space with an individual, due to limited 
edible vegetation or shade in a hurricane-disrupted tropical climate, did not wholly explain 
grooming relationship formation at the dyadic level. 
  

 
Figure 6. Reciprocity and closure of triads, but not probability of being in proximity, 
increased the likelihood of grooming between dyads after the hurricane. Violin plots 
summarizing the distribution of TERGM formation model log-odds for group KK (left) and V (right). Labels 
from top to bottom: proximity, reciprocity, triadic closure and network density (a control term). We plot the 
full distribution of log-odds over all 500 modelling iterations. Stars indicate a significant effect on relationship 
formation (p<0.05). Positive log-odds are interpreted as an increased likelihood of relationship formation 
while negative log-odds as a decreased likelihood of relationship formation. The red dotted line marks the 
‘coefficient=0’ limit. 
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DISCUSSION 
 
Our findings are consistent with the social buffering hypothesis. Adult monkeys became more 
affiliative and actively sought social contact after a natural disaster [7,49]. Increases in social 
relationships, however, were not distributed uniformly across the population. Instead, monkeys 
that were socially isolated before the hurricane showed the greatest increases in affiliation after 
it. Based on these findings, we postulate that individuals more peripheral to their social network 
had the biggest drive to invest in social relationships during periods of instability, consistent with 
a previous study in wild mice after a mass predation event [30]. There were strong sex differences 
in the drivers of these changes. Specifically, females groomed males more, thereby making males 
more connected. This finding is consistent with the role of females in promoting group cohesion 
in some animal societies [50,51]. These results also suggest monkeys that were already highly-
connected before the hurricane did not derive additional benefits from being more affiliative [52]. 
Together, we take these findings as strong evidence for flexibility in the ability of rhesus macaques 
to negotiate their social landscape in the aftermath of a natural disaster.  

We also found that macaques widened their social networks to include more partners, but did not 
strengthen the quality of their relationships. Monkeys did not exhibit enhanced efforts to interact 
with familiar partners, kin, or higher-ranking individuals after the hurricane. These findings are 
consistent with a strategy to gain social tolerance and support from the greatest number of 
individuals, and to benefit from broader social integration, rather than focusing on reinforcing 
relationships to “key” partners. Extended ego-networks can enhance individuals’ integration into 
communities [53]. By contrast, strong ties that increase local cohesion may lead to fragmentation 
of the larger group due to formation of multiple smaller cliques [53]. To broaden their social 
networks, macaques tended to adopt a “path of least resistance” approach in forming new 
relationships, by closing triads and reciprocating grooming. Closure of triads--that is, becoming 
friends with the friends of your friends--is a frequent mechanism for bond formation across the 
animal kingdom [48], including humans [54]. Overall, these results are consistent with a group-
level response to an extreme life event of Hurricane Maria’s magnitude, in which individuals 
become more tolerant of one another and seek contact with unfamiliar partners or non-kin, a 
pattern observed in humans after catastrophic events that impact whole populations [55–57]. One 
potential driver of this social response is the formation of a large pool of partners that is 
mobilizable when needed, to reduce one’s vulnerability during times of instability or resource 
scarcity following a catastrophic event [22,53,58,59]. A recent study in the same Cayo Santiago 
macaque population showed that weak connections were positively associated with survival [39]. 
Enhanced resilience during harsh times, like in the aftermath of a devastating hurricane, may be 
one route linking weak bonds to enhanced fitness. 

In the degraded landscape produced by Hurricane Maria, it might be particularly important to seek 
out social support from a large pool of partners to access a rare yet diffuse resource like shade 
[32]. Following Hurricane Maria, Cayo Santiago island was almost completely deforested (Figure 
1A), which led to severe shade scarcity. In the Caribbean, foliage provides significant protection 
from high temperatures (Suppl. Figure 6). As a consequence, an increased probability that 
monkeys would sit near others and engage in grooming may have resulted from individuals 
coalescing around this newly precious resource, which protects them from heat, and negotiating 
access to it by way of grooming. When trying to access a scarce and diffuse resource like shade, 
stronger bonds are not necessarily useful [53]. For example, monkeys may have turned to non-
kin as partners after the hurricane to increase their number of access points to shade. Support 
from new partners and non-kin, which do not provide indirect fitness or rank-related benefits 
(given that new partners here were not higher ranking), may require reciprocity to be 
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advantageous to both parties. This may explain why reciprocity partly structured relationship 
formation from the pre- to the post-hurricane epochs. 

Even though we were unable to robustly quantify changes in aggression given the structure of 
our data, our findings indicate monkeys became more tolerant of each other despite, or perhaps 
as a consequence of, decreased shade. It remains possible that increased affiliation reflected the 
need to secure social support in response to intensified competition over shade. Finally, 
investment in new social relationships could result from increased opportunities to interact with 
novel partners clustered in limited shade. Although monkeys that were more likely to be in 
proximity to other individuals after the hurricane were also more likely to be observed grooming, 
proximity to a specific individual did not predict the formation of a grooming relationship. This 
finding indicates a more active choice of grooming partner than the passive emergence of 
grooming in limited shade.  

Conclusion 

In the Anthropocene, living in climate-transformed landscapes can have myriad negative health 
consequences [60]. Devastating tropical storms like Hurricane Maria are predicted to increase in 
both frequency and intensity [13,14], as well as become increasingly difficult to predict [12]. Going 
forward, studies of how animals adjust, socially or otherwise, to these massive transformations of 
their habitats will be important for addressing why some species, or individuals, are resilient and 
others more vulnerable. The rhesus macaque, which shows impressive proliferation in human-
transformed landscapes [61], provides important lessons for answering this question. In response 
to a major hurricane, the Cayo Santiago macaques not only became more tolerant of other 
monkeys but also formed new social connections --despite increased competition for scarce 
resources. Our findings support the hypothesis that social support is an important mechanism 
that gregarious primates can deploy to adapt to extreme environmental change.  
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***** STAR METHODS ***** 
 
LEAD CONTACT 
Camille.testard@pennmedicine.upenn.edu 
 
MATERIALS AVAILABILITY 
This study did not generate new unique reagents 
 
DATA AND CODE AVAILABILITY 
The dataset and code generated during this study are available at [Github repository] 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
We studied a population of rhesus macaques living in a semi free-ranging colony on Cayo 
Santiago Island, Puerto Rico (18°09 N, 65°44 W). The colony has been continuously monitored 
since it was established in 1938 following the release of 409 animals originally captured in India. 
Cayo Santiago is managed by the Caribbean Primate Research Center (CPRC), which supplies 
food to the population daily and water ad libitum. There is no contraceptive use and no medical 
intervention aside from tetanus inoculation when animals are weaned yearlings. Animals are free 
to aggregate into social units as they would in the wild. There are no natural predators on the 
island. 
 
Subjects for this study were adult males and females (at least 6 years old), individually 
recognizable by tattoos, ear notches, and facial features. We used two groups for which there 
was behavioral data before and after Hurricane Maria, groups KK and V, including 159 unique 
adult individuals (KK: n=66, F=44, M=22; V: n=93, F=44, M=49). These groups had home ranges 
on different parts of the island (Suppl. Figure 1). Group V ranged alone on “small Cayo”; an area 
that was severed from the main part of island (“big Cayo”) after the hurricane. In contrast, Group 
KK ranged on big Cayo with all other groups, mostly on the eastern part of the island which was 
the most de-vegetated after the hurricane. We used multiple available years of observational data 
(KK: 2015, 2017; V: 2015, 2016, 2017) to characterize social behaviors before the hurricane (“pre-
hurricane”).  
 
METHOD DETAILS  
 
Behavioral data collection 
Prior to Hurricane Maria, behavioral data were collected using 10-minute focal animal samples 
[62] on Teklogic Psion WorkAbout Pro © handheld computers, with Noldus Observer © software. 
The duration and partner identity of all positive (e.g., grooming) and negative (e.g., aggression, 
threats, submissions, and displacements) social interactions with adults were recorded. At the 0-
, 5-, and 10-minute marks of the focal follow, we collected instantaneous scan samples during 
which we recorded the state behavior of the subject (grooming, feeding, resting, and traveling) 
and the identity of all adults within two meters (i.e. in proximity). Importantly for this study, 
grooming and proximity were mutually exclusive: grooming took precedence over proximity such 
that whenever two individuals were grooming they were not recorded as being in proximity as 
well. We balanced the collection of focal samples on individuals across time of day and across 
months to account for temporal variation in behaviors. 
  
After Hurricane Maria (September 17th 2020), damage resulting in inconsistent access to 
electricity in Puerto Rico imposed the adoption of a downgraded means of recording data using 
basic tablets. We recorded group-wide instantaneous scan samples at 10-minute intervals. For 
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all animals in view of an observer, we recorded the state behavior of the subject, the identity of 
their adult social partner when relevant (i.e., if they were grooming) and the identity of all adults 
within two meters (i.e. in proximity) --similarly to instantaneous scans recorded during focal follows 
prior to the hurricane. Observers were given 15mins to complete a group-wide scan session, were 
required to stand a minimum of 4m from monkeys and, because of very good visibility of these 
terrestrial animals, were able to identify them at distances upwards of 30m. While aggressive 
interactions were recorded during scans after the hurricane they were only recorded during focal 
samples before the storm. Scan samples and focal samples can provide different estimates of 
brief behaviors like aggression that are not extended in time [63]. Given this limitation, we focused 
exclusively on affiliative behaviors in this study. 
 
Our subjects were observed over a mean (SD) of 2.97 (0.75) years, always including 2018 (the 
post-hurricane year). We included on average 4.03 (1.61) hours of focal follows and 88.33 (20.86) 
scan observations embedded within focal follows per individual per year pre-hurricane (see Suppl. 
Table 7 for more details), and 448.74 (180.40) scans per individual post-hurricane (November 
2017 - September 2018). Because of storms and Hurricane Maria, data collection stopped on 
August 31st 2017 and didn’t resume until November 2nd 2017. 
 
Dominance ranks for individuals were determined separately for each group and year. Rank was 
also determined separately for males and females. For males, the direction and outcome of win-
loss agonistic interactions recorded during focal animal samples or during ad libitum observations 
of a given year was used to determine rank for that year. For females, rank was determined using 
both outcomes of win-loss agonistic interactions and matriline rank. Female macaques inherit 
their rank from their mothers, and female ranks are linear and relatively stable over time [41]. In 
order to account for group size, dominance rank was defined by the percentage of same sex 
individuals outranked, and ranged between 0 to 100 (0 = lowest rank, outranks 0% of same sex 
individuals; 100 = highest rank, outranks 100%). We were interested in comparing top ranking 
macaques to mid- and low-ranking individuals, where the most important behavioral differences 
were likely to occur based on previous results [64,65]. Thus, we classified animals as either ‘high’ 
or ‘low’ ranking (with ‘low’ including both the medium and lowest ranking animals) based on the 
percentage outranked scale. Monkeys were classified as high ranking if they outranked >80% of 
the monkeys of their group/sex and were classified as low ranking if they were outranked by ≤79% 
of monkeys of their group/sex. 
   
Estimating uncertainty of pre-hurricane social networks: 
Our pre-hurricane social networks were built using an average of 88.33 (20.86) scan observations 
per individual per year, or 168.21 (41.22) observations per dyad (where either member of a dyad 
was observed). To ensure this amount of sampling was able to capture a useful representation of 
the underlying social structure, we evaluated the precision of our pre-hurricane social networks 
[43]. This method estimates the correlation between our measured interaction indices and the 
underlying interaction probabilities [43]. We first calculated the coefficient of variation (CV) of the 
observed probability of interacting, and then estimated the CV of the underlying interaction 
probabilities (S) via maximum likelihood, assuming the underlying associations follow a beta 
distribution. The ratio of S to the observed CV is an estimate of the portion of variance in 
interaction probability values that is accounted for by the variance in “true” interaction 
probabilities, rather than sampling variance, and therefore approximates the correlation between 
“true” and observed interaction indices. Correlations greater than 0.4 are considered to indicate 
useful representations of the underlying social structure [43]. In our pre-hurricane grooming 
networks, the average correlation across group-years was 0.781, with a min correlation of 0.72 
and a max correlation of 0.86 (Suppl. Table 8). 
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Sub-sampling procedure:  
In the year following the hurricane (2018), we were only able to collect instantaneous scan 
samples. As a result, we exclusively used scan samples to compare the social behavior of our 
study population before and after the hurricane (those collected after the hurricane as 
instantaneous scans, and those collected in the course of focal animal follows before the 
hurricane). There were therefore structural differences between our pre- and post-hurricane data 
that we needed to account for. Specifically: (1) scans were collected far more frequently post-
hurricane, which increased the likelihood of picking up interactions compared to before the 
hurricane, and (2) our pre- and post-hurricane data were not collected equally across time of day 
(AM/PM) and time of year - though both of these factors may affect rates of affiliative behaviors, 
such as grooming. For example, monkeys were fed commercially purchased monkey chow 
exclusively in the morning, which may have a significant negative impact on their propensity to 
engage in affiliative interactions at that time. Additionally, rhesus macaques are seasonal 
breeders and there is seasonal variation in their social behavior [66]. Such biases in sampling 
effort can affect social network measures [67]. To cope with these structural issues, we thus 
developed a subsampling procedure (Suppl. Figure 4) that equally balanced the number of 
observations pre- to post-hurricane, in addition to balancing across time of day and time of year, 
for all individuals. Using simulations, we show that this procedure limits the detection of individual 
or dyad-based differences in the probability of interaction pre-to-post hurricane when in fact there 
are none (see next section & Suppl. Figure 5).  
 
Furthermore, sampling effort and social dynamics may vary from one year to the next [68], making 
it important to account for the variation across pre-hurricane years. Accordingly, we ran our sub-
sampling procedure separately for each year pre-hurricane, creating a matched dataset pre-to-
post hurricane for each group and pre-hurricane year considered. The latter point is important 
regarding our first analysis which used a generalized linear mixed model (GLMM) to model 
changes in probabilities of affiliative behavior following the hurricane. While GLMMs can account 
for sampling biases [69], we were not able to account for year-to-year variation by adding ‘year’ 
as a random effect. This is because year and hurricane effects are confounded: practically all 
post-hurricane observations happened in one year (2018). For this reason, we also applied our 
sub-sampling procedure when running this GLMM allowing us to account for the effect of the pre-
hurricane year used for comparison. 
 
We provide a concrete example of our sub-sampling procedure here. When building a matched 
post-hurricane network for group V in 2016, we only considered individuals present in group V 
both in 2016 and in 2018 (after the hurricane). For each individual separately, we computed the 
number of observations in the morning vs. afternoon, and across quarters of the year both pre 
and post-hurricane. For example, animal “00V” in 2016 had 27 scans in the morning and 30 in 
the afternoon. In 2018 (post-hurricane), she had 431 scans in the morning and 149 in the 
afternoon. We sub-sampled without replacement 27 observations in the morning and 30 in the 
afternoon from the post-hurricane data to match the 2016 (pre-hurricane) data. Similarly, data 
was matched across quarters of the year (henceforth quarter). So, before the subsampling 
procedure, 00V had 57 observations in 2016 compared to 580 post-hurricane, which were not 
sampled equally throughout the time of day and time of year pre-to-post hurricane. After the 
subsampling approach, 00V had 55 observations in 2016 and 55 in 2018, with the same number 
of observations in AM vs. PM and across quarters pre-to-post hurricane. To build the V2016-
pre/post dataset, we sub-sampled post-hurricane and/or pre-hurricane data to have them exactly 
match, for all individuals. Importantly, “year” in this sub-sampled data set no longer indicated “data 
collection year” but rather “year of matched data”. This coding of year allowed us to account for 
the pre-hurricane year we used as a baseline for comparison. The same sub-sampling procedure 
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is used for all groups and pre-hurricane years. After one sub-sampling iteration, we sub-sampled 
our data to have matched pre- and post-hurricane data sets for V2015, V2016, V2017, KK2015 
and KK2017. All analyses detailed below are within-individual or within-group comparisons, and 
compared 5 pre-hurricane datasets to their matched post- hurricane counterparts. Overall, this 
procedure accounts for 1) differences in the amount of sampling between pre- and post-hurricane 
epochs - while interactions may be more likely to be picked up post-hurricane due to more 
frequent sampling, after sub-sampling they are not picked up often enough to drive the detection 
of a difference in interaction rates pre-to-post hurricane when in reality there is none (Suppl. 
Figure 5); 2) differences in sampling effort throughout the day and across seasons; and 3) year-
to-year pre-hurricane variation. 
 
Our full dataset contained 97,415 scan sampled observations while the sub-sampled and 
matched dataset contained 37,950 scan sampled observations. Only observations that did not 
have a matched category pre- and post-hurricane were discarded. For example, 00V did not have 
any morning observations from October to December (Q4) in 2016; therefore all morning Q4 data 
post-hurricane were discarded for that individual when building the matched post-hurricane 
dataset. Overall, our sub-sampling approach kept 89% of our full dataset (n=86,666/97,415). To 
have all scans with an available match sub-sampled at least once, we needed to run at least 275 
sub-sampling iterations (Suppl. Figure 6). To make sure all our data was considered in our 
analyses we ran 500 sub-sampling iterations (each of the 5 matched datasets are generated 500 
times).  
 
Sub-sampling accounts for differences in sampling effort: 
Post-hurricane scans were collected far more frequently than pre-hurricane (see “Behavioral data 
collection” section). This can lead to the detection of interactions post-hurricane that existed pre-
hurricane but were missed due to less frequent sampling. Using simulations, we show that 
subsampling is able to handle this mismatch between pre and post-hurricane data sets and limits 
the probability of false positives (Suppl. Figure 5), i.e. the detection of differences in an individual’s 
or a dyad’s probability of interacting pre-to-post hurricane when in fact there are none. We 
describe our simulation step-by-step below:  
 

1. We simulated two data sets with 500 scan observations each. These simulated 
observations represented pre- and post-hurricane observations for one individual. Each 
observation can take two possible values: 1 if the individual was observed interacting (i.e. 
grooming) and 0 if not.  

2. Our goal was to quantify false positive rates with and without sub-sampling. We set the 
individual’s probability of grooming (henceforth “p(grooming)”) to be the same in pre- 
versus post-event simulated datasets (i.e. no true difference in p(grooming).  

3. To model the sparser sampling pre-hurricane in our actual dataset, we only considered a 
fixed subset of the simulated pre-event data available for comparing pre- and post-event 
p(grooming). We chose a range of 20-150 observations, in 10 observation increments, 
which approximates the range of observations per individual we have in our actual dataset. 

4. To model the mismatch in amounts of data available between pre- and post-hurricane in 
our actual dataset, all simulated 500 observations were available to estimate post-event 
p(grooming), which is approximately the amount of data available per individual in our 
post-hurricane sample. To match the sparser pre-event data, we sub-sampled through the 
500 post-event observations using the same amount of data as pre-event (ranging in 10 
observation increments from 20-150, analogous to the sub-sampling used in the 
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manuscript). After sub-sampling, we computed p(grooming), i.e. number of grooming 
events (or 1’s)/total number of observations, for both pre and post-event data, and 
subtracted the pre value to the post value to obtain the difference in p(grooming). After 
1000 iterations of the sub-sampling procedure, we ended up with a distribution of 
differences in p(grooming). If the 95%CI of the p(grooming) difference did not contain 0, 
we considered the difference significant (as in our manuscript). 

5. We then re-ran steps 2 & 3 1000 times to compare 1000 different subsets of the simulated 
pre-event data of different  sizes (n observations = 20, 30, 50...150). We then computed 
the probability of a false positive (# differences detected/ # iterations) given a sparse pre-
event sample of each fixed size. 

6. Finally, we also varied the value of p(grooming) from 0.01 to 0.3 ([0.01, 0.05, 0.1, 0.15, 
0.20, 0.3]), and ran steps 3-5 for each value of p(grooming). 

 
This simulation showed that our sub-sampling procedure deals properly with differences in 
sampling effort between the pre- and post-hurricane epochs and prevents unacceptable false 
positive rates. False positives occurred <5% of the time regardless of the sample size and 
p(grooming) simulated (Suppl. Figure 5A). By contrast, if we had failed to use this sub-sampling 
approach but only bootstrapped the pre- and the post-event datasets, then our p(false positives) 
would have been much higher  (Suppl. Figure 5B.). 
 
Overall, the estimated precision of our pre-hurricane networks [43] and sub-sampling simulations 
show respectively that: 1. pre-hurricane networks  correlate highly with the true underlying social 
structure (r>0.7, min=0.71, max=0,86, Suppl. Table 8); 2. we controlled analytically for the 
mismatch in the amount of data pre- vs. post-hurricane (Suppl. Figure 5). Both make it unlikely to 
detect changes in relationships or social structure due to missed relationships pre-hurricane. 
However, to ensure that our results were not driven by individuals with lower numbers of scan 
samples (< 1.5 sd away from the mean, i.e. < 60 scans), we re-ran our analyses for questions 2-
5 (analyses described below) excluding these individuals (n=23) and found no qualitative 
difference in our results. 
 
Testing independence of observations post-hurricane 
The statistical analyses we used throughout our study assume independence of observations: 
within one scan sample, observing an individual grooming or in proximity should not impact the 
probability of observing another individual in the same states. To test whether our sub-sampled 
group-wide instantaneous scans post-hurricane suffered from a lack of independence, we ran a 
simulation to compare the observed distribution of the probability of grooming events across 
scans after sub-sampling (henceforth “p(groom)”) to a theoretical distribution assuming 
independence of observations. We computed both distributions as follows: for each observed 
scan sampling session, we computed the p(groom) (#grooming events in scan ‘A’/ all scan ‘A’ 
observations). Then, we generated a matched simulated scan sample with the same number of 
observations but where the outcome of each observation (groom or no-groom) was assigned 
randomly with a specified probability (i.e. a weighted coin) using the base r function ‘sample’. This 
specified probability matches the observed mean p(groom) across all scan samples, such that 
the mean theoretical p(groom) in simulated scans matches the observed mean (0.03). Finally, we 
ran a Chi-square Goodness of fit test using chisq.test in R to test the difference between 
distributions. The distributions were statistically indistinguishable (chi-square Goodness of fit test, 
p>0.2, Suppl. Figure 7), indicating that our observations can be considered independent for 
analytical purposes. We ran the same analysis for proximity data as well (which is less sparse, 
mean p(proximity) = 0.18) and found the same result.  
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Ecological changes and mortality after Hurricane Maria: 
We quantified changes to vegetation cover and temperature as a result of Hurricane Maria. We 
measured vegetation cover from two years before to two years after Hurricane Maria using 
satellite images from Sentinel-hub EO-Browser. We used images from Landsat 8, a satellite 
operated by the US Geological Survey that has a 16-day repeat cycle (i.e., visiting Cayo Santiago 
every approximately 16 days). Images from Landsat 8 can be viewed in many formats, including 
“Normalized Difference Vegetation Index” (NDVI) image format. NDVI is the most widely used 
remote sensing index for assessing vegetation cover [70]. NDVI is measured using the near-
infrared radiation from photosynthetic pigments to assess the photosynthetic activity of vegetation 
[70]. For Landsat 8, NDVI is automatically calculated by the database with the following band 
combination ((Band 5 – Band 4) / (Band 5 + Band 4)) which isolates bands that reflect 
photosynthetic activity. 
 
We created a geojson shapefile of coordinates outlining the entirety of Cayo Santiago, including 
both the large and small islands, which allowed us to specifically search for images in which there 
was no cloud cover over the island. We compiled NDVI scores (0 representing no vegetation and 
1 representing full vegetation cover) from satellite images with 0% cloud cover over Cayo 
Santiago from September 21, 2015 to November 29, 2019 (approximately 2 years pre- and 2 
years post- Maria). In total, we used 89 images, 42 from before Hurricane Maria (09/21/2015–
09/10/2017) and 47 from after (09/26/2017–11/29/2019). Following Hurricane Maria, vegetation 
on the island decreased by 63% (t-test, p = 3.7 x 10-25).  
 
To evaluate the death toll following the hurricane, we used the CPRC long-term demographic 
data to compute the monthly number of deaths per 100 monkeys from 1998 to 2018.  
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Note that we exclusively used scan data when comparing pre- and post-hurricane probability of 
affiliation and social networks, since post-hurricane data did not include focal follows. Focal data 
was only used when estimating individuals’ pre-storm strength of connection to monkeys who 
later died after the hurricane in analysis 2, and gregariousness pre-hurricane in analyses 2 and 
4, because focal samples are most appropriate when examining individual-level characteristics 
and patterns of behavior [71]. Furthermore, our analyses relied on the assumption that scan 
observations were independent of one another, an assumption we validated using simulations 
(details in the section “Testing independence of observation post-hurricane”, Suppl. Figure 5). 
  

1. Probability of affiliative interactions increased after the hurricane. 
The first goal of our study was to evaluate the influence of Hurricane Maria on probabilities of 
social interaction. We focused on two measures of sociality: the probability of being scanned in a 
state-of-proximity (henceforth the proximity) and the probability of being scanned in a state-of-
grooming (henceforth the grooming). We used a generalized linear mixed model from R package 
lme4 (GLMMs) [72], to assess the significance of the hurricane on probability of proximity and 
grooming. Our dependent variables were binary (e.g., an individual can be scanned in a grooming 
state = 1; or not = 0), so we used a binomial family model with a logit link function. We controlled 
for time of day (AM/PM), time of year (quarters), the interaction between time of year and 
hurricane status, and demographic variables age, sex and rank by including them as fixed effects. 
Individual ID and year were included as random effects. We checked the multicollinearity of 
independent variables using “check_collinearity” from R package “performance” [73] --all our 
independent variables had a low variance inflation factor (<1). We sub-sampled our data 500 
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times, ran a binomial model for each subsampling iteration, and reported the mean estimates and 
95% confidence interval for all our regressors. 
 

2. Monkeys that were socially isolated before the hurricane showed the greatest 
increase in affiliation after it 

We evaluated whether individuals’ gregariousness pre-hurricane and their relationship to partners 
who died in the six months following the hurricane predicted changes in their probability of 
grooming (henceforth p(grooming)) and being in proximity to others (henceforth p(proximity)) from 
the pre- to the post-hurricane period. Gregariousness in the grooming model was based on 
grooming data while gregariousness in the proximity model was based on proximity data. For the 
change in p(grooming) model, we also tested whether p(grooming) changes could be explained 
by changes in p(proximity), by including change in p(proximity) as a predictor.  
 
To compute individual grooming and proximity probabilities pre- and post-hurricane, we used the 
sub-sampling approach described above to match scans for groups KK and V, pre- and post-
hurricane, for each year pre-hurricane separately. After each sub-sampling iteration, we 
computed p(grooming) (=number of grooming events/total number of scans) and p(proximity) 
(=number of proximity events/total number of scans) for all individuals pre- and post-hurricane 
separately. Changes in probabilities of affiliative interactions were calculated by subtracting the 
pre value to the post value, such that a positive change indicated an increase in probability pre-
to-post hurricane.  
  
To evaluate an individual’s level of gregariousness pre-hurricane, we computed individuals’ 
grooming index and proximity index, separately for each year pre-hurricane using focal samples 
and scan samples respectively. Grooming index is a standardized measure of the amount of time 
spent grooming per individual, computed as follows: we summed the amount of time (seconds) a 
subject was observed grooming (or being groomed) for the entire year, divided this sum by the 
number of hours they were followed that year (to control for observational time), and further 
standardized this ratio by dividing by the mean for that group and year (to control for group 
differences in average sociality, which may be influenced by group size and other factors). This 
grooming index is robust to differences in observational time and represents how gregarious an 
individual is relative to other members of their group [38]. Importantly, the latter gregariousness 
predictor was computed using focal data (available pre-hurricane only) and is distinct from 
p(grooming) pre-hurricane used to compute the dependent variable in our model. Proximity index 
was calculated by summing the number of times a subject was observed in proximity to another 
monkey for the entire year, and standardized the same way as the grooming index. This proximity 
index, like the grooming index, is robust to differences in observational time and group average 
sociality. Finally, using focal data we quantified the strength of relationship to monkeys who died 
in the six months following the hurricane by summing the time spent grooming one another before 
the hurricane (separately for each year pre-hurricane), divided by the average number of hours 
followed for the two monkeys, and further standardized by the mean strength of grooming bond 
for that group and year. 
  
Although our dependent variables are bounded between -1 and 1, their distributions approximate 
a normal distribution (Suppl. Figure 2). We used linear mixed models from R package lme4 
(LMMs) [72] to assess the significance of pre-hurricane level of gregariousness and relationship 
to deceased monkeys in predicting change in grooming and proximity probabilities in two separate 
models. In both models we controlled for demographic variables age, sex and rank included as 
fixed effects. Individual ID and year were included as random effects. For change in grooming 
probability model, we also included pre-to-post hurricane change in probability of being in 
proximity as a predictor (fixed effect). Multiple model assumptions were visually checked using 



20 
 

“check_model” from the R package “performance” [73] (normality of residuals, normality of 
random effects, heteroscedasticity, homogeneity of variance and multicollinearity). After 
confirming that assumptions were met on several sub-sampling iterations, we sub-sampled our 
data 500 times, ran a predictive model for each subsampled data, and reported the mean estimate 
and 95% confidence interval (CI) of our fixed-effect  coefficients. 
 
In our models, the pre-hurricane values of p(grooming) or p(proximity) (henceforth “p(affiliation)”) 
and measures of social integration pre-hurricane are related (they both rely on grooming and 
proximity behavior pre-disaster). Thus, the negative relationship observed between individuals’ 
level of social integration pre-hurricane and their change in probability of affiliation pre-to-post 
hurricane (Figure 3B in the main text) may be partly due to regression toward the mean (RTM, 
[74]). This raises the question of whether there are differential effects between individuals with 
initially low and high social integration values beyond what is expected from the RTM effect. One 
reasonable prediction of a differential effect is a change in the variance of the population [75,76]. 
If the null hypothesis that variances at the two time points are equal is rejected, then this is a good 
indication that our differential effect is above what is expected from RTM [75]. We ran a Pitman T 
test on the pre- and post- p(groom) and p(proximity) values on 500 subsampling iterations and 
found statistically different variance on each iteration (95%CI t-value = [6.28 11.96], df =272, 
p<0.0001). We conclude that the differential effect observed (the negative relationship between 
change in p(affiliation) and baseline social integration) is larger than the effect expected by RTM 
alone. 
  

3. Monkeys increased the quantity but not intensity of their social relationships after 
the hurricane 

To compare both the number and the intensity of social relationships before and after the 
hurricane, we used the sub-sampling approach described above to generate subsampled social 
networks using R package ‘igraph’ [77] (500 iterations for each group and year). Edge weights 
were computed by counting from scan samples the number of grooming events between two 
individuals and dividing this count by the average number of times each member of the dyad was 
scanned.  
 
To evaluate whether individuals had a greater number of unique partners after the disaster 
compared to before, we asked whether grooming networks were denser. Network density is the 
proportion of unique pairwise connections observed over all possible pairwise connections [42]. 
We computed non-weighted network density for all sub-sampled networks by using the 
‘edge_density’ function in igraph. At each subsampling iteration, we calculated the difference 
between matched pre- and post-hurricane grooming network densities, for each group and year 
pre-hurricane separately (i.e. 5 differences were computed since there are 5 group-year 
combinations, pre- and post). We report the mean pre-/post-hurricane difference in network 
density and 95% CI. We considered a change in network density as statistically significant if the 
95% CI of pre-/post-hurricane difference did not include 0. Note that this bootstrapping-based 
analytical approach does not allow for the inclusion of group membership or year as a covariate, 
and for that reason we analyzed data separately by group and year (Suppl. Table 4). 
 
Next, we tested whether individuals had stronger relationships after the hurricane compared to 
before. Strength of relationships was measured as the weight assigned to edges in the grooming 
networks. Importantly, weights were not standardized within group and year. Standardizing would 
occlude any change in relationship strength in the post-hurricane year. Furthermore, we 
specifically tested the effect of the hurricane on non-zero weights. We asked whether dyadic 
relationships, when there were any, were stronger post-hurricane. Importantly, pairs compared 
were not necessarily the same before and after the hurricane. Individuals only needed to interact 
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in one of the two time points to be considered in this analysis (e.g. A groomed B before the storm 
but not after). Before using a linear mixed model to assess the effect of the hurricane on 
relationship strength (categorical predictor 0=pre-hurricane, 1=post-hurricane), we log-
transformed relationship strength indices (i.e. weights) to meet assumptions of normality and 
constant variance. We controlled for the demographic characteristics of the subject who gave 
grooming to its partner (age, sex and rank) by including them as fixed effects. Individual ID, 
partner ID and year were included as random effects. After visually confirming that assumptions 
(normality of residuals, normality of random effects, heteroscedasticity, homogeneity of variance 
and multicollinearity) were met on several sub-sampling iterations using check_model from R 
package “performance” [73], we sub-sampled our data 500 times, ran a linear mixed model for 
each subsampled dataset and report the mean estimate and 95% CI of our regression 
coefficients. 
 
We also wanted to assess whether individuals strengthen their relationships to familiar partners 
in particular – that is partners that interacted at least once in the three years prior to the hurricane 
and afterwards. We used the exact same approach as described above, but this time only 
including dyads which interacted at least once both before and after the hurricane. 
  

4. Individuals interacted with different types of partners following the hurricane 
To evaluate whether allocation of grooming between different partner types, or partner 
preference, changed following the hurricane, we measured the proportion of total group-level 
grooming occurring amongst different partner types, and compared these group-level proportions 
pre-to-post hurricane. Our analysis aimed at answering the following question: out of all grooming 
interactions within a given group and a given year pre-hurricane, what proportion occurred 
between, for example, kin vs. between non-kin and did this group-level allocation of grooming 
efforts change following the hurricane? This analysis was done at the group level rather than 
individual level because of our lack of statistical power to assess inter-individual differences in 
partner preference changes following the hurricane. 
 
Animals were defined according to their sex, rank, gregariousness level, and kinship to all 
potential partners. All subjects fell into one category of each aforementioned attribute. For 
example, A is “less gregarious”, “high ranking”, “female” and is related to partner B (they are 
considered kin). Animal B on the other hand is “more gregarious”, “low ranking” and a “male”. 
Therefore, the dyad “A groom B” was categorized as “kin”, “less gregarious→more gregarious”, 
“high→low” and “female→male”. Note that grooming dyads were directional, such that “B groom 
A” fell under a different category from “A groom B”. For any one network, we assessed partner 
preference by measuring the proportion of overall grooming that occurred between dyads of 
different types. For example, pre-hurricane 50% of all grooming might have occurred between 
females, while only 10% might have occurred between males. This allocation of grooming effort 
may change after the hurricane such that 40% of all grooming interactions might occur between 
females and 20% might occur between males. This would indicate a shift in partner preferences, 
where males interacted proportionately more amongst each other and females less so (note that 
these numbers are simply used as an example and do not reflect a real result). 
  
To calculate relatedness (or kinship) between social partners, we used information on maternal 
assignment taken by the Caribbean Primate Research Center (CPRC) dating back to the sites’ 
inception in 1938. Paternity assignment was based on 29 microsatellite markers for most animals 
born after 1985. Every subject in our sample had a known maternity; 97% had known paternity. 
We used the kinship2 package in R to calculate the pair-wise kin coefficients for all individuals 
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within the sample [78]. To be considered “related”, a dyad had to have a relatedness coefficient 
of at least 0.125 (i.e. sharing at least 12.5% of their genetic material or having at least a common 
grand-parent [79]). Sex was based on the CPRC census data. For social rank, we used 
categorical rank (low vs. high) as described in the “behavioral data collection” section. To 
calculate gregariousness, we used focal animal sample data collected before the hurricane to 
compute a standardized measure of time spent grooming, or grooming index per individual, as 
follows: we summed the amount of time (secs) a subject was observed grooming (or being 
groomed) for the entire year, divided this sum by the number of hours they were followed that 
year, and further standardized the ratio by dividing by the mean for that group and year. Thus, 
this grooming index is robust to differences in observational time and group size; and represents 
how gregarious an individual is relative to other members of their group. Individuals were 
categorized as “more gregarious” if their grooming index was in the top 20th percentile of their 
group, and “less gregarious” if otherwise --the same threshold that was used for separating low 
from high ranking individuals in this and previous studies [64].  
  
We used our sub-sampling approach to generate grooming networks (500 iterations) for groups 
KK and V, matched pre- and post-hurricane, for each year pre-hurricane. Thus, at each iteration 
10 grooming networks were computed (there are 5 group-year combinations, pre- and post). It is 
important to note here once more that grooming networks were exactly matched pre- to post-
hurricane: they contained the same individuals and the same number of observations per 
individual before and after the hurricane. To compute edge weights, we counted the number of 
grooming events between two individuals (or nodes) and divided this count by the average 
number of times each member of the dyad was scanned. Those weights were then further 
standardized by dividing by the mean edge weight for that group and year. Thus, edge weights 
were robust to differences in observational time and group size as well. At each subsampling 
iteration, the proportions of edge weight attributed to each dyadic category (i.e., sum of weights 
for dyad category X/ sum of all weights) were computed for all the networks generated (n=10). In 
other words, at each iteration we computed 10 proportions per dyadic category (5 pre-hurricane, 
5 post-hurricane). Finally, we calculated the difference in grooming proportions between matched 
pre- and post-hurricane networks, for each partner-type category. We report the mean pre-to-post 
hurricane difference in proportions per dyadic category and the 95% CI. We consider a change in 
partner preference for a partner-type category as significant if the 95% CI did not include 0. Note 
that this bootstrapping-based analytical approach does not allow the inclusion of group 
membership as a covariate, and for that reason we report our results separately by group (Suppl. 
Table 6). Moreover, only pre-to-post hurricane differences consistent across pre-hurricane years 
used for comparison will be significant. Our pre-/post-hurricane comparisons are within-subject, 
such that our results are limited to the individuals and pre-hurricane years for which we had 
matched post-hurricane data (i.e., years 2015-2017). 
  

5. Reciprocity and closure of triads drive the formation of network edges from pre- to 
post-hurricane networks 

To evaluate which mechanisms may explain relationship formation before and after the hurricane 
we used Temporal Exponential Random Graph Models (TERGMs) [46]. We generated balanced, 
sub-sampled, grooming and proximity networks, separated by group, year and hurricane status 
(as described previously). Grooming networks were used as the response variable in our 
TERGMs. Proximity networks were computed to include probability of being in proximity between 
a dyad as an edge covariate in our model. In other words, we asked whether proximity networks 
predicted the observed grooming networks. Proximity network edge weights were computed by 
counting the number of proximity events between two individuals (or nodes), divided by the 
average number of times each member of the dyad was scanned, standardized by the mean 
weight for that group and year.   
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At each sub-sampling iteration, we created a “dynamic network structure” using the 
networkDynamic R package [80], which combined unweighted pre- and post-hurricane social 
networks. Thus, this dynamic network structure had two time-steps (pre and post). TERGM 
models take this dynamic network as input. It also requires the specification of two models: 
formation and dissolution. The formation model captures relationship formation dynamics while 
the dissolution captures dissolution dynamics. These two models are specified separately. For 
the formation model, we included network density (using “edges”), reciprocity (using “mutual”), 
and proximity as edge covariate (using “edgecov”). For modeling triad closure, model degeneracy 
[81] (a common problem in fitting ERGMs in which the algorithms converge to an empty or full 
network) did not allow us to use the simple triad census, which counts each triad type as a term 
in the models. As an alternative, we chose the term ‘gwesp’ to test for the prevalence of triads in 
our networks. In the ERGM models, gwesp is a geometrically weighted term, which was found to 
be effective at overcoming the degeneracy problems [82] and models the number of edges that 
serve as a common base for distinct triangles [83]. Network density was included as a predictor 
because it drives the propensity for triad closure and reciprocity, and therefore needs to be 
controlled for. For the dissolution model, we only included network density and proximity – as 
including reciprocity and closure of triads lead to degeneracy of the model (i.e. parameter 
estimation rarely or never converged). We used the Markov chain Monte Carlo maximum 
likelihood estimation procedure [46] for fitting TERGMs to the networks using stergm function 
from R package “ergm” [84]. This method creates networks from an initial guess of parameter 
estimates and updates these estimates iteratively to find parameters that replicate the observed 
network. The model goodness of fit and MCMC simulations were assessed visually for several 
sub-sampling iterations using “gof” and “mcmc.diagnostics” functions respectively [84]. 
 
TERGMs are not equipped to evaluate networks from multiple groups simultaneously [46]. Thus 
we had to run our models separately for each group and year pre-hurricane used for comparison. 
We sub-sampled our data 500 times, ran five TERGM for each subsample (as we have 5 group 
and year combinations) and report the mean estimate and 95% confidence interval of our 
regressor coefficients for the formation model - which was the focus of this analysis. Positive 
parameters in the formation model indicate a higher likelihood than chance that a relationship will 
form from the first to the second time step. Note that this analysis takes non-weighted networks 
as its inputs, and is the only analysis in this study that directly compares a specific dyad’s 
relationship pre- versus post-hurricane. Therefore, it is most susceptible to missed interactions or 
incomplete networks, and should be interpreted with caution. 
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SUPPLEMENTARY MATERIAL 
 
 

 
Suppl. Figure 1. Satellite images of Cayo Santiago before hurricane Maria (left) and after 
(right). Left: Satellite picture taken before hurricane Maria on August 10th, 2017. KK home range 
in yellow on “Big Cayo'' and V home range in blue on “Small Cayo”. Righ: Satellite picture taken 
after Maria on September 24th, 2017. Area highlighted on Big Cayo indicates deforestation in 
group KK home range; area highlighted on Small Cayo points to the remaining vegetation in group 
V home range. Photos courtesy of Digital Globe. 
 
 
 
 

 
Suppl. Figure 2. Distribution of individual changes in probability of grooming (A) and proximity 
(B) pre-to-post hurricane, for all permutation iterations (n=500).  
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Suppl. Figure 3. Grooming networks pre- and post-hurricane for groups and years pre-
hurricane. Example grooming networks based on one sub-sampling iteration for group V (left 
plots) and KK (right plots); 2017 networks include data up to Hurricane Maria (Sept 20th 2017). 
Each node is an individual. Males, green; Females, purple. Edges indicate a grooming 
relationship, and arrows indicate the direction of grooming. Edge thickness indicates relationship 
strength based on proportion of grooming (number of scans a pair was observed grooming /total 
number of scans featuring animals from that pair). Node size scales with the number of unique 
partners. Network layout was held constant for pre and post-hurricane epochs to make the 
comparison clearer. Notice that there are multiple group V and KK post-hurricane networks. This 
is the result of our subsampling procedure which matches post-hurricane data to each pre-
hurricane year compared. 
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Supp. Figure 4. Schematic of subsampling approach to match pre- and post-hurricane 
datasets. 
 

 
Suppl. Figure 5. Sub-sampling successfully limits the probability of false positives (i.e. the 
detection of a difference when there is none) in case of a large mismatch in sampling effort 
between two data sets. Probability of false positives with sub-sampling (A) and without (B) using 
simulated datasets. In (B) pre- and post-event p(grooming) were computed using bootstrapping. 
Regardless of the sample size pre-event (x-axis) and the value of p(grooming), the sub-sampling 
procedure successfully limits the probability of false positives to below 0.05 (dashed line). In 
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contrast, simply bootstrapping pre- and post-hurricane data sets (without subsampling) leads to 
high false positive rates (B). 
 
 

 
Supp. Figure 6. Number of unique observations as a function of the number of 
subsampling iterations for pre-hurricane sample (A) and post-hurricane sample (B). These 
plots show that we needed to subsample our dataset at least 275 times to ensure that all 
observations that were not discarded by our sub-sampling procedure were included in our models. 
Throughout our analyses we run 500 sub-sampling iterations. 
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Suppl. Figure 7. The observed distribution of grooming events (light green) across scans 
matches a theoretical distribution which assumes independence of observations (blue). 
Left plots = overlapping histograms; Right plots = overlapping cumulative distributions of the same 
data. Top plots (A,B) = probability of grooming events (chi-square test, p>0.2). Bottom plots (C,D) 
= probability of proximity events (chi-square test, p>0.2). 
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Suppl. Figure 8. Shade provides significant protection from heat on Cayo Santiago. Median 
temperature divided by quarter for vegetated (green), de-vegetated following hurricane Maria 
(yellow) and exposed (grey). Exposed and de-vegetated areas due to Hurricane Maria have 
significantly higher mean temperatures than vegetated areas (mean temperature exposed = 
37.1℃, de-vegetated = 38.4℃, vegetated = 31.2℃; p<0.001). Temperature data generated from 
temperature sensors deployed from June–August 2018 and from April 2019 to present.  
 
 

 
Suppl. Table  1. Mortality was at least 4 times lower in our study than in studies of other 
populations following natural disasters. To make our estimate comparable to prior studies 
which included individuals of all ages, we included younger individuals whose date of death was 
uncertain. Note that this is a conservative estimate (i.e. on the higher end) since some of these 
deaths could have happened before the hurricane or after our six months period of analysis. We 
chose six months as the death rate analysis period to make our estimate comparable to previous 
studies whose analysis period ranges from one day to one year. 
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Suppl. Table 2. The impact of Hurricane Maria on proximity and grooming odds ratio. We 
report the mean odd ratios (OR) and 95% confidence intervals (CI) from permutation-based logit 
link GLMMs after 500 sub-sampling iterations. An effect was considered statistically significant if 
the 95% confidence interval did not include 1. Values in bold indicate statistically significant 
relationships (p<0.05). 
 
 

 
Suppl. Table 3. Factors predicting individual variability in p(grooming) and p(proximity) 
changes from the pre- to the post-hurricane period. Results of linear mixed models that 
assessed the factors predicting individual changes in p(proximity) and p(grooming) following 
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Hurricane Maria. We report the mean estimates and 95% CI. An effect was considered statistically 
significant if the 95% CI did not include 0. Values in bold indicate relationships of statistical 
significance (p<0.05). 
 

 
Suppl. Table 4. Grooming networks were denser after the hurricane. We report the mean 
and 95% CI pre-to-post hurricane differences in density for permutation-based grooming 
networks, for each group and year pre-hurricane considered separately. A difference was 
considered statistically significant if the 95% CI did not include 0. Values in bold indicate 
statistically significant differences (p<0.05). Grooming networks were denser for all groups and 
years, except for group V when compared to 2015.  
 

 
Suppl. Table 5. Individual relationships did not strengthen after Hurricane Maria. We report 
the mean estimates and 95% confidence interval from permutation-based LMMs. An effect was 
considered statistically significant if the 95% confidence interval did not include 0. Values in bold 
indicate relationships of statistical significance (p<0.05). 
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Suppl. Table 6. Network permutation statistics for partner preferences. We report the mean 
and 95% CI of pre-to-post hurricane difference in grooming activity budgets (proportions, see 
method section 6 for more details), for each group separately. Statistics pool together multiple 
years pre-hurricane. A difference was considered statistically significant if the 95% CI did not 
include 0. Values in bold and underlined indicate relationships of statistical significance (p<0.05).  
 

 
Suppl. Table 7. Hours followed and number of scans per individual collected in this study 
separated by group and year. Note that the total number of individuals varies from year-to-year 
because we only included individuals for which we had data for both before and after the 
hurricane. 
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Suppl. Table 8. Estimate, standard error (SE), and 95% confidence interval (CI) of the 
correlation between the true and observed interactions rates, for each group and year 
separately. We also report the observed coefficient of variation (CV) and social differentiation 
values using the method in (Whitehead, 2008a). The correlation estimates for all groups and years 
range between 0.714 and 0.862. Correlations >0.4 are generally considered to indicate useful 
representations of the underlying social structure (Whitehead, 2008a).  
 


