
 

Signatures Consistent with Multifrequency Tipping in the Atlantic Meridional
Overturning Circulation

Andrew Keane *

School of Mathematical Sciences and Environmental Research Institute, University College Cork,
College Road, Cork, Ireland

Bernd Krauskopf†

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Timothy M. Lenton ‡

Global Systems Institute, University of Exeter, Exeter EX4 4QE, United Kingdom

(Received 12 June 2020; accepted 28 October 2020; published 25 November 2020)

The early detection of tipping points, which describe a rapid departure from a stable state, is an important
theoretical and practical challenge. Tipping points are most commonly associated with the disappearance of
steady-state or periodic solutions at fold bifurcations. We discuss here multifrequency tipping (M tipping),
which is tipping due to the disappearance of an attracting torus. M tipping is a generic phenomenon in
systems with at least two intrinsic or external frequencies that can interact and, hence, is relevant to a wide
variety of systems of interest. We show that the more complicated sequence of bifurcations involved in M
tipping provides a possible consistent explanation for as yet unexplained behavior observed near tipping in
climate models for the Atlantic meridional overturning circulation. More generally, this Letter provides a
path toward identifying possible early warning signs of tipping in multiple-frequency systems.
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Introduction.—A tipping point describes a sudden and
often irreversible transition of a system from one state to
another. Because of their potentially drastic impacts,
tipping points have garnered much attention over recent
years, particularly in climatology [1–3], but also in biology
and social science (see, for example, [4,5]).
From a dynamical systems perspective, tipping may be

induced by a bifurcation, the effect of noise or the rate of
parameter change [6]. The “classic” tipping scenario
involves a fold or saddle-node bifurcation of “equilibria”
[1] or, more recently, of “periodic orbits” [7,8]. Mathe-
matically, the mechanism of tipping due to a fold is the
same: a stable and a saddle steady-state or periodic orbit
merge and disappear at a single bifurcation point when a
parameter changes slowly.
It is certainly the case that many systems of interest, in

particular, climate systems, are subject to forcing at various
time scales and/or different types of feedback mechanisms;
for example, see Ref. [9] and references therein. This
implies that the attractor undergoing a tipping event may
well be more complex than an equilibrium or a periodic
orbit (representing a single frequency). In particular, it is a
natural and generic phenomenon that the dynamics evolves
on an invariant torus (representing two independent
frequencies). Hence, in multifrequency systems it is natural
to study tipping involving tori. A much used approach is to
average the dynamics to consider a simplified equilibrium

case, as, for example, in zero-dimensional energy balance
models for the overall temperature on the Earth’s surface
[10]. However, information is lost in this reduction and we
will demonstrate that the actual dynamics on tori may offer
important insights into tipping events in multifrequency
systems. This is due to the fact that, generally, an attracting
torus cannot simply lose stability and cease to exist at a
single fold bifurcation point [11]. Instead, the torus loses
smoothness and “breaks up” in a complicated sequence of
bifurcations [12,13] before disappearing. We refer to this
entire transition as multifrequency tipping (M tipping).
Arguably, the most well-studied climate tipping scenario

is that of a collapse of the Atlantic meridional overturning
circulation (AMOC). The existence of bistable (“on” and
“off”) solutions and a corresponding hysteresis loop dates
back to the conceptual model of Stommel [14], and it has
since been observed in models across the complexity
hierarchy. In the past, the transitions between these states
have been described by fold bifurcations of equilibria.
However, it is widely recognized that the AMOC
exhibits internal modes of oscillatory variability at various
frequencies—most notably the Atlantic multidecadal oscil-
lation (AMO) [15].
We show here that M tipping is consistent with obser-

vations of possible precursors of tipping in intermediate
complexity Earth-system models that have been used to
investigate AMOC collapse, including a “step-down”
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weakening of AMOC before its total collapse. Hence, M
tipping may open the door to a much more detailed
understanding of the dynamics leading to AMOC collapse
and similar tipping scenarios in other fields of application.
M tipping in a conceptual delay differential equation

model.—In Ref. [16], the authors studied the sudden
disappearance of dynamics on a torus in a basic yet quite
general model for the interaction of negative feedback with
periodic forcing, which are both common ingredients in
complex systems for generating oscillatory modes. In the
context of AMOC it could be thought of as representing the
interaction of any of the various negative feedback
mechanisms [17,18], such as the temperature-advection
feedback, with oscillatory behavior that could represent, for
example, AMO or solar variability.
The basic conceptual model takes the form

dhðtÞ ¼ f− tanh½κhðt − τnÞ� þ c cosð2πtÞgdtþ ϵdW: ð1Þ

The first term represents delayed negative feedback with
delay time τn and nonlinearity strength κ, and the second
term periodic forcing of strength c; together they form the
delay differential equation (DDE) that was first introduced
in Ref. [19] and studied in Ref. [16]. The third term of
additive white noise of strength ϵ has been included to
demonstrate that signatures of M tipping are robustly
observed also in the presence of noise. Throughout, the
noise level ϵ is taken to be small enough to ensure that the
observed behavior is still driven chiefly by deterministic
dynamics. In order to observe torus breakup, we consider
τn and c as bifurcation parameters and set κ ¼ 11, as in
Refs. [16,19]. Simulations in Ref. [19] indicate that folding
tori only occur for sufficiently large κ. Since this parameter
determines a relative timescale of switching between two
different levels of feedback, smaller values of κ may also
generate the phenomena discussed here if both h and t are
rescaled accordingly.
Note that we do not attempt to calibrate the model to any

one context. Rather, we use it here to demonstrate the
significance of torus dynamics for AMOC tipping; in this
context, the variable hðtÞ represents the strength of the
Atlantic meridional overturning circulation.
We first briefly review torus breakup and M tipping in

the conceptual DDE model (1) in the absence of noise, that
is, for ϵ ¼ 0; see Ref. [16] for more details and, for
example, Ref. [20] for background information on
bifurcation theory. Figure 1(a) depicts a hysteresis loop
for τn ¼ 0.953 of solutions on tori, which are represented
by the amplitude of their time evolution hðtÞ. Along the
blue curves one finds stable tori. The green and red curves
represent periodic orbits with one and two unstable Floquet
multipliers, respectively, found with the continuation soft-
ware DDE-BIFTOOL [21,22]. The solutions on the tori are
periodic when the two frequencies involved are locked into
a rational ratio, some of which are labeled in Fig. 1(a).

Conversely, if the frequencies have an irrational ratio, the
trajectories on the torus never close, and the torus is said to
be quasiperiodic. Most of the labeled periodic solutions
exist across very small intervals of c values and are
represented by blue or green circles. The 2∶7 locked
solutions, on the other hand, exist across a relatively large
range of c and appear in Fig. 1(a) as an isola bounded by
folds of periodic orbits. The green circles represent points
along a branch of saddle tori that appears to connect the
upper and lower branches of stable tori. We stress that this
hysteresis loop is different from those for equilibria or
periodic orbits. Namely, the connection between the differ-
ent branches is not due to a simple fold but involves more
complicated bifurcations and associated dynamics.
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FIG. 1. Dynamics near an M tipping event of Eq. (1) for ϵ ¼ 0.
(a) Hysteresis loop in parameter c for τn ¼ 0.953, represented by
their amplitude amp½hðtÞ�. Stable solutions are shown in blue,
while those with one and two unstable Floquet multipliers are
shown in green and red, respectively. (b) The 2∶7 resonance
tongue in the ðc; τnÞ plane. The color scheme shows amplitudes
of stable solutions taken from simulations while slowly increas-
ing c. The inset is an enlargement of the resonance tongue where
it folds; see text for a list of bifurcation types. (c) Time series
with linearly increasing c corresponding to the gray-shaded
region in (a).
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Figure 1(b) shows the associated Arnold or resonance
tongue in the ðc; τnÞ plane to which the 2∶7 solutions
belong. The background colors represent the amplitudes of
simulated solutions for very slowly increasing values of c
across a range of fixed τn values. The gray line indicates the
value of τn in Fig. 1(a) and the inset details the dynamics
within the resonance tongue across the shaded range of c
values in Fig. 1(a). The curves shown here are fold
bifurcation of periodic orbits (dark blue), torus bifurcation
(red), neutral saddle periodic orbit (black), homoclinic
transition (light green), heteroclinic transition (dark green),
and folding tori (light blue). To be precise, the homoclinic
and heteroclinic curves represent transitions through
tangles involving the stable and unstable manifolds of
the 2∶7 locked saddle periodic orbits on the torus; since the
first and last tangencies lie extremely close together, we
represent each of these transitions by a single curve. The
2∶7 resonance tongue, bounded by two dark blue curves,
folds twice in the c direction. As mentioned earlier, a pair of
stable and saddle tori cannot simply collide in the sameway
that equilibria or periodic orbits can in a fold bifurcation.
The bifurcation structure in the inset (also called a
Chenciner bubble) describes how the stable torus breaks
up during such a folding and transitions to a saddle torus
(see Ref. [16] for details). Notice in Fig. 1(b) that, as c
increases, there is an associated sudden jump in the
amplitude of the simulated solutions from large amplitude
(red and orange) to small amplitude (yellow and green)
behavior.
The effect of torus breakup on the variable hðtÞ is

demonstrated in Fig. 1(c) with a simulation that slowly
traverses the gray-shaded range of c in Fig. 1(a), beginning
on the upper branch of tori. Initially, one observes in
Fig. 1(c) two frequencies as the modulation of the ampli-
tude. After about t ¼ 2400, the trajectory passes through a
heteroclinic transition and approaches an attracting periodic
orbit, which then loses stability near t ¼ 4000 at a
subcritical torus bifurcation. Since the periodic orbit is
only very weakly unstable, the trajectory diverges only very
slowly from the periodic orbit until it completely disap-
pears at the boundary of the 2∶7 resonance tongue near
t ¼ 4600. The trajectory then approaches a remote attrac-
tor, namely, the lower branch of tori shown in Fig. 1(a).
Generally, how observable the effects of torus breakup

are depends on the size of the associated Chenciner bubble,
which in turn depends on the frequency ratio p∶q. For
example, the effects of torus breakup are not so obvious on
the left-hand side of the hysteresis loop in Fig. 1(a) because
these p∶q lockings are of a higher order q. Other factors
include the parameter drift rate and effects of noise.
Signatures of M tipping in AMOC.—Hysteresis loops of

AMOC have been demonstrated across the hierarchy of
climate models. One such example from Ref. [23],
based on the intermediate complexity GENIE-2 ocean-
atmosphere model, is shown in Fig. 2(a). It shows the

maximum Atlantic meridional overturning circulation
(MOC) as freshwater forcing is slowly varied according
to the directions of the arrows. An interesting feature of the
upper branch is described as a “step slowdown” in
Ref. [23], whereby there is a relatively small, yet signifi-
cant, drop in MOC as the forcing reaches approximately
0.10 Sverdrup (Sv), before the full collapse at approxi-
mately 0.17 Sv (1 Sv ¼ 106 m3 s−1). In fact, a modest drop
in MOC preceding a tipping event is a feature observed in
several models [24–26].
Since the maximum is always taken, the MOC observ-

able may be interpreted as a measure of the size of an
underlying oscillating attractor. This is supported by the
fact that, if the maximum is not taken, but rather over-
turning circulation is considered for a fixed depth and
latitude, then variability on interdecadal timescales is
observed in the output of a globally coupled general
circulation model (GCM) [27]. To mimic the MOC
observable in a simple way, we show in Fig. 2(b) the
observable amp½hðtÞ� of Eq. (1) (with nonzero noise level
ϵ), which now approximates the amplitude of the under-
lying attractor as maximum minus minimum across a
window of 200 time units. As c increases, before the
big drop there is a small drop in amp½hðtÞ� where the
trajectory passes a heteroclinic transition (green line). This
happens shortly before the bifurcation point is reached due
to anticipation by noise. Similarly, the big drop at the end of
the hysteresis loop already occurs near the subcritical torus
bifurcation (red line). Larger values of ϵ result in
the transitions occurring for slightly smaller values of c.

(a)

(b)

FIG. 2. Hysteresis loops of (a) the GENIE-2 model as repro-
duced under Creative Common license (CC BY 4.0) from
Ref. [23], and (b) the conceptual DDE model (1) for
τn ¼ 0.953, Δc ¼ 1 × 10−6per time unit, and ϵ ¼ 0.0005.
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Clearly, the dynamics associated with M tipping, demon-
strated in Fig. 2(b), offer a possible mechanism for the step
slowdown observed in panel Fig. 2(a). In M tipping, the
observation that the small drop in MOC only occurs on the
upper branch of the hysteresis loop implies that the
underlying Chenciner bubble, where the torus breaks up,
is much smaller on the lower branch, so that its effects are
not observed. This is indeed the case for Eq. (1) as
Figs. 1(a) and 2(b) show.
Figure 3(a) shows a similar freshwater forcing experiment

by Rahmstorf [25] with a coarse resolution, yet highly
sophisticated, ocean GCM; here the arrows indicate the
direction in which the forcing parameter is changed and the
open circles represent stable solutions after very long
transient times. Apart from a similar small drop in MOC
(referred to as an “interesting discontinuity”), Rahmstorf
observed a region along the upper branch with two distinctly
different on solutions with MOC values of about 20 and 15
Sv and one off solution near 0 Sv. This behavior is
reproduced for the conceptual DDE model (1) and the
observable amp½hðtÞ� in Fig. 3(b). We also observe a range
of tristability, here bounded by a fold bifurcation of periodic
orbits (blue line) and a heteroclinic transition (green line),
where three simultaneously stable solutions are indicated by
open circles. In this c range, there is locally a coexistence of
a stable torus and a stable periodic orbit solution as two on
solutions, showing that M tipping also provides a possible
mechanism for the additional multistability observed near
the main tipping event in the ocean GCM.

In Ref. [25], Rahmstorf identified that the small drop in
MOC results from a change in convection patterns, repre-
senting the local shutdown of deep water formation in the
Labrador Sea. This process was simulated in detail during
freshwater forcing experiments with the inter-
mediate complexity ECBilt-CLIO model in Ref. [28].
Figure 4(a) from Ref. [28] shows responses in MOC to

three different freshwater perturbations. The first 5000 years
are simulated for the unperturbed case, showing
unsmoothed data (red) and data smoothed with a 101-yr
Hanning filter (blue). For each perturbation, of 5, 7.5, and
10 mSv, the response is bimodal and switches between a
higher and lower state that correspond to Labrador Sea
convection being on and off, respectively. This more
gradual approach toward the small drop in MOC reveals
an intermittent transition: the trajectory gradually spends
more and more time in the lower state, until the transition is
complete.
Figure 4(b) shows the corresponding transition in

Eq. (1) near the heteroclinic transition. After 1.5 × 104

(a)

(b)

FIG. 3. Additional multistability near the tipping event
observed in (a) a global ocean GCM as reproduced
with permission from Springer Nature from Ref. [25], and
(b) the conceptual DDE model (1) for τn ¼ 0.953,
Δc ¼ 1 × 10−6per time unit, and ϵ ¼ 0.0005.
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FIG. 4. Intermittent times series in (a) ECBilt-CLIO model with
a freshwater perturbation of 5, 7.5, and 10 mSv at 5000 years as
reproduced under Creative Common license (CC BY-NC-SA 2.5)
from Ref. [28], and (b) the conceptual DDE model (1) for
c ¼ 2.966; τn ¼ 0.953, and ϵ ¼ 0.001, with a perturbation Δc in
parameter c of 0.003, 0.0045, and 0.006.
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unperturbed time units at c ¼ 2.966, for increasing Δc
perturbations of 0.003, 0.0045, and 0.006, one clearly
observes an intermittent transition due to noise-induced
jumps between a stable torus coexisting with a stable
periodic orbit. As the dynamics on the torus becomes
increasingly slow in regions of phase space where it is close
to the periodic orbit, jumps from the torus to the periodic
orbit are increasingly favored. Different values of ϵ effect
the range of c values for which the intermittent transition
occurs, but not the occurrence of the phenomenon itself.
We conclude that M tipping is also consistent with the
intermittent transition observed in Ref. [28] when con-
vection in the Labrador Sea shuts down.
Discussion.—The dynamics associated with M tipping

provide an elegant explanation for phenomena observed in
three different models of AMOC. Our working hypothesis
is that the two convection zones in the Nordic Seas and the
Labrador Sea each contribute toward the formation of
feedback loops, similar to those represented by simple
ocean box models, such as in Ref. [14]. Two feedback
loops can naturally give rise to two-frequency dynamics on
a torus, which then must break up and pass through a
heteroclinic transition. In the process, there is a switch to
one-frequency dynamics, which appears to be achieved in
AMOC by the shutdown of convection in one of its
convection zones, namely, in the Labrador Sea. Future
work on AMOC will focus on modeling specific feedback
loops and the analysis of tori in models of intermediate
complexity.
As basic as it may seem, the conceptual DDE model

considered here highlights the potentially crucial role of
torus dynamics for understanding certain tipping pheno-
mena. As such we hope that it will provide motivation
for further studies that embrace the multifrequency nature
of complex systems. Additional bifurcation structure asso-
ciated with M tipping, such as the heteroclinic transition
central to the results presented here, could provide new
early warning indicators of an approaching tipping event.
Whether such indicators can be identified reliably in
different scenarios requires further study.
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