
1. Introduction
The ocean contains a large variety of suspended particles that cover a broad size range, from 0.1 nm to 1 mm, 
and vary in origin (i.e., biogenic or terrestrial), shape and internal composition (i.e., refractive index; Stram-
ski et al., 2004). The pool of suspended particles is often divided into non-algal particles and phytoplankton. 
Non-algal particles include: (1) heterotrophs (i.e., bacteria, viruses and zooplankton), (2) non-living organic 
detritus produced by zoo- and phyto-plankton (i.e., fecal pellets, dead cells), and (3) mineral particles (e.g., 
silicate shells, dusts, clay, etc.). The phytoplankton pool is often divided according to cell size (Sieburth 
et al., 1978), into pico-phytoplankton (0.2–2 µm), nano-phytoplankton (2–20 µm) and micro-phytoplankton 
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(>20 µm), owing to the strong link between size and ecological function (Marañón, 2019). Most particles 
play an important role in ocean processes like primary production, export and recycling, that modulate the 
biological carbon pump (BCP, defined as the transfer of organic carbon from the surface ocean to the deep 
ocean). Several deep ocean ecosystems rely on the BCP as an energy source, like mesopelagic fish ecosys-
tems upon which humans depend. The BCP is also a vital component of the ocean carbon cycle controlling 
the ocean's capacity to regulate the concentration of atmospheric CO2 (Briggs et al., 2020; Kwon et al., 2009).

Measurements of light scattering by marine particles (i.e., particulate scattering (  pb ) and particulate 
backscattering (  bpb ) measurements) can be used to quantify the concentration of various types of parti-

cles, and help study and understand BCP processes (Bishop et al., 2002; Briggs et al., 2020, 2011; Dall'Olmo 
& Mork, 2014; Dall'Olmo et al., 2016; Estapa et al., 2019, 2017; Kheireddine & Antoine, 2014; Kheireddine 
et al., 2020). Thanks to advances in technology, scattering measurements can be acquired from autonomous 
underwater vehicles (i.e. gliders and profiling floats using scattering sensors), and inferred from satellite 
measurements of ocean color, though the use of bio-optical inversion algorithms. These tools are helping 
to understand the functioning of the ocean ecosystem over a span of time and space scales, ranging from 
diurnal to inter-annual, and in different areas of the global ocean.

To understand how scattering properties vary with phytoplankton concentration, studies have looked at the 
relationship between  pb  and  bpb  and the chlorophyll-a concentration ([Chl_a]), a proxy of phyto-

plankton abundance (Antoine et al., 2011; Bellacicco et al., 2019; Brewin et al., 2012; Dall'Olmo et al., 2012; 
Huot et al., 2008). Separating the contribution from non-algal particles and phytoplankton to scattering 
properties is challenging given they often co-vary with [Chl_a] in open ocean waters (Antoine et al., 2011; 

Huot et al., 2008; Loisel et al., 2007). The backscattering ratio (i.e., the ratio of scattering to backscattering, 

at a given wavelength  b

b

bp

p

) has been used to provide information on the particle's size and composition 

(Antoine et al., 2011; Loisel et al., 2007; Twardowski et al., 2001; Xi et al., 2015), and has the potential to 
help separate the contribution from non-algal particles and phytoplankton, given its sensitivity to the size 
and refractive index of particles, which can vary between algal and non-algal particles. It has been also used 
for radiative transfer simulations and the development of algorithms to retrieve biogeochemical quantities 
from ocean-color remote sensing (Morel & Maritorena, 2001).

Studies have explored the possibility of estimating the background contribution of non-algal particles to 
 bpb  by extracting the fraction that does not co-vary with [Chl_a] (Behrenfeld et  al.,  2005; Bellacicco 

et al., 2019; Brewin et al., 2012; Zhang et al., 2020). Of these approaches, Brewin et al. (2012) modeled the re-

lationship between  bpb  and [Chl_a] assuming three component populations, a background component, 

where  bpb  does not co-vary with [Chl_a], particle populations dominated by small phytoplankton and 

their co-varying material, and particle populations dominated by large phytoplankton and their co-varying 
material. Bellacicco et al. (2019) applied this model to biogeochemical-Argo float data to investigate global 

variations in the background contribution of particles to  bpb , by making the assumption the background 

component of the Brewin et al. (2012) model (  k
bpb ) is dominated by non-algal particles.

The Red Sea, the northernmost tropical sea of the global ocean, is among the most saline and warmest 
seas on the planet (Chaidez et al., 2017; Kheireddine et al., 2018), and is thought to be representative 
of conditions that may occur in wide areas of the global ocean in the future, in the context of climate 
change (Belkin, 2009; Breitburg et al., 2018). The Red Sea is also fringed by coral reefs and mangroves 
teeming with life, with large marine biodiversity and unique ecological niches (Baars et al., 1998). The 
phytoplankton, ubiquitous in the global ocean, play a key role in the Red Sea ecosystem's functioning. 
At the base of the marine food web, phytoplankton are an important source of energy for the eco-
system. They support a chain of biogeochemical processes, collectively named the biological carbon 
pump, which is a vital component of the carbon cycle controlling the concentration of atmospheric 
CO2 and regulating the rate of climate change (Boyd et al., 2019). The region is arid and characterized 
by low precipitation, little riverine input and significant inputs from dust (Al-Taani et al., 2015; Ginoux 
et al., 2012; Prakash et al., 2015; Prospero et al., 2002). While variations in  pb  and  bpb  have been 
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studied extensively in some areas of the global ocean (Behrenfeld et al., 2005; Brewin et al., 2012; Dall'Ol-

mo et al., 2012; Huot et al., 2008; Loisel et al., 2007), only a few measurements of  bpb  have been obtained 
at specific locations in the Red Sea (Organelli et al., 2017) during the last 3 decades. Until now, no datasets 

of  bpb  were available over wide spatial scales in the Red Sea.

Recently, Brewin et al. (2015) tuned the Brewin et al. (2012) model to Red Sea waters to estimate the con-
tribution of the background component and the chlorophyll-specific backscattering coefficients of environ-
ments dominated by pico-phytoplankton (<2 µm) and nano-micro-phytoplankton (>2 µm). However, due 
to the scarcity of in situ measurements of  bpb  and [Chl_a] at that time, they inferred  bpb  from par-
ticulate attenuation and absorption measurements, making assumptions on the backscattering ratio (Twar-
dowski et al., 2001), and using the absorption line-height methods to derive [Chl_a] (Werdell et al., 2013). 
Since that study, in situ measurements of [Chl_a] by HPLC (Kheireddine et al., 2017, 2018), and in situ 

 bpb  and  pb  measurements, have been collected in Red Sea waters, providing the feasibility to tune 

the Brewin et al. (2012, 2015) model to direct observations in the Red Sea, and extend the approach to the 
modeling of total scattering. By doing so, there is potential to use the backscattering ratio to infer informa-
tion regarding particle composition and type, for the three populations.

In this study, we make use of the first (to our knowledge) in situ dataset of scattering and [Chl_a] measure-
ments collected over extensive areas in the Red Sea, to test and evaluate the model of Brewin et al. (2012; 
2015) and, for the first time, extend the approach to the modeling of total scattering. By doing this, our 
goal is to: 1) improve our understanding of the nature of the particles in the Red Sea; and 2) improve our 
understanding of relationships between particles and optics in the region, with a view toward advancing 
ocean-color models for the Red Sea.

2. Materials and Methods
2.1. Study Area and Sampling

Samples were collected during four research cruises across the Red Sea between October 2014 and April 
2015 on board of the R/V Thuwal. Two cruises named as CRS-01 and CRS-02, took place in the central 
Red Sea (CRS) during fall and spring, specifically from 16–28 October 2014 and from 29 March- 03 April 
2015, respectively. One cruise, Duba-01, was conducted in the northern Red Sea (NRS) in spring from of 
17–28 April 2015. A cruise to Jazan took place in the southern Red Sea (SRS) in winter from 8–21 February 
2015. A total of 40 stations were sampled from surface to 200 m depth along the basin (Figure 1, Table 1). 
Temperature and salinity profiles were obtained using a SBE 9 (Sea-Bird Electronics) Conductivity-Temper-
ature-Depth (CTD) probe.

2.2. Discrete Seawater Samples

Phytoplankton pigment concentrations and particulate absorption spectra were collected for some of the 
stations (26 in total) using a rosette system equipped with 10 L Niskin bottles at typically 10–12 depths (5, 
10, 20, 40, 50, 60, 70, 80, 120, 150, 180 and 200 m) within the upper 200 m of the water column (Table 1).

2.3. Chlorophyll-a

Seawater samples (with volume ranging from 2.3  to 2.8 L) were filtered through 25 mm diameter What-
man GF/F filters (0.7 μm porosity), stored in liquid nitrogen during the cruise and subsequently at −80 °C 
in the laboratory until analysis. A total of 25 pigments were quantified using a High Performance Liquid 
Chromatography (HPLC), using a 1260 Agilent Technologies system, according to the protocol described in 
Ras et al. (2008) and Kheireddine et al. (2018). The missing [Chl_a] measurements (remaining 14 stations) 
[Chl_a] were obtained from the chlorophyll fluorescence modified into equivalent chlorophyll concentra-
tions based on the HPLC measurements, using a power function (R2 = 0.93, and root mean square = 0.11 
in log10 space).
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Figure 1. Location of stations sampled during the different cruises performed in the Red Sea between October 2014 and April 2015 (see Table 1). Map 
produced using ArcGIS.
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2.4. anap and ap Measurements

Particulate absorption spectra,  pa , were measured using a quantitative filter pad technique (Mitchell 
et al., 2003). Seawater samples (2.3 –2.8 L) were filtered on Whatman GF/F filters (0.7 μm porosity) and 
stored in liquid nitrogen during the cruise and subsequently at −80 °C in the laboratory until analysis (Orga-
nelli et al., 2013). The respective contributions of phytoplankton (  pha ) and non-algal particles (  napa ) 
to total particulate absorption were determined by numerical decomposition (Bricaud & Stramski, 1990) for 
most of the samples. A few samples have been analyzed using the method of Kishino et al. (1985), based on 
the pigment extraction in methanol and showed that absorption ratios derived from these  pha  spectra 
were found to be very close to the standard ratios used in the numerical decomposition. Detailed informa-
tion regarding the analyses of  pa ,  pha  and  napa  can be found in Kheireddine et al. (2018).

2.5. bbp, cp and bp Measurements

During each station, an instrument package with a set of sensors was deployed to obtain vertical profiles of 
optical measurements from surface to 200 m. The particle spectral backscattering measurements were de-
termined with an ECO BB-9 backscattering sensor (Wet Labs, sampling rate 1 Hz) and; the particle spectral 
attenuation and scattering were determined with an ac-s hyper-spectral spectrophotometer (Wet Labs, sam-
pling rate 4 Hz). Data from all instruments are merged and time-stamped using a WET Labs (Philomath, 
OR) DH-4 data handler with WET Labs Archive Protocol (WAP) software. All optical measurements from 
all sensors were median-binned into 1 meter intervals before further processing. Note that the sensors were 
calibrated on a regular basis before or after each cruise.

The ECO BB-9 backscattering sensor provides the volume scattering function at an angle of 124° (   124 , , 
where λ is the wavelength) and at wavelengths of 412, 440, 488, 510, 532, 595, 650, 676 and 715 nm. While 
the BB-9 instrument was calibrated by WET Labs on a yearly basis, dark counts determinations were per-
formed prior and during the cruise every 2 to 3 stations by covering the detectors with black tape and sub-
merging the instrument in water. In general, variations in the dark counts were small and close to those 
provided by the manufacturer. Scaling factors provided by Wet Labs and dark counts performed prior and 
during the cruise were then used to calculate   124 , , which represents the sum of the particle scatter-
ing plus the molecular scattering by the seawater for each wavelength. To obtain the volume scattering 
function of particles,   124 ,p , the volume scattering function of water   124 ,w  calculated using the 
temperature and salinity from the CTD measurements (obtained according to the relationship in Zhang 
et al. [2009]) is subtracted from   124 , . The particulate backscattering coefficient,  bpb  (m-1), is then 
determined from   124 ,p  using a χ factor:
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Campaign Platform Location Abbreviation Period

Number 
of 

stations
[Chl_a] 
(mg.m-3)

cp (650) 
(m-1)

bp (650) 
(m-1) bbp (650) (m-1)

a

a

nap

p

440

440

 
 

Nutrient cycle 
cruise 1

RV Thuwal Central Red 
Sea

CRS-01 16–28 October 
2014

8

Jazan cruise RV Thuwal Southern Red 
Sea

Jazan 8–21 February 
2015

8

Nutrient cycle 
cruise 2

RV Thuwal Central Red 
Sea

CRS-02 29 March–03 
April 2015

6 0.04–0.75 0.03–0.25 0.03–0.22 0.0007–0.0027 0.04–0.80

Duba cruise RV Thuwal Northern Red 
Sea

Duba-01 17–28 April 2015 18

Total 40

Table 1 
Number, Location and Area of the Stations Sampled During the Different Cruises and the Range in Measured Values of [Chl_a], cp (650), bp (650),bbp (650) and 

 
 

440

440
nap

p

a

a
 Found in the Red Sea.
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      2 124 , .bp pb (1)

Based on Sullivan et al. (2013), the χ factor has been assumed to be 1.076 at all wavelengths.

Finally, vertical profile of bbp were median-filtered to remove spikes (Briggs et al., 2011) and median-binned 
into 1 m depth for analysis and correlation with discrete water samples.

2.6. cp and bp Measurements

Hyperspectral total absorption and attenuation (  a and  c ) were measured on unfiltered bulk seawa-
ter using a WET Labs ac-s hyper-spectral spectrophotometer, and soluble absorption and attenuation were 
measured after filtration through a 0.2 µm filter (Whatman Polycap 75 TC) positioned at the intake of a 
second ac-s sensor, both linked to a SBE 49 FastCAT (Sea-Bird Electronics) CTD probe. The 0.2 µm filter was 
changed every 3 to 4 profiles within each cruise. The ac-s instruments provided spectral  a and  c  at 81 
wavelengths from 400 to 740 nm. A milli-Q water calibration was carried out prior to and after each cruise 
for each sensor, to facilitate cross-calibrations.

Particulate absorption and attenuation coefficient were calculated as follows:

         0.2 ,p µma a a (2)

         0.2 ,p µmc c c (3)

where  pa  and  pc  are particulate absorption and attenuation,  a  and  c  are total absorption and 
attenuation and,  0.2 µma  and  0.2 µmc  are the filtered portion, respectively. A scattering and residual 

temperature correction, using the temperature correction tables of Sullivan et al. (2006), were performed 
to consider for eventual dissimilarities in temperature and scattering between the filtered measurements 
and total measurements (Slade et al., 2010). To do so, we used the near-infrared region to correct absorption 
spectra for the effects of temperature and particle scattering, which lead to a correction of 0.007 ± 0.003 m−1. 
Any spectra that were either too noisy or characterized with obvious spectral artifacts were discarded. To 
match up with the ECO-BB9 wavelengths,  pa  and  pc  were linearly interpolated into 1 nm interval.

The particulate scattering was then estimated as follows:

         .p p pb c a (4)

Knowing the limitations of using ac-s measurements to infer  pb  measurements, we applied several scat-
tering corrections for  pa  measurements and found that they had little impact on  pb  given that  pc  
is dominated by  pb . This resulted in  pb  measurements with an uncertainty less than 5 %.

After correction and calculation, all absorption, attenuation, scattering measurements data for each vertical 
profile were median-binned to 1 meter interval to remove spikes for analysis and correlation with discrete 
water samples. Finally, the particle size distribution slope (PSD slope) was estimated from the spectral de-
pendency of cp using the approach of Boss et al. (2001).

2.7. Particulate Backscattering Ratio

The particulate backscattering ratio, was computed as follows:

   
 





 ,bp
bp

p

b
b

b
 (5)
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and is a useful parameter providing information about the particulate 
composition (i.e., dominance of organic or inorganic particles in seawa-
ter) (Boss et  al.,  2004; Koestner et  al.,  2018; Twardowski et  al.,  2001)), 
acknowledging that these optical properties can be sensitive to different 
size ranges, according to some theoretical models (Morel & Ahn, 1991; 
Stramski & Kieffer, 1991).

2.8. Model

To interpret variations in  bpb  in relation to [Chl_a], we first partitioned 
[Chl_a] into two different size classes of phytoplankton (i.e., small and 
large) following a two-component model for determining the concentra-
tions of large phytoplankton cells (  2

Chl _ a ) and small phytoplankton 
cells (  1

Chl _ a ) as follows:

           1 2
_ _ _ ,Chl a Chl a Chl a (6)

            11 1
_ _ [1 exp( _ )],

m
Chl a Chl a S Chl a (7)

Chl a Chl a Chl a_ _ _ .       2 1
 (8)

Where subscript 1 refers to pico-phytoplankton size and subscript 2 re-

fers to combined nano-micro-phytoplankton,   
m

1
Chl _ a  represents the 

asymptotic maximum chlorophyll concentration for the pico-phyto-
plankton, and S1 determines the initial increase in the chlorophyll con-
centration of pico-phytoplankton with [Chl_a]. These two parameters 
have been computed from the HPLC measurements collected in the Red 
Sea (Kheireddine et al.,  2017, 2018) and are provided in Gittings et al. 
(2019, Table 2).

Then, we expressed  bpb  as follows:

            ,1 , 2 .k
bp bp bp bpb b b b (9)

Where  ,1bpb  represents the contribution to particle backscattering by pico-phytoplankton and their 

co-varying constituents;  , 2bpb , the contribution to particle backscattering by large phytoplankton (nano- 

and micro-phytoplankton) and their co-varying constituents; and  k
bpb , the contribution to particle backs-

cattering by a constant background population of non-algal particles and potentially very small phytoplank-
ton (e.g., Prochlorococcus).  bpb  can then be partitioned following Brewin et al. (2015):

                   ,1 , 21 2
_ _ .k

bp bp bp bpb b Chl a b Chl a b (10)

Where  
,1bpb  and  

, 2bpb  are the chlorophyll-specific particle backscattering coefficient of small (i.e., 

pico-) and large (i.e., nano-micro-) phytoplankton dominated waters, respectively.

By embedding the two-component model (Equations 6–8) into Equation 10, we obtain:

b Chl a b b S Chl abp

m

bp bp           





  
 

_ exp _, ,1 1 2 11  



        

b Chl a bbp bp
k

, _ .2   (11)
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Parameters Values

Parameters from Gittings et al. (2019) (Table 2)

Chl a

m

_



1
 (mg m−3)

0.19 (0.16 to 0.23)

S1 (Dimensionless) 4.84 (4.35 to 5.31)

bbp  
Parameters derived from Equations 11 and 12 in this study

bbp,1 0

    (m2 mg−1) 0.00274 (0.00235 to 0.00314)

bbp, 2 0

    (m2 mg−1) 0.002618 (0.00246 to 0.00304)

bbp
k 

0  (m−1) 0.001089 (0.001001 to 0.00112)

γ1 (Dimensionless) 1.919 (0.834 to 2.943)

γ2 (Dimensionless) −0.106 (−0.098 to −0.115)

γk (Dimensionless) 0.786 (0.638 to 1.048)

bp  
Parameters derived from Equations  13 and 14 in this study

bp,1 0

    (m2 mg−1) 0.542 (0.497 to 0.589)

bp, 2 0

    (m2 mg−1) 0.207 (0.186 to 0.225)

bbp
k 

0  (m−1) 0.055 (0.050 to 0.060)

η1 (Dimensionless) 0.77 (0.69 to 0.86)

η2 (Dimensionless) 0.18 (0.14 to 0.22)

ηk (Dimensionless) 1.67 (1.52 to 1.83)

Note. Values between brackets represent 95% confidence intervals and 
λ0 = 440 nm.

Table 2 
Parameters Used for the Red Sea Models (bbp   and bp  )
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Following Brewin et al. (2012, 2015),  
,1bpb ,  

, 2bpb  and  k
bpb  were 

estimated by fitting the above equation to our measurements of  bpb  

and [Chl_a] using a non-linear least squares method (R, package “mo-
saic”, function “fitModel”) in conjunction with bootstrapping to esti-
mate the parameters and their associated uncertainties. Bootstrapping 
was implemented by randomly re-sampling the dataset to create 5000 
new dataset of the same size as the original and re-fitting the data for 
each to obtain a distribution of  

,1bpb ,  
, 2bpb  and  k

bpb . The median 
and the 95% confidence intervals were then computed from each of the 
resulting parameter distribution and are provided in Table 2.

As described in Brewin et al.  (2012, 2015), the spectral dependency of  
,1bpb ,  

, 2bpb  and  k
bpb  was 

assumed to follow a power function, and thus Equation 11 can be expanded to the following expression:

b b Chl a S Chl abp bp

m
   

            


 
, / _ exp _1 0 0

1

1 11 
 

           
b Chl a Chl a S Chlbp

m

, / _ _ exp _2 0 0
2

1 11  


aa bbp
k k  



      


0 0/ , (12)

where γ1, γ2 and γk are the spectral dependency of  
,1bpb ,  

, 2bpb  and  k
bpb , respectively, and λ0 = 440 nm. 

Knowing the distribution of  
,1bpb ,  

, 2bpb  and  k
bpb  and [Chl_a], the parameters γ1, γ2 and γk were 

simply estimated by fitting a wavelength-dependent power function in association with the bootstrapped 
 

,1bpb ,  
, 2bpb , and  k

bpb  values. The parameters and their uncertainties are provided in Table 2. Next, 

we extended the model of Brewin et al. (2015) to consider total scattering, and retrieve, for the first time, 
the contributions of the background population to total scattering,  k

pb , and the chlorophyll-specific scat-
tering coefficients associated with environments dominated by pico-phytoplankton (<2 µm) and nano-mi-
cro-phytoplankton (>2 µm),  

,1pb  and  
, 2pb  respectively, as a function of [Chl_a] as:

                                       ,1 , 2 1 , 21
_ 1 exp _ _ .

m k
p p p p pb Chl a b b S Chl a b Chl a b (13)

The spectral dependency of  
,1pb ,  

, 2pb  and  k
pb , η1, η2, and ηk were then estimated using the same 

procedure which was used for  bpb  considering that:

b b Chl a S Chl ap p

m
   

            





 
, / _ exp _1 0 0

1

1 11 
           

 
b Chl a Chl a S Chl ap

m

, / _ _ exp _2 0 0
2

1 11  


 



    bp

k k  


0 0/ .

 (14)

Finally, using  pb  and  bpb , the particulate backscattering ratio of the background population,  k
bpb  

and that for the backscattering ratio associated with pico-phytoplankton (<2 µm) and nano-micro-phyto-
plankton (>2 µm),  

,1bpb  and  
,2bpb  respectively, were calculated as follows:

b
b

b
bp
k bp

k

p
k





    

 
, (15)
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λ (nm) bbp range (m−1)

440 0.0010 to 0.0015

532 0.0009 to 0.0013

650 0.0007 to 0.0011

715 0.0006 to 0.0010

Table 3 
Range in bbp   at Low [Chl_a] Concentrations (0.03–0.09 mg m−3) 
Presented in Figure 2
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The associated uncertainties of  k
bpb ,  

,1bpb  and  
,2bpb  were estimated using the standard law of prop-

agation error, such that
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 (20)

2.9. Statistics

In order to assess how well the model fitted the data, the square of the Pearson correlation coefficient 
(R2), the mean absolute difference (MAD) and the root mean square difference (RMSD) were calculated as 
performance metrics to compare in situ and predicted values of  bpb  and  pb . All the statistical tests 

were performed in log10 space as we consider that [Chl_a] and the optical properties follows a log normal 
distribution in the open ocean (Campbell, 1995). The MAD was computed as follows:

 

 1MAD .

N P M
i ii X X

N
 (21)

Where N is the number of measurements, X is the variable and the superscripts P and M correspond to the 
predicted values from the model and the measured in situ values, respectively. The RMSD was computed 
as follows:

 


 
  
 


1/2

2

1

1RMSD .
N

P M
i i

i
X X

N
 (22)

3. Results and Discussion
As mentioned above, optical measurements have been collected at 40 stations from surface to 200 m depth 
and with associated concentrations of [Chl_a] calculated from HPLC measurements or obtained from the 
calibrated chlorophyll fluorescence using the HPLC measurements. After a quality control applied to the 
optical measurements, less than 8% of the data collected have been discarded and thus a total of 429 meas-
urements are analyzed here. In this section, the bbp, bp and bpb  relationships with [Chl_a] at 440 nm, 532 nm, 
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650 nm and 715 nm are presented. Those wavelengths have been chosen 
to facilitate the comparison with previous studies (Brewin et al., 2015) 
and to match with those used in various algorithms that are applicable to 
current ocean color sensors.

Then, we present the spectral dependency of bbp, pb and bpb  of the back-
ground population and the chlorophyll-specific populations associat-
ed with pico-phytoplankton (<2  µm) and nano/micro-phytoplankton 
(>2 µm). Finally, we present and discuss our results on  

bpb  as a func-
tion of the PSD slope, which are interpreted in the context of refractive 
index simulations from Twardowski et al. (2001).

3.1. bbp  , bp   and bbp   vs. [Chl_a]

For all wavelengths,  bpb  increases with increasing [Chl_a], consistent 
with other studies in various regions. However, it deviates from most 
global models (existing linear or power law models) with higher values 
of  bpb  at low [Chl_a] concentrations (<0.1 mg m−3) (Figures 2a–2c & 
2d). For low [Chl_a] concentrations,  bpb  values vary slightly (Table 3) 
agreeing with models that considers a background population, such as 
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Figure 2. bbp   (A-D), bp   (E-H) and bbp  (I-L) as a function of [Chl_a] at 440 nm, 532 nm, 650 nm and 715 nm with models parameterized to the dataset 
superimposed.

λ N R2 RMSD MAD
Median ± SD

(Modeled Measured/ )

bbp  
440 429 0.85 0.048 0.041 1.03 ± 0.08

532 429 0.84 0.063 0.055 1.06 ± 0.10

650 429 0.81 0.060 0.051 1.04 ± 0.11

715 429 0.83 0.056 0.047 1.03 ± 0.11

bp  
440 429 0.82 0.059 0.047 1.01 ± 0.11

532 429 0.84 0.060 0.046 1.07 ± 0.09

650 429 0.87 0.061 0.047 1.04 ± 0.08

715 429 0.90 0.060 0.045 1.02 ± 0.07

Table 4 
Statistical Results in log10 Space (Number of Points [N], Correlation 
Coefficient [R2], Root Mean Square Difference [RMSD], and Mean 
Absolute Difference [MAD]) for the Model Presented in Figure 2
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that of Brewin et al. (2012, 2015). This is also consistent with the recent study of Zhang et al. (2020) which 
showed that backscattering by submicron particles in clear ocean waters (<0.1 mg m−3 [Chl_a]) is signifi-
cant, relatively constant, and seems to form a background independent of [Chl_a]. Our re-parameterized 
model for Red Sea waters adequately captures the general trend of  bpb  as a function of [Chl_a] (Table 4), 
especially for low [Chl_a] concentrations whereas the Brewin et al. (2015) model slightly underestimates 

 bpb  at higher [Chl_a] concentrations (Figures 2a–2d). These differences are likely explained by: 1) the 

fact the Brewin et al. (2015) model was not tuned using direct in situ measurements of [Chl_a] and  bpb ;  

and 2) that the coefficients   1
_

m
Chl a  and S1 used in the Brewin et al. (2015) study for pico-phytoplank-

ton were from Brotas et  al.  (2013). Indeed, Gittings et  al.  (2019) showed that the coefficients of Brotas 
et al. (2013), which were derived using HPLC measurements in the Eastern North Atlantic Ocean, contrib-
uted to under-estimate the contribution of the pico-phytoplankton population in the Red Sea.

As observed for  bpb ,  pb  values increase with increasing [Chl_a] but deviate from the power law model 
of Morel and Maritorena (2001) at all wavelengths (Figures 2e–2h). Our fit using a three-population scatter-
ing model, is seen to capture the general trend of  pb  as a function of [Chl_a] (Table 4 and Figures 2e–2h).

The  
bpb  as a function of [Chl_a] exhibits a large variability (Figures 2i–2l) which could be explained 

by the fact that  bpb  and  pb  are sensitive to different size fractions of particles. The  
bpb  generally 

decreases with increasing [Chl_a] concentration in agreement with previous studies (Antoine et al., 2011; 
Loisel et al., 2007; Twardowski et al., 2001; Xi et al., 2015) (Figures 2i–2l). However, our values of  

bpb  are 
significantly higher than those predicted by the model of Morel and Maritorena (2001) at any given [Chl_a] 
concentration. This may be due to a higher contribution of non-algal particles or small particles in the Red 
Sea, relative to other open-ocean environments (Kheireddine et al., 2018). We also found, as reported in pre-
vious studies (Twardowski et al., 2001; Whitmire et al., 2007), that  

bpb  does not co-vary well with [Chl_a] 
for low [Chl_a] concentrations, though we acknowledge measurement uncertainties in  bpb  and  pb  
increase at low concentrations, which may reflect on variability in  

bpb . Spectral variations in  
bpb  are 

not discussed here as they are within the range of measurements uncertainties in  bpb  and  pb  (up to 
20%, Boss & Pegau, 2001; Whitmire et al., 2007). At present, there is no consensus regarding  

bpb  spectral 
behavior. Some studies suggested it is negligible while others found significant changes (Huot et al., 2008; 
Mckee et al., 2009; Snyder et al., 2008; Whitmire et al., 2007).

3.2. Model Parameters in bbp  , bp   and bbp  
We compared our model parameters values with those from previous studies (Table 5) (Brewin et al., 2012, 
2015; Bellacicco et  al.,  2019; Zhang et  al.,  2020). We first compared our values with those of Brewin 
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Model 
parameters This study (440 nm) Brewin et al., 2015 (443 nm) Brewin et al., 2012 (470 nm)

Bellacicco et al., 2019 
(700 nm)

Zhang et al., 2020 
(517 nm)

 
,1bpb 0.00274 (0.00235 to 0.00314) 0.0016 (0.0003 to 0.0028) – – –

 
, 2bpb 0.002618 (0.00246 to 0.00304) 0.0023 (0.0022 to 0.0024) – – –

 k
bpb 0.001089 (0.001001 to 0.00112) 0.00096 (0.00091 to 0.00102) 0.00070 (0.00065 to 0.00074) 0.00039 (0.00023 to 0.00056) 0.00031 (0.00025 

to 0.00043)

γ1 1.919 (0.834 to 2.943) 4.48 (2.59 to 16.18) – – –

γ2 −0.106 (−0.098 to −0.115) 0.43 (0.38 to 0.50) – – –

γk 0.786 (0.638 to 1.048) 0.54 (0.45 to 0.68) – – –

Note. Values between brackets represent 95% confidence intervals.

Table 5 
Comparison of the Model Parameters Used in This Study With Those From Previous studies
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et al. (2015) as it is specific to the Red Sea. We found that our  
,1 443bpb  value is within the wide range of 

values reported in Brewin et al. (2015) whereas,  
, 2 443bpb  is significantly higher (beyond the range values 

reported in Brewin et  al.  (2015)) which explains the underestimate in  bpb  at high [Chl_a] using the 

Brewin et al. (2015) model (Figures 2a–2d). We also noticed that  k
bpb  is higher from the one in Brewin 

et al. (2015), though not significantly, with confidence intervals overlapping (Table 5). Our spectral depend-
ency (γ1 and γk) are in the same range or close to those reported in Brewin et al. (2015) whereas the spectral 
dependency of the nano/micro-phytoplankton population (γ2) is significantly different. This suggests that 
the main difference between parameter values in our model and the Brewin et al. (2015) model, is in the 
population of larger phytoplankton cells due to a higher range of values in 

, 2bpb  in our study, whereas the 

range in values in 
,1bpb  overlap between both studies (Table 5). The spectral dependency of  

, 2bpb , γ2, is 
close to zero which is consistent with the expectation that larger cells backscatter light similarly at all wave-
lengths (Kostadinov et al., 2009; Morel, 1987).

When comparing Red Sea  k
bpb  values with other studies (Table 5), we found that our values are signifi-

cantly higher than those reported for other areas of the global ocean, acknowledging differences in wave-
length (Table 5). Bellacicco et al. (2019) have found that  k

bpb  varies with region. Such high  k
bpb  values 

observed here may be related to the unique conditions in the Red Sea, including its proximity to arid (dusty) 
terrestrial environments (Prakash et al., 2015; Prospero et al., 2002), and its extreme environmental condi-
tions (among the warmest and most saline seas on the planet) (Chaidez et al., 2017).

The spectral variations and 95% confidence intervals in the three populations for  bpb ,  pb and  
bpb  

are presented in Figure 3. First, we observed that the chlorophyll-specific particulate backscattering asso-
ciated to the nano/micro-phytoplankton's population is mostly higher than those for the pico-phytoplank-
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Figure 3. Spectral dependency of each component population to bbp (bbp,1
 , bbp, 2

  and k
bpb ) (A, B), bp  (b b bp p p

k
, ,, )
1 2

 
   and  (C, D) and  *

,1(bp bpb b , *
,2bpb  and bbp

k
) (E, F). 

The error bars represent the 95% confidence intervals.
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ton's population in agreement with Brewin et al.  (2015) whereas, the reverse is observed for particulate 
scattering (Figures 3a and 3b).

The pattern for particulate scattering is consistent with previous studies that suggested small cells with 
low internal pigment concentration have a higher chlorophyll-specific scattering coefficient than larger 
cells with higher internal pigment concentration (Morel, 1987; Kostadinov et al., 2009). However, the high-
er chlorophyll-specific particulate backscattering associated with the nano/micro-phytoplankton popula-
tion than for the picoplankton, at green and red wavelengths, is not consistent with previous studies (Mo-
rel, 1987; Kostadinov et al., 2009). It is possible that some nano-sized phytoplankton groups that have high 
backscattering efficiencies like coccolithophores, that have been found in the nearby Mediterranean Sea 
(D'Amario et al., 2020), are present in Red Sea waters. It is also possible that some of the optical environ-
ments where larger cells are present in the Red Sea (i.e., near Coral Reefs) include high concentrations of 
other covarying constituents, such as detritus, bacteria and viruses, that backscatter light with high efficien-
cy (Ahn et al., 1992). As a result, the pico-phytoplankton population had a significantly lower backscatter-
ing ratio than the nano/micro-phytoplankton population (Figure 3c). This may also be related to variations 
in size and/or composition between both populations (Stramski, 1999; Twardowski et al., 2001; Whitmire 
et al., 2007). However, theoretical analyses have shown that the shape of the phytoplankton cells could also 
influence backscattering ratio (Loisel et al., 2007; Whitmire et al., 2007). The backscattering ratio of the 
background population was higher than for the two phytoplankton populations (Figure 3e) which could be 
due to differences in the composition of the particulate assemblage, the particulate sizes, structures, and 
shapes (Boss et al., 2004; Loisel et al., 2007; Twardowski et al., 2001; Ulloa et al., 1994).

The background and pico-phytoplankton populations exhibit steeper spectral slopes than the nano/mi-
cro-phytoplankton population for both backscattering and scattering, which is consistent with the assumption 
that small cells scatter more in the blue region of the spectra in comparison to larger cells, which scatter light 
similarly at all wavelengths (Kostadinov et al., 2009; Morel, 1987). Note that, as mentioned previously, variabil-
ity in the spectral variations of  

bpb  are not discussed due to high uncertainties in the backscattering ratio.

The contribution of the background population and the two size classes to  bpb  and  pb  for Red Sea 

waters are presented in Figures 4a and 4b. For [Chl_a] concentration less than 0.6 mg m-3,  bpb  is pri-

marily influenced by  k
bpb  whereas, for [Chl_a] higher than 0.6 mg m-3,  bpb  is dominated by larger 

phytoplankton (  ,2bpb ) cells (Figure 4a). The contribution of small phytoplankton cells (  ,1bpb ) remains 
low with a maximum contribution of 20% for [Chl_a] values between 0.2 and 0.6 mg m−3 (Figure 4a). For 
[Chl_a] values lower than 0.2 mg m-3,  pb  is controlled by the background population whereas, beyond 
[Chl_a] values of 0.2 mg m-3,  pb  is mainly controlled by large phytoplankton cells (  ,2pb ) (Figure 4b). 
As observed with  bpb , the contribution of small phytoplankton cells (  ,1pb ) to  pb  is low in gen-
eral, but higher than the contribution to  bpb , with a maximum observed value around 25% for [Chl_a] 
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Figure 4. Percent contribution of each component population to bbp(650) (a) and to bp(650) (b) as a function of [Chl_a] 
using Equation 12 and Equation 14, respectively. Gray shaded area represent a model ensemble calculated by varying 
model parameters between 95% confidence intervals (Table 3), in every possible permutation. The gray hatched part 
represent the range of [Chl_a] concentration observed in Red Sea waters (Kheireddine et al., 2017; Raitsos et al., 2013).
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concentrations between 0.1 and 0.8 mg m-3. Thus,  bpb  and  pb  are mainly driven by the background 
population for [Chl_a] concentrations lower than 0.2 mg.m−3.

3.3. Refractive Index of the Background Population (b bbp
k

p
k    and )

To attempt to characterize the composition of the particulate assemblage for the background population, we 
used the analytical model of Twardowski (2001). This consists of simulations of the refractive index (n) from 

 
bpb  and the PSD (Figure 5). Most of the PSD slope ranged from 3.8 to 4.1 for [Chl_a] concentrations less 

than 0.2 mg m−3 (Figure 5a), which is in agreement with expected values for oligotrophic oceans (Antoine 
et al., 2011; Kostadinov et al., 2009; Organelli et al., 2020) compared to those expected for coastal and other 
highly-productivity areas (Loisel et al., 2007; White et al., 2015; Xi et al., 2014). Indeed, previous studies 
showed that oligotrophic regions of the world ocean are associated with the predominance of small phyto-
plankton, whereas productive, high-nutrient regions are associated with large cells (Kostadinov et al., 2009; 
Loisel et  al.,  2007; Organelli et  al.,  2020; Xi et  al.,  2014). This suggests that a high proportion of small 
sized particles dominate the Red Sea, in agreement with previous studies (Brewin et al., 2015; Kheireddine 
et al., 2017, 2018). The range of variability in n (1.04–1.12) is within the same range reported in other areas 
of the global ocean (Antoine et al., 2011; Loisel et al., 2007; Twardowski et al., 2001; Xi et al., 2015) (Fig-
ure 5). As expected, Red Sea waters are characterized by a mixture of particles with different sizes and com-
position. It has been suggested that some non-algal particles (inorganic and organic) have a refractive index 
varying between 1.04 and 1.26 whereas, phytoplankton cells have a lower refractive index (1.02–1.092) due 
to their high water content (Aas, 1996; Poulin et al., 2018; Stramski, 1999; Twardowski et al., 2001; Wozniak 
& Stramski, 2004). We also found that samples with PSD slopes higher than 3.9 are associated to low values 

of [Chl_a] and to high values in the ratio of  napa  to  pa  at 440 nm (
 
 

440

440
nap

p

a

a
) (Figures 5a and 5b) 

indicating the presence of a large amount of small non-algal particles. This is consistent with the trend ob-

served between [Chl_a] and 
 
 

440

440
nap

p

a

a
 where the contribution of non-algal particles decrease with higher 

[Chl_a] concentrations associated to a predominance of large particles (Figures 6a and 6b).

Several studies showed that the Red Sea is experiencing regular inputs from dust (Ginoux et  al.,  2012; 

Prakash et al., 2015; Prospero et al., 2002) which could partly explain the high 
 
 

440

440
nap

p

a

a
 values. Several 

studies also demonstrated that warm water temperature can have a positive effect on the growth of bacteria, 
which can influence particle characteristics in the Red Sea (Kirchman et al., 2005; Lekunberri et al., 2010; 
Lopez-Urrutia et al., 2006; Morales-Baquero et al., 2013; Reche et al., 2009; Sarmento et al., 2010) and thus 
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440
nap

p

a

a
 values.
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Figure 5.  
bpb  as a function of the PSD slope measurements for [Chl_a] concentration less than to 0.2 mg m-3 (a), 

 
 

440

440
nap

p

a

a
 ratio higher than 50% (b) and 

percent contribution of  k
bpb  to  bpb  (c) are highlighted. The solid curves overlaid represent the refractive index n contours calculated according to the 

model of Twardowski et al. (2001).
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Furthermore, we would also expect to see that high proportions of non-algal particles might be associat-
ed to a higher contribution of the background population in  bpb . While few measurements have been 
collected, this is consistent with our results (Figures 5b and 5c). We observe a relationship between the 

background population (  k
bpb  values) and the amount of non-algal particles ( 

 
 

440

440
nap

p

a

a
 values), where 

 
 

440

440
nap

p

a

a
 values increase with increases in  k

bpb  values (Figures 5b and 5c). Indeed, the analysis of n and 

 
 

440

440
nap

p

a

a
 values suggest that the background population (     andk k

bp pb b ) is likely dominated by small 

non-algal particles (bacteria, dusts), as shown by high  
bpb  values associated to low [Chl_a] concentra-

tions and high 
 
 

440

440
nap

p

a

a
 (Figures 5a–5c).

This is also consistent with the relationship of 
 
 

440

440
nap

p

a

a
 with  650bpb  and  650pb  (Figures 6c and 6d). 

We observed that  650bpb  and  650pb  are significantly inversely correlated with 
 
 

440

440
nap

p

a

a
 (Figures 6c 

and 6d). Low 
 
 

440

440
nap

p

a

a
 ratio is indicative of large amount of phytoplankton and is consistent with high 

 650bpb  and  650pb  values (Figures 6c and 6d) whereas high 
 
 

440

440
nap

p

a

a
 ratio is indicative of a large 

amount of non-algal particles associated to low  650bpb  values (Figure 6c).
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Figure 6. 
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 ratio as a function of [Chl_a] (a),  pc  slope (b),  650bpb  (c) and  650pb  (d).
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While no direct measurements of n have been used here, we can speculate 
that some of the non-algal particles comprise in the background popula-
tion may have a higher refractive index than those for the phytoplankton 
population. Whether this is unique to the Red Sea, or also characteris-
tic of other oceans, remains to be seen, and further work is needed to 
verify this speculation. In view of this, we also analyzed the relationship 
between   650bpb  and the ratio of [Chl_a] to  650pc , a proxy for the 
relative proportion of phytoplankton within the total particulate matter 
(Boss et al., 2004; Loisel et al., 2007) (Figure 7). While the relation is poor 
(R2 = 0.32), we observed a negative correlation between these two param-
eters in agreement with Boss et al. (2004), showing that a relatively low 

proportion of phytoplankton to total particulate matter (i.e., low 
 

  

650

_

p

Chl a
c

 

ratio) is associated with high   650bpb  values (i.e., higher n) (Figure 7).

Given that     andk k
bp pb b  dominates at low [Chl_a] concentration 

(less than 0.2  mg m−3) and considering that the Red Sea is mainly 
considered as an oligotrophic basin (Kheireddine et  al.,  2017; Raitsos 

et al., 2013), this suggests that Red Sea  bpb  and  pb  measurements are strongly influenced by a back-
ground population of non-algal particles.

4. Potential Biases in This Study
In this study,  bpb ,  pb  and  pc  measurements have been inferred from different sensors having 
different pathlengths and acceptance angles, which could lead to additional uncertainties in  

bpb  values 
(Boss & Pegau, 2001; Boss et al., 2009; Whitmire et al., 2007). Furthermore, as  bpb  and  pb  measure-
ments are estimated in different ways (bp (λ) derived from an ac-s sensor having removed the contribution 
from 0.2 micron seawater), they may represent slightly different particle pools which could induce biases in 
our scattering measurements. Indeed, Zhang et al. (2020) showed that backscattering by particles less than 
0.2 micron, in clear ocean waters is significant and independent of the backscattering by larger particles. 
This could also lead to additional uncertainties on our interpretation of  

bpb . Nevertheless, Dall'Olmo 
et al. (2009, 2012) have showed that differences between  bpb  filtered measurements (i.e., >0.2 µm) and 
those not filtered (i.e., all particles) are within the uncertainties of the measurements.

The model of Twardowski et al. (2001), using  
bpb  and PSD slope (i.e., predicted from  pc  slope) to 

infer the refractive index of the particle assemblage, is based on Mie theory, which underlies several as-
sumptions such that marine particles are spherical and homogeneous and follow a Junge-type size distri-
bution. Such assumptions may contribute to errors in the refractive index values presented here (Kitchen 
& Zaneveld, 1992; Organelli et al., 2018; Poulin et al., 2018). Indeed, recent studies (Organelli et al., 2018; 
Poulin et al., 2018) have confirmed that coated sphere models, that consider the structural complexity of 
marine particles, are capable of reproducing measured  bpb  in the ocean without making assumptions 
on the presence of sub-micron particles. However, despite the potential issues presented here, the model of 
Twardowski et al. (2001) has been shown to be robust to particles with different composition (i.e., refrac-
tive index) in various area of the global ocean, in cases where no in situ data of refractive index is available 
(Antoine et al., 2011; Boss et al., 2001; Loisel et al., 2007; Sun et al., 2019; Xi et al., 2015). Owing to the lim-
itations mentioned above, the results presented here must be interpreted with an element of caution, and 
more work is needed.

5. Conclusion
Using a unique optical dataset collected in the Red Sea, we relate the backscattering coefficient to changes 
in [Chl_a] using a conceptual model that partitions particles into three components, a background compo-
nent, and two other components representative of environments dominated by small (<2 μm) and larger 
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Figure 7.   650bpb  as a function of the ratio of [Chl_a] to cp (650).
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plankton (>2 μm). We then extend the approach, for the first time, to modeling of total scattering, allowing 
the analysis of the backscattering ratio for each component in the model. We find the backscattering ratio of 
the background component to be significantly higher than the two phytoplankton-influenced components. 
Further analysis using optical measurements of algal and non-algal particle absorption, the spectral slope of 
the beam attenuation of particles, and refractive index simulations, suggest that the background population 
(  k

bpb ) is likely dominated by a pool of small non-algal particles, consistent with the assumptions made by 
Bellacicco et al. (2019). Thus, our results suggest that  bpb  is strongly influenced by a background popula-
tion of non-algal particles for [Chl_a] less than 0.2 mg m−3 in Red Sea waters. To improve our interpretation 
of  bpb  and  pb  further, future efforts should focus on improving our understanding of the nature and 
composition of particles that make up this background population. Our work supports the combination of 
conceptual models and optical measurements for studying marine biogeochemical processes, and has im-
plications for developing satellite ocean-color algorithms for the region. Indeed, understanding the sources 
of  bpb  in order to feasibly detect different pool of particles from ocean-color remote sensing will improve 
estimates of fundamental biogeochemical variables such as [Chl_a], particulate organic carbon and phyto-
plankton functional types (size and community structure) which will then improve our understanding of 
marine biogeochemical cycling.

Data Availability Statement
The data presented in this study are archived in KAUST repository (https://doi.org/10.25781/KAUST-PSDX7).
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