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Abstract 

Multiple Sclerosis (MS) is an auto-immune mediated inflammatory and 

degenerative disease of the central nervous system characterized by loss of myelin and 

axonal integrity. MS often leads to an accrual of walking disability and worsening of 

fatigue. Exercise-dependent plasticity in the central nervous system, which involves 

upregulation of growth-promoting neurotrophins and suppression of inflammatory 

cytokines, may help restore lost ability to walk. Although aerobic training is an 

intervention that can potentially improve walking disability and reduce fatigue, these 

factors are also significant barriers to participating in exercise. Furthermore, because of 

thermal dysregulation, exercise-induced increases in body temperature leads to temporary 

worsening of symptoms in some MS patients. The purpose of my doctoral work was to 

develop and determine the feasibility of implementing a progressively intense aerobic 

treadmill training, in a room cooled to 16°C, for people with MS having walking 

disability, fatigue, and heat sensitivity. 

In the first study, I critically appraised and consolidated the research in animal 

models and clinical trials in order to determine the optimal training dosage and outcomes 

for a future exercise trial. The second study showed that people with MS-related disability 

consumed about three times more oxygen to complete relatively simple mobility activities 

such as rolling in bed, when compared to age and sex-matched healthy controls. The 

results of this study supported the importance of testing therapeutic aerobic training for 

this cohort of patients with barriers to exercise, such as fatigue. The third study outlined 

the effects of maximal aerobic exercise on neurotrophins and inflammatory cytokines 
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among people with MS and controls. The final study established preliminary evidence for 

the feasibility of conducting progressively intense aerobic training on a bodyweight 

supported treadmill in a room cooled to 16°C. The benefits included significant 

improvements in walking speed, fatigue, aerobic fitness, and quality of life, while 

simultaneously altering serum levels of blood biomarkers of recovery such as brain-

derived neurotrophic factor and interleukin-6, shifting the balance between repair and 

inflammation. Randomized controlled trials are needed to substantiate these preliminary 

findings, which in turn could lead to effective training options for people living with MS-

related barriers to exercise participation. 
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Chapter 1 Introduction 

1.1 Prevalence of Multiple Sclerosis 

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the central nervous 

system (CNS) affecting over 2.2 million people worldwide1. The global age-standardized 

prevalence of MS is estimated to be 30.1 cases per 100,000 population, with North America and 

northern European countries making up the high prevalence zone (>100 cases per 100,000)1. The 

age-standardized prevalence was the highest in North America (164.6 cases per 100,000, 95% 

Confidence Interval [CI] 153.2 – 177.1), with an estimated 79,419 Canadians living with MS in 

20161. For comparison, in North America, MS has about the same prevalence as Parkinson’s 

disease (170 to 180 per 100,000)2 and is 50 times more common than Amyotrophic Lateral 

Sclerosis and related Motor Neuron Diseases (3.0 per 100,000)3. Furthermore, future projections 

suggest that the prevalence of MS will increase to 430 per 100,000 by 2031, corresponding to 

133,635 Canadians living with MS by then4. Since MS affects people in the most productive 

period of their lives (between the ages of 16 and 40), there is an urgent need to develop better 

treatments for MS in order to reduce disease burden5. 

Although North America and parts of Europe report some of the highest rates of MS in 

the world, prevalence rates vary considerably within these regions and even with a country. For 

example, Canadian studies have reported MS prevalence estimates as low as 179.9 per 100,000 

in British Columbia6 to as high as 313.6 per 100,000 in Saskatchewan7. Regions also show a 

north-south gradient with higher prevalence rates in areas further from the equator. For example, 

the prevalence of MS in the United States per 100,000 population was higher in the northeast and 

mid-west regions (377.4 and 353.1 respectively) compared to western and southern regions 
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(272.7 and 272.6 respectively) 8. Additionally, the Atlas of MS, an online tool developed by the 

MS International Federation, reported the highest prevalence in Europe to be 189.0 per 100,000 

in Sweden in the north, and the lowest to be 22.0 per 100,000 in Albania in the south9.  

Recent research attributes these north-south differences to exposure to sunlight and levels 

of vitamin D because of vitamin D’s role in regulating T and B cells which are key contributors 

to MS pathology10. A recent Mendelian randomization study (n=33,996) determined that all four 

single nucleotide polymorphisms associated with 25-hydroxyvitamin D levels from sunlight 

were associated with an increased risk of MS, providing strong evidence for the causal role of 

vitamin D levels in MS susceptibility11. Furthermore, researchers have also demonstrated direct 

functional interaction of vitamin D with the major genetic locus which determines MS risk 

supporting environmental influences in the pathophysiology of MS (discussed in more detail 

below)12. Nevertheless, the prevalence of MS is rising in the higher income countries of Europe, 

United States, and Canada, which has been at least partially attributed to earlier diagnosis and 

improved survival rates in recent years1. MS remains one of the most complex and puzzling 

neurological diseases in the world, and consequently, the field is evolving rapidly. 

1.2 Incidence of Multiple Sclerosis 

While the prevalence of MS has been increasing steadily over the past century, repeated 

surveys show that incidence of MS in Western Europe and Canada is higher in recent years than 

those observed decades ago13. Notably, the incidence of MS was found to be higher in specific 

ethnic groups, females, and family clusters, supporting the belief that there is genetic 

susceptibility to MS14, 15. In a retrospective cohort study conducted in the United States with 

more than 9 million person-years of observation, the incidence of MS was highest in blacks 
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(10.2, 95% CI 8.4-12.4), followed by whites (6.9, 95% CI 6.1-7.8), Hispanics (2.9, 95% CI 2.4-

3.5), and Asians (1.4, 95% CI 0.7-2.4)15. In addition, recent and historical findings confirm that 

MS occurs more frequently in women than men16. Since the early 1900s, female to male ratio has 

been increasing from unity (1:1) to more than 3:1 confirming the growing incidence of MS in 

females in recent decades when compared to males17, 18. Interestingly, there was a higher 

transmission rate to the daughters (rather than sons) of mothers and fathers who had MS (odds 

ratios, 2.72 and 1.65 respectively)19. Furthermore, the increasing incidence of MS that tends to 

cluster in families19, provides strong support for genetic etiology in MS. For instance, the MS 

concordance rate increases with the extent of genetic similarity between individuals20-22. For 

example, the rate of MS concordance in monozygotic twins ranges between 18–31%, whereas in 

dizygotic twins, it ranges between 3–5%20-22. However, the lack of full (100%) concordance rate 

in monozygotic twins and large differences (about 30%) between monozygotic and dizygotic 

twins (who share intrauterine and postnatal environments respectively) can be taken as evidence 

of environmental factors playing an important role in the incidence of MS in addition to 

genetics18.  

Although researchers recognize the dual role of genetics and environmental factors in 

MS, the relatively rapid increase in incidence over the past few decades points to environmental 

origins17, 18. When genetic factors are held constant, environmental factors such as sunlight 

exposure, vitamin D, and latitude are thought to operate at population level23. Such 

epidemiological evidence leads to the hypothesis that the interaction between genetic and 

environmental risk factors (such as ethnicity, sex, birth order, place of birth, exposure to 

sunlight, vitamin D, latitude, and viral candidates) determines one’s susceptibility to MS18. 

Furthermore, the potential interplay of lifestyle factors such as cigarette smoking, obesity, 
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hormonal replacement therapy, and later childbirth may have increased the susceptibility for MS 

in females16. Overall, genetic, environmental, and lifestyle factors regulate the immune system 

which is believed to be the source of dysregulation seen in MS. As discussed below, 

immunological mechanisms including antibody- and complement-mediated damage, glutamate-

mediated excitotoxicity, proinflammatory cytokine secretion, formation of radicals, and cell-

mediated damage through T cells, monocytes, macrophages, and microglia, are known to lead to 

the damage of myelin sheath and axons in the CNS 24. This interplay between genetics, 

environmental, lifestyle, and immunological factors suggests that some aspects of the disease are 

modifiable while some others are not23.  

1.3 Pathophysiology and clinical course of Multiple Sclerosis 

MS is traditionally characterized as an autoimmune inflammatory disease of the CNS, 

mediated by an aberrant immune response against CNS tissue, particularly myelin proteins. 

Recent findings show that MS is associated with more than 100 genes, and the majority of the 

genetic loci associated with MS risk contribute to known immunologic functions25. It is thus 

widely accepted that aberrant immune response plays an important role in the pathogenesis and 

progression of MS23. At first, focal inflammatory lesions start to appear within CNS due to 

autoimmune-mediated T-cell attack26. The acute development of lesions is followed by a gradual 

resolution of inflammation, leading to further degradation of myelin and axons26.  

Abnormal immune responses during the inflammatory cascade contribute to 

demyelination and axonal loss in MS23. Recent evidence suggests that B cells, CD8+ T cells, 

macrophages, and the innate immune system also take part in the inflammatory cascades of MS, 

in addition to initial CD4+ T cell activation23. The hallmark of MS pathophysiology is the 
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synthesis of oligoclonal antibodies during the inflammatory process23. The presence of 

oligoclonal bands and elevated immunoglobin G/albumin indices in cerebrospinal fluid are used 

for the diagnosis of MS23. Furthermore, the effectiveness of anti-inflammatory and 

immunosuppressive therapies in MS further substantiates the underlying autoimmune-mediated, 

inflammatory pathophysiology23. However, in a novel animal model of demyelinating 

encephalomyelitis induced by monocytes and dendritic cells, mice have been shown to develop 

substantial demyelination with minimal inflammatory response that is independent of CD4+ and 

CD8+ T cells27. These findings raise the possibility that the initial step in developing MS lesions 

could be independent of immune cells, in at least some people with MS24. There is considerable 

debate in the research community regarding which inflammatory and cell death pathways are 

being activated28 and whether immune dysfunction precedes or follows neuronal dysregulation29. 

It is interesting to observe that lesions may not always correlate with clinical symptoms and 

patients who are newly diagnosed with MS often have many ‘clinically silent’ lesions30. Over the 

past decade, there has been a greater appreciation of the role of neurodegeneration in 

accumulation of disability in MS31. In any case, in addition to immune-mediated lesions, people 

with MS also have progressive neurodegeneration that is sometimes difficult to detect32, making 

diagnosis and clinical staging of MS challenging. 

Therefore, the 2017 McDonald criteria for the diagnosis of MS, having evolved over 

time, includes clinical and imaging assessments to supplement laboratory findings allowing more 

rapid, accurate, and specific diagnosis33. According to the most recent 2017 revisions of 

McDonald diagnostic criteria for MS, a provisional disease phenotype as per disease progression 

(relapsing-remitting, secondary progressive, or primary progressive) (Figure 1.1), and disease 
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course, whether active or not, must be specified based on the previous year’s clinical, imaging, 

and laboratory findings33.  
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Figure 1.1 Phases and progression of Multiple Sclerosis. 

X-axis: phenotypes of Multiple Sclerosis. Y-axis: non-evident and clinically evident disease 

activity. Original figure © Augustine Joshua Devasahayam. 
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The most recent consensus about MS pathophysiology is that it begins insidiously with a 

prodromal phase lasting at least 10 years before the clinical onset (Figure 1.1)34. Prodromal 

symptoms of MS that precede the clinical onset of symptoms include gastrointestinal, urinary, 

and anorectal disturbances, fatigue, insomnia, anxiety, depression, headache, and various types 

of pain35. Although MS pathophysiology during the prodromal phase is poorly understood, it is 

known that people with primary progressive form of MS had more nervous system related 

symptoms during MS prodrome when compared to those with relapsing-remitting MS36. 

Bjornevik, Munger 34 demonstrated that serum levels of neurofilament light chain, a sensitive 

biomarker of neuroaxonal degeneration, were increased at least six years before the clinical onset 

of MS. Therefore, MS prodromal symptoms could be attributed to the subtle loss of grey matter 

and axons that occur slowly over time, such as that demonstrated in people with early MS who 

are considered to have ‘no evidence of disease activity’37. The presence of neurodegeneration 

along with new, resolving, or ‘smoldering’ demyelination, makes MS extremely heterogeneous 

with wide-ranging symptoms26.  

The clinical features of MS which reflect established MS pathology include acute or 

subacute motor weakness, walking difficulty, balance problems, limb ataxia, spasticity, pain, 

L’Hermitte sign (electric shock-like sensations on the back and limbs during neck flexion), 

fatigue, heat sensitivity (Uhthoff phenomenon), double vision, vertigo, cognitive deficits, and 

sensory impairments38. Neurologists use a rater-observed categorical scale, the Expanded 

Disability Status Scale ((EDSS) ranging from 0, no symptoms, to 10, death due to MS), to 

describe the progression of MS in an individual39. Nearly all individuals with MS (93%) report 

difficulty in walking within ten years of diagnosis which explains why walking ability is the 

main criterion used in the EDSS40. The second most common symptom is fatigue with more than 
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80% of people with MS reporting fatigue as their most disabling symptom41. Furthermore, in up 

to 80% of people with MS, increase in body temperature worsens most symptoms of MS42. 

However, walking difficulty remains the main concern among people with MS as it decreases 

their quality-of-life (QOL) and socioeconomic status 40, 43-45.  

1.4 Mechanisms of repair and recovery in Multiple Sclerosis 

Despite the fact that MS pathology results in accumulating walking disability46, there is 

evidence that the CNS is able to adapt and repair itself in MS. For example, recent research 

suggests that the return of lost walking ability was associated with remyelination47. In addition to 

remyelination, the recovery of walking ability had also been attributed to the cellular 

mechanisms of recovery, such as the return of nerve conduction with redistribution of axonal 

sodium channels48, restoration of action potentials by blocking a subset of potassium channels49, 

and compensation by intact neural tracts50. These adaptive mechanisms in the CNS offer a 

window of opportunity to recover from the manifestations of MS, such as loss of walking 

ability51. However, it has been shown that a high volume of gait training at moderate to vigorous 

intensity is required to initiate the above mentioned cellular mechanisms of recovery and 

improve walking ability52.  

Aerobic exercise on a treadmill is an effective way to improve walking ability in people 

with MS, at least in the short term53. Evidence suggests that aerobic exercise increases motor 

neuron excitability by decreasing potassium channel conductance and altering voltage-gated 

sodium channel kinetics54. Such acute modulation of ion channel performance during exercise 

occurs due to activity-induced changes in calcium entry into motor neurons as well as in 

neurotrophin levels54. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), 
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recognized as modulators of neuroplasticity, are upregulated during aerobic exercise55. Although 

BDNF does not cross the blood brain barrier in large amounts at resting state56, increased 

neuronal activity induced by enriched environment (such as aerobic exercise) upregulates BDNF 

expression in the hippocampus and cortex57. Furthermore, repeated bouts of aerobic exercise 

result in chronic changes in gene expression of ion channel subunits, indicating consolidated 

recovery within CNS (Figure 1.2)54. Such activity-induced transcriptional changes in the CNS 

could benefit patients with MS when recovering from relapse or decline in walking ability58. 

Furthermore, repeated bouts of aerobic exercise, which leads to recurrent acute exercise-induced 

inflammatory challenges, could result in attenuation of chronic systemic inflammation59. 

Proinflammatory cytokines, such as interleukin-6 (IL-6), had been reported to increase acutely in 

response to high-intensity aerobic exercise bouts with 2-minute intervals compared to workload 

matched continuous exercise60. Such acute exercise-induced increases in IL-6 achieved during 

aerobic training had been attributed to reduction in chronic systemic inflammation, albeit not on 

every occasion, as the induction of IL-6 appears to be influenced by the specifics of exercise 

parameters61. Therefore, progressively intense aerobic training that aims to increase fitness or 

physical activity status could result in the reduction of chronic systemic low-grade inflammation, 

such as one encountered in MS (Figure 1.2)62. However, several barriers to participating regular 

exercise such as physical disability, fatigue, and heat sensitivity exist for people living with 

MS63. Furthermore, whether aerobic exercise on a treadmill could restore walking in the longer-

term (months later) is not known.  
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Figure 1.2 Mechanisms of recovery in Multiple Sclerosis. 

X-axis: exercise sessions (in days). Y-axis (A): increasing levels of blood markers. Y-axis (B): 

increasing intensity of aerobic training.  Original figure © Augustine Joshua Devasahayam. 
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1.5 Barriers to exercise participation 

Although aerobic training can improve walking and reduce the perception of fatigue in 

people with MS, it is important to acknowledge that both these factors are also major barriers to 

exercise participation among people with MS63. For instance, in a national survey conducted 

among people living with MS (n=743), it was determined that physical disability was the major 

predictor of exercise adherence (at moderate and high intensities) for both ambulatory and non-

ambulatory individuals64. As gait rehabilitation is an important part of therapy that aims to 

improve levels of physical activity, participation, and independence, researchers and clinicians 

have employed bodyweight supported treadmill (BWST) training using an overhead harness, to 

overcome some of the challenges of providing treadmill training for people with walking 

impairments. Besides providing motorized assistance on treadmill while walking, bodyweight 

support system provides additional help and safety for individuals with MS who attempt to walk 

faster during training sessions. In recent years, the bodyweight support safety harness system has 

become an important tool to mitigate exercise barriers (Figure 1.3)65.  

Second only to walking disability, fatigue is one of the most commonly reported barriers 

to participating in exercise66. In a cross-sectional survey conducted among people living with MS 

(n=417), the top three barriers to exercise participation identified were excessive tiredness, 

impairment, and lack of time67. Although there are concerns about the potential exacerbation of 

fatigue due to exercise, current evidence suggests that regular exercise training may result in 

clinically important reduction in fatigue68. In a recent meta-analysis, the authors recommended 

that aerobic exercise can be prescribed to people with MS without harm and that aerobic training 

may reduce fatigue by -4.2 points (95% CI -6.7 to -1.7) on the Fatigue Severity Scale (FSS) or -

7.4 points (95% CI -11.9 to -2.9) on modified Fatigue Impact Scale (mFIS)69. It is also known 
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that individuals with MS have greater (61%) chance of improved fatigue following exercise 

training68.  Furthermore, individuals who take part in regular exercise training are likely to obtain 

two times larger effect improving fatigue (effect size = 0.45) than interferons (effect size = 0.2) 

prescribed to reduce MS exacerbations and progression68. Interestingly, improvements in fatigue 

were noted only in those who obtained aerobic fitness gains70. During aerobic exercise, skeletal 

muscles produce and use lactate as a fuel71. As aerobic exercise intensity increases, oxygen 

consumption (V̇O2) increases and lactate accumulates to act as a master regulator of fatigue 

through lactate shuttle mechanisms72. One important observation from previous research is that 

increased resting serum lactate levels and rapid accumulation of lactate during aerobic exercise 

are a function of increasing disability, deconditioning, and fatigue in people with MS73. 

Therefore, it appears that training must be progressed gradually to higher intensity to improve 

one’s fatigue and fitness simultaneously. In order to avoid worsening of MS symptoms during 

such high-intensity training, progressive increase in workload individualized to one’s tolerance 

may help mitigate fatigue acting as a barrier to exercise participation (Figure 1.3)74. Without 

exercise, patients with MS find themselves in a vicious cycle of deconditioning and worsening 

fatigue75.  

Since aerobic exercise elevates body temperature, patients often complain of temporary 

worsening of MS symptoms during and after exercise, a significant barrier to exercise 

participation76. In particular, findings from previous studies indicate that aerobic exercise could 

temporarily worsen walking performance due to an increase in body temperature77, 78. It is 

thought that heat-induced worsening of symptoms in MS, which results in decreased ability to 

walk, is related to impaired propagation of action potentials in demyelinated axons79, 80. With 

demyelination, increases in temperature as little as 0.5°C resulted in slowing of nerve conduction 
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and reversible conduction block81. In contrast, exposing thermo-sensitive MS patients to cold 

temperature (15°C) resulted in simultaneous improvement in both conduction block and walking 

velocity82. Pharmacological studies have shown that symptomatic treatment by drugs like 

dalfampridine that block potassium channels, the same channels affected by heat83, restores 

action potential conduction in demyelinated axons, thus improving walking speed in 

approximately one-third of MS patients with impaired walking49. However, current evidence is 

insufficient to conclude that dalfampridine is superior to conventional walking training for 

improving walking speed in people with MS84. Exercise interventions, therefore, must not only 

be adapted for people with balance and mobility impairments but also account for barriers to 

exercise participation such as heat sensitivity85. It is well known that aerobic exercise increases 

metabolic rate by 5 to 15 times above resting levels, and heat generated by the contracting 

muscles further elevates core body temperature, which in turn could worsen symptoms of MS, 

especially if the exercise environment is hot86-88. Hence, it is important to determine the 

feasibility of conducting progressively intense aerobic training while incorporating precooling 

and/or concurrent cooling methods to minimize the effects of heat-induced MS symptoms 

(Figure 1.3).  
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Figure 1.3 Graded exposure model for aerobic exercise prescription in Multiple Sclerosis. 

X-axis: exercise sessions (in days). Y-axis (left): barriers to exercise participation – physical 

disability, fatigue, and heat sensitivity, and strategies to mitigate barriers – bodyweight support, 

individualized, progressive increase in exercise workload, and cooling strategies for exercise 

(internal – cold water, ice slurry ingestion, menthol mouth rinse, external – cooling vest, cool air 

using fans or air-conditioners, and iced towels). Y-axis (right): target heart rate zones based on 

one’s maximal heart rate. MHR: maximal heart rate. Original figure © Augustine Joshua 

Devasahayam. 
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1.6 Methods of cooling in Multiple Sclerosis 

Cooling methods used to mitigate thermal effects of exercise are of two types: internal 

(e.g., cold water or ice slurry ingestion, menthol mouth rinse) and external (e.g., partial or whole-

body cold water immersion, cooling garments, mist spray, cold air exposure, or ice towel 

application)89. Cooling methods can be applied either before, during, or simultaneously before 

and during exercise89. Cooling prior to exercise using external methods lowers the temperature of 

the circulating blood, which in turn reduces the core body temperature89. When the magnitude of 

cooling prior to exercise through external methods is sufficient, the capacity to perform exercise 

in hot environment increases, due to increase in the heat storage capacity and decrease in the 

perception of heat strain during exercise89. In individuals with MS, immersing the lower body for 

30 minutes underwater (16 – 17°C) prior to exercise (at 60% maximal aerobic capacity for 30 

minutes), prevented increases in core temperature and avoided exercise-induced worsening of 

walking performance and fatigue79, 80. The degree or threshold required to obtain the benefits of 

cooling before exercise are not clear. For example, extreme cooling prior to exercise can induce 

severe vasoconstriction and/or decrease in muscular temperature, resulting in impaired exercise 

performance89. On the other hand, mild cooling prior to exercise may produce an improvement in 

exercise performance without any objective physiological change90. Finally, it is important to 

acknowledge that physiological effects of cooling prior to exercise are short term. For example, 

benefits of cooling before exercise were often lost or diminished after about 20 to 25 minutes of 

continuous exercise in healthy individuals91, and benefits of cooling before exercise were lost in 

30 minutes after exercise in MS79, 80.  

In addition to methods to cool the body prior to exercise (as discussed above), cooling 

methods applied during exercise are effective in preventing thermal strain and facilitating 
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exercise performance89. For example, cooling during exercise using external methods such as an 

ice vest, reduced skin and core temperatures, improved exercise capacity, and reduced thermal 

strain in healthy individuals92. In a randomized pilot study (n=18), which evaluated the effects of 

wearing a cooling vest (8°C) in a temperature-controlled room (20 – 22°C) during a seven-week 

training program, people with MS demonstrated improved walking endurance on six-minute 

walk test and decreased fatigue on Multidimensional Fatigue Inventory93. However, in another 

randomized study (n=10), which evaluated the immediate effects (single session) of wearing a 

cooling vest (13°C), people with MS did not report a reduction in fatigue when measured using 

visual analog scale94. By contrast, people with MS who walked on a treadmill while cooling one 

hand (18–22°C) through a rigid chamber airtight around wrist were able to walk for a longer 

duration (35% more) in the same session95. It is worth noting that there have been increased 

interest in cooling specific body regions such as face96, head97, neck98, torso92, and hand99 to 

study differential effects of cold exposure during exercise. Such methods provide a ‘heat sink’ in 

order to dissipate heat produced by exercise. Other methods such as ingesting ice and cool 

liquids seem to provide similar benefits. For example, ingesting cold fluids (4°C) during exercise 

increased cycling capacity by 13%100, and ingesting ice slurry (-1°C) during exercise increased 

cycling performance by 2.4% among healthy individuals101. In MS, drinking cold water (1.5°C) 

increased tolerance to exercise for longer duration with no significant alteration in either rectal or 

skin temperature, when compared to drinking thermoneutral water (37°C)102. It is important to 

note that, although beneficial, such cooling methods may not be tolerable to some people. For 

instance, people with MS who participated in the study described above, reported discomfort 

while drinking cold water102. Similarly, cooling devices such as vests and garments were 

wrought with concerns about skin irritation, excessive weight, and inconvenience103. There is a 
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need to develop cooling methods that can be practically and comfortably applied during exercise 

in order to make aerobic exercise more tolerable for patients. Whether cooling methods could be 

employed within a rehabilitation strategy to provide a long-term benefit to fitness or walking is 

not known.  

Cooling the room in which exercise takes place, using air conditioning, is a reasonable 

and simple method to permit aerobic training for people with MS who are heat sensitive. Parkin, 

Carey 104 reported that healthy individuals were able to exercise for a longer duration in a 

chamber cooled to 3°C, when compared to 20°C or 40°C. In the study by Galloway and 

Maughan 105, the optimal room temperature that permitted the longest exercise duration among 

healthy individuals was 11°C, when compared to 4°C, 21°C, or 31°C at similar workload. They 

also reported that healthy individuals consumed less oxygen (indicative of less effort) while 

exercising at 21°C105. Similarly, Hinde, Lloyd 106 reported that healthy individuals consumed less 

oxygen while walking at 10°C or 20°C when compared to -5°C or -10°C, suggesting that room 

temperatures between 10°C to 20°C may be beneficial to both maximizing exercise duration and 

tolerance, and minimizing oxygen cost and thermal strain. Such methods could be useful for 

people with MS. For example, in people with MS, maximal voluntary contraction torque 

measured from plantar flexors was higher after exercising at 65% maximal aerobic capacity for 

30 minutes in a cool room (16°C) when compared to exercising at similar workload in ambient 

temperature (21°C)107. These findings suggest that the cool room temperature (16°C) might have 

alleviated heat-induced strain on the CNS, allowing for improved voluntary muscular 

contraction107. In a randomized study (n=54), which evaluated effects of 15-week aerobic 

training program conducted in an ambient temperature with extra air fans to ensure adequate heat 

loss, people with MS demonstrated significant increase in aerobic fitness (22%) at the end of 15th 
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week, and decrease in fatigue measured using Profile of Mood States (9%) at 10th week70. These 

studies, conducted among people with and without MS, support that strategies such as 

performing treadmill-based, progressively intense, aerobic training in a climate-controlled cool 

room (between 10°C to 20°C) presents a practical treatment option to minimize oxygen cost and 

thermal strain while improving walking ability in people with MS. Whether combining the safety 

and support of a BWST system along with cooling would provide longer-term benefits for 

people with MS-related walking impairments is not clear. Thus, the overarching aim of the 

doctoral work outlined in this thesis was to devise, develop, and measure the effects of a novel 

exercise paradigm in a cool environment (16°C) to improve walking ability among people with 

MS.  

1.7 Rationale/Objectives of the studies 

Most studies examining exercise and walking interventions have excluded people who 

have severe walking problems (EDSS > 6.0); individuals who arguably, could benefit the most 

from such interventions108. The cool room walking training program developed and tested in this 

thesis specifically targeted this subgroup of people with MS who typically employed ambulatory 

assistive devices in order to walk. By creating a tolerable intensive walking training program 

with attention to safety (using an overhead support harness) and heat sensitivity (cooling the 

room to 16°C), the intention was to elevate the volume of training to levels that have been 

previously identified to promote neuroplasticity and suppress inflammation in order to restore 

lost walking ability108. To date, there are no training strategies devised to improve walking 

ability in people with MS, while positively affecting blood biomarkers of neuroplasticity and 

inflammation although findings from animal studies support that a high volume of training at 
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moderate to vigorous intensity is required to address these multiple targets simultaneously 

(neuroplasticity, inflammation, and walking)108. As discussed in the previous section, people 

with MS do not tolerate exercise training at moderate to vigorous intensity due to symptoms such 

as fatigue and heat sensitivity even though aerobic training has potential to affect multiple 

rehabilitation targets, including fatigue109, 110. Since the field of exercise training among people 

with severe MS-related walking disability was limited, my doctoral work was planned in four 

stages.  

The first stage of my doctoral work was to examine and systematically review the 

evidence supporting exercise aimed at restoring walking among individuals living with MS-

related moderate to severe walking disability. This stage of the research also examined the state 

of the evidence regarding the use of blood biomarkers of neuroplasticity (such as neurotrophins) 

as indicators of recovery. The results of this review would inform the subsequent stages of the 

research; outlining appropriate outcome measures and the optimal dosage (frequency, intensity, 

time, type) of exercise.  

Since fatigue is part of the vicious cycle that prevents participation in exercise and 

exercise is known to improve subjective and objective levels of fatigue (e.g., oxygen costs of 

tasks), the second stage of the research aimed to fully characterize fatigue among people with 

MS having severe walking disability (ambulatory aid users). This stage was designed to address 

two issues: (1) What is the extent of fatigue among this group of people with MS having severe 

walking disability and, (2) Which fatigue outcome measures would be most suitable to use for an 

exercise intervention study in this group? In this stage of the research, I investigated whether 

people with MS consumed more oxygen when compared to age and sex-matched healthy 

individuals while performing typical mobility tasks and whether the oxygen cost of mobility 
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tasks (especially, walking) was related to perceived exertion and fatigue. Given that a 

relationship exists between oxygen cost of walking and fatigue in people with MS, we have a 

reason to postulate that high volume of training at moderate to high intensity targeted to improve 

walking ability would not only affect biomarkers of recovery (neuroplasticity and inflammation), 

but also improve fatigue, a known barrier to exercise participation.  

The third stage of the thesis examined whether blood biomarkers of neuroplasticity 

(BDNF and insulin-like growth factor-1 (IGF-1)) and inflammation (IL-6 and tumor necrosis 

factor (TNF)) could be used as biomarkers in the future exercise intervention study. The study 

examined whether these potential blood markers were related to indicators of MS symptom 

severity (which are potential rehabilitation goals) such as walking speed, balance, fatigue, and 

aerobic fitness.  

The previous three stages informed the final and fourth stage of the thesis, which aimed 

to examine the feasibility of and measure the effects of a progressively intense, BWST training 

in people with MS having severe walking disability in a room cooled to 16°C. In this study, I 

have investigated a progressively intense but personalized training strategy (3 times per week for 

ten weeks starting at 80% of self-selected walking speed with training zones set between 40 to 

65% heart rate reserve) in people with MS having severe walking disability, fatigue, and heat 

sensitivity. The main aim of this study was to determine the feasibility of conducting such an 

intensive training strategy in those with multiple barriers to exercise participation. The secondary 

aims were to determine whether such personalized training strategy devised to improve both 

walking ability and blood biomarkers of recovery had any impact on walking speed, fatigue, 

aerobic fitness, and QOL.  
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1.8 Specific objectives of the studies 

The four stages of the thesis are described separately in Chapters 2, 3, 4, and 5 (Chapter 1 

is the thesis Introduction).  

Chapter 2: The primary goal of the first study was to systematically evaluate the clinical 

studies examining the effects of aerobic training on the recovery of walking ability in people 

with MS. The secondary aims of the first study were (i) to determine the aerobic training 

parameters (frequency, intensity, type, and time/duration) that enhanced both walking ability and 

blood biomarkers in people with MS, and (ii) to determine the extent to which aerobic training 

protocols from animal studies can be translated into clinical practice. This study has been 

published in the Multiple Sclerosis International on 17 October 2017108. 

Chapter 3: The overarching aim of the second study was to characterize the oxygen cost 

of typical mobility tasks with a specific focus on people with progressive MS while exploring its 

relationship to perceived exertion and fatigue. The primary goal of this study was to determine 

whether there was a difference in oxygen cost of the typical mobility tasks (such as rolling in 

bed, supine lying to sitting, sitting to standing, walking, climbing steps) between people with MS 

and healthy individuals matched for age and sex. The secondary aims were (i) to investigate the 

changes in perceived exertion and fatigue reported by people with MS and healthy controls while 

performing mobility tasks, and (ii) to investigate the relationships between oxygen cost of 

mobility tasks, perceived exertion, and fatigue. This study has been published in the Archives of 

Physical Medicine and Rehabilitation on 23 April 2019111. 

Chapter 4: The primary aim of the third study was to measure serum levels of 

neurotrophins (BDNF, IGF-1) and cytokines ((IL-6 and TNF) in people with MS and compare 

with healthy individuals matched for age and sex. The secondary aim of this study was to 
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determine whether serum blood markers (BDNF, IGF-1, IL-6, TNF) were associated with 

indicators of MS symptom severity such as walking speed, balance, fatigue, and aerobic fitness. 

The pilot data from this study has been submitted for a poster presentation at an international 

conference. This manuscript not submitted elsewhere for consideration. 

Chapter 5: The primary aim of the fourth study was to determine the feasibility of 

conducting a vigorous BWST training in a cool room (16°C) for people with MS using 

ambulatory assistive devices, wheelchairs, and mobility scooters. The secondary aims were (i) to 

examine both immediate and long-term (3-month follow-up) impact of training on walking 

speed, spatiotemporal gait parameters, fatigue, aerobic fitness, and QOL, and (ii) to determine 

whether training altered serum blood markers of neuroplasticity (BDNF) and inflammation (IL-

6). This study has been published in the BMC Neurology on 22 January 2020112.  

Since the formatting varies for each journal and the reference lists overlap, the references 

have been formatted in the Superscript Vancouver style and are consolidated at the end of this 

thesis after the Discussion (Chapter 6). 
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Abstract 

Introduction: Walking is a high priority for people with multiple sclerosis (PwMS). It remains 

unclear if aerobic exercise can improve walking ability and upregulate neurotrophins. This 

review aims to consolidate evidence to develop optimal aerobic training parameters to enhance 

walking outcomes and neuroplasticity in PwMS. 

Methods: Clinical studies examining aerobic exercise for > 3 weeks, having outcomes on 

walking with or without neurotrophic markers, were included. Studies utilizing animal models of 

MS were included if they employed aerobic exercise with outcomes on neurological recovery 

and neurotrophins. From a total of 1783 articles, 12 clinical and 5 animal studies were included. 

Results: Eleven clinical studies reported improvements on walking ability. Only two clinical 

studies evaluated both walking and neurotrophins, and neither found an increase in neurotrophins 

despite improvements in walking. Patients with significant walking impairments were 

underrepresented. Long-term follow-up revealed mixed results. Two animal studies reported a 

positive change in both neurological recovery and neurotrophins. 

Conclusion: Aerobic exercise improves walking ability in PwMS. Gains are not consistently 

maintained at 2- to 9-month follow-up. Studies examining levels of neurotrophins are 

inconclusive, necessitating further research. Aerobic exercise enhances both neurological 

recovery and neurotrophins in animal studies when started 2 weeks before induction of MS. 
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2.1 Introduction 

Multiple Sclerosis (MS) is a demyelinating autoimmune disease affecting approximately 

2.3 million people worldwide 9. Improved health care has led to people living longer with MS 

and disease-modifying drugs have helped more patients remain stable in their disease 113-116.  

However, relapses and slow decline of function still occur over time and most people with MS 

(PwMS) will develop permanent physical disability 9, 113-116. The rehabilitative approach to MS 

has primarily focused on teaching compensation for physical impairments rather than fostering 

neuroplasticity and recovery of function 117, 118. Recent research suggests that neuroplasticity 

does occur among PwMS 119 and there may be more opportunities for recovery after relapse than 

was previously believed 120. 

Walking is of high priority for PwMS 121 and there is a need to develop effective 

treatments to mitigate the progressive difficulty in walking experienced by PwMS122, 123. Ideally, 

rehabilitative interventions should maximize walking ability, while simultaneously facilitating 

plasticity of neural pathways that execute walking to foster long-term restoration of function 109, 

110, 124. Although the exact cellular cascades underlying the neural plasticity for walking remain 

to be explored, there is a general consensus suggesting that such plasticity may take place 

involving neuroplastic markers at the site of injury and/or lesions 125, 126. 

Aerobic exercise is one intervention that has potential to affect multiple underlying 

targets such as enhancing markers of neuroplasticity, attenuating neural inflammation, and 

improving tolerance for physical activity, and because of reciprocal limb movements, it also 

helps restore walking ability 109, 110. Evidence suggests that aerobic exercise promotes 

neuroplasticity by upregulating neurotrophins such as brain derived neurotrophic factor (BDNF), 

nerve growth factor (NGF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) 127-129. Among 
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these, BDNF has been thought to have great potential as a therapeutic agent due to its ability to 

cross the blood-brain barrier (BBB) 130. There is, however, a report that, even in the presence of a 

pronounced BBB disruption, there is no significant increases in plasma BDNF levels 131. 

Nevertheless, BDNF is suggested to play a central role in neuroplasticity as well as exercise-

induced enhancement in learning and memory 132, 133. 

The regulation of neurotrophic factors has been implicated in the repair of neural 

structures damaged by the demyelination process, resulting in functional recovery in PwMS 134. 

Current literature suggests that a single exercise bout and/or long-term training could transiently 

increase BDNF synthesis and induce a cascade of neurotrophic and neuroprotective effects 128. 

Recent research has reported that an acute bout of exercise could alter BBB permeability 135, 

which in turn, could result in larger BDNF release after a few weeks of training (possibly 

through repeated spells of altered BBB permeability). In line with this view, the meta-analysis by 

Dinoff et al. 136 concluded that regular aerobic training > 2 weeks elevated resting BDNF levels. 

Therefore, a familiar functional task such as walking could be incorporated as an aerobic 

exercise, elevating BDNF levels and fostering long-term improvements on walking performance 

among PwMS. Wens et al. 137 explored this idea by studying the effects of a 24-week combined 

training program that included cardiovascular treadmill training and reported significant 

increases in circulating BDNF and exercise tolerance on a seated bike test among persons with 

relapsing-remitting MS. However, it is unclear whether such aerobic-type training could increase 

both BDNF levels and neuroplasticity required for walking in PwMS 137, forming the basis of 

this review. Furthermore, the exact exercise parameters to evoke change in walking ability 

(while upregulating neurotrophins) in terms of FITT (frequency, intensity, time, and type) 
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principles have not been discussed 109, 129. It is essential for therapists to describe aerobic exercise 

in terms of FITT principles in order to titrate the appropriate dosage 138. 

The primary aim of this review was to systematically evaluate the clinical (human) 

studies examining the effects of aerobic exercise on walking ability in MS. The second aim was 

to determine the aerobic exercise training parameters (FITT) that enhance both walking ability 

and proneuroplastic biomarkers (neurotrophins) in PwMS. The third aim was to analyze the 

extent to which aerobic exercise protocols evaluated in animal research can be translated into 

clinical practice. 

2.2 Methods 

2.2.1 Eligibility criteria 

Randomized clinical studies that evaluated the effects of aerobic/endurance-type exercise 

programs (swimming, walking, jogging, bicycling, treadmill etc.) among PwMS for a duration of 

at least 3 weeks were eligible for this review. Studies with outcomes on walking ability (primary 

study outcome) evaluating spatio-temporal parameters and/or endurance along with or without 

serum levels of neurotrophins (BDNF, NGF, NT3, and NT4) were included. 

We also included randomized controlled studies in animal models of MS (experimental 

autoimmune encephalomyelitis (EAE) or cuprizone). Animal studies in which aerobic-type 

exercise (voluntary/forced treadmill, wheel running, or swimming, etc.) was evaluated for its 

effects on gait and neurotrophins in the blood/muscle/brain/spinal cord, performed both before 

and after disease induction, were included. 
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The studies that evaluated slow-paced exercise or combination training with low aerobic 

workload (yoga, tai chi, memory tasks, resistance training, etc.) were excluded. Only English 

language articles were included. 

2.2.2 Search strategy 

A systematic literature search was conducted in PubMed, EMBASE, Cochrane, Scopus, 

and Physiotherapy Evidence Database [PEDro], using a combination of keywords (multiple 

sclerosis, aerobic exercise, nerve growth factor, neurotrophic factor, and walking) and 

MESH/EMTREE terms in the respective databases (online supplement a, in Suppementary 

Material available online at https://doi.org/10.1155/2017/4815958). Two authors screened and 

assessed the eligibility of each article separately. Review articles and eligible articles were hand-

searched for relevant references. The search strategy is presented in the Figure 2.1 as per the 

adapted Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines from Cochrane review updates 139.  

2.2.3 Methodological quality assessment 

The clinical studies (n=12) included in this systematic review were assessed for 

methodological quality using the Physiotherapy Evidence Database (PEDro) scale criteria 140, 141. 

The quality of the clinical studies was classified as good for PEDro scores > 6, fair for 4-5, and 

poor for < 3 140, 141. These categories were selected based on previous research that conducted 

sensitivity analyses comparing results with cut-offs set at PEDro scores 4 to 6 140, 141. The animal 

studies (n = 5) were assessed for methodological quality using the SYstematic Review Centre for 

Laboratory animal Experimentation (SYRCLE) risk of bias tool, an adapted version of the 

Cochrane risk of bias tool developed for clinical studies 142. 
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2.2.4 Data extraction and analysis 

Studies that compared the outcomes on walking ability (spatiotemporal parameters and/or 

endurance) between aerobic-type exercise and non-aerobic type exercise or wait-list control were 

included for meta-analysis. The data, where available, from long walking tests that assessed 

endurance (2-minute and 6-minute walk tests) and short walking tests (10-meter walk test 

(mWT), functional ambulation profile (FAP) from GAITrite walkway) that assessed 

spatiotemporal parameters of walking were subjected to meta-analysis as previously performed 

by Miller et al. 143. A strong association between 2-minute and 6-minute walk test results 

provided us with the justification to combine the data from these two long walking tests 144. 

While both 10mWT and FAP calculated by the GAITrite software are short walking tests 

measuring self-selected walking speed, the latter is a composite score integrating values of 

preferred walking speed and biomechanically related spatiotemporal walking parameters. This 

provided us rationale to combine the results from these two short walking tests. The data from 

studies reporting on energy cost (oxygen consumption in mL/kg/min) of walking were also 

included for analysis in a separate group. 

The mean scores measured after the intervention period in experimental and control 

groups were used to calculate effect sizes (d). The sign of mean scores were reversed, where 

needed, to ensure all scores are aligned such that positive values on forest plot (right to the 

vertical line) favored improvements on walking ability due to aerobic-type interventions and the 

negative values on forest plot (left to the vertical line) favored wait-list control group or non-

aerobic-type intervention. The standardized mean differences were calculated, as the outcomes 

pooled together in a group had different units of measure. The benchmark proposed by Cohen 

was used to describe small (d=0.2), moderate (d=0.5), and large (d=0.8) effects of aerobic 
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exercise on walking ability 145. The chi-squared (Q2) value and I2 index were calculated to 

measure heterogeneity and inconsistency, respectively, among the studies included for meta-

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

S
cr

ee
n
in

g
 

In
cl

u
d
ed

 
E

li
g
ib

il
it

y
 

Id
en

ti
fi

ca
ti

o
n

 

Records identified through 

database searching 

(n = 1763) 

Additional records identified 

through other sources (n = 0) 

Records after duplicates removed (n = 1488) 

Records screened  

(n = 1488) 

Records excluded (n = 1448) 

Reasons for exclusion: 

•Reviews (n = 52) 

•Not a study on multiple 

sclerosis (n = 3) 

•Exercise < 3 weeks (n = 1393) 

Studies included = 17 

(clinical = 12; animal = 5) 

Full-text articles excluded  

(n = 23) 

(clinical = 4; animal = 19) 

Reasons for exclusion: 

•Not a randomized controlled 

study (n = 16) 

•No walking outcomes (n = 2) 

•Exercise duration was less 

than 3 weeks (n = 3) 

•Low aerobic load (n = 2) 

Full-text articles assessed for 

eligibility = 40 

Figure 2.1 Flow chart - Systematic search strategy 
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2.3. Results 

In total, 12 clinical studies and 5 animal studies were included in this review.  

2.3.1 Methodological quality results 

The methodological and reporting quality of the selected clinical studies is summarized in 

Table 2.1. Only 5 out of 12 clinical studies mentioned intention-to-treat analysis. None of the 

clinical studies reported blinding of subjects/therapists. The mean score of PEDro was 5.5 (SD: 

0.9, range: 4-7) for 12 clinical studies. The quality of the clinical studies according to the total 

PEDro scores was good in 7 studies and fair in 5 studies. None of the clinical studies were of 

poor quality as per PEDro scores. 
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Table 2.1 Methodological quality assessment of the clinical studies included in this review 

Articles included PEDro Scoring criteria PEDro 

Score* 1 2 3 4 5 6 7 8 9 10 11 

Ahmadi et al. 146 Y Y N Y N N N N N Y Y 4/10 

Aydin et al 147 Y Y N Y N N N Y N Y Y 5/10 

Dettmers et al. 148 Y Y Y Y N N N Y N Y Y 6/10 

Schulz et al. 149  N Y N Y N N N Y N Y Y 5/10 

Romberg et al. 150 Y Y N Y N N N Y Y Y Y 6/10 

Braendvik et al. 

151 

Y Y N Y N N N Y Y Y Y 6/10 

Collett et al. 152 Y Y N Y N N Y N Y Y Y 6/10 

Rampello et al. 153 Y Y N Y N N Y N N Y Y 5/10 

Briken et al 154 N Y N Y N N N N N Y Y 4/10 

Vaney et al 155 Y Y Y Y N N N N Y Y Y 6/10 

Schwartz et al. 156 Y Y Y Y N N Y Y N Y Y 7/10 

Straudi et al 157 N Y N Y N N Y N Y Y Y 6/10 

Total Score 9 12 3 12 0 0 4 6 5 12 12  

1. Eligibility criteria; 2. Random allocation; 3. Concealed allocation; 4. Baseline comparability; 5. 

Blind subjects; 6. Blind therapists; 7. Blind assessors; 8. Adequate follow-up; 9. Intention-to-treat 

analysis; 10. Between-group comparisons; 11. Point estimates and variability; *The eligibility 

criteria item in the PEDro scale does not contribute to the PEDro score; Y. Yes = 1; N. No = 0; 

PEDro. Physiotherapy Evidence Database; n. Sum of scores; %. Percentage. 
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The methodological quality of animal studies included in this review is summarized in 

Table 2.2. None of the studies concealed the allocation of animals, randomly housed the animals, 

blinded the investigators and outcome assessors, or selected the animals randomly for outcome 

assessment (Table 2.2). The mean SYRCLE score was 4 (SD: 0.7, range: 3-5) for 5 animal 

studies. We note that it is still not standard practice to randomize treatment allocation or blind 

investigators and outcome assessors in animal research. We calculated SYRCLE score for each 

animal study to highlight methodologic gaps and overall poor reporting quality. It is, however, 

not recommended to grade the quality of these studies (as good, fair, and poor) using summary 

scores for each study as this will require assigning “weights” to specific domains in the tool, 

which in turn will be difficult to justify 142. 
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Table 2.2 Methodological quality assessment of the animal studies included in this review 

Articles included SYRCLE’s risk of bias tool, scoring criteria SYRCLE’s 

Score 1 2 3 4 5 6 7 8 9 10 

Bernardes et al. 158 N Y N N N N N N Y Y 3/10 

Patel et al. 159 Y Y N N N N N N Y Y 4/10 

Wens et al. 160 Y Y N N N N N Y Y Y 5/10 

Klaren et al. 161 Y Y N N N N N N Y Y 4/10 

Patel et al 162 Y Y N N N N N N Y Y 4/10 

Total Score 4 5 0 0 0 0 0 0 5 5  

(1) sequence generation; (2) baseline characteristics; (3) allocation concealment; (4) random 

housing; (5) blinding – investigators; (6) random outcome assessment; (7) blinding – outcome 

assessors; (8) incomplete outcome data addressed; (9) no selective outcome reporting; (10) no 

other sources of bias; Y (yes) = 1; N (no) = 0; U (unclear) = 0; SYRCLE: SYstematic Review 

Centre for Laboratory animal Experimentation; n: sum of scores; %: percentage. 
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2.3.2 Summary of clinical studies 

We identified twelve clinical studies that evaluated the effects of aerobic training on 

walking outcomes (walking endurance and the spatiotemporal parameters of gait). Data on the 

FITT parameters and the outcomes on walking ability in the clinical studies are presented in 

Table 2.3. Five studies examined treadmill-training protocols 146, 151, 155-157; three studies tested 

leg cycling protocols 149, 152, 153; one study compared rowing and arm and leg cycling training 154; 

two studies evaluated a combination of aerobic and strengthening exercise 148, 150; and one study 

evaluated a calisthenics protocol 147. 

Of these twelve studies, eleven reported significant improvements in walking ability 

(Figure 2.2). Among these eleven studies reporting recovery of walking, eight studies reported 

improvements on walking endurance (distance covered in a fixed time, time taken to cover a 

fixed distance – variables that represent a change on an individual’s aerobic walking capacity) 

and eight studies reported improvements on spatiotemporal parameters of walking 

(biomechanical efficiency, namely, step length, stride length, cadence, single leg support time, 

and velocity) (Table 2.3). In total, we identified five types of aerobic interventions that improve 

walking ability: treadmill training, robot-assisted treadmill, cycling, calisthenics, and progressive 

repetitive endurance/strengthening activities (Figure 2.2). Only three studies investigated the 

effectiveness of an aerobic-type-intervention on PwMS having severe difficulty walking (Figure 

2.2) 155-157. 
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Figure 1: Aerobic interventions for varying disability levels; The EDSS score ranges from no 

disability (0) to death (10). At 6.0, patients use walking aids. 1. (37) Ahmadi et al. (Treadmill); 2. 

(38) Aydin et al (Calisthenics); 3. (39) Dettmers et al (Combined aerobic and strengthening 

exercises); 4. (40) Schulz et al. (Leg cycling); 5. (41) Romberg et al. (Combined aquatic aerobic 

and circuit resistance exercises); 6. (42) Braendvik et al. (Treadmill); 7. (43) Collett et al. (Leg 

cycling: intermittent/continuous/combined); 8. (44) Rampello et al. (Leg cycling); 9. (45) Briken 

et al. (rowing, arm or leg cycling); 10. (46) Vaney et al (Robot assisted treadmill training); 11. 

(47) Schwartz et al. (Robot assisted treadmill training); 12. (48) Straudi et al (Robot assisted 

treadmill training); * statistically significant improvements on walking performance. 

 

Figure 2.2 Aerobic interventions for varying disability levels 

x-axis: the Expanded Disability Status Scale (EDSS) score ranges from no disability (0) to death 

(10). At 6.0, patients use walking aids. y-axis: the aerobic exercise interventions of experimental 

groups in the clinical studies included in this review. *Statistically significant improvements on 

walking performance. 
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Table 2.3 Outcomes on walking ability and neurotrophins from clinical studies 

  

Intervention 

Pre to Post Changes on Walking ability‡ Changes on Walking 

ability during follow 

up assessments‡ 

Pre to Post Changes 

on Neurotrophins‡ Walking endurance Spatio-temporal parameters 

Treadmill† vs yoga 146 ↑ 2 min WT (m)* ↓ 10 m WT (m/s) * NT NT 

Calisthenics – hospital 

based† vs home based 

147 

NT ↓ 10 m WT (m/s) * NT NT 

Combined aerobic and 

strengthening 

exercises† vs combined 

stretching, balance and 

coordination exercises 

148 

↑ self-paced walking distance 

on treadmill*;  

↑ walking duration on 

treadmill*;  

↑ relative walking ability 

(time and distance) * 

NT NT NT 

Leg cycling† vs wait- NT ↑ Figure of 8 Left*/Right* NT ⦰ BDNF, ⦰ NGF 
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list control 149 walking co-ordination;  

⦰ 3m walking co-ordination 

score 

Combined aquatic 

aerobic and circuit 

resistance exercises† vs 

no intervention 150 

↓ 500 m walking time (min)* ↓ 7.62 m (25 feet) walking 

time (secs)* 

NT NT 

Treadmill vs strength 

training 151 

 ↓ oxygen uptake while 

walking: improved work 

economy* 

↑ Functional Ambulation 

Profile score*;  

↓ root mean square of 

vertical acceleration* 

NT NT 

Leg cycling†: 

continuous vs 

combined vs 

intermittent 152 

↑ 2 min walk distance* 

(considering all participants 

together at 6 weeks during 

12-week long intervention); 

Post hoc analysis on 2 min 

↓ TUG* (secs) from 0 to 6 

weeks;  

⦰ TUG (secs) from 6 to 12 

weeks during 12-week long 

intervention 

⦰ No changes in 2 

min walk distance 

between post and 3 

month follow up;  

↑TUG* (secs) 

NT 
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walk distance revealed that 

the higher-intensity 

intermittent exercise group 

would have shown 

significantly greater 

improvements in walking 

mobility if the study had been 

powered with a sample size 

of 123; 

between post and 3 

month follow up 

Leg cycling† vs 

neurologic 

rehabilitation 153 

↑ 6 minWT distance*,  

⦰ Cost of walking (mL 

O2/kg/m) 

↑ Walking speed (m/min)* NT NT 

Rowing, arm or leg 

cycling† vs wait-list 

group 154 

⦰ Considering all 

intervention groups together, 

there is no association 

between 6 min walk test and 

NT NT ⦰ No association 

between the change 

scores of BDNF and 

6 min walk test 154;  
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BDNF change scores 154;  

↑ 6 min WT (arm/leg 

cycling)* reported in their 

pilot randomized trial 163 

⦰ No change in 

resting serum BDNF 

levels after 22 

training sessions 154 

Robot assisted 

treadmill training† vs 

over-ground walking 

155 

⦰ 3 min WT (m/s) ⦰ 10 mWT (m/s) ⦰ No change 

between baseline 

and post, 2nd, 9th 

month follow up on 

movement counts 

and mins of physical 

activity over 3 METs 

on accelerometer; 

NT 

Robot assisted 

treadmill training† vs 

conventional walking 

treatment 156 

⦰ 6 minWT distance ⦰ 10 m WT (m/s);  

↓ TUG (secs)* 

change between 

baseline and 3rd, 6th 

month follow up in 

TUG (secs)*; 

NT 



46 

 

⦰ No change from 

baseline on 6minWT 

and 10mWT; 

Robot assisted 

treadmill training† vs 

conventional walking 

therapy 157 

↑ 6 minWT distance* ⦰ 10 m WT (m/s);  

⦰ TUG (secs) 

⦰ No change 

between baseline 

and 3 month follow 

up in 6 minWT, 10 

mWT and TUG 

scores 

NT 

†aerobic-type intervention in the experimental group; ‡ results from experimental group; *significance at p < 0.05; ⦰ changes not 

significant; NT: not tested; m: meter; min: minute; secs: seconds; m/s: meter per second; ft: feet; BWS: body weight support; WT: 

walk test; TUG: timed up and go; MFU: month follow up; RAGT: robot assisted gait training; BDNF: brain derived neurotrophic 

factor; NGF: nerve growth factor; METs: metabolic equivalents 
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2.3.3 Effects of aerobic exercise training on walking ability 

Data from the studies that measured the effects of aerobic-type exercise on 

spatiotemporal walking parameters (10mWT and FAP scores) showed a statistically significant 

improvement on walking ability (SMD = 0.83 [confidence interval (CI): 0.16, 1.50], p=0.01, I2 = 

28%) favoring aerobic exercise. Pooling together two studies that measured the effects of 

aerobic-type exercise on walking endurance (2-minute and 6-minute walk test scores) showed a 

trend favoring aerobic exercise (SMD = 0.59 [CI: -0.14, 1.32], p=0.11, I2 = 0%). The outcomes 

on energy cost of walking also showed a trend favoring aerobic exercise (SMD = 0.65 [CI: -0.03, 

1.32], p=0.06, I2 = 0%). The participants in the studies included for meta-analysis 146, 151, 153 had 

mild to moderate walking impairments (EDSS: 1 to 6). Overall, there is a large effect of aerobic-

type exercise on improving walking ability (spatiotemporal parameters) in people having mild-

moderate walking impairments. Please refer to online supplement b for forest plot on walking 

outcomes from the clinical studies included for meta-analysis. All other outcomes on walking 

and neurotrophins in both clinical and animal studies were not included for meta-analysis due to 

lack of comparison with a control group intervention having lower exercise work load or varied 

responsiveness of the outcome measures with similar constructs 164. 

2.3.4 Retention of gains after the end of aerobic intervention 

In total, only four of the twelve studies evaluated the retention of training effects after the 

conclusion of aerobic intervention (Figure 2.3) 152, 155-157. Among these, two studies found no 

difference in walking ability from baseline 155, 157 and two studies reported mixed results 152, 156 

(Figure 2.3). In those with mixed findings, a study on leg cycling reported gains retained from 

end of intervention on the 2-minute walk test but reported detraining on timed up and go (TUG) 
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results during their follow-up assessment 152, and a study on robot assisted treadmill training 

reported improved TUG results but no difference from baseline on 6-minute and 10-meter walk 

tests 156 (Figure 2.3). 
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Figure 3: Summary of long-term follow-up assessment findings after end of aerobic exercise 

interventions. (1) (43) Collett et al; (2) (48) Straudi et al; (3) (47) Schwartz et al; (4) (46) Vaney 

et al; minWT: minute walk test; TUG: timed up and go test (in secs); Robot: Robot assisted 

treadmill training; PA: physical activity 

 

Figure 2.3 Summary of follow-up assessment findings after end of aerobic exercise 

interventions 

X-axis: time of follow-up assessments (in months). Y-axis: walking ability outcomes in the 

studies that had follow-up assessments. minWT: minute walk test; mWT: meter walk test: TUG: 

timed up and go test (in secs); Robot: robot-assisted treadmill training; PA: physical activity. 
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2.3.5 Exercise methods that improve walking ability 

Our results indicate that most aerobic inventions that utilize the reciprocal motion of 

walking (task-specific training; 146, 151, 155-157) as well as those that do not 147-150, 152-154, improve 

walking ability. Two studies that investigated treadmill (gait-specific) training reported 

improvements on both walking domains (endurance and spatiotemporal parameters) 146, 151 

(Table 2.3). Studies on robot-assisted treadmill training (n = 3) reported varied results, with one 

study having no improvements on both walking domains compared to over-ground walking 

training 155 and the other two studies reporting improvements on TUG and 6-minute walking 

endurance respectively compared to conventional walking therapy (Table 2.3) 156, 157. 

There were conflicting findings in the studies that provided aerobic exercise without gait 

training such as leg/arm cycling, calisthenics, and combined endurance and resistance training. 

One study that evaluated leg cycling reported improvements in 6-minute walking endurance but 

not in the cost of walking (mL O2/kg/m) 153. Another study that evaluated three different cycling 

protocols reported improvement in TUG after the first 6 weeks of intervention but showed 

reversal of training effects during 3-month follow-up assessment 152, and lastly, a study on leg 

cycling reported improvements in figure-of-8 walking but not in 3-meter walking co-ordination 

149 (Table 2.3). 

We summarized the findings in Table 2.3 to identify the parameters of exercise that 

improve walking endurance and spatio-temporal parameters separately. Figure 2.4 presents the 

duration, frequency, and intensity of aerobic-type exercise programs (experimental group) 

evaluated in the studies included in this review. The exercise parameters that improved walking 

ability were as follows: 
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Frequency:  three times per week for at least 6-8 weeks 

Intensity:  40-75% age predicted maximum heart rate or 30-60% work rate for those with low to 

moderate levels of disability (EDSS < 6); maximum walking speed tolerated for people with higher 

levels of disability (EDSS > 6) 

Time:   at least 30 minutes per session 

Type:   aerobic-type of training on a treadmill (EDSS < 6)/leg cycling (EDSS < 6)/game 

based or combined aerobic and strengthening exercise (EDSS < 6)/calisthenics (EDSS < 4.5)/robot-

assisted treadmill (EDSS 5-7) 
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Figure 4: Summary of exercise parameters. X axis: Total duration of exercise program (in 

weeks), Frequency of exercise sessions (number of days per week), Duration of exercise sessions 

(in minutes per session), Intensity of exercise sessions in each study included in this review. Left 

Y axis: Exercise duration and frequency. Right Y axis: Exercise intensity (ranges from 1. very 

light, 2. light, 3. moderate, 4. hard, 5. very hard and 6. maximum (adapted from ACSM’s 

guidelines for exercise testing and prescription, 9th edition. 2013) (56). The measures of 

dispersion (mean and standard deviations) of exercise parameters are indicated by the 

horizontal lines transecting the data points. 

 

Figure 2.4 Summary of exercise parameters 

X-axis: total duration of exercise program (in weeks), frequency of exercise sessions (number of 

days per week), duration of exercise sessions (in minutes per session), and intensity of exercise 

sessions in each study included in this review. Left Y-axis: exercise duration and frequency. 

Right Y-axis: exercise intensity (1: very light, 2: light, 3: moderate, 4: hard, 5: very hard, and 6: 

maximum (adapted from ACSM’s guidelines for exercise testing and prescription, 9th edition. 

2013) 165. The measures of dispersion (mean and standard deviations) of exercise parameters are 

indicated by the horizontal lines transecting the data points. 
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2.3.6 Exercise methods that improve both walking ability and neuroplastic outcomes 

We identified eleven clinical studies that reported significant improvements on walking 

outcomes, out of which two measured both walking and serum levels of neurotrophins 149, 154. 

In the study by Schulz et al. 149, aerobic-type leg cycling for 8 weeks (30 min/session; twice a 

week; at 75% max. watts intensity) improved walking ability as measured using a figure-of-8 

walking test. A significant decrease in lactate levels (before: 2.5+1.8; after: 2.1+2.3mmol/l) was 

noted after a 30-minute endurance test after the intervention; however, there were no statistically 

significant pre-to-post changes in resting BDNF, NGF, IL-6, sIL-6R, ACTH, cortisol, 

epinephrine, or norepinephrine levels in the blood. This suggests that increased aerobic fitness 

(improved lactate response) achieved through leg cycling did not influence resting levels of 

neurotrophins among PwMS. However, there was an increase of BDNF in the training group 

(descriptively) while levels in the control group decreased. This was noted on both resting levels 

as well as acute response to 30-minute endurance test. 

In the study by Briken et al. 154, walking endurance was assessed before and after 22 

sessions of interval-type aerobic rowing/arm/leg cycling (2-3 sessions/week; for 9 weeks; 

stepwise progression of intensity). No association between the change scores of 6-minute walk 

distance and BDNF was found considering all 3 intervention groups together 154. However, they 

found an increase in 6-minute walk distance after intervention (arm/leg cycling groups) in their 

pilot work 163. The authors noted nonsignificant increase in the resting BDNF levels after 22 

training sessions and attributed the reason for nonsignificance to small sample size 154. 

There is not enough data to extrapolate our findings and suggest optimal exercise 

parameters that could improve walking and upregulate neurotrophins. However, based on two 
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clinical studies 149, 154, 163, the FITT parameters that improved walking ability with a trend 

towards an increase in neurotrophins were as follows: 

2.3.7 Summary of animal studies with outcomes on gait and neurotrophins 

We identified 5 studies that investigated the effects of aerobic exercise on neurological 

status and neurotrophins in animal models of MS (online supplement c). Only two studies 

showed significant improvements in neurological status and both instituted exercise for 2 weeks 

or more before EAE induction 158, 160 (Figure 2.5). Four out of five studies reported significant 

change with exercise on the levels of neurotrophins (BDNF or NGF) in the brain (n = 2), spinal 

cord (n = 1), serum (n = 1), and muscle (n = 1) (online supplement c). All of these studies also 

initiated exercise before induction of EAE. In one study (41), although there was no difference in 

hippocampal BDNF between sedentary and exercising (forced treadmill, voluntary wheel 

running) mice, higher amounts of exercise were positively correlated with a higher concentration 

of hippocampal BDNF 161 (Figure 2.5). 

Frequency:  2 to 3 times per week for at least 8 to 9 weeks 

Intensity:  light to hard (Figure 2.5), interval-type training and stepwise progression 

of intensity with similar total workload 

Time:   at least 30 minutes per session 

Type:  aerobic-type leg cycling (EDSS < 6) 
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Figure 5: Aerobic exercise interventions in animal research; * animal studies showing 

improvements in neurotrophic markers; † animal studies showing improvements in disease status 

or gait outcomes; (1) (49) Bernardes et al; (2) (51) Wens et al; (3) (50) Patel et al 2013; (4) (53) 

Patel et al 2016; (5) (52) Klaren et al. 

 

Figure 2.5 Summary of the results of aerobic exercise interventions in animal models of MS 

X-axis: total number of days exercised by the animals in the experimental group in the animal 

studies included in this review. Y-axis: aerobic exercise interventions in the experimental groups. 

*Improvements in neurotrophic markers; †Improvements in disease status or gait outcomes. 
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In animal models of MS, FITT parameters that most consistently improved both 

neurotrophins and neurological outcomes were as follows:  

2.4 Discussion 

The American College of Sports Medicine (ACSM) 165 recommends 10-60 minutes of 

progressive aerobic exercise at an intensity of about 40%–70% oxygen consumption reserve or 

heart rate reserve ranging between 11 and 14 levels on a rate of perceived exertion (RPE) score 

for 3-5 days per week, in order to maximize health and fitness benefits for PwMS. However, 

these exercise recommendations are designed to address cardiorespiratory fitness and not 

walking impairments and neuroplasticity. 

In this review, we sought to identify the optimal type of aerobic exercise and training 

parameters that could lead to improvements in walking ability in PwMS and promote brain repair 

through the upregulation of neurotrophic factors. We report five key findings: (1) the clinical 

studies were of fair to good quality and consistently showed that aerobic interventions (ranging 

from mild to vigorous intensities) improved walking endurance and spatio-temporal parameters 

of gait in people with EDSS scores less than 6 (able to walk independently);  interventions that 

did not employ the reciprocal motions of walking (i.e., which were not task-specific) improved 

walking endurance more consistently than they did for the spatiotemporal parameters; (2) very 

Frequency: daily exercise for at least 14 days before induction of EAE 

Intensity: at least 60% maximum workload or 55% maximal oxygen consumption 

Time:  at least 30 to 60 minutes per session/day 

Type:  forced aerobic-type treadmill running or swimming 



57 

 

few studies examined whether effects were sustained after cessation of the intervention, and 

those that did showed that most outcomes return to baseline within a few months; (3) people with 

severe MS-related walking impairments (EDSS 6 and above) were relatively underrepresented in 

the studies; (4) in clinical studies, neurotrophins were not reliably changed with aerobic exercise; 

(5) in animal studies, both neurotrophins and neurological status were improved when aerobic 

exercise began more than 2 weeks before the induction of EAE in the animal. 

2.4.1 Aerobic exercise with or without gait specific training 

Our findings from 12 clinical studies suggest that aerobic exercise targeting the reciprocal 

movements of gait per se is not required in order to improve walking in MS. Participants also 

improved walking endurance and walking quality with nongait activities such as leg/arm cycling, 

swimming, and calisthenics. Physical therapists, therefore, can use multiple aerobic exercise 

modalities to affect gait. This is particularly important for home-based and community-based 

exercise which may make use of arm cycling or swimming. Our findings are similar to those in 

chronic neurological conditions like stroke, cerebral palsy, and Parkinson’s disease 166-169 which 

showed that multiple methods can be employed with similar benefits in walking. For example, 

Nadeau et al. 166, 167 reported from their LEAPS trial that both task-specific locomotor training 

and impairment-based home exercises were equally effective in improving comfortable/fast 

walking speed as well as 6-minute walking distance in stroke. Kumar and Ostwal 168 compared 

the effects of task-oriented training and proprioceptive neuromuscular facilitation exercises in 

children with cerebral palsy having difficulty walking and reported improved gait velocity with 

no difference between the two groups. Similarly, Shulman et al. 169 found that treadmill and 

resistance training did not differ in improving gait among people with Parkinson’s disease. 
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2.4.2 Sustainability of the benefits of aerobic training 

Only four of the 12 studies examined whether improvements were sustained after 

cessation of the training program and most showed that outcomes return to baseline within a few 

months (Figure 2.3). It is not clear whether participants stopped exercising after cessation of the 

study or whether there was deterioration in the disease during the follow-up period. Our exercise 

recommendations may not result in neuroplasticity of walking as we did not observe long-term 

restoration of function in the clinical studies included in this review. In some cases, especially in 

more progressive disease, maintaining the baseline is considered a positive outcome. For 

example, among people with chronic incomplete spinal cord injury (a more stable neurological 

condition), thrice weekly body weight supported treadmill training for one year resulted in 

retention of gains up to 8 months after the end of the intervention 170. Future studies, in addition 

to measuring outcomes at follow-up, should also record physical activity levels (accelerometry) 

to determine whether newly gained skills are being incorporated into everyday activities. 

Interventions should also be designed such that they could be continued at home or in the 

community and the benefits are sustained 171. 

2.4.3 Underrepresentation of people having gait impairments 

It is important that research undertaken to improve gait include people with MS who have 

problems with walking. Eight of the 12 studies included participants who had EDSS scores less 

than 3 and even EDSS 1, suggesting very minimal impairment levels (Figure 2.2). Clearly, more 

research is required to determine whether walking outcomes can be changed in PwMS who have 

already acquired walking difficulties. The results of interventions using robot-assisted treadmill 

were promising 156, 157. Although Vaney et al. 155 noted clinical benefits to practice walking over 
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ground compared to robot-assisted treadmill, high volume of training and high walking 

impairment (slow walking speed) could be the determining factors for success using robot-

guided treadmills. In order to tailor aerobic interventions for those with higher degrees of 

walking impairment, it would be prudent to involve patients as partners and consultants in the 

research process in order to meet their needs 172.  

2.4.4 Need for novel exercise strategies 

People having an MS-related disability often report higher rates of exercise-induced 

fatigue 173. Future research should focus on investigating strategies to increase the tolerance to 

vigorous intensity aerobic training load without increasing the training side effects such as 

fatigue. An example of such a strategy will be to conduct high-intensity interval training using 

basic functional tasks (getting up from bed, sit to stand, and walking) for those with high MS-

related disability as it may be more effective in optimizing recovery than performing continuous 

training at similar total workload. 

2.4.5 Translating research from animal models to the clinical condition 

We aimed to examine the findings in animal studies to determine their applicability to 

MS clinical research. Of the five studies examining aerobic exercise in an animal model of MS 

(EAE), exercise benefited walking and increased neurotrophins only when instituted two weeks 

or more before EAE induction. This suggests that aerobic exercise is likely neuroprotective but 

provides little benefit when employed after MS is induced in the animal. The neuroprotective 

effects of exercise have been reported in animal models of ischemic stroke 174 in which exercise 

enhanced neurogenesis, angiogenesis, and synaptogenesis 175 possibly providing redundancy and 

tolerance to subsequent injury. The findings reported in this review may support the notion that 
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exercise may be able to reduce the impact of MS relapse rather than altering the outcome after 

relapse. A major caveat to translating findings is that the animal studies report neuroprotective 

effects of aerobic exercise, whereas clinical studies have found positive benefits of aerobic 

exercise following MS. Clearly, more research is required to disentangle the timing, duration, 

and intensity of exercise before and after MS relapse. 

2.4.6 BDNF upregulation and neuroplasticity of walking 

We also showed that, with only two clinical studies and four animal studies examining 

BDNF as a potential biomarker of plasticity, the results are inconclusive on whether serum levels 

of BDNF indicated exercise-related repair of the CNS. However, a recent meta-analysis of 13 

studies on a mixed population (80 MS patients out of total 703 patients) showed increased 

magnitude of BDNF responsivity and higher resting levels of BDNF after exercise training 176. 

Further research examining both resting and exercise-induced levels of BDNF is needed to 

elucidate the relationship between plasticity and neurotrophins in MS. Additionally, it is 

important to consider the influence of factors such as sex, genetics, nutrition, smoking, and other 

confounders while examining the impact of exercise on BDNF 177. 

2.5 Conclusion 

Consolidated evidence suggests that aerobic exercise training can improve walking 

ability (spatiotemporal walking parameters) in people having MS without severe walking 

impairments. In this review, we have outlined the optimal aerobic training parameters (30 min 3x 

week for 6-8 weeks at mild to vigorous intensity) that improved walking in people with EDSS 

scores less than 6.0 (able to walk independently). Although individual studies reported that gait-

specific and non-gait-specific types of aerobic exercise improved both endurance and 



61 

 

spatiotemporal parameters of walking, the effects of the aerobic exercise were not sustained 

more than six months after the end of intervention. There is a need to build exercise programs for 

people living with MS having higher disability, especially EDSS 6.0 or above, to restore their 

lost ability to walk. 

In PwMS, the serum levels of neurotrophins measured at rest did not significantly change 

after completing a course of aerobic training. In contrast, the animal studies show significant 

change in both neurological recovery and neurotrophins in blood, muscle, and nervous tissue 

especially when aerobic exercise begins 2 weeks before EAE induction. 

2.6 Limitations 

There are some limitations in this review. First, despite a carefully conducted search 

strategy we cannot be sure that all studies were identified. Second, we did not include articles 

published in languages other than English. Third, because of the diversity of interventions and 

outcomes, we were unable to include data from all selected studies in our meta-analysis. As more 

research emerges, calculation of effect sizes using actual mean differences would be clinically 

useful. Fourth, both clinical and animal studies included in this review had methodological gaps 

(Tables 2.1 and 2.2). For example, none of the clinical studies blinded therapists and none of the 

animal studies ensured allocation concealment or random housing of animals. Clearly, there is 

need for high quality research in the field of aerobic exercise interventions to improve walking in 

MS. 
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Supplementary Materials 

a. Search terms used in the systematic search strategy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following search terms were used for PubMed and adapted for Embase, Cochrane, Scopus and PEDro to find clinical 

studies: 

#1     (("Multiple Sclerosis"[Mesh]) OR ("multiple sclerosis"[tiab])) 

#2     (("Exercise"[Mesh]) OR (aerobic OR exercise OR swim OR swimming OR walk OR walking OR jog OR jogging OR 

run OR running OR bicycle OR bicycling OR dance OR dancing)) 

#3     #1 AND #2 

#4     ((“Nerve Growth Factors”[MeSH Terms]) OR (Brain Derived Neurotrophic Factor OR Nerve Growth Factor)) 

#5     #3 AND #4 

 

The following search terms were used for PubMed and adapted for Embase, and Scopus to find animal studies: 

#1     (Experimental Autoimmune Encephalomyelitis[MeSH Terms]) 

#2     (“Exercise”[MeSH Terms]) 

#3     #1 AND #2 
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b. Forest plot of comparison for walking ability outcomes between aerobic exercise and wait-list control or non-aerobic exercise 

from clinical studies: 

 

Figure a: Forest plot of comparison for walking ability (spatio-temporal parameters, endurance and energy cost of walking); Risk of 

Bias categories – A: random sequence generation (selection bias), B: Allocation concealment (selection bias), C: Blinding of 

participants and personnel (performance bias), D: Blinding of outcome assessment (detection bias), E: Incomplete outcome data 
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(attrition bias), F: Selective reporting (reporting bias), G: Other bias; CI: confidence interval; df: degree of freedom; %: percentage; P 

= p value. 
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c. Table on summary of animal model studies included in this review: 

Selected 

Trials 

Aerobic 

Intervention† 

Frequency/Intensity/Time Neuroplastic blood/tissue 

markers 

Disease status/ 

Gait outcomes 

Bernardes 

et al 158 

Forced 

swimming 

Progressive adaptation in swimming pool: 

days 1 to 4; followed by progressive load 

test on day 5; followed by training with 

intensity set at 60% maximum weight 

obtained in load test;  

Before EAE induction: Swimming for 30 

min/day, 5 days/week, for 4 weeks; After 

EAE induction: 10 days’ post-induction, 30 

min/day 

Brain and spinal cord 

BDNF levels (in pg/mL) in 

both brain and spinal cord 

homogenates* 

In exercising EAE mice: 

hind limb paralysis 

improved*; decreased 

weight loss*; delayed 

development of EAE 

signs*; demyelination in 

brain and spinal cord* 

 

Patel et al 

159 

Forced 

treadmill 

running 

Habituation: 5 days, daily treadmill run 

progressing from 10 to 50 min at 55% 

maximal oxygen consumption at 0 grade; 

Training: Rodents ran 60 mins on days 1-2 

Whole brain concentrations 

of BDNF (in pg/g), NGF (in 

pg/g) in exercising EAE 

rodents* 

No significant difference in 

clinical disability scores 
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and 90 mins on days 3 -10 with an 

increasing intensity starting at 15 m/min for 

30 mins then increased to 30 m/min for the 

remaining time 

Wens et 

al 160 

Treadmill 

running 

Habituation: progressive increase in running 

duration and intensity over 2-week period 

using short electric shocks, until a running 

duration of 1 hour and a running speed of 

18m/min (25° inclination) was reached; 

followed by EAE & treadmill running daily 

for 1 hr/day for 10 consecutive days 

Serum BDNF (in pg/mL)* Delayed peak disease 

occurrence in exercising 

mice*; No difference in 

peak disease severity 

between exercising and 

sedentary mice; The 

hindquarter paralysis score 

(1-5 scale) tended to 

improve (p=0.07) over time 

in exercising mice with no 

difference in the degree of 

recovery on the last day of 
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experiment 

Klaren et 

al 161 

voluntary 

wheel 

running, 

forced 

treadmill 

exercise, 

sedentary  

Voluntary wheel running (housed in cages 

with running wheel – 50 days), or forced 

treadmill exercise (subjected to 5days/week 

of running on a motorized treadmill (DC5; 

Jog-aDog, Ottawa Lake, MI) at a 5% grade, 

14 m/min, for 30 min for 36 days) 

No significant effects of 

exercise delivered during 

remission after the initial 

disease onset levels of 

hippocampal BDNF (in 

pg/mg) 

No change in clinical 

disability scores 

Patel et al 

162 

Forced 

treadmill 

running 

As described by Patel et al 159 BDNF and NGF 

concentrations in soleus (in 

pg/mL)* 

No difference in onset of 

clinical disability, disability 

↑ in exercising EAE mice* 

†aerobic intervention in the experimental group; *significant results; &: and; CB1: cannabinoid receptor type 1; EAE: experimental 

auto-immune encephalomyelitis; BDNF: brain-derived neurotrophic factor; cFOS: a 380 amino acid protein; NR1: subunit of 

functional NMDA glutamate receptor; CD3+: a type I transmembrane protein found on T cells; Iba1: ionized calcium-binding adapter 

molecule 1; TNF: tumor necrosis factor; m: meter; min: minute; ET: endurance training; ST: strength training; pg: picogram; mL: 

milli-litre; mg: milli-gram 
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Chapter 3 Oxygen cost during mobility tasks and its relationship to 

fatigue in progressive Multiple Sclerosis. 

 

Devasahayam AJ, Kelly LP, Wallack EM, Ploughman M. Oxygen Cost During Mobility 

Tasks and Its Relationship to Fatigue in Progressive Multiple Sclerosis. Archives of 

physical medicine and rehabilitation. 2019 Nov;100(11):2079-2088. doi: 

10.1016/j.apmr.2019.03.017. Epub 2019 Apr 23. 
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Abstract 

Objective: To compare the oxygen costs of mobility tasks between individuals with 

progressive multiple sclerosis (MS) using walking aids and matched controls and to 

determine whether oxygen cost predicted fatigue. 

Design: Cross-sectional descriptive. 

Setting: A rehabilitation research laboratory. 

Participants: A total of 14 adults with progressive MS (mean age + SD [y], 54.07+8.46) 

using walking aids and 8 age- and sex-matched controls without MS (N=22). 

Interventions: Participants performed 5 mobility tasks (rolling in bed, lying to sitting, 

sitting to standing, walking and climbing steps) wearing a portable metabolic cart. 

Outcome Measure(s): Oxygen consumption (V̇O2) during mobility tasks, maximal V̇O2 

during graded maximal exercise test, perceived exertion, and task-induced fatigue were 

measured on a visual analogue scale before and after mobility tasks. 

Results: People with progressive MS had significantly higher oxygen cost in all tasks 

compared to controls (p<.05): climbing steps (3.60 times more in MS), rolling in bed 

(3.53), walking (3.10), lying to sitting (2.50), and sitting to standing (1.82). There was a 

strong, positive correlation between task-induced fatigue and oxygen cost of walking, (ρ 

[13]=0.626, p=.022). 

Conclusions: People with progressive MS used 2.81 times more energy on average for 

mobility tasks compared to controls. People with progressive MS experienced 

accumulation of oxygen cost, fatigue, and exertion when repeating tasks and higher 

oxygen cost during walking was related to greater perception of fatigue. Our findings 
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suggest that rehabilitation interventions that increase endurance during functional tasks 

could help reduce fatigue in people with progressive MS who use walking aids. 

Keywords: Activities of daily living, Cardiovascular deconditioning, Fatigue, Multiple 

sclerosis, Oxygen consumption, Rehabilitation 
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3.1 Introduction 

More than 80% of people with Multiple Sclerosis (MS) report fatigue as their 

most disabling symptom41 and those with progressive MS report greater fatigue compared 

to people with relapsing-remitting disease.178, 179 However, there is a paucity of 

randomized controlled studies aimed at reducing fatigue in progressive MS.179 A 

fundamental challenge in studying fatigue in MS is its multifactorial nature involving 

several potential pathophysiological mechanisms.180-186 Subjective fatigue is typically 

rated using questionnaires while objective levels are quantified by measuring decrements 

in strength or slowed recovery after exercise - usually referred to as fatigability.107, 187 

Although subjective fatigue and fatigability are likely linked,188 declines in performance 

during maximal voluntary contractions (fatigability) have not been shown to predict 

perceived fatigue in MS.107, 189-192 Mayo et al.187 suggested that the subjective perception 

of fatigue might be related to one’s ability to consume oxygen, a measure of fatigability 

related to physical deconditioning due to physical inactivity.186 Deciphering the 

relationship between perceived fatigue and ability to use oxygen could facilitate 

developing effective rehabilitative treatments. 

Oxygen consumption per unit time (V̇O2) is a measure of the volume of oxygen 

used by the body and is a reliable and widely used method to quantify an individual’s 

level of physical fitness.193  If physical deconditioning contributes to fatigue,186, 187 then 

increased V̇O2 during mobility tasks (such as rolling in bed, sitting to standing, etc.,) 

would be accompanied by elevated subjective fatigue. In support of this notion, when 

calculating V̇O2 per step (oxygen cost during walking and climbing stairs), Coote et al.194 
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found that people with MS using bilateral support for walking (63% with progressive 

MS) consumed more oxygen compared to individuals matched for age and sex without 

MS. However, the oxygen cost of other mobility tasks (rolling in bed, supine lying to 

sitting, sitting to standing) were not evaluated, nor was the relationship to perceived 

fatigue examined.194 Interventions aimed at building capacity, reducing fatigue and 

lessening the energy costs of mobility tasks would likely be beneficial for people with 

MS-related disability. For example, in a study among deconditioned older adults, 

repetitive bed mobility training improved task performance.195, 196 Although not assessed, 

such improvements may have been accompanied by a reduced perception of fatigue and 

reduced energy cost.195, 196 To date, there have been no studies measuring oxygen cost of 

typical mobility tasks with a specific focus on people with progressive MS while 

exploring its relationship to perceived fatigue and exertion.197-199 

The primary aim of this study was to determine whether there was a difference in 

oxygen cost of mobility tasks (rolling in bed, supine lying to sitting, sitting to standing, 

walking, climbing steps) between people with progressive MS and individuals matched 

for age and sex without MS. The secondary aims were (1) to investigate the changes in 

perceived exertion and fatigue while performing mobility tasks in people with progressive 

MS compared to controls, and (2) to investigate the relationships between oxygen cost of 

mobility tasks, perceived exertion, and fatigue. 
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3.2 Methods 

3.2.1 Study design 

This was a cross-sectional descriptive study. 

3.2.2 Participants 

Following approval from the Health Research Ethics Board (# 2016.044), 

participants were recruited from an outpatient physiotherapy or MS clinic. Participants 

were included in the study if they (1) had a confirmed diagnosis of MS with a progressive 

disease course (secondary or primary progressive) as per the McDonald criteria200; (2) 

passed the physical activity readiness questionnaire or a physical activity readiness 

medical examination201; (3) were between 18 to 74 years of age; (4) had no MS relapse in 

the previous 90 days; and (5) used a walking aid and were able to walk indoors at least 20 

meters. The control group consisted of individuals matched for age (+3y) and sex with no 

diagnosed medical conditions. 

3.2.3 Sample size 

With the alpha set at 5% and a power of 80%, the minimum sample size was 

estimated to be between 18 to 22 participants in total. Considering previous studies that 

compared V̇O2 between people with MS and matched controls,202, 203 we aimed to recruit 

14 people with MS and 8to 14 matched controls, allowing a 25% drop out after 

recruitment. 
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3.2.4 Experimental design 

After obtaining written consent, the participants attended 3 appointments on 

separate days (Figure 3.1A), to complete baseline assessments and oxygen cost 

measurements during mobility tasks. The participants chose the appointment time 

(between 8 AM and 6 PM) at their convenience. 

3.2.5 Baseline assessments 

Baseline assessments included collecting (1) demographic characteristics of the 

participants including age, sex, height, body weight, month and year of initial MS 

diagnosis, current type of MS, type of walking aid used, and smoking status; (2) severity 

of fatigue using the Fatigue Severity Scale204; (3) impact of fatigue using the Modified 

Fatigue Impact Scale205; (4) vitality (energy level and fatigue) using the Vitality subscale 

of the Medical Outcomes Study 36 item Short Form Health Survey206, 207; and (5) 

maximal graded exercise test (GXT) using a total body recumbent stepper as per the 

protocol adapted by Kelly et al208 wearing a facemask connected via tubing to a breath-

by-breath metabolic carta to determine maximal V̇O2 (V̇O2max). 

3.2.6 Oxygen cost measurements during mobility tasks 

Oxygen cost measurements were performed between the third and seventh day 

after GXT (see Figure 3.1A). The participants completed 5 minutes of each of the 5 

mobility tasks in random order (Figure 3.1B): (1) rolling side to side in bed; (2) supine 

lying to sitting on edge of bed; (3) sitting on a firm bed (seat height standardized having 

knee joint flexed at 90 degrees) to standing with or without the use of hands; (4) over-
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ground walking on a pre-measured 15-foot long path on a corridor; and (5) climbing and 

descending 3 steps. The participants performed each task wearing a portable breath-by-

breath metabolic cartb and a wireless digital heart rate sensor chest strap.c Participants 

rested in a seated position for 10 minutes to ensure resting state before wearing the 

portable metabolic cart. The oxygen cost measurements began with further 10 minutes of 

quiet sitting to collect resting metabolic rate.209 Tasks were completed at a self-selected 

comfortable pace with a 5-minute resting period following each task. The number of 

repetitions performed (for rolling in bed, lying to sitting, sitting to standing), the distance 

walked (in meters) and the number of steps climbed were counted. The breath-by-breath 

data obtained (in L·min-1 per breath) from the portable metabolic cart was averaged to 

provide values for every 30 seconds. The mean V̇O2 (in mL·min-1) during steady state 

(from 180 to 300 seconds during each mobility task) was calculated.210 

The perception of physical exertion was measured using modified Borg rating of 

perceived exertion (RPE) scale211 immediately before and after performing each task (see 

Figure 3.1B). The perception of fatigue was measured using a 100-millimeter-long 

horizontal visual analogue scale (VAS) from 0 (no fatigue) to 100 (extreme fatigue) 

before and after performing all five tasks (see Figure 3.1B). The task-induced fatigue was 

calculated by subtracting post fatigue score from pre fatigue score. 
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Figure 3.1 Experimental design and oxygen cost measurements 

A. Experimental design: data was collected on 3 different days with at least 3 to 7 days in 

between graded maximal exercise test and oxygen cost measurements; B. Oxygen cost 

measurements: X-axis: 5 mobility tasks performed in random order (rolling in bed, lying 

to sitting, sitting to standing, walking, climbing steps); NOTE. In B, the upward pointing 

arrows represent data collection time points (fatigue using a straight horizontal 100-mm 

long line representing a VAS and perceived exertion using the modified Borg scale of 

perceived exertion) and the dotted horizontal line represents resting in seated position. 
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3.2.7 Statistical analysis 

The oxygen cost of mobility tasks (expressed in mL·min-1·kg-1 per repetition) 

relative to the amount of work done was measured for rolling in bed, lying to sitting, 

sitting to standing task performed, or per meter walked or per step climbed. The 

distribution of variables (assumptions of normality) were assessed both by visually 

inspecting the histograms and box plots, and through Shapiro-Wilk tests (p>.01).212, 213 

The homogeneity of variance was checked using Levene’s tests (p<.05) before using 

independent t tests to compare groups. If assumptions of normality and equal variances 

were not met, independent samples Mann-Whitney U tests were used to analyze 

differences between groups. For categorical variables, the Pearson chi-square test was 

used to compare individuals with MS and controls. If 1 or more of the cells had an 

expected frequency of 5 or less, the Fisher exact test was used for categorical variables. 

Friedman test,214 followed by Dunn multiple comparison test, was used to detect 

differences in the RPE from baseline (time point 10th minute; see Figure 3.1B) to 

completion of each mobility task. Multiple t tests with Holm-Sidak corrections for 

multiple comparisons were performed in consecutive order (from first to fifth tasks at 

each time point in isolation), to determine if the differences between the group means 

(oxygen cost, heart rate, RPE) were greater than those expected by chance. A repeated 

measures Wilcoxon signed-rank test was used to detect statistically significant differences 

between fatigue measured before and after mobility tasks (see Figure 3.1B) in both MS 

and controls separately. 
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The relationship between oxygen cost of 5 mobility tasks and fatigue were 

analyzed using the following steps: (1) the relationships between oxygen cost of 5 

mobility tasks, perceived exertion, and fatigue in MS were estimated by Spearman’s rank 

correlation coefficient (ρ). When multiple correlations were conducted, a Bonferroni 

correction was performed.215, 216 Second, a simple regression analysis was conducted to 

determine the relationship between oxygen cost and task-induced fatigue (mean fatigue 

post score minus mean fatigue pre score; see Figure 3.1B). If assumptions of normality 

and equal variances were not met, the variables were log-transformed before using simple 

regression analysis to explore the relationships. 

3.3 Results 

Twenty-two patients with MS and 16 age- and sex-matched individuals without 

MS inquired about this study. After checking eligibility criteria, we enrolled 14 patients 

with MS and 8 age- and sex-matched controls. The recruitment of controls was stopped 

after all participants with MS had an age and gender match. The control subjects matched 

more than 1 person with MS. One control subject dropped out of the study (not 

contactable) and was not included in the analyses. The fatigue and physical fitness 

measures (Table 3.1) were completed by all participants with MS (n = 14) and all but one 

control subject (n = 7). Two participants with MS did not complete the rolling in bed task, 

1 participant with MS did not complete lying to sitting, and 1 other participant with MS 

did not complete lying to sitting, walking, and stair-climbing tasks. The data from all 

participants were included for all analyses, regardless of whether they completed all 5 

randomly allocated tasks. All participants with MS used a walking aid (4 used a single 
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cane, 2 used a single cane and an ankle-foot orthosis, 2 used a single cane or a wheeled 

walker, 5 used a wheeled walker, and 1 used a walker or a wheelchair). There were no 

significant differences in mean age, body mass index, and resting metabolic rate between 

MS and controls (P values between .275 and 1.0) (see Table 3.1). 
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Table 3.1 Participant characteristics 

Parameters Characteristic Controls  

Mean (SD) 

MS 

Mean (SD) 

Demographics    

Age (in years)  50.71 (12.08) 54.07 (8.46) 

Sex (n) Females/Males 4/3 10/4 

BMI (in kg-1·m-1)  27.44 (3.76) 27.74 (7.56) 

Smoking habit (n) Yes/No 0/7 5/9 

Years since MS diagnosis  NA 16.57 (9.69) 

Type of MS (n) RRMS NA 0 

 SPMS NA 10 

 PPMS NA 3 

 PRMS NA 1 

Fatigue    

Fatigue severity scale total score* 12.71 (3.25) 51.93 (7.70) 

Modified fatigue impact scale total score* 5.71 (9.46) 43.93 (7.49) 

SF-36 Vitality/Energy/Fatigue*  87.14 (9.06) 37.14 (18.16) 

Fatigue at rest before mobility tasks on VAS (in mm) 5.79 (5.07) 18.57 (22.13) 

Task induced fatigue on VAS (in mm)* 14.57 (16.98) 33.36 (22.12) 

Physical Fitness    

Resting metabolic rate (mL·min-1·kg-1) 3.80 (0.45) 3.54 (0.76) 
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Maximal V̇O2 (mL·min-1·kg-1)* 33.04 (8.95) 16.35 (6.39) 

Respiratory exchange ratio at maximal V̇O2 1.13 (0.09) 1.03 (0.13) 

Maximal heart rate (beat·min-1)* 168.26 (16.83) 131.57 (23.16) 

Maximal oxygen pulse (mL·beat-1)* 16.46 (3.22) 11.05 (3.91) 

*statistically significant difference between two groups at p<0.05; n: count/frequency; 

BMI: body mass index; kg: kilogram; m: meter; NA: not applicable; RRMS: Relapsing-

Remitting MS; SPMS: Secondary-Progressive MS; PPMS: Primary-Progressive MS; 

PRMS: Progressive-Relapsing MS; SF-36: medical outcomes study 36-item short form 

health survey; mm: milli-meter; mL: milli-litre; min: minute 
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3.3.1 Oxygen cost of mobility tasks 

The oxygen cost of mobility tasks was almost 3 times greater in MS than controls: 

climbing steps (3.60 times more in MS), rolling in bed (3.53), walking (3.10), lying to 

sitting (2.50), and sitting to standing (1.82) (Table 3.2). Although there was substantial 

variability, on average, the participants with MS used 2.81 times more energy for 

mobility tasks compared to matched controls (Figure 3.2). Since the number of people 

who smoked was greater in the MS group (n = 5) and smoking could affect oxygen cost 

measurements,217-219 we examined the effect of smoking. Smoking status was not 

significantly different between participants with MS and controls (P=.123) (see Table 

3.1). Furthermore, there were no significant differences in the oxygen costs of the 5 

mobility tasks between people who smoked and people who did not smoke in the MS 

group (P values between .190 and .683). Type of gait aid could also affect oxygen cost, so 

we split the MS group and compared values between those who used unilateral (n=6) and 

bilateral support (n=8) during walking. There was no significant difference (P values 

between .240 and 1.0) in the oxygen costs of the 5 mobility tasks among the subgroups 

based on type of walking aid. 

Participants with MS used a higher percentage of V̇O2max compared to controls in 

all tasks: climbing steps (91.0 vs 79.0%), sitting to standing (88.0 vs 55.0%), walking 

(70.0 vs 43.0%), lying to sitting (66.0 vs 51.0%), and rolling in bed (58.0 vs 36.0%).  
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Table 3.2 Oxygen cost of mobility tasks 

Mobility tasks Group Oxygen cost† (mL·min-1·kg-1) 

Mean (SD) p Value 

Climbing steps Controls 0.08 (0.04) 0.001* 

MS 0.27 (0.21)  

Rolling in bed Controls 0.07 (0.02) <0.0001* 

MS 0.24 (0.14)  

Walking Controls 0.04 (0.01) <0.0001* 

MS 0.14 (0.09)  

Supine lying to sitting 

 

Controls 0.20 (0.05) 0.001* 

MS 0.50 (0.21)  

Sitting to standing 

 

Controls 0.14 (0.03) 0.046* 

MS 0.26 (0.25)  

Mean  

oxygen cost 

Controls 0.11 (0.02) <0.0001* 

MS 0.30 (0.15)  

*statistically significant difference between two groups at p<0.05; 

†oxygen consumption (mL·min-1·kg-1) per repetition of tasks, per meter 

walked and per step climbed; mL: milli-litre; min: minute; kg: kilogram  
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Figure 3.2 Oxygen cost of mobility tasks in MS and controls 

NOTE. X-axis, oxygen cost of tasks. Y-axis, 5 mobility tasks. *Statistically significant 

difference between 2 groups at P<.05. 
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3.3.2 Accumulation of oxygen cost, exertion, and fatigue 

The oxygen cost accumulated over time and was significantly higher in 

participants with MS at second, third, fourth, and fifth tasks (measured in consecutive 

order irrespective of the type of task performed; Figure 3.3A) compared to the controls (P 

values between .001 and .043). 

The heart rate accumulated over time and was significantly higher in participants 

with MS compared to controls at the start of first, second, third, and fifth tasks (Figure 

3.3B; P values between .003 and .016). The heart rates were significantly higher at the 

start of fourth and fifth tasks (at the time points 40th and 50th minute, respectively) from 

the resting state (at the time point 10th minute; see Figure 3.3B) in both MS and controls 

(MS: Friedman statistic = 19.78, p = .0014; controls: Friedman statistic = 22.26, p = 

.0005). 

The perceived exertion accumulated over time and was significantly higher in 

participants with MS at the end of all 5 mobility tasks compared to the controls (Figure 

3.3C; P values between .0004 and .036). Both participants with MS and controls 

perceived that the tasks were significantly effortful compared to resting (at time point 10th 

minute; see Figure 3.3C) (MS: Friedman statistic = 96.46, P<.0001; controls: Friedman 

statistic = 49.34, P<.0001). 

The perception of fatigue after completing mobility tasks was significantly higher 

in MS than controls (P=.007). The perceived fatigue measured after mobility tasks (at 

time point 55 minutes; Figure 3.3D) was significantly higher than resting levels (time 

point 5 minutes; Figure 3.3D) in both MS (Wilcoxon signed rank, P=.001) and controls 
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(Wilcoxon signed rank, P=.028), however, 5 minutes later (at time point 60 minutes; see 

Figure 3.3D), control subjects’ levels of fatigue subsided returning to resting levels 

(Wilcoxon signed rank, P=.528) whereas the participants with MS did not recover during 

that period, remaining significantly elevated compared to baseline (Wilcoxon signed rank, 

P=.016). 
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Figure 3.3 Oxygen cost, heart rate, rate of perceived exertion, and fatigue during mobility tasks in MS 

A. Oxygen costs of mobility tasks accumulates over time in participants with MS but not controls. B. Heart rate during rest 

periods is significantly higher in participants with MS compared to controls. C. Perceived exertion accumulates over time in MS 

but not controls. D. Participants with MS experience greater fatigue during mobility tasks than controls. NOTE. Dotted 

horizontal line parallel to X-axes indicates resting in seated position; solid horizontal line parallel to X-axes indicates the 

duration in which mobility tasks were performed in random order. *Significant difference from baseline at P<.05; †Significant 

difference between MS and controls at P<.05. 
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3.3.3 Oxygen cost of walking was related to task-induced fatigue, but not fatigue 

measured on questionnaires in MS 

There was a significant relationship between oxygen cost of walking and task-

induced fatigue (ρ [13]=0.626, P=.022; Table 3.3, Figure 3.4A) in MS. After correcting 

for multiple correlations (0.05/5=0.01),215, 216 the relationship between oxygen cost of 

walking and task-induced fatigue in MS was no longer statistically significant. The 

oxygen cost of mobility tasks (rolling in bed, lying to sitting, sitting to standing, and 

climbing stairs) other than walking was not significantly correlated with task-induced 

fatigue (P values between .188 and .746) (see Table 3.3). The oxygen cost of mobility 

tasks was not associated with fatigue measured using questionnaires (Fatigue Severity 

Scale (total score), Modified Fatigue Impact Scale (total score) and the Vitality, Energy, 

or Fatigue Subscale of the Medical Outcomes Study 36-item Short Form Health Survey; 

P values between .083 and .940), see Table 3.3). 

Further analysis was carried out to verify the relationship between oxygen cost of 

walking and task-induced fatigue as it was closer to significance at the adjusted alpha 

level. First, among participants with MS, there was a strong, significant relationship 

between oxygen cost of walking and RPE (ρ [13] = 0.720, P=.006) (Figure 3.4B) and 

heart rate (ρ [13] = 0.923, P<.0001) (Figure 3.4C) measured immediately after 

completing the walking task, after adjusting for the distance walked, but not in controls (P 

values, .760 and .148 respectively). Next, a simple linear regression confirmed that 

oxygen cost of walking (log-transformed variable) was a significant predictor of task-

induced fatigue (P=.025), explaining 38% (r2 = 0.38) of the variation in task-induced 
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fatigue. The simple linear regressions between task-induced fatigue and oxygen cost of 

tasks other than walking (log-transformed variables) were not statistically significant (P 

values between .082 and .506). 
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Table 3.3 Relationship between perceived fatigue and oxygen cost of mobility tasks 

in MS 

N  Variables 1 2 3 4 5 6 7 8 9 

1 Rolling in bed V̇O2  -         

2 Lying to sitting V̇O2  .539 -        

3 Sitting to standing V̇O2  .315 .448 -       

4 Walking V̇O2 .582 .483 .275 -      

5 Climbing steps V̇O2 .064 .252 .000 .703† -     

6 Fatigue Severity Scale  -.131 -.085 .022 -.432 -.498 -    

7 Modified Fatigue Impact Scale -.060 -.217 -.189 -.154 -.415 .375 -   

8 Vitality/Energy/Fatigue SF-36‡ .219 .261 -.077 .160 .351 -.525 -.437 -  

9 Task-induced Fatigue§ .105 .385 .301 .626* .390 -.590* -.073 .327 - 

N: number of variables; *correlation is significant at the 0.05 level (2-tailed); †correlation 

is significant at the 0.01 level (2-tailed); ‡the vitality/energy/fatigue subscale of the medical 

outcomes study 36 item short form health survey; §change score (post minus pre) 

calculated from fatigue measured before and after mobility tasks on VAS 
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Figure 3.4 Relationships between oxygen cost of walking, heart rate, perceived 

exertion, and fatigue in MS 

A. Change in task-induced fatigue was significantly related to oxygen cost of walking. B. 

Rate of perceived exertion after walking was related to oxygen cost. C. Heart rate after 

walking was related to oxygen cost. 
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3.4 Discussion 

People with progressive MS find themselves in a vicious cycle, in which fatigue 

limits physical activity and doing less activity decreases fitness and exaggerates fatigue.63 

Further, fatigue is a major impediment to completing activities of daily living, 

participating in life roles and in physical activities among people with progressive MS.220, 

221 The aims of this study were to investigate the degree to which oxygen cost of daily 

mobility tasks (rolling in bed, lying to sitting, sitting to standing, walking, and climbing 

steps) were higher in people with progressive MS compared to individuals matched for 

age and sex without MS, and determine the relationship between oxygen cost, perceived 

exertion, and fatigue. Our results confirmed that people with progressive MS using 

walking aids consumed 2.8 times more oxygen on average during mobility tasks 

compared to matched controls. Additionally, the participants with progressive MS 

experienced an accumulation of subjective and objective (oxygen cost) indicators of 

fatigue when completing tasks, suggestive of deconditioning. Moreover, a relationship 

was present between the oxygen cost of walking (but not other tasks) and task-induced 

fatigue in participants with progressive MS. It is reasonable to think that training 

regimens that incorporate sufficiently intense aerobic exercise (to increase capacity) or 

practice of functional tasks (to increase endurance) could reduce fatigue among people 

with progressive MS.222, 223 

To our knowledge, this is the first study to estimate the oxygen costs of mobility 

tasks specifically among walking aid users with progressive MS.197-199 We aimed to 

recruit a homogenous sample (in terms of disability level); however, the participants with 
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MS had substantial variability in all five of their oxygen cost measurements (>50% of the 

mean) as well as in the mean oxygen cost of all mobility tasks (50% of the mean) (see 

Table 3.2). We also noted that there were more number of people who smoked in MS 

group (see Table 3.1) and smoking is not only associated with greater dyspnea, sedentary 

lifestyle, and poorer walking among people with MS,224 but it is also linked with faster 

disease progression.217-219 Although smoking status and type of gait aid used could create 

variability in the participants with MS, subgroup analysis showed that their energy cost 

values were not significantly different. Variability in the oxygen cost measurements 

among participants with MS could also be related to the wide range of values for resting 

V̇O2 and fatigue measured before mobility tasks began (Table 3.1). 

Our data support that the oxygen cost of walking among this cohort of people with 

progressive MS was very high; higher than previously reported in survivors of stroke, 

older adults, and lower limb amputees.225-227 For example, although survivors of stroke 

(age range, 40-67y) consumed nearly twice V̇O2 during walking activities completed at a 

self-selected comfortable speed compared to matched individuals without history of 

stroke,228 the participants in our study with progressive MS (age range, 37-70y) 

experienced 3.10 times higher cost of walking at a self-selected comfortable speed 

compared to matched controls. Similarly, the oxygen cost of walking was 3.18 times 

higher in our cohort (mean age ± SD [y], 54.07±8.46) compared to that reported among 

older adults (mean age ± SD [y], 76.3±5.1) who walked at a self-selected speed with 

mobility impairments.229 Likewise, our participants with progressive MS had 2.98 and 

2.31 times higher oxygen cost of walking than individuals (age range, 29-31y) who 
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walked at a self-selected speed with above and below knee amputations secondary to 

trauma respectively.227 It is thus clear that people with progressive MS who use walking 

aids are at a metabolic disadvantage when completing simple mobility tasks. The reasons 

for the discrepancy in energy costs between people with progressive MS and those with 

other mobility impairments could be related to the fact that disorders such as stroke and 

amputation are relatively stable. People with MS, even when no walking impairment is 

detectable, have subtle declines in coordination that are similar to advanced aging.230 

Furthermore, widespread lesions in white matter along with gray matter degeneration 

produce more diffuse deficits in MS compared to stroke231. Regardless, treatment of 

deconditioning in MS is likely key to maintaining independence in activities of daily 

living and building aerobic capacity early in the disease could provide a buffer against the 

consequences of neurological decline.232-234  

To our knowledge, we are the first to measure deconditioning in people with 

progressive MS using both GXT and oxygen cost measurements. Our participants with 

progressive MS were less fit compared to controls without MS as suggested by lower 

V̇O2, volume of air inspired (or expired) per unit time, and oxygen pulse at peak of 

exercise during GXT despite achieving comparable workloads at exhaustion. The lower 

physiologic reserve secondary to lower V̇O2 peak and higher oxygen cost of walking 

might have made it more difficult for participants with MS to perform the walking task, 

necessitating the use of anaerobic pathways to meet the ordinary energy demands, leading 

to an association with fatigue.235-237 Low oxygen pulse (V̇O2/heart rate) at peak of 

exercise is an indicator of true physiological adaptation,238 reflecting a decrease in the 
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volume of oxygen ejected from the ventricles with each cardiac contraction. A condition 

of poor exercise tolerance as observed by lower oxygen pulse at peak of exercise suggests 

that participants with progressive MS in our study were deconditioned. Participants with 

progressive MS (with a maximal oxygen pulse ± SD [mL/beat], 11.05+3.91) were at 67% 

of maximal oxygen pulse achieved by controls during GXT. Our findings were similar to 

studies examining patients with stroke (10.30 ±3.40)239 and traumatic brain injury 

(12.0±2.0).240 Ranadive et al241 has suggested that arterial function (forearm blood flow 

and carotid artery compliance) but not structure is altered in people with MS and that 

increasing physical activity and fitness could improve arterial function. As previously 

suggested by Coote et al194 rehabilitation goals should be focused on reducing oxygen 

cost (improved work efficiency of the circulatory system) when prescribing exercise for 

patients with MS-related deconditioning. However, further subgroup analyses (age, 

gender, smoking status, types of walking aids) with adequate sample size, controlling for 

variables that could affect both oxygen cost and fatigue measurements are needed. 

We observed 2 phenomena which supported that deconditioning contributes to the 

fatigue experienced by people with MS using walking aids. First of all, even allowing 5-

minute resting between tasks, oxygen cost of completing mobility tasks, perceived 

exertion, and fatigue accumulated over time in people with progressive MS compared to 

controls. Participants with MS also exhibited delayed heart rate recovery (see Figure 

3.3B). Prolonged heart rate recovery after GXT (≤12-beat decrease per minute) doubled 

risk of death in a cohort of people being investigated for cardiac health.242 The alignment 

of objective measures of deconditioning (oxygen cost and heart rate) and the subjective 
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measures of exertion and fatigue suggest that they are linked (see Figure 3.4). Similarly, 

one study243 also reported that among individuals with MS, perception of breathlessness 

after walking was 1.52 times higher than that measured in controls and was significantly 

related to fatigue measured using the modified Fatigue Impact Scale (ρ = 0.308, P=.039). 

Thus, our finding supports previous research suggesting that fatigue in MS is a 

consequence of increased perception of fatigue combined with performance 

fatigability.188, 244, 245 The second finding that supported the link between deconditioning 

and fatigue was that the oxygen cost of walking explained 38% of the variation in task-

induced fatigue. It was interesting that scores derived from questionnaires (modified 

Fatigue Impact Scale, Fatigue Severity Scale, and Vitality Subscale of the Medical 

Outcomes Study 36-item Short Form Health Survey) were not associated with energy cost 

of mobility tasks suggesting that these questionnaires measure other aspects of the 

subjective experience of fatigue. In fact, other studies have demonstrated that MS fatigue 

questionnaire scores are strongly influenced by psychological factors such as 

depression.246 Our results support that by implementing exercise interventions to improve 

aerobic capacity during functional tasks, subjective perception of fatigue could be 

reduced among people with progressive MS using walking aids. 

3.5 Limitations 

Our study has several limitations. First of all, we did not collect information about 

physical activity patterns to determine whether baseline activity level could have 

influenced the measurement of V̇O2. Secondly, in order to account for walking disability, 

we used an adapted protocol on a recumbent stepper during GXT instead of popular 
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Bruce protocol on a treadmill. However, the measurement of maximal V̇O2 using 

recumbent stepper may have been a more accurate method since the participants would 

likely have been limited by increased tone in the extremities, or balance deficits on a 

treadmill or a leg ergometer.247, 248  

3.6 Conclusions 

People with progressive MS using walking aids expended 2.81 times more oxygen 

during typical mobility tasks compared to age- and sex-matched controls. When 

completing tasks in succession, participants with MS had accumulation of oxygen cost, 

exertion, and fatigue compared to controls, suggestive of deconditioning. Furthermore, 

consumption of oxygen during walking significantly predicted task-induced fatigue. Our 

findings suggest that rehabilitation interventions that increase endurance during 

functional tasks are important in order to reduce fatigue in people with progressive MS 

using walking aids. 
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Chapter 4 Exercise-induced neurotrophins are associated with 

functional measures in people with progressive Multiple Sclerosis 

having walking disability. 

 

The pilot data from this research was accepted for a poster presentation at the 35th 

Congress of the European Committee for Treatment and Research in Multiple Sclerosis 

(ECTRIMS) and 24th Annual Conference of Rehabilitation in Multiple Sclerosis in 

Stockholm, Sweden on 11-13 September 2019. This manuscript is not submitted 

elsewhere for consideration.  
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Abstract 

Objective: Exercise could provide neuroprotection in Multiple Sclerosis (MS) by 

interacting with the neuro-immune axis. We aimed to determine whether people with 

progressive MS using walking aids would upregulate serum neurotrophins (brain derived 

neurotrophic factor (BDNF); insulin-like growth factor-1 (IGF-1)) and cytokines 

(interleukin-6 (IL-6); tumor necrosis factor (TNF)) in response to standardized exercise 

compared to matched controls and the relationships between these biomarkers and 

disability. 

Methods: Fourteen adults with progressive MS using walking aids and 8 controls 

performed a graded maximal exercise test (GXT) with blood draws before and 

afterwards. We measured resting and exercise-induced levels of BDNF, IGF-1, IL-6, and 

TNF and compared values to walking speed, balance, fatigue, and aerobic fitness. 

Results: BDNF and IGF-1 were not significantly different between MS and controls at 

rest (p values, 0.967 and 0.167 respectively) and did not change after GXT in either group 

(p values>0.60). IL-6 was significantly elevated at rest in MS compared to controls 

(p=0.01), and further increased after GXT in MS (p=0.005), but not in controls (p=0.173). 

Greater exercise-induced BDNF predicted faster walking speed in MS (r2=0.401; 

p=0.036). Other than exercise-induced BDNF, serum biomarkers did not predict 

disability. 

Conclusions: In people with progressive MS, IL-6 was further elevated after exercise and 

exercise-induced BDNF predicted 40% of the variance in walking speed. Greater 

exercise-induced BDNF and IL-6 could be related to skeletal muscle integrity and may be 
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potentially important biomarkers when examining the effects of exercise on neuro-

immune axis in progressive MS. 

Keywords: Progressive Multiple Sclerosis, Cardiopulmonary Exercise Test, Nerve 

Growth Factors, Cytokines, Biomarkers 
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4.1 Introduction 

Globally, more than 2.3 million people currently live with Multiple Sclerosis 

(MS), and of those, over 1 million people have a progressive form of MS 249. Why some 

people with MS remain stable and others progress is not clear and experts in the field 

have prioritized research that will accelerate the development of effective therapies for 

people with progressive MS 250-252. One such effort is to develop novel rehabilitation 

strategies that combine the reparative, neuroplastic, cardiorespiratory, and metabolic 

benefits of aerobic exercise 110. Aerobic exercise, by upregulating neurotrophins 154, 253, 254 

and altering cytokine levels 255-258, could be neuroprotective thereby facilitating motor 

recovery 154, 254, 259. In neurological disorders such as stroke, neurotrophins (brain derived 

neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-I)) have been 

implicated in neuroplasticity and recovery of motor function 260. In people with MS, 

researchers have demonstrated a dose-response relationship during a graded exercise test 

(GXT) on serum concentrations of neurotrophins (BDNF 154, 253, 254, IGF-1 254, 261) and 

cytokines (interleukin-6 (IL-6) 154, tumor necrosis factor (TNF) 262). Further, several 

research groups have suggested that aerobic training interventions could have direct 

effects on the neuro-immune axis in MS 154, 259. For example, combined aerobic and 

Pilates training increased resting serum BDNF levels, while simultaneously improving 

functional measures of symptom severity such as walking endurance, balance and fatigue 

in people with relapsing-remitting MS (n = 18) 263. Several groups have proposed that 

aerobic training counteracts the effects of age/deconditioning-related muscle wasting 

(cachexia) at least in part by reducing elevated levels of inflammatory cytokines such as 
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IL-6 and TNF 264, 265. In people with MS, a systematic review of evidence suggested that 

aerobic training significantly altered peripheral levels of cytokines IL-6, IL-10, 

interferon-γ and TNF 266. Whether neurotrophins and cytokines remain responsive to 

exercise among people with greater disability and with a more progressive form of MS is 

not clear 108, 266. It is also not known whether upregulating neurotrophins and/or altering 

cytokine levels is associated with symptom severity in people with progressive MS: an 

important characteristic of any potential biomarker 108, 266, 267. Analysing the relationships 

between the potential biomarkers such as resting and exercise-induced levels of 

neurotrophins (BDNF and IGF-1) and cytokines (IL-6 and TNF) and functional measures 

of symptom severity (walking speed 268-271, balance 271, fatigue 272, 273 and aerobic fitness 

(maximal oxygen consumption (V̇O2) 
274-276) may help determine if the neurotrophins and 

cytokines are potential surrogate markers of recovery in progressive MS 277-280. 

As a first step, we aimed to compare serum levels of neurotrophins (BDNF, IGF-

1) and cytokines (IL-6, TNF) measured at rest and after GXT between people with 

progressive MS using walking aids and age and sex matched individuals without MS. 

Next, we aimed to determine whether serum blood markers (BDNF, IGF-1, IL-6, TNF) 

predicted MS symptom severity; walking speed, balance, fatigue and aerobic fitness 

(maximal V̇O2)). 
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4.2 Methods 

4.2.1 Design 

This was a secondary analysis of data from a cross-sectional study 111, 281. The 

study was approved by the local health research ethics board. 

4.2.2 Participants 

Patients who attended outpatient physiotherapy or the MS clinic were recruited. 

Patients were eligible if they 1. Had a confirmed diagnosis of MS by a neurologist using 

McDonald criteria 282, 2. Were able to walk indoors with use of walking aids, 3. Had an 

Expanded Disability Status Scale (EDSS) score of 6 – 6.5, 4. Were stable without any 

relapse for the previous 90 days or more, 5. Did not have comorbid cerebrovascular and 

lung conditions, and 6. Were not receiving glucocorticoids. Healthy controls were 

matched for sex and age (+3 years) and recruitment of controls ceased once all the MS 

participants were matched. 

With the alpha set at 5% and a power of 80%, the minimum sample size was 

estimated to be between 13-37 in total to detect the time effects, considering previous 

studies that measured exercise-induced serum BDNF in people with MS 154, 254. A total of 

38 individuals were contacted for this study (22 with definite MS, 16 age/sex matched 

controls). Sixteen participants were excluded; four subjects with MS who did not use 

walking aids, one subject with MS who did not wish to complete the exercise, six controls 

who did not match for age, and five others who were unable to be contacted after their 
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first telephone call (3 MS, 2 controls). We therefore recruited 14 people with MS and 8 

age/sex matched controls. One control subject dropped out after enrolment. 

4.2.3 Screening 

Written informed consent was obtained from all participants prior to entering this 

study. Following consent, all participants were asked to complete the Physical Activity 

Readiness Questionnaire (PAR-Q) to ensure safety during exercise 201, 283. Those 

participants who failed PAR-Q were referred to a physician for a Physical Activity 

Readiness Medical Examination (PARmed-X) 284. 

4.2.4 Outcomes 

Fitness testing: At baseline, all participants were assessed to determine their 

maximal V̇O2 during GXT. The participants were advised not to consume food for at least 

four hours preceding the GXT. All participants performed the GXT on a total body 

recumbent stepper as per protocol adapted by Kelly et al 285, wearing a face mask 

connected via tubing to a breath-by-breath metabolic cart (Moxus Metabolic Systems, 

AEI Technologies, Inc., Pittsburgh, Pennsylvania, USA) to determine maximal V̇O2. The 

gas analyzers were calibrated immediately before each test using ambient air (20.94% 

oxygen and 0.03% carbon dioxide) and standard gases containing 16.0% oxygen and 4.0 

+/- 0.02% carbon dioxide. Participants were instructed to maintain 80 steps per minute 

during GXT and the workload was increased in ~ 20 watt increments every 2 minutes, 

starting from load level 3 (21 watts) until exhaustion 285. The participants were considered 

to have attained maximal V̇O2 if at least two of the following criteria were met: (1) V̇O2 
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plateau (failure to increase V̇O2 by 150 mL·min-1) 165 with increasing workload (inability 

to maintain workload/stepping frequency of 80 per minute) 285, (2) respiratory exchange 

ratio > 1.10 165, (3) > 90% age predicted maximal HR 165, and (4) > 8.0 rate of perceived 

exertion 165. 

Blood draws: Blood samples were drawn from median cubital vein immediately 

before and following GXT in two 5mL serum vacutainers 286. The blood samples were 

left to clot for 30-60 minutes, centrifuged at 2200g for 10 minutes, and the collected 

serum was stored frozen at −80 °C. Serum levels of neurotrophins (BDNF, IGF-1) and 

cytokines (IL-6, TNF) were measured using enzyme-linked immunosorbent assay sets for 

human BDNF and IGF-1 (R&D Systems Inc. Minneapolis, MN, USA) as well as IL-6 

and TNF (BD Biosciences, San Diego, CA, USA) as per manufacturer’s protocol. 

Walking speed: Comfortable walking speed was measured over ground on a 15-feet long 

path averaged for 5 minutes. 

Balance: Functional balance was measured using Berg Balance Scale 287. The 

Berg Balance Scale is a 14-item activity based objective measure that assesses capacity to 

balance and risk of falls in adult population 287. The Berg Balance Scale tests 

progressively more challenging tasks initially in seated to finally balancing on one foot 

287. Scores range from 0 to 56 with scores below 45 indicating the cut off for risk of falls 

288, and scores below 40 predicting almost 100% fall risk 289. 

Fatigue: Self-reported fatigue was measured using Fatigue Severity Scale 290, and 

vitality/energy/fatigue sub-scale of the 36-item Short Form Health Survey (SF-36) 207, 291. 

The 9-item Fatigue Severity Scale was used to measure the severity of fatigue and its 
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impact on the individual's daily activities and lifestyle 290. The Fatigue Severity Scale 

contains questions such as “Fatigue interferes with my physical functioning" and 

respondents indicated how appropriate the statement applied to them in the last week 

(from 1 to 7) 290. Total scores range from 9 to 63 with scores more than 36 indicating 

pathologic fatigue 290, 292. The vitality/energy/fatigue sub-scale of SF-36 was used to 

measure the feelings of energy/fatigue as a unidimensional construct on a single, bipolar 

continuum capturing both negative (fatigue) and positive (energy) states 293. The SF-36 

has eight multi-item scales to measure generic health status and the scores obtained for 

vitality/energy/fatigue sub-scale of SF-36 (which included four items) were 

weighted/transformed according to published procedures to obtain a score ranging from 0 

to 100 with lower scores indicating worse fatigue and higher scores indicating greater 

energy levels 293. 

4.2.5 Data analysis 

The assumptions of normality were checked by inspecting the distribution of 

variables visually using histograms and box plots, and through Shapiro-Wilk tests 

(p>0.01) 212, 213. The homogeneity of variance was checked using Levene’s tests (p<0.05) 

before using independent t-tests. If assumptions of normality and equal variances were 

not met, Independent Samples Mann-Whitney U tests were used to detect difference 

between groups and Related-Samples Wilcoxon Signed Rank tests were used to detect 

within group differences. For categorical variables, Pearson χ2 test was used to compare 

MS and controls. Fisher Exact test was used to analyse categorical variables, if one or 

more of the cells had an expected frequency of five or less. 
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The minimum detectable concentrations of BDNF, IGF-1, IL-6 and TNF in serum 

was determined to be 0.0234 ng/mL, 0.0312 ng/mL, 0.0031 ng/mL, and 0.0011 ng/mL 

respectively. The values below the detection limit were replaced by half the lowest 

concentration recorded for the respective analyte within each group 294-296. 

The relationship between the potential biomarkers (resting and GXT-induced 

neurotrophins and cytokines) and the functional measures in MS (comfortable walking 

speed, balance, fatigue and maximal V̇O2) were analysed using the following steps: first, 

the relationship between the biomarkers and the functional measures was estimated by 

Spearman’s rank correlation coefficient (rs). When multiple correlations were conducted, 

a post-hoc analysis was performed using Bonferroni corrected p values 297, 298. Second, a 

simple regression analysis was performed to determine if the significantly related 

biomarkers were independent predictors of function in MS. 

4.3 Results 

4.3.1 Participant characteristics 

All participants but two passed the PAR-Q. Two participants (1 MS and 1 control 

subject) were included in the study after the completion of PARmed-X. Participants with 

progressive MS were 37-70 years of age and the matched controls were 34-68 years of 

age with no significant differences between them (Table 4.1, p=0.585). The distribution 

of females and males was not significantly different between MS and controls (p=0.638). 

Body mass index ranged from 15.4 to 39.4 in MS participants and from 23.6 to 32.9 in 

controls, with no significant difference between groups (p=1.0). In the MS group, the 
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total number of years lived with a confirmed diagnosis of MS ranged from 3 to 31 years. 

The time since the first appearance of MS symptoms ranged from 5 to 33 years. All 

participants with progressive MS required either unilateral (n=6) or bilateral (n=8) 

assistance to walk. One MS participant was not able to walk over ground more than few 

steps and hence we were unable to measure walking speed. On average, walking speed 

among the participants with MS was 33% that of controls while balance measured 

through Berg Balance Scale was below the cut off for risk of falls (<45) in 9/14 MS 

participants and 0/8 controls. Seven participants with MS scored <40 on Berg Balance 

Scale, which is associated with almost 100% fall risk 289. Fatigue measured through 

Fatigue Severity Scale was four times higher in MS and when measured using the SF-36, 

energy/vitality levels in MS subjects were less than half of controls. 

4.3.2 Graded exercise test 

Participants with progressive MS exercised significantly shorter duration 

compared to age/sex matched controls during GXT (Z=-2.018, p=0.046) and achieved 

about 50% lower maximal V̇O2 (Z=-3.283, p=0.0003) than controls (Table 4.1). The 

maximal workload achieved by participants with progressive MS during GXT was 36.7% 

of that achieved by controls (Z=3.209, p=0.00049). Participants with MS achieved 

significantly lower respiratory exchange ratio at the end of GXT compared to controls 

(p=0.016), with 4/14 MS participants and 3/7 controls achieving a respiratory exchange 

ratio of more than 1.10 (indicating they achieved a maximal test). The participants with 

MS also had a significantly lower heart rate at the end of GXT compared to controls 

(p=0.002), with 3/14 MS participants and 6/7 controls achieving more than 90% of their 
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age-predicted maximal heart rate. All participants reported performing the test to maximal 

volitional exhaustion and there was no significant difference in the Borg’s rating of 

perceived exertion measured immediately after GXT between MS and controls (Z=-

0.684, p=0.585). 

4.3.3 Blood markers before and after GXT 

Blood samples were collected within 7 minutes (246.89+137.04 seconds) of GXT 

termination. The mean blood collection time after GXT was not significantly different 

(Z=-0.517, p=0.616) between MS (259.08+113.18 secs) and controls (222.5+186.0 secs). 

We were unable to draw blood samples from 2 MS participants. Serum BDNF and IGF-1 

levels in both participants with progressive MS and matched controls were within the 

detectable ranges except for one IGF-1 sample measured at rest in one control subject. IL-

6 was detectable in 60.5% of samples while TNF was below detectable range in all 

samples tested (<0.0001 ng/mL). Statistical analyses were carried out and reported for 

BDNF, IGF-1 and IL-6 (Table 4.1). 
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Table 4.1 Participant characteristics 

Parameters Characteristic MS 

Mean (SD) 

Controls 

Mean (SD) 

Demographics    

Age (in years)  54.07 (8.46) 50.71 (12.08) 

Sex (n) Females/Males 10/4 4/3 

BMI (in kg-1·m-1)  27.74 (7.56) 27.44 (3.76) 

Years since MS diagnosis  16.57 (9.69) NA 

Type of MS (n) SPMS 10 NA 

 PPMS 3 NA 

 PRMS 1 NA 

Biomarkers    

BDNF (ng/mL) At rest 56.56 (25.12) 57.63 (9.48) 

 After GXT 56.47 (31.25) 57.20 (17.92) 

IGF-1 (ng/mL) At rest 1.85 (1.38) 0.95 (0.60) 

 After GXT 2.01 (1.25) 1.25 (0.79) 

IL-6 (ng/mL) At rest* 0.0015 (0.002) 0.0003 (0.0004) 

 After GXT 0.0021 (0.0023) 0.0008 (0.0009) 

TNF (ng/ mL) At rest ND ND 

 After GXT ND ND 

Functional measures   
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Comfortable walking speed (m·s-1)* 0.32 (0.13) 0.96 (0.26) 

Berg Balance Scale* 35.50 (15.35) 55.86 (0.38) 

Fatigue Severity Scale* 51.93 (7.7) 12.71 (3.25) 

SF-36 (Vitality/Energy/Fatigue)* 37.14 (18.16) 87.14 (9.06) 

Maximal V̇O2 (mL·min-1·kg-1)* 16.35 (6.39) 33.04 (8.95) 

 Duration of GXT (s)* 793.29 (259.84) 1087.71 (207.95) 

 Maximal workload (Watts)* 99.69 (33.84) 271.43 (127.46) 

 Maximal respiratory exchange ratio* 1.03 (0.13) 1.13 (0.09) 

 Maximal heart rate (beats·min-1)* 131.57 (23.16) 168.26 (16.83) 

 Maximal perceived exertion (Borg’s scale)* 9.1 (1.6) 8.1 (2.4) 

*statistically significant difference between two groups at p<0.05 with bolded text; 

ND: not detectable (below detectable range); n: count/frequency; BMI: body mass 

index; kg: kilogram; m: meter;  NA: not applicable; SPMS: Secondary-Progressive 

MS; PPMS: Primary-Progressive MS; PRMS: Progressive-Relapsing MS; %: 

percentage; BDNF: brain-derived neurotrophic factor; ng: nanogram; mL: milli-litre; 

IGF-1: insulin-like growth factor-1; IL-6: interleukin-6;  TNF: tumor necrosis factor; 

GXT: graded exercise test; min: minute; V̇O2: Oxygen consumption; s: second 
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4.3.3.1 Neurotrophins BDNF and IGF-1 

In terms of serum BDNF, there was no significant difference between individuals 

with progressive MS and matched controls in levels measured at rest (Z=-0.085, p=0.967) 

nor in response to GXT (post minus pre serum levels) (Z=-0.254, p=0.837). Furthermore, 

GXT did not elicit a significant change in serum levels of BDNF from baseline in both 

individuals with progressive MS (Z=-0.078, p=0.937) and controls (Z< 0.001, p=1.0) 

(Figure 4.1). It was notable that BDNF levels were more variable in MS (range, 19.47-

95.65 ng/mL) compared to the control group (range, 45.77-72.59 ng/mL) and, in response 

to exercise, half of the MS participants (7/12) experienced increased BDNF, while 4 of 7 

controls measured an increase (Figure 4.1).  

In terms of IGF-1, there was no significant difference between individuals with 

progressive MS and matched controls in levels measured at rest (Z=1.437, p=0.167) nor 

in response to GXT (Z=-0.085, p=0.967). Furthermore, GXT did not elicit a significant 

change in serum levels of IGF-1 from baseline in both MS (Z=0.314, p=0.754) and 

controls (Z=0.507, p=0.612) (Figure 4.1). As with BDNF, serum IGF-1 levels measured 

at rest were highly variable between individuals and MS participants tended to have a 

wider range of serum IGF-1 values (range, 0.33-4.84 ng/mL) than controls (range, 0.19-

1.61 ng/mL). IGF-1 increased after exercise in 5/12 MS participants and 4/7 controls 

(Figure 4.1). 

4.3.3.2 Inflammatory cytokines 

In terms of IL-6, individuals with MS had significantly higher IL-6 than controls 

measured at rest (Z=2.569, p=0.01). There was no significant difference in exercise-
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induced change in IL-6 between MS and controls (Z=0.933, p=0.384). Furthermore, we 

noted that GXT elicited a significant elevation in serum levels of IL-6 in MS (Z=2.828, 

p=0.005), but not in controls (Z=1.362, p=0.173) (Figure 4.1). 
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Figure 4.1 Blood marker responses to graded exercise test 

Data presented as individual values. (a) & (b): Serum levels of BDNF (ng/mL) in MS and 

controls; (c) & (d): Serum levels of IGF-1 (ng/mL) in MS and controls; (e) & (f): Serum 
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levels of IL-6-1 (ng/mL) in MS and controls; The p Values are from Related-Samples 

Wilcoxon Signed Rank tests. 
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4.3.4 Relationships between neurotrophins, inflammatory cytokines, and function 

Greater elevation in serum BDNF response to GXT (post minus pre) was 

significantly related to faster walking speed (rs=0.618, p=0.043) and less fatigue 

measured using vitality/energy/fatigue subscale of SF-36 (rs=-0.583, p=0.046) (Table 

4.2). No other relationships between serum blood markers and functional measures were 

statistically significant (p values, 0.1 to 0.983). After correcting for multiple correlations 

(0.05/6=0.008) 297, 298, none of these relationships were statistically significant (Table 

4.2). 
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Table 4.2 The relationships between potential biomarkers and functional measures 

of symptom severity in MS 

Spearman’s rank 

correlation coefficient 

BDNF 

at rest 

IGF-1 

at rest 

IL-6 

at 

rest 

BDNF 

response 

to GXT 

IGF-1 

response 

to GXT 

IL-6 

response 

to GXT 

Functional measures of symptom severity 

Comfortable walking 

speed 

.191 -.255 -.028 .618* .218 .037 

Berg Balance Scale .109 .088 -.291 .497 .060 -.007 

Fatigue Severity Scale -.141 .134 -.127 .455 .032 .320 

SF-36 

(Vitality/Energy/Fatigue) 

.351 .200 -.025 -.583* -.373 -.347 

Maximal V̇O2 (mL·min-

1·kg-1) 

-.245 .427 .032 .455 .063 .085 

*statistically significance at p<0.05; BDNF: brain-derived neurotrophic factor; IGF-1: 

insulin-like growth factor; IL-6: interleukin-6; GXT: graded exercise test; V̇O2: Oxygen 

consumption; mL: milli-litre; min: minute; kg: kilogram; RER: respiratory exchange 

ratio; SF-36: 36-item short form health survey; 
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Figure 4.2 Relationships between serum BDNF response to GXT (in ng/mL) and 

functional measures in participants with MS 
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Data presented as individual values. (a) relationship between self-selected walking speed 

and serum BDNF response to GXT; (b) relationship between berg balance scale score and 

serum BDNF response to GXT; (c) relationship between maximal oxygen consumption 

during GXT and serum BDNF response to GXT; (d) relationship between fatigue severity 

scale score and serum BDNF response to GXT; (e) relationship between vitality subscale 

on Short Form – 36 and serum BDNF response to GXT; The R-squared and p Values are 

from simple regression analyses. 
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In order to determine whether neurotrophins or inflammatory cytokines predicted 

MS symptom severity, we proceeded to linear regressions using those variables that were 

related in correlational analysis described above with a significance level of p<0.2. 

Higher exercise-induced increases in serum BDNF with GXT predicted faster walking 

speed (b=0.005, p=0.036), explaining 40.1% (r2=0.401) of the variance (Figures 4.2 and 

4.3). Serum BDNF response to GXT did not significantly predict balance (b=0.443, 

p=0.075, r2=0.282), fatigue severity (b=0.200, p=0.088, r2=0.264), vitality/energy/fatigue 

subscale of SF-36 (b=-0.440, p=0.123, r2=0.221) nor maximal V̇O2 (b=0.150, p=0.183, 

r2=0.170) (Figure 4.2). Resting BDNF, IGF-1, IL-6 and exercise-induced levels of IGF-1 

and IL-6 did not predict, walking speed, balance, fatigue, or fitness (data not shown). 

 

 

 

 



 

125 

 

 

Figure 4.3 Relationships between serum BDNF response to GXT and walking speed 

in MS 

Data presented as individual values. * Participant 8 was not able to walk more than few 

steps. 
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4.4 Discussion 

There is an urgent need to develop rehabilitation treatments to help stabilize or 

even improve function in people with progressive MS. Recent research supports that 

exercise could provide neuroprotection in MS by interacting with the neuro-immune axis 

186, 299, 300. Serum levels of neurotrophins and inflammatory cytokines, as potential 

biomarkers of inflammation and neuronal repair, could be useful to monitor the effects of 

exercise interventions. Therefore, the main aim of this study was to investigate resting 

and exercise-induced serum levels of BDNF, IGF-1, IL-6 and TNF in people with 

progressive MS and matched controls and their relationship to MS symptom severity. We 

report three main findings; first of all, people with progressive MS were severely 

deconditioned, with fitness levels well below that is required to comfortably carry out 

everyday activities111, 194, walking speeds about one third that of controls and balance 

scores indicating high risk of falls (Table 4.1). Secondly, other than IL-6 which was 

higher in MS subjects and was further increased with exercise, there were no differences 

in resting and exercise-induced levels of biomarkers between the groups. We did note 

however that TNF levels were below detectable ranges for our assays and that people 

with MS had much more variable levels of BDNF and IGF-1 than control subjects. 

Finally, we found that greater exercise-induced levels of serum BDNF significantly 

predicted faster walking speed. 

4.4.1 Aerobic fitness, disability, and expression of neurotrophins 

In our study, all participants performed the GXT on a total body recumbent 

stepper until maximal voluntary exhaustion was achieved (100% of their capacity), yet 
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we did not detect statistically significant increases in serum BDNF levels. Despite 

reporting comparable levels of exhaustion at the end of GXT, participants with MS 

achieved significantly lower maximal workload during GXT compared to control 

subjects. Our participants with progressive MS were also less fit compared to age/sex 

matched controls without MS as suggested by lower V̇O2, respiratory exchange ratio, and 

heart rate achieved at peak of exercise during GXT. Previous research supports that 

release of BDNF in the blood is proportional to the intensity of the exercise 301, 302. It is 

likely that our cohort, having extremely low levels of fitness, had blunted capacity to 

upregulate BDNF. In people with MS with minimal disability (EDSS 2.3+0.2 ), Gold et 

al. 254 reported a significant increase in serum BDNF (approximately 1.4 times more) 

after cycling at a moderate intensity (60% of maximal V̇O2) for 30 minutes. Similarly, 

Briken et al. 154 reported 1.2 times increase in BDNF in a group of people living with 

progressive MS with moderate disability (EDSS 4.9+0.8) after 10-20 minutes of exercise 

during standardized maximal bicycle ergometer test achieving a peak workload of 97.5 

watts. Although our group achieved 99.7 watts after 7-22 minutes of exercise on the 

recumbent stepper, our participants with progressive MS had, on average, a 0.2% 

decrease in BDNF after exercise. Lack of BDNF responsiveness to exercise could be 

related to the fact that our participants had more severe disability (EDSS 6.0-6.5) and 

lower levels of fitness than that previously reported; 15% lower maximal V̇O2 than 

subjects recruited by Briken and group (1490.18 mL vs 1260.9 mL) 154. However, it is 

important to note that there was also no increases in serum BDNF in age/sex matched 
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control subjects who exercised longer during GXT, suggesting that the stimulus (GXT) 

was of insufficient duration to upregulate BDNF in serum. 

4.4.2 Skeletal muscle and serum BDNF induction 

Although the brain contributes to almost 75% of the circulating BDNF 301, skeletal 

muscle is increasingly being recognized as a secretory organ and an important source of 

BDNF 303, 304. BDNF, in turn, is thought to be transported across the blood brain barrier to 

influence brain plasticity 305. Although we did not measure muscle integrity, we noted 

two findings that support the notion that the ability to upregulate serum BDNF may be 

related to skeletal muscle. First of all, exercise-induced BDNF levels were related to 

walking speed. It is known that comfortable walking speed is determined by the leg 

muscle’s ability to propel the body forward 306-312. Similarly, it was shown that healthy 

adults who had high fat free (skeletal muscle) mass demonstrated greater release and 

faster recovery of serum BDNF during GXT 313. The second finding supporting the 

relationship between exercise-induced BDNF and skeletal muscle was that very slow 

walkers (Figure 4.3) experienced decreases (rather than increases) in BDNF with 

exercise. Our cohort’s average walking speed was 0.32m/s; about one third of typical gait 

speed 306 and half that reported among people with MS who walked using a cane 314. This 

suggests that, in the slowest walkers (<0.3m/s), their muscles were unable to release 

BDNF. Our findings point to the importance of targeting deconditioning and muscle 

weakness among people with progressive MS, not only to improve walking, but also to 

enhance exercise-induced BDNF which could have important benefits on brain health 110. 

As previously noted in the literature, comfortable walking speed is one of the robust, 
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valid clinical marker of health and function, shown to predict mortality 315-317, dependence 

for daily activities 318, disability 319, risk of falls 320, and general cognitive decline 321. The 

relationship between exercise-induced serum BDNF and comfortable walking speed 

noted in our study supports that more investigation is required to validate exercise-

induced serum BDNF as a biomarker of MS-related disability. Moreover, a marginal 

statistical significance noted in the relationships between exercise-induced BDNF and 

other measures of MS symptom severity such as balance, fatigue severity, and fitness 

(Figure 4.2) reinforces our hypothesis that the capacity to increase BDNF might depend 

on one’s skeletal muscle integrity and physical fitness.  

4.4.3 Factors influencing cytokine responses in MS 

We showed that both resting and exercise-induced levels of IL-6 were greater in 

MS subjects than controls. Research suggests that the two measures, resting levels of IL-6 

and exercise-induced levels of IL-6, are indicative of entirely different processes. For 

instance, at rest, B cells derived from people MS secrete higher than typical levels of IL-6 

which appears to contribute to inflammatory-mediated pathogenesis 322. However, 

exercise-induced IL-6 may be beneficial. In healthy volunteers, IL-6  released from 

skeletal muscle with exercise is purported to downregulate TNF 323. Exercise-induced IL-

6 is important in maintaining homeostasis 324; mediating some of the systemic benefits of 

exercise 325, 326. For example, in a study examining the acute effects of exercise on IL-6 

and macrophages in obese mice, exercise-induced increases in IL-6 were associated with 

weakening of M1 phenotype (less inflammatory) in adipose tissue macrophages 327. 

Briken et al. 154 reported that following 9 weeks of endurance training, people with 
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progressive MS experienced greater elevation (36.2%) in serum IL-6 levels after GXT 

compared to a wait-list control group (10.3% increase) (p=0.06). In our untrained study 

group, participants with progressive MS had 40% increase in serum IL-6 levels after 

GXT. Taken together, exercise-induced IL-6 seems to have some biological plausibility 

as a potential rehabilitation biomarker. However previous research has shown that serum 

cytokines in humans are influenced by many lifestyle and behavioral factors including 

stress 328, gut microbiome 329, dietary patterns 330, 331, consumption of herbs 332, sleep 

quality 333, 334, diurnal variation 335-337, smoking 338, alcohol 339 and drug use habits 340, to 

name just a few. Despite the variability in IL-6, it appeared that both resting and exercise-

induced levels were responsive to perturbation. Future research should examine whether 

these levels change longitudinally and whether they align with progression or 

improvement in MS symptoms. 

4.5 Limitations 

Our study has several limitations that must be acknowledged. First of all, we did 

not collect information about diet or physical activity patterns to examine whether these 

factors influenced the measurement of blood biomarkers and V̇O2. Secondly, we 

examined biomarkers after a GXT which was of different intensities and durations 

depending on the person’s level of fitness. Future research should examine these blood 

levels acutely after a standardized exercise session and then longitudinally as a result of 

longer term training. Thirdly, this study was a secondary analysis of data and therefore, 

the marginal statistical significance between exercise-induced BDNF and measures of MS 

severity might have been due to limited power achieved with the sample size. Lastly, IL-6 
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is a pleiotrophic cytokine which takes part in a wide range of biological activities 

including inflammation, immune regulation, metabolism, hematopoiesis, and 

oncogenesis341. Considering the fact that IL-6 can exhibit in multiple, potentially 

overlapping signaling mechanisms, the interpretation of data related to IL-6 from our 

study must be limited to the specific context of this research.  

4.6 Conclusion 

We found that both resting and exercise-induced serum levels of neurotrophins 

(BDNF, IGF-1) did not differ between individuals with progressive MS and age/sex 

matched healthy controls. However, serum levels of IL-6 were significantly elevated at 

rest and further increased after GXT in individuals with progressive MS compared to 

matched controls, suggesting that serum IL-6 is a potential biological marker of physical 

stress associated with GXT. Further, higher exercise-induced serum BDNF was 

significantly related to faster walking speed measured in individuals with progressive MS 

supporting previous research that skeletal muscle may be an important source of BDNF. 

How exercise-induced BDNF may influence the neuro-immune axis and interact with the 

blood brain barrier is an important area of future research. 
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Abstract 

Background: Aerobic training has the potential to restore function, stimulate brain 

repair, and reduce inflammation in people with Multiple Sclerosis (MS). However, 

disability, fatigue, and heat sensitivity are major barriers to exercise for people with MS. 

We aimed to determine the feasibility of conducting vigorous harness-supported treadmill 

training in a room cooled to 16°C (10 weeks; 3times/week) and examine the longer-term 

effects on markers of function, brain repair, and inflammation among those using 

ambulatory aids.  

Methods: Ten participants (9 females) aged 29 to 74 years with an Expanded Disability 

Status Scale ranging from 6 to 7 underwent training (40 to 65% heart rate reserve) 

starting at 80% self-selected walking speed. Feasibility of conducting vigorous training 

was assessed using a checklist, which included attendance rates, number of missed 

appointments, reasons for not attending, adverse events, safety hazards during training, 

reasons for dropout, tolerance to training load, subjective reporting of symptom 

worsening during and after exercise, and physiological responses to exercise. Functional 

outcomes were assessed before, after, and 3 months after the completion of training. 

Walking ability was measured using Timed 25 Foot Walk test and on an instrumented 

walkway at both fast and self-selected speeds (stance (%), swing (%), double support 

(%)). Fatigue was measured using standardized questionnaires (fatigue/energy/vitality 

sub-scale of 36-Item Short-Form (SF-36) Health Survey, Fatigue Severity Scale, modified 

Fatigue Impact Scale). Aerobic fitness (maximal oxygen consumption) was measured 

using maximal graded exercise test (GXT). Quality-of-life was measured using SF-36 
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Health Survey. Serum levels of neurotrophin (brain-derived neurotrophic factor) and 

cytokine (interleukin-6) were assessed before and after GXT. 

Results: Fast walking speed (cm/s), gait quality (double-support (%)) while walking at 

self-selected speed, fatigue (modified Fatigue Impact Scale), fitness (maximal workload 

achieved during GXT), and quality-of-life (physical functioning sub-scale of SF-36 

Health Survey) improved significantly after training, and improvements were sustained 

after 3-months. Improvements in fitness (maximal respiratory exchange ratio and 

maximal oxygen consumption during GXT) were associated with increased brain-derived 

neurotrophic factor and decreased interleukin-6. 

Conclusion: Vigorous cool room training is feasible and can potentially improve 

walking, fatigue, fitness, and quality-of-life among people with moderate to severe MS-

related disability. 

Trial registration: NCT04066972 

Keywords: Progressive multiple sclerosis, rehabilitation, gait, cooling, neuroplasticity 
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5.1 Background 

Multiple Sclerosis (MS) is a chronic disease of the central nervous system (CNS), 

affecting approximately 2.3 million people worldwide 9. MS is characterized by acute 

inflammatory episodes in the CNS, often transitioning to a progressive neurodegenerative 

phase 9. About 80% of those who live with MS will develop the progressive form during 

their lifetime 9. Cellular mechanisms contributing to neurodegeneration in MS include 

lack of trophic support to neurons and glia, chronic microglial activation, and 

mitochondrial injury induced by oxidative stress 342. Several studies in animal models of 

MS suggest that exercise has direct protective and restorative effects by interacting with 

these mechanisms 343-345. Evidence suggests that aerobic training promotes neuroplasticity 

by upregulating neurotrophins such as brain-derived neurotrophic factor (BDNF) and 

insulin-like growth factor (IGF-1) 346-349. Further, aerobic exercise could have direct 

effects on the neuro-immune axis in MS 347, 350. A systematic review of evidence 

suggested that aerobic training significantly altered peripheral levels of cytokines, 

interleukin (IL) 6, IL-10, interferon-gamma, and tumor necrosis factor-alpha 266. Whether 

aerobic training has the potential to affect multiple underlying targets such as enhancing 

markers of neuroplasticity by upregulating neurotrophins and attenuating neural 

inflammation by altering levels of cytokines is not clear 149, 351. Since aerobic exercise 

performed on a treadmill also provides a high volume of task-specific practice, aerobic 

treadmill training has the potential to improve walking ability, fitness, and quality of life 

149, 231, 351. 
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Although aerobic training is a promising rehabilitative strategy for MS, aerobic 

exercise increases metabolic rate by 5 to 15 times above resting state and heat produced 

by contracting muscles elevates core body temperature, which in turn acts as a barrier to 

exercise participation 86-88. Paroxysmal or fleeting MS symptoms, such as pins and 

needles that persist for few seconds to minutes, often occur as a result of a temperature-

dependent conduction block in demyelinated axons, triggered by an increase in body 

temperature 42. Impaired regulation of body temperature is a major barrier to exercise for 

people living with MS 77, 352. In a cross sectional study, heat sensitive individuals with MS 

had simultaneous increase in core temperature and worsening of MS symptoms during 

aerobic exercise, when compared to resisted exercise 353. Furthermore, higher internal 

body temperature caused fatigue, even in trained participants during aerobic exercise 

sessions 354. According to Allen et al. 355, people with MS experience attenuated sweating 

response, which may lead to a temporary worsening of disease symptoms and limit 

exercise tolerance under more thermally challenging conditions. Our previous research 

showed that cooling the exercise environment to 16°C, mitigated exercise-induced losses 

in central drive among people with MS who reported having heat sensitivity 356.  

Therefore, we aimed to determine the feasibility of conducting a vigorous aerobic 

walking training in a room cooled to 16°C using bodyweight supported treadmill (BWST) 

for people with MS who used ambulatory assistive devices, wheelchairs, and mobility 

scooters. We examined both the immediate and longer-term (at 3-month follow-up) 

impacts of training on walking speed, gait parameters, fatigue, aerobic fitness, and quality 

of life. We also examined in a preliminary way, whether the intervention would alter 
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blood biomarkers of neuroprotection (BDNF) and inflammation (IL-6). BDNF and IL-6 

were chosen as proxy indicators of neuroprotection and inflammation respectively 

because preliminary experiments showed that they were potential rehabilitative markers 

for people with MS having severe walking disability 357. 

5.2 Methods 

5.2.1 Design 

This was a repeated measures feasibility study with a non-randomized single arm 

aimed to examine the feasibility and preliminary effects of the intervention. This study 

was approved by the Newfoundland and Labrador Health Research Ethics Board and 

registered in ClinicalTrials.gov database (NCT04066972). This study was conducted in 

accordance with the Tri-Council Policy Statement: Ethical Conduct for Research 

Involving Humans, 2014 and the principles outlined in the Declaration of Helsinki. This 

study conforms to the Consolidated Standards of Reporting Trials statement extension for 

feasibility studies 358. 

5.2.2 Sample size estimation 

The target sample size for this study was estimated based on feasibility 

considerations. Our target sample size was between 10 and 15 participants, the size 

considered sufficient for studies evaluating feasibility issues in a single group of 

participants 359. The secondary aim of this study was to detect walking speed differences 

measured by Timed 25 Foot Walk (T25FW) test (in seconds). To estimate the sample size 

required to assess preliminary effects of training in this study and to inform a future 
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randomized controlled study, we used the data from a previous study 360, 361 where a 

training effect size of 0.994 was noted (decrease of values for T25FW from 10.9+5.0 

seconds at baseline to 6.8+3.0 seconds after BWST training). Further, we considered data 

from Lo and Triche 360 for sample size calculation as their participant characteristics 

regarding walking difficulty matched our inclusion criteria. To detect a difference with 

95% confidence and power of 80%, we required 11 participants for this study. As we 

expected a 20% rate of dropout or loss to follow–up during the study, we aimed to recruit 

14 participants.  

5.2.3 Recruitment and Screening 

Participants were recruited from the local MS clinic and an outpatient 

rehabilitation service discharge database following written informed consent. The 

inclusion criteria were (a) clinically definite MS 282; (b) relapse-free in the previous 3 

months; (c) requiring ambulatory assistive devices (Expanded Disability Status Scale 

(EDSS)) score from 6.0 to 7.0) 362; (d) negative Physical Activity Readiness 

Questionnaire (PAR-Q) screen for risk factors 201, 283; and (e) greater than 6-weeks post 

Botulinum Toxin injection (if received) in lower extremity. The exclusion criteria were 

(a) pregnancy or intention of becoming pregnant; (b) finished a drug/device study in the 

last 30 days; (c) over 75 years of age; (d) unable to control bowel and bladder on physical 

exertion; (e) currently attending physical rehabilitation; and (f) having no difficulty 

walking in the community (self-selected walking speed >120 cm/s). All participants were 

screened initially to determine whether they could participate in exercise using PAR-Q 

201, 283. The participants who failed the PAR-Q were referred to a physician for the PAR-
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Medical Examination (PAR-Med-X) 284. Participants diagnosed with relapsing-remitting 

MS verified whether they had steadily increasing disability, without a clear recovery in 

the past year, to determine whether they were in transition to the progressive phase 363.  

Finally, participants were asked to answer ‘Yes or No’ to the following questions: (1) ‘Do 

you experience fatigue?’ and (2) ‘Are you sensitive to heat?’ 

5.2.4 Outcome measures 

5.2.4.1 Feasibility 

Feasibility of conducting vigorous training in participants with barriers to exercise 

was assessed using a checklist that included attendance rates, number of missed 

appointments, reasons for not attending, adverse events (MS relapse, syncope, or medical 

emergencies), safety hazards during training (difficulty getting on and off treadmill, 

difficulty adjusting to changes in treadmill speed and inclination, difficulty switching 

between sitting and standing positions), reasons for dropout, tolerance to training load 

(degree of body weight support required during exercise, number of breaks taken during 

exercise, minutes of exercise), subjective reporting of symptom worsening during and 

after exercise, and physiological responses to exercise (tympanic temperature, heart rate, 

fatigue on a visual analog scale, and mean arterial pressure measured before and after 

exercise). 

5.2.4.2 Walking speed 

Fast walking speed was assessed on a path clear of obstacles in a quiet, private 

environment using two methods, (i) T25FW test 364-366, and (ii) on a 4” X 14” 
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computerized Protokinetics ZenoTM walkway in order to measure spatiotemporal 

parameters of fast walking 367. Participants were also instructed to walk two laps on the 

walkway at self-selected walking speed to measure speed and spatiotemporal parameters. 

For all walking assessments, participants were provided with standardized instructions 

and used their ambulatory devices. If the participants required additional assistance while 

walking, they were assisted using a gait belt by a member of the research team, who was 

a physiotherapist. Gait parameters (stance phase (%), swing phase (%), double support 

phase (%), and walking speed (cm/s)) were extracted from the walkway as previously 

described 368.  

5.2.4.3 Fatigue 

Fatigue was assessed using three methods: (a) The fatigue/energy/vitality sub-

scale of 36-Item Short-Form (SF-36) Health Survey measured the extent of fatigue 207, 291, 

369, (b) The Fatigue Severity Scale (FSS) measured the intensity of fatigue 290 and (c) the 

modified Fatigue Impact Scale (mFIS) measured the impact of fatigue on everyday life 

370-372.   

5.2.4.4 Aerobic fitness 

Fitness was assessed using maximal GXT on a seated recumbent stepper 285. All 

participants were asked to exercise at increasingly difficult levels while wearing a 

facemask to measure how much oxygen they consumed (Moxus Metabolic Systems; AEI 

Technologies, Inc.). A heart rate monitor was placed on their chest to measure maximal 

heart rate achieved during GXT. Participants were verbally encouraged to exercise as 
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long as they could, and the workload was increased in ~20-watt increments every 2 

minutes, starting from load level 3 (21 watts) until exhaustion 285. Participants were 

considered to have attained maximal oxygen consumption (V̇O2) if at least two of the 

following criteria were met: (a) V̇O2 plateau (no increase in V̇O2 by 150 mL/min despite 

increasing workload) 285, 373, (b) respiratory exchange ratio >1.10 373, (c) >90% age-

predicted maximal heart rate 373, and/or (d) >8/10 rate of perceived exertion 373.  

5.2.4.5 Quality of life 

Health-related quality of life was assessed using SF-36 Health Survey, which 

consisted of nine domains including physical functioning, role limitations due to physical 

health, role limitations due to emotional problems, mental health/emotional well-being, 

social functioning, bodily pain, fatigue/energy/vitality, general health perceptions, and 

health compared to last year 207, 291, 369.  

5.2.5 Serum analysis 

Blood was collected from the median cubital vein at three testing time points (pre, 

post, and follow-up) immediately before and after GXT in two 5mL serum vacutainers 

374. The samples were left to clot for 30-60 minutes, centrifuged at 2200g for 10 minutes, 

and the collected serum was stored frozen at −80 °C until assayed. Serum levels of 

neurotrophin (BDNF) and cytokine (IL-6) were measured using ELISA kits for human 

BDNF (R&D Systems Inc. Minneapolis, Minnesota, USA) and IL-6 (BD Biosciences, 

San Diego, California, USA) as per manufacturer’s instructions.  
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5.2.6 Intervention 

All participants underwent a personalized, progressively intense, moderate to 

vigorous intensity (40-65% heart rate reserve (HRR) 375) training for ten weeks (3x/week) 

in a temperature-controlled room (16°C) starting at 80% self-selected walking speed on a 

BWST equipped with safety straps to prevent falls. Exercise intensity was estimated 

using resting and maximal heart rates measured before and during GXT respectively at 

baseline (Exercise heart rate = % target intensity (maximal heart rate – resting heart rate) 

+ resting heart rate) 373, 376. Each training session lasted up to 40 minutes, including 5 

minutes of warm-up and cool-down. A gradual progression of workload was undertaken 

to minimize muscle injury 377, starting with moderate intensity (40% HRR) at 80% self-

selected speed, and progressing to vigorous intensity (65% HRR) at gradually increasing 

walking speed as tolerated 375, with simultaneous reduction of bodyweight support 

provided on the treadmill from 10% to 0% and increase of treadmill incline from 1% to 

10%. For individuals with severe walking impairment, manual support was provided to 

advance the weaker lower extremity as required. 

5.2.7 Data analysis 

Variables were assessed if they met assumptions of non-parametric statistics. 

Statistical analyses (Friedman rank test followed by Wilcoxon matched-pairs signed-rank 

tests with Bonferroni alpha correction (0.05/3=0.01)) were then conducted to determine 

the effects of cool room BWST training. Missing data were not imputed but were 

excluded pairwise due to small sample size and its concurrent higher variance. The 

relationships between the outcome measures were estimated by Spearman’s rank 
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correlation coefficient (rs). When multiple correlations were conducted, a post-hoc 

correction was performed using the Bonferroni method 297, 298. Clinically meaningful 

changes, both individual as well as a group, were determined for participants who 

attended all three testing time points using cut-off values published previously in the 

literature. 

5.3 Results 

5.3.1 Feasibility of recruitment, attendance, and retention  

5.3.1.1 Recruitment 

Thirty-seven MS patients were contacted to determine their willingness to 

participate. Thirteen MS patients did not meet eligibility criteria, seven declined to 

participate, and seven were not contactable. Out of 10 MS patients who agreed to 

participate, eight passed the PAR-Q, and two passed PAR-Med-X, and were thus enrolled 

(n=10) in the study (Table 5.1). Recruitment was stopped prior to reaching enrollment 

goal (n=11) due to slow accrual and difficulty finding patients who were willing to 

participate in the training program. All participants (n=10) identified themselves as 

having fatigue and sensitivity to heat. Ten participants (9 females), aged 29 to 74 years, 

with EDSS ranging from 6.0 to 7.0 completed the baseline assessments following which, 

two dropped out of the study (after completing 2 and 7 sessions respectively), and eight 

participants continued to participate in the exercise training sessions (range, 24 to 30 

sessions) (Table 5.1). Eight participants (7 females) completed the 10-week exercise 

training and completed the assessments immediately after the training program. Three 
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months after exercise training, seven participants (6 females) returned to complete the 

follow-up assessments. 

5.3.1.2 Attendance rates and reasons for missed appointments 

The attendance rates ranged from 80% to 100% among those who completed 

exercise training and the total number of missed appointments ranged from 1 to 6 per 

participant (Table 5.1). The reasons for missing appointments were feeling tired or unwell 

(n=15), transportation issues (n=5), having medical appointments (n=4), personal 

scheduling conflict (n=4), leg pain and stiffness (n=3), inclement weather (n=3), recent 

fall (n=2), and forgot appointment (n=1). Participants rescheduled the missed 

appointments and continued to participate in the exercise sessions (Table 5.1). 
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Table 5.1 Attendance characteristics 

Participant Total number of 

sessions attended 

Attendance rate Total number of 

missed appointments 

Dropout (Yes/No) 

1 26 86.67 3 No 

2 24 80.00 3 No 

3 30 100.00 1 No 

4 26 86.67 6 No 

5 26 86.67 5 No 

6 7 23.33 7 Yes 

7 30 100.00 1 No 

8 25 83.33 5 No 

9 28 93.33 3 No 

10 2 6.67 1 Yes 
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5.3.1.3 Baseline characteristics 

On average, the participants were 53.2 years of age (+15.6) and had a body mass 

index of 28.2(+6.6) (Table 5.2). Four had confirmed diagnosis of progressive MS and six 

were in transition from relapsing-remitting to progressive phase (Table 5.2) 363. 

Participants used either unilateral (n=4) or bilateral (n=6) support during ambulation 

(Table 5.2). On average, self-selected walking speed was 57.8(+31.3) cm/s, and fast 

walking speed was 85.8(+54.4) cm/s. None of the participants required additional 

assistance from the physiotherapist during overground walking speed assessments.  
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Table 5.2 Participant characteristics 

N EDSS Type of 

MS 

Sex Age Years 

since MS 

Diagnosis 

BMI Ambulatory assistive device 

used (indoor/outdoor) 

Fast walking 

speed (in cm/s) 

Self-selected 

walking speed 

(in cm/s) 

1 7.0 PPMS F 57 10 38.20 Rollator walker/Motorized 

wheelchair 

31.29 24.89 

2 7.0 SPMS F 58 33 30.90 Rollator walker/Motorized 

scooter 

26.74 16.99 

3 7.0 PPMS M 42 19 25.60 Rollator walker/Wheelchair 82.42 47.22 

4 6.5 SPMS* F 50 28 17.90 Cane 204.95 102.06 

5 7.0 SPMS* F 38 19 32.30 2 Canes/Motorized scooter 98.15 83.77 

6 7.0 SPMS* F 42 8 31.50 Rollator walker 84.02 63.04 

7 6.0 SPMS* F 72 18 20.30 Cane 122.21 92.90 

8 7.0 PPMS F 74 10 32.30 Rollator walker/Wheelchair 20.72 14.15 
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9 6.0 SPMS* F 29 2 31.90 Cane 85.33 66.52 

10 6.0 SPMS* F 70 29 21.30 Cane 102.50 66.74 

N: Participant number; EDSS: expanded disability status scale; MS: multiple sclerosis; BMI: body mass index; cm: centimeter; 

sec: second; PPMS: primary progressive MS; SPMS: secondary progressive MS; F: female; M: male; *participants in transition 

from relapsing-remitting to progressive phase of MS who reported steadily increasing disability, without a clear recovery in the 

past one year; 
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5.3.2 Feasibility of intervention 

5.3.2.1 Adverse events and safety 

The intervention was laboratory-based in a rehabilitation hospital setting; 

therefore, the researchers relied on physicians-on-call for emergencies. No adverse events 

(MS relapse, syncope, or medical emergencies) occurred during assessments and training 

sessions. One participant required electrocardiograph monitoring by the physician during 

GXT due to a history of arrhythmia. The GXT was terminated due to high systolic blood 

pressure (>220 mmHg); however, the participant was admitted into the study after 

clearance from the physician. Participants wore a safety harness during all training 

sessions and no safety hazards were identified.  

5.3.2.2 Reasons for dropout 

The participants were provided a clear option to drop out, if necessary, without 

having to provide any reason. One participant dropped out after attending two exercise 

training sessions as she complained of fatigue and felt unsafe to drive back home after 

exercise. Another participant dropped out after attending seven sessions as per 

physician’s advice after beginning a new MS medication. 

5.3.2.3 Training load and tolerance 

All participants were able to perform progressively intense BWST training from 

moderate to vigorous intensity (40-65% HRR) 375, however participants did not have 

significant change in resting heart rate after training (p=0.289). Eight out of 10 
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participants were able to walk on the treadmill at 80% of their self-selected overground 

walking speed from the first exercise session onwards. One participant was able to start 

training at 60% and another at 40% of their respective self-selected overground walking 

speeds. All participants, but one, were able to walk on the treadmill with 10% body 

weight support from the first exercise session. Three participants were able to completely 

wean off to 0% body weight support over ten weeks. Three participants required manual 

assistance to advance their lower extremity during initial treadmill training sessions, 

which was weaned off gradually. The total time walked, and distance covered 

progressively increased while the total time required to rest decreased (Figures 5.1A, B, 

C, and D). The participants were advised to take breaks in either sitting or standing 

position on the treadmill as required during training sessions (Figure 5.1D). There was an 

overall increase in workload performed and oxygen consumed in both unilateral and 

bilateral walking aid users (Figures 5.1E and F). 
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Figure 5.1 Safety and feasibility of the intervention 

Data are presented as means and standard errors for thirty training sessions separately in participants who used unilateral and 

bilateral walking aids. A: total time walked (in seconds); B: total distance walked (in meters); C: total time rested (in seconds); 

D: number of breaks taken; E: total work performed (in joules); F: total oxygen consumed (in milliliters); Solid diamonds: 

unilateral walking aid users; Solid circles: bilateral walking aid users. 
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5.3.2.4 Subjective reporting of symptoms and physiological response to exercise 

All participants were able to tolerate the cool room training with the air-

conditioning set at 16°C. Two participants reported having mild symptoms, such as pins 

and needles sensations, that were fleeting for a few seconds or minutes during training 

sessions. Two participants reported having weak legs while walking on the treadmill. One 

participant complained of shoulder ache after bearing body weight through arms and 

requested greater body weight support. One participant had leg pain that resulted in the 

termination of one of the training sessions. None of the participants reported exacerbation 

of MS symptoms, such as the occurrence of motor weakness, ataxia of a limb, or any 

other MS symptoms, that lasted more than 24 hours after training sessions 378, 379. 

Tympanic temperature, heart rate, and fatigue increased with exercise, while mean arterial 

pressure remained stable (Figures 5.2A, B, C, and D). 
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Figure 5.2 Physiological responses to a temperature-controlled environment 
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Data collected immediately before and after training sessions are presented as means and standard errors for thirty training 

sessions separately. A: tympanic temperature (°C); B: heart rate (beats per minute); C: fatigue (on a visual analog scale); D: 

mean arterial pressure (millimeters of mercury); Upright triangles: pre-exercise; Inverted triangles: post-exercise. 
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5.3.3 Secondary outcomes 

5.3.3.1 Walking 

5.3.3.1.1 Fast walking speed 

We tested fast walking speed using two methods, (1) T25FW test (in seconds) and 

(2) on an instrumented walkway (cm/s). In terms of the T25FW test, following ten weeks 

of training, participants walked 1.4 times faster (4.06 seconds faster, p=0.012), but values 

returned to pre levels at follow up (p=0.018) (Table 5.3). However, 4 out of 8 participants 

made a clinically meaningful change (>20%) after training (Figure 5.3A) 380-382. 

In regards to fast walking speed measured on the instrumented walkway (cm/s), speed 

increased by 15.5% (p=0.012), which was sustained at follow up compared to pre 

assessment (p=0.043) (Table 5.3). Furthermore, gait quality (duration of stance phase 

(%), swing phase (%), and total double support phase (%)) during fast walking improved 

at post (p values, 0.025, 0.025 and 0.017 respectively), but values returned to pre levels at 

follow up (p values, 0.128, 0.128 and 0.128) (Table 5.3).  

5.3.3.1.2 Self-selected walking speed 

There was no significant change in self-selected walking speed (cm/s) (measured 

on an instrumented walkway) at both post and follow up (p values, 0.674 and 0.063 

respectively) (Table 5.3). However, 6 out of 8 participants made a clinically meaningful 

change of more than 12% beyond the benchmark accepted for walking assessments in MS 

(Figure 5.3B) 53, 383.  
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There was no significant change in stance and swing phases (%) while walking at 

self-selected speed (p values, 0.093 and 0.093 respectively), however total double support 

phase (%) was significantly reduced at post compared to pre (p=0.036) (Table 5.3). 

Duration of the stance phase (%), swing phase (%), and total double support phase (%) 

while walking at self-selected speed improved significantly at follow up compared to pre 

(p values, 0.018, 0.018, and 0.018) (Table 5.3). 

5.3.3.2 Fatigue 

Participants rated three aspects of fatigue, (1) present level of energy 

(fatigue/energy/vitality sub-scale of SF-36 Health Survey), (2) severity of fatigue (FSS) 

and impact of fatigue on everyday life (mFIS).  Participants reported improved fatigue 

(36.4% or 14.3 point increase in energy levels on fatigue/energy/vitality sub-scale of SF-

36 Health Survey) at post (p=0.039), which returned to pre levels at follow up (8.6 point 

increase from pre) (p=0.225) (Table 5.3) (Figure 5.3D). However, 5 out of 8 participants 

made a minimally important improvement of 11.3 or more points at post, of whom 3 

participants sustained the improvements at follow up (Figure 5.3D) 384. 

Severity of fatigue reported on FSS (total score) was not significantly different at 

post or at follow up compared to pre (p values, 0.123 and 0.345 respectively) (Table 5.3). 

However, 4 out of 8 participants achieved a change of 1.9 or more points on mean FSS 

scores at post, a minimal detectable clinically meaningful change for people with MS 

(Figure 5.3E) 370. 

Impact of fatigue reported on mFIS was significantly less (p=0.017) at post, which 

was sustained at follow up compared to pre (p=0.034) (Table 5.3) (Figure 5.3F). 
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However, only 1 out of 8 participants had a clinically meaningful change beyond the 

accepted benchmark of 20.2 points at post, and two at follow up (Figure 5.3F) 370. 

5.3.3.3 Aerobic fitness 

There was no statistically significant change in maximal V̇O2 and maximal heart 

rate achieved during GXT at post compared to pre (p values, 0.484 and 0.078 

respectively) (Table 5.3) (Figure 5.3C). However, the participants were able to achieve a 

greater workload during GXT at both post and follow up compared to pre values (p 

values, 0.012 and 0.043, respectively) (Table 5.3). The oxygen uptake efficiency slope, a 

measure of the cardiorespiratory reserve, significantly increased at post (p=0.049), which 

was sustained during follow up (p=0.735) (Table 5.3) 385, 386. 

In terms of indicators of achievement of a maximal GXT, four out of 10 

participants achieved two or more criteria for test termination at pre, 3 out of 8 at post, 

and 3 out of 7 at follow up 285, 373. The maximal respiratory exchange ratio ranged from 

0.84 to 1.28 (1.07+0.15) at pre, 0.93 to 1.24 (1.07+0.12) at post, and 0.90 to 1.21 

(1.07+0.11) at follow up, in which five out of 10 participants achieved respiratory 

exchange ratio more than 1.1 at pre, 4 out of 8 at post, and 3 out of 7 at follow up. The 

maximal age-predicted heart rate achieved by participants ranged from 68.1% to 101.4% 

(88.1+11.9%) at pre, 68.1% to 104.1% (88.8+12.2%) at post, and 69.1% to 114.2% 

(91.6+16.9%) at follow up, in which five out of 10 participants achieved more than 90% 

of their age-predicted maximal heart rate at pre, 4 out of 8 at post, and 4 out of 7 at follow 

up. Borg’s rating of perceived exertion reported at the end of GXT ranged from 6.0 to 

10.0 (9.2+1.5) at pre, 7.0 to 10.0 (9.5+1.1) at post, and 7.0 to 10.0 (9.6+1.1) at follow up, 
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in which eight out of 10 participants rated more than 8.0 on Borg’s rate of perceived 

exertion at pre, 7 out of 8 at post, and 6 out 7 at follow up. All participants reported 

performing GXT to their maximal volitional exhaustion at all testing time points, except 

for two participants who reported that they could have pushed themselves more during 

GXT performed at post-training.  

5.3.3.4 Quality of life 

There was a clinically meaningful improvement in the quality of life in all SF-36 

domains (i.e., more than a 3-point increase in all SF-36 domains separately at post 

compared to pre), except social functioning (1.8 point increase) (Table 5.3) 387, 388. 

Physical functioning significantly improved at both post (7.9 point increase) and follow 

up (12.9 point increase) compared to pre (p values, 0.038 and 0.027 respectively) (Table 

5.3). Perception about overall health (compared to last year) and bodily pain significantly 

improved at post (21.4 and 22.5 point increase respectively) (p values, 0.028 and 0.018 

respectively), but not at follow up (p values, 0.066 and 0.093) (Table 5.3). Although not 

statistically significant, we noted clinically meaningful (3-point increase) improvements 

reported on the SF-36 subscales - role limitations due to physical health (3.6 point 

increase), role limitations due to emotional problems (4.8 point increase), mental 

health/emotional well-being (9.1 point increase), and general health perceptions (10.7 

point increase). We also noted clinically meaningful improvements sustained until follow 

up compared to pre, in bodily pain (17.1 point increase), general health perceptions (5.7 

point increase), and health compared to last year (25.0 point increase). 
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Figure 5.3 Effects of vigorous aerobic cool room training in MS 

Data are presented as individual values. A: walk time measured using timed 25 foot walk test (in seconds); B: self-selected 

walking speed (in centimeters per second); C: maximal oxygen consumption (in milliliter per minute); D: fatigue measured using 

short-form 36 fatigue/energy/vitality subscale; E: fatigue measured using fatigue severity scale (mean scores); F: fatigue 

measured using modified fatigue impact scale; open circles: participants with clinically meaningful change.
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5.3.3.5 Blood markers 

We collected blood samples from participants immediately before and after GXT, 

conducted during pre, post, and follow up testing time points. We were unable to draw 

blood samples from three participants on 6 out of 52 occasions. All serum BDNF levels 

were within the detectable ranges. Serum IL-6 levels were not detectable in seven 

participants on 22 out of 46 occasions.  

5.3.3.5.1 Neurotrophins 

In terms of serum BDNF, there were no significant differences in resting and 

exercise-induced levels (After minus Before GXT) measured at pre (Figure 5.4A), post 

(Figure 5.4B), and at follow up (Figure 5.4C) (p values, 0.223 and 1.0 respectively) 

(Table 5.3). There was a significant decrease in serum BDNF after GXT compared to 

before GXT levels, both at pre (Figure 5.4A) and follow up (Figure 5.4C) (p values, 0.036 

and 0.028 respectively), but not at post-training (p=0.310) (Figure 5.4B).  

5.3.3.5.2 Cytokines 

In terms of serum IL-6, there were no significant differences in resting and 

exercise-induced levels (After minus Before GXT) measured at pre (Figure 5.4D), post 

(Figure 5.4E), and at follow up (Figure 5.4F) (p values, 0.282 and 0.368) (Table 5.3). 

There was no significant change in serum IL-6 after GXT compared to before GXT 

levels, at pre (Figure 5.4D), post (Figure 5.4E), and follow up (Figure 5.4F) (p values, 

0.593, 0.898 and 1.0 respectively). 
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Figure 5.4 Blood marker responses to graded exercise test 

Data are presented as individual values. A, B, C: serum brain-derived neurotrophic factor (in nanogram per milliliter) at pre, 

post, and follow up respectively; D, E, F: serum interleukin-6 (in nanogram per milliliter) at pre, post, and follow up 

respectively. 
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Table 5.3 Effects of vigorous cool room training in people with Multiple Sclerosis 

Variable Pre Post Follow-up Test statistic  p Post-hoc (p-adj) 

M (SD) M (SD) M (SD) F / Z 

Walking 

T25FW (s) 15.51 (13.41) 11.45 (10.38) 14.00 (14.07) 11.143 0.004* t1-2=0.012* 

t1-3=0.237 

t2-3=0.018* 

Fast walking speed 

(cm/s) 

92.15 (61.39) 106.44 

(65.74) 

103.61 (68.34) 10.286 0.006* t1-2=0.012* 

 t1-3=0.043* 

 t2-3=0.237 

Fast walking total 

double support (%) 

36.61 (13.56) 32.67 (13.17) 34.79 (14.89) 6.000 0.050 t1-2=0.017* 

 t1-3=0.128 

 t2-3=0.128 

Self-selected walking 

speed (cm/s) 

61.64 (34.01) 62.86 (29.62) 69.05 (33.27) 2.000 0.368 t1-2=0.674 

t1-3=0.063 
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t2-3=0.237 

Self-selected walking 

total double support (%) 

42.50 (13.22) 39.61 (12.48) 39.62 (13.29) 10.571 0.005* t1-2=0.036* 

t1-3=0.018* 

t2-3=1.000 

Fatigue 

SF-36 

fatigue/energy/vitality 

39.29 (17.66) 53.57 (22.68) 47.86 (20.18) 4.105 0.128 t1-2=0.039* 

t1-3=0.225 

t2-3=0.216 

Fatigue Severity Scale 

(total score) 

44.86 (12.27) 37.14 (13.86) 41.14 (9.35) 0.222 0.895 t1-2=0.123 

t1-3=0.345 

t2-3=0.369 

Modified Fatigue Impact 

Scale (total score) 

52.86 (16.48) 40.00 (15.65) 41.57 (15.26) 5.429 0.066 t1-2=0.017* 

t1-3=0.034* 

t2-3=0.553 

Modified Fatigue Impact 25.71 (4.31) 19.29 (6.37) 19.29 (5.50) 8.000 0.018* t1-2=0.024* 
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Scale (Physical) t1-3=0.018* 

t2-3=0.932 

Modified Fatigue Impact 

Scale (Cognitive) 

22.29 (12.91) 16.29 (8.32) 18.57 (9.57) 6.000 0.050 t1-2=0.079 

t1-3=0.089 

t2-3=0.172 

Modified Fatigue Impact 

Scale (Psychosocial) 

4.86 (1.68) 4.43 (2.07) 3.71 (1.70) 0.737 0.692 t1-2=0.131 

t1-3=0.276 

t2-3=0.673 

Aerobic Fitness 

V̇O2 max (mL/min/kg) 18.30 (5.37) 19.50 (5.85) 19.77 (7.23) 0.857 0.651 t1-2=0.484 

t1-3=0.398 

t2-3=0.735 

HR max (beats/min) 147.00 (23.68) 149.71 

(23.09) 

153.14 (30.28) 1.680 0.432 t1-2=0.078 

t1-3=0.237 

t2-3=0.611 
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Maximum Workload 

(watts) 

110.43 (42.91) 123.86 

(46.39) 

123.43 (46.54) 7.714 0.021* t1-2=0.012* 

t1-3=0.043* 

t2-3=0.866 

Oxygen Uptake 

Efficiency Slope 

(V̇Elog10/V̇O2mL/min) 

1466.19 

(412.62) 

1633.73 

(474.79) 

1588.36 

(502.25) 

2.000 0.368 t1-2=0.123 

t1-3=0.237 

t2-3=1.000 

Oxygen Uptake 

Efficiency Slope 

(V̇Elog10/V̇O2mL/min/kg) 

18.76 (4.21) 21.14 (4.71) 21.30 (6.81) 5.429 0.066 t1-2=0.049* 

t1-3=0.091 

t2-3=0.735 

Quality of life 

SF-36 physical 

functioning 

28.57 (21.55) 36.43 (24.10) 41.43 (28.24) 8.083 0.018* t1-2=0.038* 

t1-3=0.027* 

t2-3=0.395 

SF-36 role limitations 

due to physical health 

32.14 (42.61) 35.71 (37.80) 32.14 (37.40) 0.105 0.949 t1-2=0.414 

t1-3=1.000 
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t2-3=1.000 

SF-36 role limitations 

due to emotional 

problems 

76.19 (41.79) 80.94 (32.55) 71.43 (48.80) 0.667 0.717 t1-2=0.317 

t1-3=0.655 

t2-3=0.593 

SF-36 mental 

health/emotional well-

being 

72.57 (15.57) 81.71 (14.76) 74.86 (16.28) 5.840 0.054 t1-2=0.067 

t1-3=0.336 

t2-3=0.112 

SF-36 social functioning 73.21 (11.25) 75.00 (28.87) 69.64 (25.88) 0.095 0.953 t1-2=0.746 

t1-3=0.516 

t2-3=0.705 

SF-36 bodily pain 46.79 (12.22) 69.29 (16.50) 63.93 (19.73) 6.080 0.048* t1-2=0.018* 

t1-3=0.093 

t2-3=0.674 

SF-36 general health 

perceptions 

41.43 (17.49) 52.14 (21.19) 47.14 (19.12) 1.923 0.382 t1-2=0.105 

t1-3=0.340 
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t2-3=0.236 

SF-36 health compared 

to last year 

46.43 (29.73) 67.86 (18.90) 71.43 (22.49) 7.176 0.028* t1-2=0.024* 

t1-3=0.066 

t2-3=0.564 

Biomarkers       

Brain derived 

neurotrophic factor at 

rest (ng/mL) 

67.62 (20.43) 63.46 (19.97) 64.76 (16.31) 3.000 0.223 t1-2=0.237 

t1-3=0.345 

t2-3=0.499 

Interleukin-6 at rest 

(ng/mL) 

0.0005 

(0.0010) 

0.0007 

(0.0006) 

0.0019 

(0.0035) 

2.533 0.282 t1-2=0.686 

t1-3=0.109 

t2-3=0.225 

M: mean; SD: standard deviation; F: test statistic; Z: test statistic; p: significance; p-adj: adjusted p value; *p<0.05; 

T25FW: Timed 25-Foot Walk; s: second; cm: centimeter; %: percentage; SF-36: 36-Item Short Form Health Survey; mL: 

milli-liter; min: minute; kg: kilogram; V̇E: ventilation; V̇O2: oxygen consumption; 
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5.3.3.6 Relationship between outcomes 

The improvement in fast walking speed was associated with reduced fatigue 

measured using physical subcomponent score of mFIS (Spearman’s rank correlation 

coefficient, rs=-0.847, p=0.008) (Figure 5.5A). The improvement in fatigue measured 

using total mFIS score was related to higher maximal respiratory exchange ratio achieved 

during GXT (rs=-0.810, p=0.015) (Figure 5.5B). The improvement in maximal respiratory 

exchange ratio achieved during GXT was associated with an increase in resting serum 

BDNF (rs=0.786, p=0.036) (Figure 5.5C). The improvement in fitness measured using 

maximal V̇O2 was associated with a decrease in resting serum IL-6 (rs=-0.757, p=0.049) 

(Figure 5.5D). However, after correcting for multiple correlations (0.05/7=0.007) 297, 298, 

none of the relationships were statistically significant. 
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Figure 5.5 Relationship between outcomes 

A: correlation between modified fatigue impact scale physical subcomponent change score and fast walking speed change score 

(rs=-0.847, p=0.008); B: correlation between modified fatigue impact scale total change score and maximal respiratory exchange 

ratio change score (rs=-0.810, p=0.015); C: correlation between resting serum brain-derived neurotrophic factor change score and 

maximal respiratory exchange ratio change score (rs=0.786, p=0.036); D: correlation between resting serum interleukin-6 change 

score and maximal oxygen consumption change score (rs=-0.757, p=0.049). rs, Spearman correlation coefficient; p, significance. 

 

 

 

 

 

 

 

 

 



 

175 

 

5.4 Discussion 

We tested a novel cool room intensive treadmill training for people with severe 

walking disability in the progressive phase of MS or transitioning to the progressive 

phase. We found that this intervention was feasible, and most participants achieved 

clinically meaningful improvements in walking, fatigue, fitness, and quality of life. 

5.4.1 Feasibility of vigorous cool room training in MS 

In 1890, Uhthoff 389 reported that patients with MS had exercise-induced 

amblyopia, a phenomenon later discovered to be due to an increase in body temperature 

42. Nearly 60 years later, Watson 390 demonstrated several positive effects of cold 

exposure in patients with MS, including improvements in pain, sensation, vision, motor 

control, and mood. Since then, data from controlled experimental studies suggested that 

both pre (immersing lower limbs in cool water before exercise) and concurrent cooling 

methods (applying ice packs or drinking cold beverages during exercise) may help 

decrease symptom worsening during exercise-induced heat stress in people with MS 95, 

390-395. In recent years, whole-body cold air applications (which covers larger body surface 

area) have been shown to reduce overall physiologic strain including tympanic 

temperature, heart rate, and lactate values in healthy individuals, while improving muscle 

strength, endurance (running), and speed of movement (cycling) 395. In fact, a recent 

meta-analysis concluded that while precooling lowered the finishing core temperature, 

concurrent cooling methods that affected a large body surface area contributed to a large 

positive effect on exercise performance 396. Our study marks the first attempt to examine 
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the effects of the whole-body concurrent cooling method as therapy for people living with 

MS having barriers to exercise participation such as walking disability, fatigue, and heat 

sensitivity. There is an urgent need to develop new therapies and exercise-based 

rehabilitation treatments that could potentially stabilize or even improve MS symptoms, 

especially among people who have accumulated substantial disability. In our study, we 

have demonstrated the feasibility of conducting a progressively intense (moderate to 

vigorous) aerobic walking training strategy with concurrent cooling (16°C cool room) 

using BWST for people with MS requiring ambulatory assistive devices, wheelchairs, and 

mobility scooters. We measured physiological responses across training days (Figure 

5.2), to characterize exercise-induced changes during training sessions 397. We noted an 

exercise-induced increase in tympanic temperature, heart rate, and fatigue; however, 

mean arterial pressure remained stable during all training sessions (Figure 5.2). At the end 

of the training, our participants experienced improved energy levels measured using SF-

36 (36.4%) when compared to the conventional benchmark (11% to 20%) 384 which was 

higher than that previously reported following robot-assisted gait training (16%) 157. 

Furthermore, participants who had greater improvements in fatigue walked faster (Figure 

5.5A) and also achieved a higher maximal respiratory exchange ratio during GXT after 

training (Figure 5.5B). There were no adverse events (MS relapse, syncope, or medical 

emergencies) in our cohort, except for fleeting symptoms of neurologic origin, such as 

pain, pins and needles, and weak legs, which lasted less than 24 hours. Whether such 

fleeting symptoms occurred due to heat (exercise-induced increase in core temperature) 

sensitivity in our participants is unknown, and further research is required to confirm the 
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physiological mechanisms of worsening MS symptoms during training 398. It was 

interesting to note that although participants began their training at 80% of their walking 

speed, three required manual assistance within just a few minutes during initial sessions, 

supporting that fatigue and leg weakness are major impediments to effective exercise 

interventions 63, 399. 

5.4.2 Mode of training and clinically meaningful recovery of gait 

We determined whether improvements in walking tests were clinically 

meaningful. Considering the T25FW test (measured in seconds), we noted that 4 out of 8 

participants had clinically meaningful improvements (>20%) after training (Figure 5.3A) 

400; similar to those observed in previous studies that evaluated BWST training in people 

with MS 360, 401. However, participants in our study walked much slower at baseline (16.4 

seconds on T25FW test) compared to those in previous reports (7.1, and 9.9 seconds) 360, 

401. When considering fast walking speed measured in cm/s on an instrumented walkway, 

participants were walking 15.5% faster after 10 weeks of training (14.3 cm/s faster) 

(Table 5.3), which is higher than the value determined by Coleman et al. 402 (11 cm/s) to 

be a clinically meaningful change in people with MS. Considering this benchmark, four 

participants could be categorized as minimally improved (11 to 17.3 cm/s improvement), 

one as much improved (17.4 to 22.2 cm/s), and one as very much improved (22.3 cm/s or 

more) 402. Furthermore, the gains in fast walking speed were sustained at 3-month follow-

up assessment (Table 5.3), whereas previous examination of robot-assisted gait training 

showed that training gains (when measured using 10-meter walk test) were lost three 

months later 156. Lastly, our participants walked considerably faster at self-selected speed 
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overground at 3-month follow up compared to post-training assessment (Table 5.3). 

Although there is no consensus as to what value constitutes a clinically meaningful 

change in self-selected overground walking speed, a change of 12% to 20% in related 

walking tests is indicative of a meaningful change in MS 53. Considering this criterion, 6 

out of 8 participants made more than 12% improvement on self-selected walking speed 

post-training, which was sustained in 3 out of 7 participants during 3-month follow up 

(7.41 cm/sec increase) (Figure 5.3B) (Table 5.3). These findings were in contrast with 

robot-assisted gait training in which participants had a 7.0 cm/s increase immediately 

after training but returned to pre levels three months after training 403. Additionally, 

spatiotemporal gait parameters at self-selected pace were improved well beyond previous 

reports employing non-gait specific training methods (legs and trunk resistance training 

twice a week for eight weeks) 404, supporting that gait quality also improved. 

5.4.3 Ability to perform GXT and improvements in cardiorespiratory reserve 

We showed that patients with high levels of disability were able to complete GXT 

in 10 out of 25 occasions (40% success rate). To our knowledge, we are the first to assess 

the feasibility of conducting GXTs on a recumbent stepper among patients with high 

levels of MS-related disability 156, 360, 403, 405-412. We found that our participants with high 

disability achieved 12.2% greater maximal workload during GXT as a result of training, 

despite small increases in maximal heart rate (1.8%), maximal respiratory exchange ratio 

(2.2%), and maximal V̇O2 (6.6%). A meaningful change in maximal V̇O2 due to an 

exercise training has been estimated at 0.540 L/min (18.9%) in healthy individuals 413. 

Our participants obtained 0.061 L/min increase on average; a 6.6% increase after training, 
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which further increased to 8% at 3-month follow up. We note that the meaningful change 

criterion for maximal V̇O2 estimated for healthy individuals may not be relevant for our 

participants with severe MS-related disability 413. Furthermore, there is no known 

clinically meaningful change benchmark for maximal V̇O2 applicable to people with MS 

having severe deconditioning 414. For patients with severe MS-related disability (EDSS 

6.5), the measurement of oxygen uptake efficiency slope is an alternative (sub-maximal) 

method to express cardiorespiratory fitness when maximal exercise testing is not feasible 

385, 386. Originally, this relative measure of cardiorespiratory work during GXT was 

validated in individuals with low, mild, and moderate disability (EDSS <6.0) who 

reached 90% of their age-predicted maximal heart rate during GXT 385, 386. In our study 

(EDSS 6.0 to 7.0), only about 50% of our participants achieved 90% of their age-

predicted maximal heart rates during GXT performed at pre, post, and follow-up. Heine 

and colleagues 385, 386, determined the concurrent validity of oxygen uptake efficiency 

slope (how well a new test correlates with a previously validated measure) in those with 

EDSS <6.0 and reported a significant correlation with maximal V̇O2 and maximal 

workload achieved during GXT (p values, <0.05). Similarly, we noted that the oxygen 

uptake efficiency slopes were higher in those who had higher maximal V̇O2 and maximal 

workload achieved during GXT (p values (not reported), <0.05) at all three testing time 

points. In our study, the increase in oxygen uptake efficiency slope during GXT both 

immediately (12.7%) and 3-month after training (13.5%), could likely be attributed to a 

combined improvement of cardiovascular, musculoskeletal, and respiratory functions 385, 

415. Future studies should examine the links between improvements in cardiorespiratory 
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reserve, walking speed, and health-related quality of life following training in people with 

advanced MS 414. 

5.4.4 Improved health-related quality of life 

Overall, we noted a clinically meaningful improvement in the quality of life (i.e., 

more than a 3-point increase in all SF-36 domains except social functioning immediately 

after training compared to baseline) (Table 5.3) 387, 388. Furthermore, improvements in 

physical functioning, bodily pain, and perception about health compared to last year were 

significantly improved after training compared to baseline, which was sustained 12 weeks 

after the intervention ceased (Table 5.3). When comparing our results to others, robot-

assisted gait training of shorter duration (6 weeks, 2 sessions/week) failed to improve SF-

36 subcomponents, physical functioning, and bodily pain after training 157. Likewise, 

robot-assisted gait training for four weeks (3 sessions/week; 12 sessions) made no change 

in physical and mental health measured using SF-36 at post, 3-month, and 6-month 

follow up assessments 156. Although Vaney, Gattlen 411 reported that nine sessions of 30-

minute robot-assisted training added to intensive strengthening exercises resulted in 

significant improvements in quality of life, the benefits were not sustained at follow up. 

One study examining a longer duration program (12 weeks) of BWST training reported 

improvements in both physical and mental health composites measured on MS Quality of 

Life-54 scale, but the sustainability of benefits were not examined at follow-up 405. 

Sustained improvement in quality of life (physical functioning), like that observed in our 

study, suggests that the benefits gained with vigorous cool room BWST training resulted 
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in improved walking ability even after cessation of training, rather than simply short-term 

performance enhancement, which was meaningful for the participants. 

5.4.5 Vigorous aerobic cool room training might have the potential to affect multiple 

underlying mechanisms 

Aerobic exercise is an intervention that has both neuroprotective and anti-

inflammatory benefits 416, 417. Evidence suggests that progressively intense, aerobic 

training performed 2 or 3 times per week for at least 8 to 9 weeks could improve walking 

ability as well as result in a trend towards an increase in resting BDNF levels in people 

with MS 351 and in other neurological disorders such as stroke 110. Similarly, our 

participants with MS experienced statistically significant improvement in walking ability, 

and 6 out of 7 participants had an increase in resting levels of serum BDNF after training. 

Further investigation is required to determine whether a simultaneous increase in walking 

ability and resting serum BDNF levels would result in clinically meaningful restoration of 

function in MS. With regards to resting serum IL-6 measurements in our study, there 

were fewer number of data points above minimum detectable limits to glean any 

meaningful trends (Figure 5.5D). However, the improvement in maximal V̇O2 was 

associated with a decrease in resting serum IL-6 levels after training (Figure 5.5D). 

Kosaka, Sugahara 418 demonstrated that whole-body cold air exposure significantly 

suppressed inflammation, specifically the pro-inflammatory cytokines, IL-6 and IL-1beta. 

Given the preliminary data from our study, further studies examining the synergistic 

effects of cold air exposure and treadmill training on suppression of inflammation are 

necessary to understand the molecular mechanisms of recovery. 
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5.5 Limitations 

Despite the fact that this is the first report of vigorous cool room BSWT training 

among people with progressive MS, there are several limitations to consider. First of all, 

our study had a very small sample size, thus limiting statistical power to obtain 

conclusive results. Seven of the 37 potential participants we contacted did not wish to 

participate in such an exercise program, and two of the 10 participants dropped out. This 

suggests that the vigorous cool room treadmill training method is not acceptable to about 

20% of people who are eligible. Secondly, we were unable to complete blood draws in 

some subjects, and it appeared that hypo-hydration could have been a factor. Although we 

did not determine whether participants had bladder problems, about 80 to 100% of people 

with progressive MS have bladder insufficiency 419, 420. Future trials should consider the 

issue of hydration during exercise. 

5.6 Conclusion 

A vigorous cool room walking training is feasible for people with MS using 

ambulatory assistive devices. We did not identify any adverse events or safety hazards 

during the training. The total time walked, and distance covered progressively increased 

while total resting time decreased. People with MS walked significantly faster after cool 

room training with better gait quality, which was sustained at three months follow up 

suggesting that there was long-term improvement of function and not simply short-term 

performance enhancement. Fatigue (SF-36 fatigue/energy/vitality and mFIS), fitness 

(maximal workload and cardiorespiratory reserve), and quality of life measures (physical 

functioning, bodily pain, and health compared to last year) improved significantly after 
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training, and improvements on fatigue (mFIS), fitness (maximal workload), and quality of 

life (physical functioning) were sustained 12 weeks after completion of the program. 

Vigorous training in a cool room using BWST has the potential to be an effective 

treatment option for improving walking ability, fatigue, fitness, and quality of life in 

people with MS using walking aids, which provides a strong rationale for a future clinical 

trial. There were associations between improvements in walking, fatigue, fitness, and 

blood markers (serum BDNF and IL-6) that are worthy of further evaluation. 
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Chapter 6 Discussion 
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6.1 Thesis Overview 

The overarching aim of my doctoral work was to develop, characterize, and 

measure the effects of a progressively intense, BWST training in a room cooled to 16°C 

in people with MS. The rationale for investigating such a training strategy in people with 

MS was that there was a need to develop new rehabilitation protocols for those living 

with severe MS-related walking disability, while addressing underlying 

pathophysiological changes within CNS. At the time of this research, there were no 

training strategies available to enhance walking ability and improve blood biomarkers of 

neuroplasticity and inflammation simultaneously, which might be beneficial for people 

with MS. Findings from animal research suggested that a high volume of training at 

moderate to high intensity would potentially affect multiple rehabilitation targets, such as 

improving degree of neurological impairment, facilitating neuroplasticity, and attenuating 

inflammation108. Despite these benefits, in clinical practice, people with MS experience 

several barriers to exercise such as disability, fatigue, and heat sensitivity63. Although 

aerobic training is an intervention that has potential to affect multiple rehabilitation 

targets including fatigue104, 105, increases in body temperature during aerobic exercise can 

transiently worsen symptoms of MS. To my knowledge, there have been limited efforts to 

develop training strategies for people with MS having barriers to exercise participation. In 

order to develop a novel training strategy for people with MS having barriers to 

participating in exercise, I executed my doctoral work in four stages.  

In the first stage of my doctoral work, I conducted a systematic review and a 

meta-analysis (Chapter 2) in which the aim was to determine, based on previous research, 
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whether people with MS-related severe walking disability (EDSS > 6.0) had rehabilitative 

options to improve their walking ability, and whether such exercise strategies altered 

blood biomarkers of neuroplasticity. In the second stage (Chapter 3), the aim was to 

characterize fatigue in people with MS having severe walking disability (ambulatory aid 

users), as it acts as a barrier to exercise participation. In order to study fatigue, I examined 

whether people with MS consumed more oxygen when compared to age and sex-matched 

healthy individuals while performing typical mobility tasks (rolling in bed, lying to 

sitting, sitting to standing, walking, and climbing steps), and whether the oxygen cost of 

mobility tasks (especially, walking) were related to perceived exertion and fatigue. In the 

third stage (Chapter 4), the aim was to determine whether blood biomarkers of 

neuroplasticity (BDNF and IGF-1) and inflammation (IL-6 and TNF) were related to 

indicators of MS symptom severity such as walking speed, balance, fatigue, and aerobic 

fitness. The reason for investigating these relationships was to identify whether these 

blood biomarkers of neuroplasticity and inflammation would align with improvements in 

MS symptoms following BWST training and be used as biomarkers in a future trial. In 

the final stage (Chapter 5), the aim was to determine whether it was feasible to conduct 

vigorous BWST training among people with MS who required ambulatory aids in a room 

cooled to 16°C three times a week for ten weeks. The secondary aims of this study were 

to determine whether vigorous but personalized training devised to enhance both walking 

ability and blood biomarkers of recovery improved walking speed, fatigue, aerobic 

fitness, and quality of life. This stage of the research would inform a future randomized 

controlled trial. 
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6.2 Summary of findings 

The main findings from the studies (Chapters 2, 3, 4, and 5) included in the thesis 

are summarized in the following sections. 

6.2.1 Findings from Chapter 2 

The primary aim of the systematic review (Chapter 2) was to determine the effects 

of aerobic training on walking ability in people with MS based on previous research. The 

secondary aim was to determine the exercise parameters (frequency, intensity, time, and 

type) that evoked change in walking ability and pro-neuroplastic biomarkers 

(neurotrophins) in people with MS. The third aim was to determine whether exercise 

protocols evaluated in animal studies could be translated into clinical practice. 

This systematic review (Chapter 2) included 17 trials (clinical, n=12; animal, n=5) 

that met our inclusion criteria and the key findings were: 

1. Of twelve trials in people with MS, eleven reported improvements in walking 

ability (improvements on walking endurance, n =8; spatiotemporal parameters, n 

= 8). 

2. Aerobic training performed three times per week for at least six to eight weeks (30 

minutes each session) at an intensity of between 45 to 75% of age-predicted 

maximal heart rate or 30 to 60% work rate improved walking outcomes in people 

with MS having low to moderate levels of disability (EDSS < 6).  

3. The types of aerobic training which improved walking outcomes were calisthenics 

(EDSS < 4.5), leg cycling (EDSS < 6), treadmill training (EDSS < 6), robot-
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assisted treadmill training (EDSS 5 – 7), and progressive repetitive 

endurance/strengthening training (EDSS < 6). 

4. People with severe MS-related walking disability (EDSS > 6) were 

underrepresented in the trials. 

5. There was not enough data from clinical trials to suggest that aerobic training 

strategies could improve walking and upregulate neurotrophins simultaneously. 

6. In animal trials, aerobic training protocols performed daily for at least 2 weeks 

before the induction of MS improved gait outcomes and neurotrophins. 

In this study, I learned that 

1. There is a need to develop aerobic training strategies for people with MS who 

have severe walking impairments, especially those with EDSS 6 and above. 

2. There is a need to devise a rehabilitative strategy to upregulate serum levels of 

neurotrophins following aerobic training as noted in animal trials which showed 

increased levels of neurotrophins in blood, muscle, and nervous tissue after 

training. 

3. It is important to examine whether serum levels of neurotrophins are a potential 

biomarker of neuroplasticity and recovery of function. 

6.2.2 Findings from Chapter 3 

The primary aim of the second study (Chapter 3) was to compare oxygen costs of 

typical mobility tasks between people with MS using ambulatory aids and healthy 

individuals matched for age and sex, in order to estimate the extent of fatigue in this 

severely deconditioned group of people with MS. This would help in planning for a future 
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study that would examine the effects of training on fatigue. The secondary aim was to 

determine whether the oxygen cost of tasks predicted self-reported fatigue measured 

using visual analog scale. 

In this study, the key findings were: 

1. The oxygen cost of mobility tasks were significantly higher in people with MS 

compared to healthy individuals, namely, climbing steps (3.6 times more in MS), 

rolling in bed (3.5), walking (3.1), lying to sitting (2.5), and sitting to standing 

(1.8). 

2. The oxygen cost of walking was strongly associated with activity-induced fatigue 

in people with MS (ρ[13]=0.626, P=0.022). 

3. People with MS who used ambulatory aids (but not controls) accumulated oxygen 

cost, fatigue, and perceived exertion while performing mobility tasks. 

4. People with MS had significantly more fatigue (FSS, mFIS, and SF-36) when 

compared to healthy controls. 

In this study, I learned that 

1. In addition to accumulating fatigue while performing five mobility tasks 

consecutively, people with MS consumed more oxygen during tasks when 

compared to healthy individuals. This suggested that people with MS who had 

poor leg muscle endurance and strength suffered from severe deconditioning 

which in turn was related to increased oxygen consumption (impaired skeletal 

muscle mitochondrial energetics)421. 
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2. These findings also suggested that aerobic training aimed at increasing maximal 

aerobic capacity might reduce fatigue induced by deconditioning. 

3. Outcome measures such as FSS, mFIS, and SF-36 would be most suitable to 

evaluate fatigue during an exercise intervention study in this group. 

6.2.3 Findings from Chapter 4 

The primary aim of the third study (Chapter 4) was to determine whether blood 

markers of neuroplasticity (BDNF and IGF-1) and inflammation (IL-6 and TNF) were 

potential rehabilitation biomarkers for people with MS using ambulatory aids. To address 

this aim, serum levels of neurotrophins (BDNF, IGF-1), cytokines (IL-6, TNF) were 

measured from the venous blood at rest and after graded exercise test (GXT) in people 

with MS and compared with age and sex-matched individuals without MS. The secondary 

aim was to determine whether serum blood markers (BDNF, IGF-1, IL-6, TNF) were 

associated with measures of MS symptom severity, which could be used as targets for 

rehabilitation (such as walking speed, balance, fatigue, and aerobic fitness).  

In this study, the key findings were:  

1. Although GXT did not elicit a statistically significant change in serum BDNF 

levels, seven out of twelve participants with MS had an increase in response to 

GXT, when compared to four out of seven healthy controls.  

2. As with serum BDNF, IGF-1 levels increased after GXT in five out of twelve MS 

participants, and four out of seven healthy controls.  

3. In terms of serum IL-6, there was a statistically significant increase after GXT in 

MS participants, but not in healthy controls.  
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4. MS participants who had greater increases in serum BDNF levels following GXT 

had faster self-selected walking speeds (rs=0.618, p=0.043).  

5. MS participants had significantly slower self-selected overground walking speed, 

poorer balance (on Berg Balance Scale (BBS)), and lower aerobic fitness 

(maximal V̇O2 during GXT) when compared to healthy controls. 

In this study, I learned that 

1. Serum level of BDNF could be a potential rehabilitation biomarker, which may 

help investigate the mechanisms underlying changes in self-selected walking 

speed following an exercise intervention study. 

2. Serum level of IL-6 was a potential biomarker of physical stress associated with 

GXT, which could be used to detect the mechanisms underlying the effects of 

aerobic fitness on the immune system following an exercise intervention study. 

3. Outcome measures such as self-selected walking speed measured overground, 

BBS, and serum blood markers (BDNF and IL-6) measured before and after GXT 

were suitable outcomes to evaluate effects of an exercise intervention in people 

with MS using ambulatory aids. 

6.2.4 Findings from Chapter 5 

The primary aim of the fourth and final study (Chapter 5) was to determine 

whether people with MS having severe walking impairments and barriers to exercise 

participation such as disability, fatigue, and heat sensitivity could participate in a vigorous 

aerobic training program (3 times per week for 10 weeks) in a room cooled to 16°C. The 
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secondary aims were to determine the effects of vigorous training on self-selected 

walking speed, fatigue (mFIS, FSS, and SF-36), aerobic fitness (maximal V̇O2), and QOL 

(SF-36), and potential rehabilitation biomarkers (BDNF and IL-6). 

In this study, the key findings were, 

1. All participants with MS (n=10) were able to tolerate BWST training sessions (40 

minutes each) at moderate to high intensity (40-65% heart rate reserve) in a room 

cooled to 16°C. Eight participants completed ten weeks of training (three times a 

week) with an attendance rate of 80% or more. One participant dropped out of the 

study citing fatigue and feeling unsafe to drive back home after attending two 

exercise sessions. Another participant dropped out after seven exercise sessions 

following advice from physician as the participant started a new MS medication. 

At the end of ten weeks, the total time walked, total distance walked, total V̇O2, 

and total workload performed within a single exercise session increased 

substantially in all participants (n=8), while total time rested, and total number of 

breaks taken within a single exercise session decreased. Although participants 

reported having fleeting pins and needles sensations, weak legs, and shoulder and 

leg pain during exercise sessions, none of them reported exacerbation of MS 

symptoms lasting more than 24 hours following exercise.  

2. After ten weeks of training, there was a significant increase in fast walking speed 

measured using T25FW test and instrumented walkway. Six out of eight 

participants had a clinically meaningful increase (more than 12%) in self-selected 

walking speed. The spatiotemporal parameters of walking (i.e. stance, swing, and 
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double support) were significantly improved suggesting that the intervention 

helped to ‘normalize’ gait. 

3. Participants reported improved fatigue when measured using mFIS and SF-36 

(fatigue/vitality/energy). Although not statistically significant, four out of eight 

participants reported having a clinically meaningful improvement in fatigue when 

measured using FSS. 

5. The oxygen uptake efficiency slope, a measure of cardiorespiratory fitness, 

improved significantly after training (p=0.049). Participants were able to achieve 

significantly higher peak workload during GXT following training (p=0.012). 

However, the maximal V̇O2 (mL/min/kg) (p=0.484) and maximal heart rate 

(p=0.078) achieved during GXT did not increase significantly after training.  

6. QOL measured using SF-36 improved in all domains (more than 3-point increase) 

after training, except social functioning.  

7. The improvement in fitness (maximal respiratory exchange ratio achieved during 

GXT) was associated with an increase in serum BDNF measured at rest (rs=0.786, 

p=0.036), and improvement in fitness (maximal V̇O2 achieved during GXT) was 

associated with a decrease in serum IL-6 measured at rest (rs=-0.757, p=0.049).  

In this study, we find that 

1. People with MS having exercise barriers such as disability, fatigue, and heat 

sensitivity could participate in a vigorous training when the bodyweight support 

harness system was used, when the workload was progressed gradually, and when 

the exercise environment was cooled to 16°C. 
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2. Implementing a vigorous training strategy in a room cooled to 16°C might lead to 

improvements in walking speed, fatigue, aerobic fitness, and QOL, along with 

simultaneous alterations in the blood biomarkers of neuroplasticity and 

inflammation. The study provided support for a future randomized controlled trial. 

6.3 Overall discussion of thesis findings 

This body of work contributed to the evidence for providing rehabilitation for 

individuals with MS having barriers to exercise participation. In the following section, I 

have linked the findings from the studies (Chapters 2, 3, 4, and 5) and interpreted them in 

light of existing scientific literature and current evidence-based clinical practice.  

6.3.1 Addressing heat sensitivity during rehabilitation 

 About 200 years ago, it was recognized that respiration was a process that 

involved the intake of oxygen and production of byproducts such as carbon dioxide and 

heat422. It was not until recent years that such delivery of energy (oxygen and glucose) 

and removal of byproducts (carbon dioxide and heat) were determined to be an integral 

part of the metabolic homeostasis of the human body, including CNS423. Furthermore, it 

is now a well-known fact that about 30–70% of the energy output during muscular 

contraction is dissipated as heat424. Since muscle is the primary tissue that consumes 

oxygen during exercise, aerobic training aimed at improving one’s maximal V̇O2 involves 

consuming large amounts of oxygen (and dissipating heat) during the training sessions421. 

Such aerobic training strategies assume an intact thermoregulatory system in the first 

place on which training effects are built upon425. But, people with MS have 
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thermoregulatory dysfunction due to lesions in the CNS, and thus have impaired 

autonomic control of sweating and heat dissipation during exercise426. In adults with 

normal thermoregulatory responses, aerobic training for 18 weeks improved fitness 

(maximal V̇O2) and lowered threshold for sweating response427. Whereas in people with 

MS, aerobic training for 15 weeks improved maximal V̇O2 but did not increase sweating, 

indicating an impaired ability to dissipate heat through sweat glands during exercise 

training426.  

As heat dissipation mechanisms, especially neural control of sweat function, are 

impaired in people with MS, cooling the exercise environment might assist them to 

operate at a higher core temperature during exercise79, 80. In the fourth study (Chapter 5), 

a progressively intense aerobic training strategy (Figure 6.1A) was conducted for people 

with MS-related heat sensitivity to enable them to gradually progress from moderate 

(40% HRR) to vigorous exercise intensity (65% HRR)375. In this study, it was postulated 

that a cool environment during exercise might improve one’s ability to perform exercise 

at a higher intensity without worsening symptoms of MS due to retention of heat within 

the body (Figure 6.1B). It was interesting that there was a significant improvement in 

aerobic fitness (oxygen uptake efficiency slope) and participants were able to achieve 

greater workload during GXT following 10-week training in a cool room (Figure 6.1C). 

Additionally, participants perceived less fatigue and reported an improvement in their 

QOL (Figure 6.1C). Furthermore, the improvement in aerobic fitness had a positive, 

linear relationship with serum levels of neurotrophins (BDNF) and a negative, inverse 

relationship with serum cytokines (IL-6) (Figure 6.1C). Although aerobic training is 
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known to benefit people with MS, the mechanisms underlying such beneficial changes in 

blood profile are not well understood428. However, it is likely that participants with MS 

were able to perform greater volume of exercise at higher intensity in a cool environment, 

and that such relationships between fitness and blood biomarkers of recovery (BDNF and 

IL-6) ensued due to greater volume of exercise performed (and greater perfusion of CNS 

with blood), as noted in animal studies (Chapter 2)108. As training studies conducted in 

ambient room temperature among those with MS-related severe walking disability can be 

found in the literature with positive outcomes155-157, it is essential to conduct randomized 

controlled trails to determine whether the outcomes from the fourth study (Chapter 5) can 

be attributed to exercising in cool environment. If cool environment mitigates barriers to 

exercise such as fatigue and heat sensitivity (Figure 6.1C), through improved oxygen 

consumption (and heat dissipation) during exercise, future research should acknowledge 

and consider underlying thermoregulatory dysfunction in patients with MS while 

developing and refining rehabilitative strategies for people with MS.  
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Figure 6.1 A novel rehabilitative strategy to improve outcomes in Multiple Sclerosis 

Panel A: Progressively intense bodyweight supported treadmill training strategy for 

people with MS-related walking impairments; Panel B: Energy transfer pathway during 

aerobic training; Panel C: Potential rehabilitative outcomes following vigorous cool room 

training. Original figure © Augustine Joshua Devasahayam. 
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6.3.2 Aerobic training shifts the balance between repair and inflammation in MS 

Insufficient physical activity and sedentary behaviour are linked to elevated levels 

of circulating inflammatory markers, such as IL-6, a cytokine that increases brain 

inflammation429. A recent study reported that heightened levels of IL-6 in cerebrospinal 

fluid were associated with the blunted capacity for neuroplasticity in 150 individuals with 

MS430. These inflammatory cytokines are toxic to the brain431 but can be inhibited by 

participation in physical exercise432. In the pilot trial of ten weeks of vigorous treadmill 

walking training among people with MS who used canes and walkers (Chapter 5), 

improvements in aerobic fitness, measured using the gold standard, maximum oxygen 

uptake during GXT, was associated with significant reductions in serum IL-6 measured at 

rest (rs=-0.757, p=0.049). While IL-6 is pro-inflammatory and linked to 

neurodegeneration, the neurotrophin, BDNF, is associated with brain repair and 

neuroplasticity. BDNF, produced by both glial cells and contracting muscle, regulates 

synaptic activity and use-dependent brain plasticity433. For example, results from animal 

studies of stroke had shown that aerobic exercise stimulates production of BDNF, which 

when blocked, eradicates the benefits of rehabilitation on recovery of skilled reaching434. 

We know that in people with stroke, exercise stimulates blood levels of BDNF, and 

higher levels of BDNF, in turn, predict greater motor recovery435. In people with 

progressive MS (Chapter 4), greater exercise-induced levels (but not resting levels) of 

BDNF predicted faster walking speed, even when controlling for confounding variables 

(age, sex, disease duration). Furthermore, improvement in aerobic fitness (maximal 

respiratory exchange ratio achieved during GXT) was associated with an increase in 
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serum levels of BDNF measured at rest (rs=0.786, p=0.036) following ten weeks of 

vigorous treadmill training (Chapter 5). This consolidated evidence in two neurological 

diseases suggests that exercise may elevate growth-promoting neurotrophins such as 

BDNF while suppressing inflammatory cytokines such as IL-6.  

6.3.3 Clinical implications 

 In the first study of this thesis (Chapter 2), a systematic review of the literature 

was performed to identify the optimal exercise parameters to improve walking ability in 

people with MS108. The summary of results from studies included in this review were 

sufficiently conclusive to agree that an aerobic type of training performed using treadmill, 

ergometer, or body-weight (calisthenics) at 40-75% of age-predicted maximal heart rate 

or at 30-60% work rate for at least six to eight weeks (three times per week; thirty 

minutes per session) could improve walking ability in people with low to moderate levels 

of disability (EDSS < 6)108. People with higher levels of disability (ambulatory aid users) 

were noticeably absent from most trials that were reviewed. The results of the review 

confirmed that walking training can and should be used in rehabilitation clinics to help 

restore walking ability however more research is required to determine whether such an 

intervention could be useful for people with more severe MS-related walking disability.  

 In the fourth study of this thesis (Chapter 5), vigorous aerobic training was 

conducted in people with MS who used ambulatory aids (EDSS 6-6.5) in a room cooled 

to 16°C. The findings from this study (Chapter 5) indicated that the aerobic training 

performed using bodyweight supported treadmill at progressively increasing intensity 

(between 40-65% heart rate reserve) starting at 80% of self-selected walking speed for ten 
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weeks (3 times per week; 40 minutes per session with warm-up and cool down for 5 

minutes each) could improve walking speed, fatigue, fitness, and QOL, while 

simultaneously altering biomarkers of recovery (BDNF and IL-6). Although this was the 

first study attempting such a rehabilitation intervention, it was important because most 

clinicians would assume that patients with severe walking disability due to 

neurodegenerative diseases such as MS would not have the capacity to make such 

improvements. The study showed in ‘proof of principle’ that meaningful restoration of 

walking was possible. The results are promising and should proceed to a larger 

randomized controlled trial investigating whether measuring outcomes and conducting 

training in a cooler environment could alter the effects of this intervention. High-quality 

clinical trials that contribute to systematic reviews and meta-analysis are needed, which in 

turn could guide the care that patients receive.  

6.3.4 Recommendations for research 

 Although aerobic training is one intervention that has the potential to improve 

rehabilitative outcomes in people with MS109, 110, increase in core body temperature 

during aerobic exercise exacerbates symptoms of MS. Therefore, future research should 

refine aerobic training strategies for those with thermoregulatory dysfunction and related 

barriers to exercise participation. Researchers should focus on refining the cool room 

strategy to increase the tolerance to perform vigorous aerobic training without increasing 

fatigue and heat-induced worsening of symptoms. Furthermore, efforts should be 

undertaken to translate findings from animal research, especially training-induced 

neuroprotective benefits for people with MS (Chapter 2)108.  
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The second study of this thesis (Chapter 3) supported the fact that physical 

deconditioning contributed to fatigue perceived by people with MS who used ambulatory 

aids111. However, I learned two opportunities for further research on the link between 

deconditioning and fatigue. First of all, the oxygen cost of walking explained only 38% of 

the variability of fatigue induced by the tasks performed by participants with MS111. 

Clearly, there is a need to determine the unidentified factors that contribute to the link 

between deconditioning and fatigue in MS. Secondly, the scores reported through 

questionnaires that measured self-reported fatigue did not predict oxygen cost of any of 

the five tasks performed by participants with MS111. It that fatigue reported through 

questionnaires might be related to psychological factors, such as depression246. It is thus 

essential to develop questionnaires that reflect physiological aspect of fatigue originating 

from physical deconditioning for people with MS111.  

In the third study (Chapter 4), a relationship between exercise-induced BDNF and 

self-selected walking speed was noted, raising a possibility that serum BDNF induced 

during GXT might be a physiological marker of neurological health (one’s ability to 

walk), specifically in those with severe MS-related walking impairments. As self-selected 

walking speed is a valid clinical marker of health and function, further research should be 

undertaken to investigate the repeatability of these findings in this cohort.  

6.4 Concluding remarks 

Overall, the findings from this thesis contribute to the basis for developing novel 

rehabilitative strategies for individuals with severe MS-related walking disability, while 

addressing pathophysiological changes within CNS. One of the major takeaways from 
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this thesis is that people living with MS-related walking impairments can perform 

intensive aerobic training provided the exercise environment is enriched to suit their 

needs (e.g. cooling, skilled personnel, and adapted equipment). The main barriers to 

exercise participation such as walking disability, fatigue, and heat sensitivity can be 

overcome relatively simply using a cool room and a bodyweight supported harness 

system. More importantly, steps undertaken in this thesis while developing this novel 

rehabilitative strategy can be followed to devise, design, and characterize new 

rehabilitative treatments for individuals with barriers to exercise participation. Finally, 

this thesis introduces the concept of targeting exercise barriers using tangible and 

measurable determinants, such as exercise workload and room temperature, which can be 

successfully implemented in clinical practice with appropriate judgement and critical 

thinking.  
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Appendix 2 Ethics approval for the study titled ‘Intensive aerobic and task-specific 

training to restore walking and boost neuroplasticity among people with MS-related 
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