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2. Use of a microbial biomass can stimulate shrimp growth. 

3. Dietary protein can be partially offset through the use of a microbial biomass. 

4. Improved growth was underpinned by improved protein retention efficiencies. 
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Abstract 

A factorial experiment was conducted with black tiger shrimp (Penaeus monodon) 

juveniles to determine the effects of varying protein inclusion in the diet and also varying 

inclusion of a microbial biomass on growth, feed and nutrient utilisation when fed in indoor 

laboratory conditions. Growth performance of the shrimp improved with increasing diet 

protein level. However, in the absence of the added microbial biomass this growth 

performance plateaued at the 480 g/kg protein level. The addition of the microbial biomass 

improved growth at each inclusion level of both protein and the microbial biomass. No 

plateau in growth was observed with the addition of the microbial biomass. Improvements 

in feed conversion were seen with increasing dietary protein levels and also the inclusion of 

the microbial biomass. Examination of the feed intake of each treatment supports that 

there was a combined effect of an increase in feed intake and improvements in feed 

conversion that contributed to the improvements in growth performance with the use of 

the microbial biomass, but that the increases in dietary protein level largely influenced 

growth through improvements in feed conversion. 
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1. Introduction 

Protein inclusion in diets for shrimp continues to be the primary cost driver in 

formulations for these species. The requirements by the black tiger shrimp Penaeus 

monodon for protein were first examined by Bages and Sloane (1981), who studied protein 

requirements for post-larval shrimp (2 mg initial weight) using a factorial design with a 

series of protein levels matched against a series of starch levels. Growth in this experiment 

was observed to be strongly influenced by protein level of the diet but was largely 

unaffected by the starch content, with the best growth by those shrimp fed the highest 

protein level (550 g/kg). Subsequent to this Alava and Lim (1983) followed this work with a 

study that suggested that optimal protein requirements for juvenile (1.32 g initial weight) P. 

monodon were lower, between 400 and 450 g/kg. Bautista (1986) followed these earlier 

studies with another factorial study of protein by lipid by carbohydrate and was able to 

show that both protein and lipid had dominant effects on performance of juvenile shrimp 

(0.60 g initial weight). In that study the best growth was seen with 500 g/kg protein levels, 

though this was only marginally better than that achieved with a protein level of 400 g/kg. 

Collectively these studies suggest that the protein requirement for juvenile shrimp are 

between the 400 and 500 g/kg, and that animal size likely has an impact on the 

requirement. 

Bioactive raw materials have been routinely used in shrimp diets for a long time 

(Cruz-Suarez et al., 1987; 2007). The recent development of and use of a range of microbial 

biomass products has also been reported to achieve significant improvements in growth 

performance in several shrimp species (Ju et al., 2008; 2009; Kuhn et al., 2008; 2009; 

Glencross et al., 2013; 2014; Emerenciano et al., 2014). The use of these microbial biomass 

products has also resulted in success in being able to off-set poorer performance due to a 

range of formulation changes, including the complete replacement of any fishery derived 

resources in the diet of shrimp (Glencross et al., 2014). However, whether similar such gains 

can be achieved against changes in not the raw materials, but to key dietary specifications 

has not been examined.   

The present study therefore aimed to test the hypothesis, that the use of a microbial 

biomass can assist in ameliorating a decline in performance observed with a reduction in 

protein and that this would be achieved by improvements in the protein and energy 

utilisation by the shrimp fed the microbial biomass.
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2. Materials and Methods 

2.1 Study design  

A factorial design experiment using three microbial biomass levels (0, 50 and 100 

g/kg) x four protein levels (360, 420, 480 and 540 g/kg) was undertaken to examine the 

capacity of a microbial biomass with reported bioactive properties (Glencross et al., 2014) to 

offset changes in dietary protein in a clear-water tank experiment. 

 

2.2 Diet manufacture 

 The details and composition of each of the key ingredients used in this study are 

presented in Table 1. Each diet was initially prepared milling all ingredients to <750 m, 

prior to mixing in an upright planetary mixer (Hobart, Sydney, NSW, Australia). Water was 

then added during the mixing to form a dough which was subsequently screw-pressed 

(Dolly, La Monferrina, Castell’Alfero, Italy) through a 2mm die and cut to pellet lengths of 

about 6mm. The pellets were then steamed at 100ºC for 3 minutes before being oven dried 

at 60ºC for 24h. All diets were kept at -20ºC when not being fed. Formulations and origins of 

all ingredients in each diet are presented in Table 2. 

 

2.3 Shrimp collection and trial management 

 Several hundred individuals (~3 g) of a wild-type genotype of black tiger shrimp 

(Penaeus monodon) were collected from a grow-out pond at Melivan Prawn Farm 

(Kurramine Beach, QLD, Australia) by cast-netting and were transferred to a holding tank 

(10,000 L) at the Bribie Island Research Centre (Woorim, QLD, Australia), where they were 

held pending allocation to trial tanks. During the holding period (~7 days) they were fed a 

standard commercial grower diet (Prawn Grower, Ridley Aquafeeds, Narangba, QLD, 

Australia). 

 Eight shrimp were then allocated to each of 48 x 100 L tanks in an indoor laboratory 

system. The mean initial weight across all tanks was 2.98 ± 0.09 g. Tanks of shrimp were 

maintained with flow-through seawater at a rate of 600 mL/min. Temperatures of each tank 

were maintained at 29.6 ± 0.71ºC and dissolved oxygen maintained at 6.2 ± 0.12 mg/L. Light 

was maintained on a 12:12 light:dark cycle. Shrimp were individually weighed at day 0, 21 

(as an interim assessment point – data not shown) and again at day 42. The mean weight of 

each tank was determined at each assessment point to calculate the mean weight for each 
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treatment, with tanks used as the replicate (n = 4 per treatment). All shrimp remaining with 

each tank at the end of the experiment were pooled within each tank for carcass analysis. 

During this period the shrimp were manually fed the diets twice daily to marginal excess and 

the number of feed pellets remaining the following day counted and used to adjust the next 

day’s ration (increase or decrease) according to the number of pellets counted, and also 

provide a quantitative assessment of the amount of uneaten feed. The uneaten feed was 

then siphoned from each tank daily after scoring. This method was also used to estimate as 

accurately as possible feed intake within each tank on each day (Smith et al., 2007; 

Glencross et al., 2013). 

 

2.4 Chemical analysis 

Diets and whole shrimp samples were analysed for dry matter, ash, nitrogen, total 

lipid, carbohydrate and gross energy content. Ingredient samples were analysed for amino 

acids. Dry matter of the samples was calculated by gravimetric analysis of a sample 

following oven drying at 105ºC for 24 h. Protein was calculated from the determination of 

total nitrogen by CHNOS auto-analyser, based on N x 6.25. Amino acid analysis involved the 

samples being hydrolyzed at 110ºC for 24 h in 6M HCl with 0.05% Phenol. Cystine was 

derivatized during hydrolysis by the addition of 0.05% 3-3-dithiodipropoinic acid. The acid 

hydrolysis destroyed tryptophan making it unable to be determined. Separation was by 

HPLC on a Hypersil AA-ODS 5m column using an 1100 series Hewlett Packard HPLC system. 

Gross ash content was determined gravimetrically following loss of mass after combustion 

of a sample in a furnace at 550C for 12 h. Total lipid content of the diets was determined 

gravimetrically following extraction of the lipids using chloroform:methanol (2:1). 

Carbohydrates were estimated based on the dry matter content of the feed minus the lipid, 

ash and protein. Gross energy was determined by ballistic bomb calorimetry. All methods 

were consistent with those recommended by AOAC (2005). 

 

2.5 Nutrient and energy retention assessment 

Protein, lipid and energy retention were determined based on the mass gain in each 

respective nutrient and E over the course of the growth study, against the respective 

consumption of each respective nutrient and energy. All values were calculated according to 

the following formula (Glencross et al., 2007): 
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Where Nt is the nutrient/energy content of the shrimp in a specific replicate at time 

t and Ni is the mean initial nutrient/energy content of the shrimp at the beginning of the 

study. Nc is the amount of nutrient/energy consumed by the shrimp from the time of initial 

assessment to time t.  

 

2.7 Statistical analysis 

All values are means ± standard deviations unless otherwise specified. Significant 

differences were determined using a two-way ANOVA followed by a Fishers LSD test with 

critical ranges were set at P < 0.05. These tests were undertaken using Statistica™ v6.0 

(Statsoft, Tulsa, OA, USA). Linear and curvilinear regression analysis and line fitting of those 

relationships was undertaken using the data analysis tools and graphics elements of 

Microsoft Excel. 
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3. Results 

3.1 Growth and feed utilisation 

Significant effects on the final weight and gain rate were identified for both protein 

and microbial biomass levels but not the interaction term (Table 3). In the absence of 

microbial biomass the increase in diet protein concentration resulted in a significant 

improvement in growth (as defined by final weight and gain rate) of those shrimp fed those 

diets with the protein concentration up to 480 g/kg (Table 4). The addition of either 50 or 

100 g/kg of the microbial biomass also significantly improved the gain rate of shrimp at any 

of the protein levels examined (Figure 1).  

Across all treatments a significant regression relationship (P=0.004) was observed 

between feed intake and weight gain (Figure 2). Significant effects were identified for both 

protein and microbial biomass levels and also the interaction term for feed intake (Table 3). 

With the addition of the microbial biomass there was an increase in feed intake within each 

of the different protein levels of the factorial array (Table 4). In those treatments without 

the addition of the microbial bioactive, regression analysis identified a marginal decrease in 

feed intake (P=0.092) with an increase in diet protein levels. The relationship was stronger, 

albeit still not significant when examined as a function of energy intake (P=0.082). By 

contrast, when the microbial biomass was added to the diets the relationships were not 

only weaker but there was also an increase in feed intake with increasing protein level at 

the 50 g/kg inclusion level and no effect on intake with changing protein level when the 

microbial biomass was included at 100 g/kg (Figure 2).  

The combined effects of growth and feed intake produced an array of significant 

effects on the feed conversion ratio (FCR) by shrimp fed the different treatment diets (Table 

4). Significant effects were identified for both protein and microbial biomass levels and also 

the interaction term for FCR (Table 3). In the absence of the microbial biomass the FCR 

significantly improved with increasing protein level in the diet. By contrast, with both the 50 

g/kg and 100 g/kg inclusion levels of the microbial biomass, the lowest FCR was seen from 

shrimp fed the diets with second highest (treatment 48P5M) and third highest (treatment 

42P10M) protein levels respectively. Within protein levels, the addition of the microbial 

biomass improved the FCR with the 50 g/kg inclusion level, but no significant improvements 

in FCR were noted with the 100 g/kg inclusion level.  
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3.2 Nutrient and energy retention 

Nutrient and energy retention by shrimp was significantly affected by treatment.  

Significant effects on protein retention were identified for the microbial biomass levels and 

also the interaction term, but not for protein level (Table 5). In the absence of the microbial 

biomass protein retention was significantly improved with increasing protein level up to 

480g/kg, but not with further increases in diet protein level (Figure 3). Regression analysis of 

this data set (diets without microbial biomass) produced a p-value of 0.052. With the 

addition of the 50 g/kg and 100 g/kg microbial biomass the best protein retention was seen 

with those diets containing the 420 and 480 g/kg protein levels respectively, but were not 

significantly different from each other across the protein range used in this study. Within 

each protein level in the factorial array the addition of the microbial biomass improved the 

protein retention, except for those diets with the highest protein levels (Table 5; Figure 3).  

Significant effects on lipid retention were identified for the microbial biomass levels 

and also the interaction term, but not for protein level (Table 5). Lipid retention in the 

absence of the microbial bioactive was improved with increasing diet protein up to the 480 

g/kg level, but then declined at the 540 g/kg level. When microbial biomass was included in 

the diet there was a significant improvement in the lipid retention at the lower diet protein 

levels, but not at the higher diet protein levels.  

Energy retention was substantially lower than protein retention for all treatments 

(Table 5). For energy retention significant effects were identified for both the protein level 

and the microbial biomass levels and also the interaction term (Table 5). With increasing 

protein content of the diet there was a significant improvement in energy retention in the 

absence of the microbial biomass, but this was not observed when it was included at either 

50 g/kg or 100 g/kg. Energy retention was improved with the addition of the microbial 

biomass within all protein levels except the highest.  
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4. Discussion 

The development and use of microbial biomass derived bioactive products has 

recently been shown to produce results that can help sustain the complete replacement of 

both fishmeal and fish oil in shrimp diets (Glencross et al., 2014). The next logical evaluation 

in exploring the application of these products was to see what level of protein reduction 

could be offset with the use of these microbial biomass products. To examine this we used a 

factorial design to quantify the performance benefits that could be achieved from the 

concurrent use of a microbial biomass and varying protein levels and to explore the 

potential that this combination could have to ameliorate declines attributable to the 

reduction in dietary protein level.  

 

4.1 Performance effects of protein and microbial biomass 

The results from the present study support that dietary protein levels, in the absence 

of microbial biomass, for juvenile (~3g) P. monodon, are optimal at around the 480 g/kg DM 

level and growth performance plateaus above this protein level. Although when assessed 

using regression it could be argued that the growth continues to improve with increasing 

protein. In earlier studies it was identified with ~0.5 to 1g shrimp that an optimal protein 

requirement was between 435 and 489 g/kg DM (Alava and Lim, 1983; Bautista 1986). 

Similar to the present study, the work of Bautista (1986) also observed the best growth with 

protein levels at or above 500 g/kg, though this was only marginally higher than that 

achieved with a protein level of 400 g/kg. The present results are generally consistent with 

these earlier observations that this species (P. monodon) grows faster with a higher (>400 

g/kg) protein diet. 

The addition of the microbial biomass resulted in growth improvements with every 

increase in protein level in the diet. Increasing the inclusion of the microbial biomass 

stimulated faster growth at each protein level. At the highest protein level, the addition of 

50 g/kg microbial biomass improved growth by 42% and with 100 g/kg inclusion growth was 

improved by 60%. Such growth improvements through the use of a microbial biomass are 

consistent with the gains reported in Glencross et al. (2014). The use of similar such 

microbial biomass products in shrimp feeds has been reported by other researchers with 

varying degrees of success (De Schryver et al., 2008; Ju et al., 2008; 2009; Kuhn et al., 2008; 

2009). Ju et al. (2008), included a microbial biomass in diets at a 200 g/kg inclusion level and 
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observed an increase in growth rate of L. vannamei from 0.85 g/wk to 1.03 g/wk, a 21% 

increase in growth rate. However, what is critically important from the present study is the 

finding that the use of this microbial biomass can provide a clear mechanism to offset 

reductions in protein levels in the diet. For example by including 50 g/kg of the microbial 

biomass in a diet with 360 g/kg protein it is possible to achieve the same gain rates as that 

achieved with 480 g/kg protein and no microbial biomass. 

A clear link was observed in the present experiment between feed intake and growth 

across all the treatments. However, separating a feed stimulant effect from a growth 

stimulating effect; which in turn demands greater feed intake, is not possible to determine 

from the present design. Earlier work by Glencross et al. (2013) implicated that it was a 

growth stimulation effect of a high-performance diet, which included a microbial biomass, 

which was driving growth and subsequently feed intake. However, that interpretation was 

based on a design where the feed was pair-fed and the growth of shrimp fed the high-

performance diet achieved significant gains, despite that there was no difference in feed 

intake. 

In the present study there were effects identified for both protein and microbial 

biomass levels and also the interaction between the two factors on feed intake by the 

shrimp. The addition of the microbial biomass increased feed intake within each of the 

different protein levels, where as the effect of protein levels within each of the other factors 

gave contrasting responses. In those treatments without the addition of the microbial 

bioactive there was a marginal decrease in feed intake with an increase in diet protein levels 

and this relationship was stronger when examined as a function of energy intake. This is 

consistent with what has been observed in terms of energetic responses to dietary energy 

concentrations in some fish studies (Einen and Roem, 1997; Glencross et al., 2008). 

However, when the microbial biomass was added to the diets there was a marginal increase 

in feed intake with increasing protein level. These observations are clearly what have 

contributed to the determination of an interaction effect of these factors on feed intake.  

The observation that there was a significant improvement of feed conversion ratio 

(FCR) identified for both protein and microbial biomass levels and also the interaction term, 

supports that both factors are influencing growth independent of feed intake to some 

extent, though this is difficult to quantify from the present experimental design. This 

improvement in FCR is typical with what has been observed for both improving diet 
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specifications and the use of microbial biomass in other studies (Glencross et al., 1999; 

2014; Ju et al., 2008; Kuhn et al., 2009). 

 

4.2 Effect of microbial biomass on protein utilisation 

Typically, shrimp studies do not usually report nutrient and/or energy utilisation 

parameters, but they are a commonly used assessment parameter in fish studies (Glencross 

et al., 2007; Glencross and Smith, 2010; Richard et al., 2010). There are a range of reasons 

why this might be the case, but one of the most obvious is the poorer capacity to accurately 

assess feed intake in shrimp compared to fish and the associated error that this has in 

estimating such nutrient retention parameters. So it is with acknowledgement of this 

limitation that the nutrient retention data is considered. 

In the present study improvements in retention efficiency of protein were seen with 

increasing inclusion of the microbial biomass, but not with the increasing inclusion of 

protein, however a significant interaction term shows that the dietary protein level did have 

an effect subject to the presence of the microbial biomass (Table 5). A look at Figure 3 

shows this clearly, where little effect of dietary protein on protein retention efficiency can 

be seen when microbial biomass is included, but when it is absent then improvements in 

protein retention occur with increasing protein level. Other data from the literature on this 

aspect of nutrition is scarce. However, it can be implied if a constant protein content of the 

shrimp is assumed and feed intake data is presented (or able to be calculated from growth 

and FCR data). In such cases, then it can also be realised that in most instances there is an 

increase in protein retention efficiency occurring with increasing protein levels (to the point 

of maximal weight gain) and also in some studies with the use of microbial biomass (Bages 

and Sloane, 1981; Alava and Lim, 1983; Kuhn et al., 2009; Anand et al., 2014). 

The protein retention efficiency values observed in this study (range 5.4% to 24.0%) 

are substantially lower than what is typically observed in studies with fish (Dumas et al., 

2007; Glencross et al., 2008). This is largely driven by the higher apparent FCR obtained in 

such shrimp studies. However, in pond or pond-like experimental systems FCR values closer 

to those more typically seen with fish have been reported (Smith et al., 2002; Tacon et al., 

2002; Burford et al., 2004; Amaya et al., 2007). It has largely been assumed that under such 

pond systems that there is additional food intake that enhances production to result in 

these improved FCR values. 
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Data on lipid retention efficiency in aquaculture species is scarcer than that of 

protein retention, however in combination with protein it is this retention of lipid that 

constitutes the principle biomass gain that occurs in animals. In the present study lipid 

retention efficiency was similarly influenced as protein retention by the microbial biomass 

levels and the interaction with protein, and also not for protein level alone. In the absence 

of the microbial bioactive lipid retention efficiency was improved with increasing dietary 

protein up to the 480 g/kg level, but above that level the efficiency declined.   

The combination of protein and lipid deposition by an animal can often be amortised 

in terms of the energetic contributions they represent. In the present study we have 

measured this in terms of energy retention.  The energy retention produced significant 

effects for both the protein level and the microbial biomass levels and also the interaction 

between these two factors. In the present study this energy retention is mostly driven by 

the protein retention component, due to the very low levels of lipid found in the whole 

body analysis of the shrimp (~2% cf. protein at ~20%).  

 

4.3 Conclusions 

The findings of this study demonstrate that with the use of a microbial biomass 

product that not only it is possible to partially off-set the need for protein in diets for P. 

monodon, but that the use of this product can significantly improve growth performance of 

shrimp in excess of 50% of that achieved in the absence of this microbial biomass. These 

findings are a major progression in the sustainability of shrimp farming in that they 

demonstrate potential for reducing the need for key nutrient inputs to sustain productivity.  
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Tables and Figures 

 
Table 1. Composition of the key experimental ingredients (all 

values are g/kg dry basis - unless otherwise specified). 
 

  Fishmeal Gluten Wheat MB 

     
Dry matter (g/kg) 912 904 900 917 
Protein 753 807 129 42 

Lipid 102 22 22 6 
Ash 159 8 839 269 
Carbohydrates 0 163 10 683 
Energy (kJ/g DM) 21.5 22.1 18.4 13 
Alanine 45 19 4 2 
Arginine 40 26 6 1 
Aspartic acid 66 25 7 4 
Cysteine 9 20 1 0 
Glutamate 92 299 40 3 
Glycine 42 25 5 2 
Histidine 23 13 1 0 

Isoleucine 32 28 4 2 
Leucine 55 53 9 2 
Lysine 55 11 5 1 
Methionine 23 15 2 1 
Phenylalanine 29 43 6 1 
Proline 30 115 25 6 
Serine 30 40 6 2 
Taurine 7 0 0 0 
Threonine 32 21 5 3 
Tyrosine 24 27 4 1 

Valine 37 28 5 2 

          
                                 MB : Microbial biomasss 
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Table 2. Formulations and composition of diets from. Data are g/kg values unless otherwise stated. 
 

 
36P 42P 48P 54P 36P5M 42P5M 48P5M 54P5M 36P10M 42P10M 48P10M 54P10M 

             Raw material type             

Fishmeal a 300.0 400.0 500.0 610.0 300.0 400.0 500.0 610.0 300.0 400.0 500.0 610.0 

Wheat gluten b 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 

Wheat flour b 600.3 500.3 400.3 290.3 550.3 450.3 350.3 240.3 500.3 400.3 300.3 190.3 

Lecithin a 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Fish oil a 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 

Microbial Biomass a - - - - 50.0 50.0 50.0 50.0 100.0 100.0 100.0 100.0 

Astaxanthin e 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

BanoxE d 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

Cholesterol c 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Vitamin C e 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Vitamin Premix f 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

             Diet composition - As measured 
        Dry matter (% as fed) 95.5 94.9 95.7 96.4 95.7 95.8 95.7 96.8 96.0 95.7 96.8 96.8 

Protein (% DM) 38.7 44.5 49.2 56.0 36.0 42.1 48.9 53.6 37.5 42.8 48.9 53.3 

Lipid (%DM) 6.3 8.6 7.9 10.0 7.9 7.5 7.7 9.0 5.9 7.0 8.4 10.1 

Ash (%DM) 16.3 5.2 6.5 8.0 8.2 9.6 11.0 12.8 11.4 12.6 14.9 16.3 

Carbohydrates (%DM) 38.7 41.8 36.5 26.1 47.9 40.8 32.4 24.6 45.2 37.7 27.9 20.4 

Gross Energy (%DM) 19.73 19.92 19.98 20.71 19.98 19.25 19.48 20.03 18.24 18.52 19.22 19.48 

                          
a Fish (Peruvian anchovetta) meal, Lecithin, Microbial bioactive: Novacq™ and Fish (Peruvian anchovetta) oil : Ridley Aquafeeds, Narangba, QLD, Australia. b Wheat gluten and flour : Manildra, 
Auburn, NSW, Australia. c Cholesterol : MP Bio, Aurora, OH, USA. d Banox-E™ : BEC Feed Solutions, Carole Park, QLD, Australia. e Astaxanthin (10%) as Carophyll Pink™ and Vitamin C as Stay C™: 
DSM, Wagga Wagga, NSW, Australia. f Vitamin and mineral premix : Rabar, Beaudesert, QLD, Australia; includes (IU/kg or g/kg of premix): Vitamin A, 2.5MIU; Vitamin D3, 1.25 MIU; Vitamin E, 
100 g; Vitamin K3, 10 g; Vitamin B1, 25 g; Vitamin B2, 20 g; Vitamin B3, 100 g; Vitamin B5, 100; Vitamin B6, 30 g; Vitamin B9, 5; Vitamin B12, 0.05 g; Biotin, 1 g; Vitamin C, 250 g; Banox-E, 13 g. 
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Table 3 Two-way ANOVA of growth and feed utilisation parameters  
 

 
P-value   F-value   df   

Parameter P M P x M P M P x M P M P x M 

 
     

    Final weight 0.002 0.000 0.624 6.27 37.52 0.74 3 2 6 
Rate 0.002 0.000 0.604 6.20 39.20 0.76 3 2 6 
Intake 0.026 0.000 0.004 3.47 24.60 4.02 3 2 6 
FCR 0.000 0.000 0.003 15.05 12.17 4.17 3 2 6 
Survival 0.199 0.870 0.559 1.63 0.14 0.82 3 2 6 
Protein retention 0.189 0.000 0.002 1.68 23.44 4.41 3 2 6 
Lipid retention 0.138 0.000 0.000 1.96 12.55 6.11 3 2 6 
Energy retention 0.004 0.000 0.002 5.37 24.92 4.31 3 2 6 
                    

 
 
 
Table 4 Shrimp growth and feed utilisation parameters  
 

Treatment 36P 42P 48P 54P 36P5M 42P5M 48P5M 54P5M 36P10M 42P10M 48P10M 54P10M 
Pooled 

SEM 

              Initial weight (g/shrimp) 2.99 3.08 3.02 3.02 2.96 2.96 3.05 2.90 3.02 2.92 2.95 2.96 0.01 

Final weight (g/shrimp) 5.26a 5.91 a 7.04 b 7.05 b 6.94 b 7.50 b 7.61 b 8.61 c 8.71 c 8.91 c 9.17 c 9.41 c 0.18 

Rate (g/wk) 0.38 a 0.47 ab 0.67 b 0.67 b 0.65 b 0.76 b 0.76 b 0.95 c 0.95 c 1.00 c 1.04 c 1.07 c 0.04 

Intake (g/shrimp) 11.26 b 10.29 a 10.58 ab 9.54 a 11.24 b 12.75 c 10.74 ab 16.57 f 16.82 13.07 c 14.24 d 15.29 e 0.38 

FCR (feed/gain) 5.02 c 3.69 b 2.64 ab 2.38 a 2.82 ab 3.03 b 2.40 a 2.92 b 2.99 b 2.21 a 2.29 a 2.44 a 0.11 

Survival (%) 71.9 a 78.1 ab 90.6 c 87.5 bc 90.6 a 78.1 ab 81.3 ab 78.1 ab 65.6 a 87.5 b 84.4 b 81.3 ab 1.95 

                          
 FCR : Feed conversion ratio. Different superscripts within rows indicate significant differences (P<0.05). An absence of superscripts implies that there were no significant differences (P>0.05). 
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Table 5 Nutrient and energy retention efficiency (%) parameters  
 

Treatment 36P 42P 48P 54P 36P5M 42P5M 48P5M 54P5M 36P10M 42P10M 48P10M 54P10M 
Pooled 

SEM 

 
             Protein 5.4 a 8.5 b 13.5 c 14.3 c 13.0 c 15.3 cd 16.2 d 11.1 bc 19.6 e 24.0 f 18.7 de 15.4 cd 0.8 

Lipid 1.0 a 3.7 b 10.2 d 7.8 c 10.4 d 5.6 b 12.2 e 6.3 bc 14.7 f 13.2 ef 8.5 c 8.9 c 0.7 

Energy 2.5 a 4.9 b 9.1 c 10.2 c 8.8 c 8.5 c 10.9 c 7.8 bc 10.9 c 14.5 d 12.2 d 11.3 cd 0.5 

 
              



 21 

Figure 1. Effect of inclusion level of microbial biomass combined with varying protein inclusion level on the gain rate (g/wk) of shrimp. Diet 
protein content is percent as fed basis. 
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Figure 2. The relationship between feed intake and weight gain for each of the treatments (○ : MB-0%; ● : MB-5%; ● : MB-10%). Shown is 
the regression line fitting for all treatments combined which was defined as; y = 0.406x - 0.4643, R² = 0.5762. 

. 
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Figure 3. Effect of inclusion level of microbial biomasss combined with varying protein inclusion on the protein retention 
efficiency of shrimp. Diet protein content is percent as fed basis. 


