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Abstract

Background Therapeutic hypothermia (TH) is an established intervention to improve the outcome of neonates with moderate-

to-severe hypoxic-ischemic encephalopathy resulting from perinatal asphyxia. Despite this beneficial effect, TH may further 

affect drug elimination pathways such as the glomerular filtration rate.

Objectives The objective of this study was to quantify the effect of TH in addition to asphyxia on mannitol clearance as a 

surrogate for the glomerular filtration rate.

Methods The effect of asphyxia and TH (mild vs moderate/severe) on mannitol clearance was assessed using a population 

approach, based on mannitol observations collected in the ALBINO (ALlopurinol in addition to TH for hypoxic-ischemic 

Brain Injury on Neurocognitive Outcome) trial, as some were exposed to a second dose of 10 mg/kg intravenous mannitol as 

placebo to ensure blinding. Pharmacokinetic analysis and model development were conducted using NONMEM version 7.4.

Results Based on 77 observations from 17 neonates (TH = 13), a one-compartment model with first-order linear elimina-

tion best described the observed data. To account for prenatal glomerular filtration rate maturation, both birthweight and 

gestational age were implemented as clearance covariates using an earlier published three-quarters power function and a 

sigmoid hyperbolic function. Our final model predicted a mannitol clearance of 0.15 L/h for a typical asphyxia neonate 

(39.5 weeks, birthweight 3.25 kg, no TH), lower than the reported value of 0.33 L/h for a healthy neonate of similar age 

and weight. By introducing TH as a binary covariate on clearance, the additional impact of TH on mannitol clearance was 

quantified (60% decrease).

Conclusions Mannitol clearance was decreased by approximately 60% in neonates undergoing TH, although this is likely 

confounded with asphyxia severity.
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1 Introduction

Perinatal asphyxia is a clinical condition comprising peri-

natal hypoxia, hypercarbia, and combined metabolic and 

respiratory acidosis [1]. Perinatal asphyxia is a multi-organ 

disease with moderate-to-severe encephalopathy as a pivotal 

finding to initiate therapeutic hypothermia (TH) within 6 

hours after birth in (near)term neonates [2]. This multi-organ 

disease includes renal impairment, with large inter-individ-

ual variability (IIV) in the glomerular filtration rate (GFR), 

in part explained by asphyxia severity [3]. In 36 asphyxi-

ated neonates (mild, moderate, severe), acute kidney injury 

(AKI) was observed in 1/11 (9%) neonates with moderate 

sphyxia and in 12/25 (56%) neonates with severe asphyxia 

[4]. When we focus on cases that underwent TH (commonly 

restricted to moderate-to-severe HIE), AKI was observed in 

35–42% [5–7]. Creatinine in the first days of life reflects to 

a certain extent maternal kidney function, assay-related dif-

ferences still matter, while reference centile values following 

http://orcid.org/0000-0001-9921-5105
http://crossmark.crossref.org/dialog/?doi=10.1007/s40262-021-00991-6&domain=pdf


 N. Deferm et al.

Key Points 

Therapeutic hypothermia (TH) improves the outcome 

of neonates with moderate-to-severe hypoxic-ischemic 

encephalopathy resulting from perinatal asphyxia, but 

this is associated with a reduced glomerular filtration 

rate. Mannitol clearance reflects the glomerular filtration 

rate.

Mannitol clearance of a typical asphyxiated neonate 

(39.5 weeks, birthweight 3.25 kg, no TH) was estimated 

at 0.15 L/h, lower than the reported mannitol clear-

ance of a healthy neonate (0.33 L/h) of similar age and 

weight.

Mannitol clearance is further decreased by approxi-

mately 60% in neonates who undergo TH, but this 

is likely confounded with asphyxia severity, as TH 

is applied only to newborns with moderate or severe 

asphyxia.

2  Methods

2.1  Setting and Study Design

(Near)term neonates who fulfilled perinatal asphyxia criteria 

and early signs of evolving encephalopathy (cfr infra) and 

were included in the ALBINO trial were administered an ini-

tial dose of study medication (intravenous, either 20 mg/kg 

of allopurinol or mannitol, placebo needed to enable blind-

ing) shortly (i.e. within 45 min) after birth. This is because 

both the verum and the mannitol are provided as a freeze-

dried sodium salt with the same visual aspect. A second dose 

of either allopurinol or mannitol (both 10 mg/kg, intravenous 

over 10 min) was administered 12 h after the first dose in 

neonates who subsequently underwent TH. The primary 

endpoint of this study is death or severe neurodevelopmental 

impairment vs survival without severe neurodevelopmental 

impairment at the age of 2 years [12].

Patients were eligible for the ALBINO trial if they ful-

filled at least one of the perinatal asphyxia criteria: (1) pH 

< 7 or base deficit ≥ 16 mmol/L, (2) need for ongoing car-

diac massage for ≥ 5 min postpartum; (3) need for adrenalin 

administration during resuscitation; and (4) Apgar score ≤ 5 

after 10 min postpartum; in combination with two or more 

early signs of evolving encephalopathy: (1) altered state 

of consciousness; (2) hypotonia or hypertonia; (3) absent/

insufficient spontaneous respiration requiring respiratory 

support for at least 10 min postpartum; and (4) abnormal 

primitive reflexes/abnormal movements (i.e., seizures). 

Further details of the study protocol have been published 

[12]. The most important exclusion criteria were a gesta-

tional age < 36 weeks, an estimated birth weight < 2500 g, 

or severe congenital abnormalities. Neonates who met the 

ALBINO inclusion criteria, but not the criteria to subse-

quently undergo TH within the first 6 h after birth because of 

a quick and spontaneous recovery (mild HIE), only received 

the first dose of either allopurinol or mannitol. Therapeutic 

hypothermia was initiated within 6 h after birth and aimed 

for a core temperature of 33.5 °C for 72 h. Subsequently, 

there was a slow rewarming to normothermia and after 

rewarming, body temperature was stabilized at 36.5 °C for 

24 h in moderate-to-severe HIE cases in accordance with the 

published guidelines [2].

2.2  Pharmacokinetics, Blood Sampling, 
and Analysis

Pharmacokinetics was a predefined secondary outcome 

parameter of the ALBINO trial [12]. This sub-study was 

conducted in four specific centers (Amsterdam, Nürnberg, 

Tübingen, Utrecht) involved in the ALBINO trial. Blood 

sampling was combined with clinically indicated blood 

perinatal asphyxia do not yet exist. Consequently, their clini-

cal use to assess individual renal impairment in early neona-

tal life remains poor [5].

Asphyxia with TH results in a clinically significant, tran-

sient decrease in mean GFR (− 40 to − 50%), with gesta-

tional age (GA) and hypoxic-ischemic encephalopathy (HIE) 

stage as additional covariates [3]. Mannitol, a hexitol, is 

eliminated exclusively by the kidneys where it undergoes 

free filtration through the glomeruli. While there is limited 

tubular reabsorption (10%) in adults, the tubular transporter 

processes in neonates are still immature. Moreover, mannitol 

is not metabolized, thereby fulfilling the criteria for being 

an exogenous substance for GFR measurement [8]. Conse-

quently, mannitol clearance (CL) has been used to describe 

GFR, including maturation and growth from term neonatal 

age onwards [9–11]. The ALBINO (ALlopurinol in addition 

to TH for hypoxic-ischemic Brain Injury on Neurocognitive 

Outcome) trial is a randomized blinded placebo-controlled 

trial with mannitol administration in the placebo group, as 

this enabled visual blinding [12]. As pharmacokinetics was a 

predefined secondary endpoint of this trial, this provided us 

with the possibility to describe mannitol pharmacokinetics 

and its covariates as a GFR indicator and its variability in 

this specific population of neonates. Information on asphyxia 

severity and related covariates on GFR can subsequently be 

used to better predict renal drug CL, to improve pharma-

cotherapy or to explore physiology-based pharmacokinetic 

(PK) performance [1].
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samples. To limit the number of blood samples per indi-

vidual patient, two sample strategies were developed: A vs 

B at random for either neonates treated with TH or those 

who recovered quickly and did not undergo TH (Table 1) 

[13]. Exact timing of samples were documented and used in 

the analysis. Only samples of neonates exposed to mannitol 

(placebo, n = 17) were analyzed and reported in the current 

sub-study.

For the PK analyses, 0.5 mL of blood was collected in 

 MiniCollect® lithium-heparin tubes (Greiner Bio One, 

Alphen aan den Rijn, the Netherlands). Samples were placed 

in melting ice immediately after collection and centrifuged 

with a speed of 1500–2000g for 10 min at 4–8 °C within 

30 min after collection. Plasma was subsequently separated 

with a pipette and stored in a polypropylene crew cap at 

– 80 °C until analysis.

The Ardena Bioanalytical Laboratory determined manni-

tol concentrations in the plasma samples in accordance with 

Good Clinical Practice guidelines. The assay was validated 

according to the European Medicines Agency guidelines 

(International Conference on Harmonisation Good Clinical 

Practice regulations 2012). Following extraction of mannitol 

by protein precipitation and derivatization (2% acetic anhy-

dride), liquid chromatography-mass spectrometry was used 

to determine total mannitol concentrations. The analytical 

range of the assay was 0.2–200 µg/mL, with the lower limit 

of quantificationbeing 0.2 µg/mL. Accuracy and precision 

of all quality control samples met the predefined acceptance 

criteria. The clinical characteristics were extracted from the 

study data registration files for all cases included in the man-

nitol PK study. Care was taken that investigators involved 

in patient recruitment remained blinded for treatment group 

assignment. The obtained concentration–time profiles of 

mannitol are illustrated in Fig. 1 of the Electronic Supple-

mentary Material.

2.3  Ethics

Oral consent was obtained from at least one parent before 

administering the study medication. After the first dose, 

but before the (potential) second dose, full written paren-

tal consent was obtained [12]. In case parents did not sign 

the informed consent, blood samples already collected 

shortly after birth were destroyed. The medical ethics 

committee of the University Medical Centre Utrecht and 

the Central Committee on Human Research approved the 

study including the specific PK sub-study for the Nether-

lands (NL57237.041.16). The German Federal Authority 

(EudraCT 2016-000222-19) as well as the leading ethics 

committee of Tübingen approved the study for Germany.

2.4  PK Model Development

Pharmacokinetic analysis and model development were 

conducted using NONMEM version 7.4. Results were ana-

lyzed using R version 3.5.2 running under RStudio version 

1.2.5042. Model building was performed in three different 

steps: (1) various structural models (i.e., one- and two-com-

partment models) were tested, after which the most appro-

priate model was selected; (2) a statistical sub-model was 

chosen; and (3) covariates were analyzed. The first-order 

conditional estimation with interaction was used throughout 

the model building process.

The minimum objective function value (OFV) was used 

to compare models. A decrease of 3.84 or greater in OFV 

was considered statistically significant at p < 0.05. Good-

ness-of-fit plots (both observed vs individual- and popu-

lation-predicted concentrations, individual plots, and time 

as well as population predictions vs conditional weighted 

residuals) were evaluated as well.

2.5  Covariate Analysis

Covariates were plotted independently against individual 

estimates of IIV (i.e., η values) to screen for potential fac-

tors that affect mannitol pharmacokinetics (data not shown). 

Covariate-parameter relationships that showed a visual trend 

in the graphical assessment (i.e., birthweight [BW], lactate 

dehydrogenase (LDH), alanine aminotransferase (ALT), GA, 

and TH) were introduced into the base model. Therapeutic 

hypothermia was implemented as a binary covariate in the 

dataset and its parameter-covariate relationship was coded 

as follows (Eq. 1):

Table 1  Sample timing and 

intervals

h hours, min minutes

Group Samples

No hypothermia

 A 15–60 min, 1.5–4 h, 8–12 h, 18–24 h, 60–72 h

 B 15–60 min, 1.5–4 h, 8–12 h, 36–48 h, 96–168 h

Hypothermia

 A 15–60 min, 1.5–4 h, trough level t = 12 h, 13–14 h, 18–24 h, 60–72 h

 B 15–60 min, 1.5–4 h, trough level t = 12 h, 13–14 h, 36–48 h, 96–168 h
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where Pp1 and Pp2 represent the population parameter esti-

mates when cov is either equal to 0 or 1, Pi equals the indi-

vidual parameter estimate of the ith subject, and cov is the 

covariate. BW, ALT, and LDH were implemented in the 

model using a power function (Eq. 2):

where Pp and Pi represent the population estimates and 

individual parameter estimates of the ith subject, cov is the 

covariate, and b is the power exponent. The relationship 

between GA and mannitol CL was investigated using a sig-

moid hyperbolic function (Eq. 3) [14]:

where Pp and Pi represent the population estimates and 

individual parameter estimates of the ith subject, cov is the 

covariate, Hill (gamma) is the Hill coefficient, and  TM50 the 

maturation half time.

The significance of the covariates was statistically tested 

using a stepwise covariate method involving testing of 

covariate relationships in a forward inclusion (reduction of 

OFV of 6.63; p < 0.01) and backward exclusion (reduc-

tion of OFV of 10.8; p < 0.001) [15]. Furthermore, some 

covariates (i.e., GA on CL, BW on CL, and TH on CL) were 

included into the final model based on scientific plausibility 

and prior knowledge [16–18].

2.6  Model Evaluation

The final PK model was evaluated using two methods: (1) 

the sampling importance resampling (SIR) method and 

(2) the normalized prediction distribution error (NPDE) 

method. The SIR procedure was used to assess the uncer-

tainty and to calculate the 95% confidence intervals (CIs) of 

the parameter estimates of the final model. The procedure 

was run with 2000 final samples and 1000 resamples. A 

covariance matrix from the successful final model run was 

used as a proposal distribution. Results of the SIR procedure 

were evaluated with the graphical diagnostic methods pro-

vided by the sir package in PsN version 5.0.0. To determine 

the accuracy of the model predictions, a NPDE analysis was 

performed using the NPDE package in R version 3.5.2 [19]. 

Computation of NPDEs has been described previously by 

Brendel et al. [20]. Briefly, prediction discrepancies were 

obtained as the percentile of each observation within its 

predicted distribution. After decorrelation of the obser-

vations and the predictions, prediction distribution errors 

(1)Pi = Pp1
⋅ (1 − cov) + Pp2

⋅ cov

(2)Pi = Pp ⋅

(

Cov

Cov
median

)b

(3)Pi = Pp ⋅
Cov

Hill

TM
Hill

50
+ Cov

Hill

were calculated. These were then normalized by inverting 

the cumulative density function, after which NPDEs were 

obtained. A model describes the data well if the calculated 

NPDEs follow a normal distribution with a mean of 0 and 

a variance of 1.

3  Results

3.1  Patients and Clinical Characteristics

The PK analysis was based on a total of 77 observations 

from 17 neonates of whom 13 underwent TH. Table 2 sum-

marizes all patient characteristics.

3.2  PK Model Building

A one-compartment model, which was parameterized in 

terms of CL and V, was preferred over a two-compartment 

model as it described the data more accurately. Indeed, the 

OFV of the one-compartment model (OFV = 450) was 

significantly lower (p < 0.05) as compared with the OFV 

of the two-compartment model (OFV = 454). Moreover, 

the decrease in OFV was accompanied with improved 

goodness-of-fit plots (data not shown). In addition, various 

residual error models (i.e., additive, proportional, and com-

bined) were evaluated. The combined additive and propor-

tional error model best described the residual variability as 

reflected by the lower OFV and improved goodness-of-fit 

plots (data not shown). Table 3 depicts the population PK 

parameters that were derived from the base model.

3.3  Systematic Covariate Analysis

Following visual inspection of the covariate-η plots, the 

covariates GA, BW, ALT, LDH, and TH were selected for 

further evaluation (Fig. 1). However, because of the limited 

Table 2  Clinical characteristics of patients included in the study

IQR interquartile range, absolute difference between Q3 and Q1

Characteristic Median [IQR]

Patients (n) 17

Gestational age (weeks) 39.5 [1] 

Birthweight (kg) 3.4 [0.5]

Height (cm) 54.1 [3] 

Age at start of cooling (h) 2.1 [4.8]

Lactate dehydrogenase (U/L) 1520 [746]

Alanine aminotransferase (U/L) 63.8 [44.8]

Thompson score 9.5 [9] 

Therapeutic hypothermia (n [%]) 13 [76.5]

Inotropes (n [%]) 8 [47.1]
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amount of data available, none of the tested covariates sig-

nificantly affected either CL or V, as determined by the 

stepwise covariate method. We therefore included covari-

ates based on prior knowledge and scientific plausibility. 

More specifically, the allometric relationship between BW 

and PK parameters such as CL and V is well documented. 

Consequently, we decided to implement BW as a covari-

ate on both CL and V using an allometric equation with 

exponents fixed to 0.75 for CL and 1 for V. This resulted in 

a drop in the OFV of 5 points (p < 0.05) and reduced the 

unexplained variability on CL from 1.41 to 1.35 (7%) and 

on V from 0.221 to 0.165 (7.5%).

Rhodin et al. showed that postmenstrual age (PMA) with 

a sigmoid hyperbolic function well described GFR matura-

tion across the entire pediatric population.  TM50, the time 

at which maturation reaches half the adult value, was esti-

mated at 47.7 weeks, whereas the Hill coefficient, which 

describes the slope of the sigmoidal curve, was estimated 

at 3.4 [14]. In our study, PMA (i.e., the sum of GA and 

postnatal age [PNA]) was almost fully determined by GA as 

data were collected until 3 days after birth. Consequently, to 

describe GFR maturation, we introduced GA as a covariate 

in the model using the aforementioned sigmoid hyperbolic 

function, with  TM50 and the Hill coefficient fixed to 47.7 

and 3.4, respectively. Although the OFV did not drop to a 

statistically significant extent, the unexplained variability 

on CL did decrease from 1.41 to 1.27 (16%). Furthermore, 

various studies have previously shown that TH affects renal 

CL in neonates [16, 17]. Based on these observations, we 

decided to include TH as a covariate on CL. This led to a 

considerable decrease in the unexplained variability in CL 

(from 1.41 to 1.22 [22%]), whereas the OFV remained virtu-

ally unchanged.

3.4  Final PK Model and Internal Evaluation

Table 3 summarizes the estimated population PK param-

eters of both the base model and the final model together 

with the values obtained from the SIR analysis. Therapeutic 

hypothermia was found to decrease mannitol CL, and thus 

GFR, by approximately 60% (39% relative standard error) 

compared with the estimated mannitol CL of neonates who 

did not undergo TH. The SIR analysis confirmed the preci-

sion of the parameter estimates that were obtained from the 

final model as the SIR medians were close to the estimates 

and were within the 95% confidence interval. Moreover, the 

observed vs population- and individual-predicted concentra-

tion plots (Fig. 2a and b) as well as the conditional weighted 

Table 3  Estimated parameters of the base model and final pharmacokinetic model

BW birthweight, CL clearance, CV coefficient of variation, GA gestational age, N.D. not determined, Pop population, RSE relative standard error, 

SIR sampling importance resampling procedure (the median birth weight in this cohort was 3.4 kg), V volume of distribution
a CL = PopCL × (BW/median BW)θ

CL × ((GAHill)/(TM50
Hill +  GAHill)) × θTH

b V = PopV × (BW/median BW)θ
V

c Values were fixed according to [14]

Parameter Units Base model Final pharmacokinetic 

model

SIR final pharmacokinetic model

Mean (% RSE) Mean (% RSE) Median 95% confidence interval

Structural model parameters

 CL L/h 0.0760 (33) 0.441 (10) 0.440 0.320–0.544

 V L 1.440 (12) 1.400 (13) 1.415 1.132–1.705

Covariates

 Asphyxia treated with hypothermia 

(θTH)

0.399 (39)a 0.395 0.194–0.616

 Birthweight on CL (θCL) 0.75  Fixeda N.D. N.D.

 Birthweight on V (θV) 1  Fixedb N.D. N.D.

 Hill coefficient 3.40  Fixeda, c N.D. N.D.

 Maturation half time  (TM50) Weeks 47.7  Fixeda, c N.D. N.D.

Inter-individual variability

 CL CV% 176 (32) 137 (65) 1.093 0.547–2.165

 V CV% 49.7 (19) 41.9 (40) 0.170 0.0846–0.316

Residual variability

 Proportional % 29.2 (22) 29.2 (23) 29.4 24.1–35.5

 Additive µg/mL 0.358 (53) 0.358 (36) 0.359 0.184–0.484
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residuals vs population-predicted concentration and time 

plots (Fig. 2c and d) did not show any considerable trends 

or bias.

In addition, both the mean (0.004) and variance (1.003) 

of the NPDEs did not differ significantly from 0 and 1 (p 

> 0.05), indicating that the model describes the data well. 

However, both the histogram and QQ plot of the NPDEs 

did show a slight deviation from normality (Fig. 2e and f).

4  Discussion

Although TH has demonstrated to have beneficial effects 

on neurological outcomes, reducing a neonate’s body tem-

perature may further affect physiological processes such as 

those involved in drug elimination [21]. The current study 

therefore aimed to quantify the impact of TH in addition to 

asphyxia on mannitol CL, as a surrogate for GFR. Because 

TH was only started in infants with moderate-to-severe HIE 

according to current guidelines, and non-TH infants studied 

herein only had mild HIE, it was only possible to compare 

the combined effect of TH and more severe asphyxia with 

no TH and milder asphyxia.

A PK model was developed based on 77 observations that 

originated from 17 (near)term neonates. A one-compartment 

model with linear first-order elimination described the data 

best as reflected by the low OFV and improved goodness-of-

fit plots (data not shown). Interestingly, none of the investi-

gated covariates significantly affected CL or V, as determined 

by the stepwise covariate method. This may be a problem 

of a small sample size, but as we had no access to addi-

tional data, we decided to introduce covariates in the model 

Fig. 1  a–f Covariate-η plots of the covariates (gestational age, birthweight, alanine aminotransferase, lactate dehydrogenase, and therapeutic 

hypothermia) that showed a clear trend (|corr| > 0.3 or p < 0.05). CL clearance, V volume of distribution
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based on prior knowledge and scientific plausibility rather 

than statistical significance. This is because previous stud-

ies have clearly indicated that both maturation and growth 

are implicated in the increase in neonatal glomerular func-

tion [10, 14, 18]. Maturation is typically described using an 

age-related factor, such as PMA, whereas the most common 

descriptor for growth is BW [22, 23]. There are, however, 

different views on whether age-related covariates should be 

used to describe prenatal GFR maturation. For instance, Rho-

din et al. indicated that GFR maturation before birth is best 

described using both BW and PMA, whereas De Cock et al. 

suggested that implementing BW alone suffices to describe 

antenatal GFR maturation as BW and PMA repeatedly use 

the same information [14, 18]. To account for prenatal GFR 

maturation, we decided to introduce both BW and GA (in this 

dataset de facto similar to PMA) as covariates on CL using 

an allometric three-quarters power function and a sigmoid 

hyperbolic function, respectively [14]. This decision was 

based on the observation that the covariate-η plots of BW 

and GA showed a clear trend (Fig. 1), whereas the correlation 

between BW and GA was rather weak (correlation coefficient 

= 0.34), suggesting that BW alone could only partly explain 

the inter-individual differences in prenatal GFR maturation. 

By simultaneously implementing BW and GA as covariates, 

the IIV on CL decreased considerably more (− 24.8 %) as 

compared with the ‘BW-only’ model (− 10.5%).

Glomerular filtration rate is known to increase rapidly 

in the first few days after birth [24]. This is commonly 

Fig. 2  a Observed vs population-predicted concentrations and b 

observed vs individual-predicted concentrations. The solid blue 

line represents loess smoothing. c Conditional weighted residuals 

(CWRES) vs population-predicted concentrations and d time. The 

solid blue line represents loess smoothing. e Distribution of the nor-

malized prediction distribution errors (NPDEs). The solid red line 

represents a normal distribution, whereas the solid blue line repre-

sents the actual distribution of the NPDEs. f QQ plot of NPDEs



 N. Deferm et al.

accounted for in PK models using either PNA and/or PMA 

as covariates on CL [14, 18, 25]. However, several studies 

have suggested that PMA is insufficient to describe post-

natal GFR maturation as it ignores the impact of birth on 

GFR [18, 26]. Indeed, Salem et al. showed that in a group 

of neonates with the same PMA values, neonates with a 

higher PNA have higher GFR values as compared with 

more mature cases at birth, but with a lower PNA [26]. In 

other words, postnatal GFR maturation is best described 

using PNA rather than PMA. Consequently, we intro-

duced PNA as a covariate on CL using both a linear and 

power function. However, the estimated effect of PNA on 

CL was negative in all tested cases, suggesting that GFR 

decreases with increasing PNA (data not shown). As this 

does not make sense from a physiological point of view, we 

decided to exclude PNA as a covariate on CL. We can only 

speculate, but one of the potential explanations might be 

that (although intended different, Table 1) there was some 

skewed sample collection over postnatal life in this cohort 

as all samples collected from 59 h (cf Fig. 2d) onwards 

were collected in cases that underwent HT. In addition, we 

did not implement LDH and ALT as covariates in the final 

model even though their covariate-η plots showed a clear 

trend. This decision was based on the observation that their 

overall trend was almost entirely determined by a single 

(same) outlier (Fig. 1d and e).

Our final model predicted a mannitol CL of 0.15 L/h for 

an asphyxiated neonate with a GA of 39.5 weeks and a BW 

of 3.25 kg who did not undergo TH. This is lower than the 

reported value of 0.33 L/h for a healthy neonate of approxi-

mately the same age and weight [10]. These results are to be 

expected as perinatal asphyxia is known to affect GFR, and 

thus mannitol CL [27].

The effect of hypothermia on renal drug CL in neonates 

with perinatal asphyxia has been investigated previously 

by several groups. For instance, Cristea et al. found that 

amikacin CL in neonates with perinatal asphyxia treated 

with TH was decreased by approximately 40% compared 

with controls (neonates treated for suspected early-onset 

sepsis), while a study conducted by Mark et al. found a 

25.5% decrease in gentamicin CL following TH in 16 cases 

compared with seven cases with similar clinical character-

istics but in whom HT were not provided [17, 28]. These 

findings are further supported by studies conducted in pigs 

that suggested that the intensity of the hypothermic treat-

ment may determine the extent to which renal CL capacity 

decreases [29, 30]. However, these observations are con-

tradicted by Liu et al. who failed to find an effect of TH on 

renal drug CL [31]. Because of these conflicting results, 

we decided to introduce TH as a binary covariate on CL 

as the η vs covariate plots showed a clear trend (Fig. 1f). 

We are hereby aware that TH was only initiated in cases 

with moderate-to-severe HIE. The IIV on CL decreased 

by approximately 20%, justifying our decision to include 

TH as a covariate. Our model predicted that mannitol CL, 

a surrogate for GFR, decreased by approximately 60% 

on average in neonates who underwent TH (Table 3). 

Moreover, we observed a large IIV (137%) in estimated 

mannitol CL. This is not unexpected as asphyxia severity 

is known to be correlated with kidney damage and our 

dataset contained neonates with perinatal asphyxia from 

mild (no TH) to moderate to severe as not all cases under-

went TH, be it overweighted in TH cases (13/17) [4, 27]. 

This may also explain why we observed such a profound 

effect of TH on GFR. More specifically, we were unable 

to disentangle the effect of perinatal asphyxia from the 

effect of hypothermia on mannitol CL. The effect that we 

observed was therefore likely confounded with the sever-

ity of asphyxia. In an attempt to disentangle the impact 

of perinatal asphyxia from the impact of TH on manni-

tol CL, we explored whether introducing age at the start 

of cooling as a covariate would allow us to quantify CL 

before and after the initiation of TH. However, as only one 

measurement on average was available before the start of 

TH, mannitol CL before the initiation of TH could not be 

estimated.

An additional relevant limitation of our model is its lim-

ited applicability. More specifically, because of the conflict-

ing reports in the literature regarding the effect of TH on 

GFR and the fact that TH as an independent covariate did 

not affect mannitol CL to a statistically significant extent in 

our model, we suggest that the results in the current study 

should not be extrapolated to other renally cleared drugs. 

However, our results do provide additional evidence that 

perinatal asphyxia affects GFR compared to healthy con-

trols. Consequently, care should be taken when dosing this 

patient population with renally cleared drugs, be it that we 

are unable to provide any guidance in relevant covariates 

within this population. In addition, future studies should be 

conducted that pool data on GFR estimates from different 

centers to further investigate the effect of TH on GFR.

5  Conclusions

We developed a model that accurately described the phar-

macokinetics of mannitol, a surrogate for GFR, in neonates 

with perinatal asphyxia. Gestational age and BW were 

implemented as covariates to account for prenatal GFR 

maturation, whereas TH was introduced as a binary covari-

ate on CL to quantify the impact of hypothermia on mannitol 

CL. Therapeutic hypothermia was found to decrease man-

nitol CL by approximately 60%, although this effect is likely 

confounded with asphyxia severity.
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