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Highlights 23 

1. A factorial study using diets balanced on a digestible protein and energy basis with 24 

combinations of four fish meal levels and four fish oil levels was undertaken with Asian seabass. 25 

2. Variation in fish meal was observed to impact on feed intake and subsequently growth of the 26 

fish, but less so variations in fish oil. 27 

3. Gene expression was more responsive to variation in fish oil than fish meal.  28 

4. Fish meal was found to be the constraining factor in this experiment, having a clearer impact on 29 

overall performance than fish oil replacement 30 

 31 



Abstract 1 

 2 

An experiment was conducted to examine the potential for the complete replacement of fishmeal 3 

(FM) and fish oil (FO) in diets for barramundi, Lates calcarifer. A series of diets were formulated to 4 

the same digestible protein and energy specifications, but which were designed with FM inclusion 5 

levels at 300, 200, 100 or 0 g/kg and FO at 100%, 30%, 15% or 0% of the added oil in the diets (4 x 6 

4 factorial design). Ricebran oil was the alternative oil used in the growth study, while soybean 7 

meal and poultry meal were the main alternative protein sources used.  For the growth study, fish 8 

of an initial weight of 154.4 ± 1.1 g were randomly allocated across 48 tanks (three replicates per 9 

treatment). After eight weeks, the average weight gain across all treatments was 187.7 ± 2.3 g/fish 10 

and feed conversion across all treatments averaged 1.04 ± 0.01 feed/gain. A significant effect of 11 

FM on both feed intake and weight gain was observed, and this was observed as early as within 12 

the first few weeks, but no similar such effect was observed with FO. No effects were observed on 13 

protein deposition efficiency, though both lipid and energy deposition efficiencies were affected 14 

by FM level. The reduction in FO had a notable effect on the fatty acid composition of the diets 15 

and subsequently the fish fatty acid composition. Expression of key LC-PUFA metabolism genes in 16 

the liver of the fish was influenced by both FM and FO levels, but was only significant at the 17 

extremes of the treatment ranges. The results from this study demonstrate that there is clear 18 

potential to replace almost all the FM content of barramundi diets without loss of fish 19 

performance, up to and including diets with as little as 100 g/kg fishmeal. Replacement of fish oil 20 

was more successful with the ability to completely replace all FO demonstrated at all but the 21 

lowest inclusion levels of FM. These results clearly demonstrate that the near complete 22 

replacement of both FM and FO in barramundi diets is a technical reality. 23 



1 Introduction  1 

 2 

The reliance of aquaculture on fishmeal as a protein source and fish oil as a lipid source has been 3 

recognised for a long time as a significant risk for the industry (Tacon and Metian, 2008). Over the 4 

recent past decades there have been a multitude of studies examining a range of different raw 5 

materials that have potential application in reducing reliance on these resources for aquaculture 6 

(reviewed by Gatlin et al., 2007; reviewed by Glencross, 2009). In assessing new and different raw 7 

materials, a series of key knowledge elements is required to enable their effective utilisation by 8 

the feed production sector. Those being the characterisation of the raw material, the 9 

determination of its digestible nutrient and energy value, before assessing palatability and 10 

utilisation value parameters (Glencross et al., 2007).  11 

For barramundi (Lates calcarifer), there has been a significant volume of work examining elements 12 

of the raw material assessment process. Much of this work has focussed on either rendered 13 

animal meals (Williams et al., 2001; 2003a; 2003b; Glencross, 2011; Glencross et al., 2011) or feed 14 

grains (Glencross, 2011; Glencross et al., 2011; 2012a; Irvin et al., 2015; Ngo et al., 2015). In both 15 

cases it has been demonstrated that either rendered animal meals or feed grains can replace 16 

substantial amounts of fishmeal in diets for this species. However, it has also been determined 17 

that a critical threshold of 15% fishmeal was pertinent to barramundi, based on a diet balanced for 18 

digestible protein, energy and amino acids using a plant protein concentrate as the alternative 19 

(Glencross et al., 2011). 20 

There has been less work on establishing the boundaries of fish oil replacement in feeds for 21 

barramundi, though there has been much work done on other fish species (Borlongan and Parazo, 22 

1991). It has recently been demonstrated that the requirement for the long-chain polyunsaturated 23 

fatty acids (LC-PUFA) for barramundi is around 1% of the diet (Glencross and Rutherford, 2011; 24 

Salini et al., 2015a). Other recent studies have demonstrated that it has been possible to replace 25 

all the fish oil in barramundi diets, so long as high inclusions of fishmeal were maintained and this 26 

level of LC-PUFA maintained (Alhazzaa et al., 2011).  27 

In this study, it was hypothesised that the combined replacement of fishmeal and fish oil will be 28 

problematic. But it was not known if the thresholds for this were singular or interactive. Therefore, 29 

to address this question a factorial study of replacement in fishmeal (FM) and fish oil (FO) was 30 

undertaken. To push the boundaries on this question FM inclusion was reduced from 30% to 0% at 31 

10% increments, whilst FO has one inclusion level at 100%, but the other treatments were at 30%, 32 



15% and 0% of the added oil components. Importantly, each of the dietary formulations were 1 

based on the measured digestible value of each of the key raw materials that were used. 2 

 3 

2. Materials and Methods 4 

2.1 Experiment concepts 5 

An experiment was conducted to examine the application of the complete replacement of fish 6 

meal and fish oil in diets for barramundi. Digestibility data from earlier studies using the same 7 

batches of raw materials were used to formulate the diets in this experiment (Glencross et al 8 

unpublished), with the nutrient composition of those ingredients shown in Table 1. The 9 

experiment examined the productivity of fish grown when fed diets formulated with fishmeal 10 

levels ranging from 0 g/kg to 300 g/kg and when the added oil was 100%, 30%, 15% or 0% fish oil, 11 

when replaced by ricebran oil (Table 2). This generated a 4x4 factorial design of fishmeal 12 

replacement against fish oil replacement. The experiments were conducted at the CSIRO 13 

Aquaculture Feed Technologies Laboratory at the Bribie Island Research Centre (Woorim, QLD, 14 

Australia) in a flow-through, aerated, heated seawater tank array. 15 

2.2 Diet preparation 16 

A laboratory-scale, twin-screw extruder (MPF24:25; Perkins-Baker, Peterborough, United 17 

Kingdom), with intermeshing, co-rotating screws was used to process each of the diets. The 18 

methodology was based on that reported in Glencross et al. (2012a). All dry ingredients were first 19 

mixed in a Hobart mixer (Hobart, Ohio, USA). The dry mash was delivered into the barrel at a feed 20 

rate of around 360 g/min. Barrel temperatures were set for each of the four zones from drive to 21 

die at 50°C, 80°C, 100°C and 120°C, respectively. The barrel of the extruder was a smooth-walled, 22 

open-clam design with twin-screws each with dimensions of 24 x 600 mm (diameter x length). The 23 

screw configuration was composed of a series of intermeshing feed screws (FS), forwarding 24 

paddles (FP) and lead screws (LS) arranged according to defined barrel diameters (D) such that 25 

overall configuration from the drive end was: 16D FS, 2D FP, 1D FS, 2D FP, 1D LS, 1D FP, 2D LS: to 26 

the die. A single 4.0 mm diameter cylindrical die tapered at a 67° angle with a land length of 3 mm 27 

was used. Each diet was extruded using the same temperature parameters. Water was 28 

peristaltically pumped (Watson-Marlow 504U, Falmouth, England) into the barrel at around 100 29 

mL/min based on optimising the expansion of the pellet. Pre-conditioning and steam injection 30 



were not used during the process. Pellets were cut into 5 to 6 mm lengths using a four-bladed 1 

variable speed cutter and collected on large aluminium oven trays (650 x 450 x 25 mm, L x W x D), 2 

which were subsequently used for drying of the pellets at 60°C for 12 h. Following drying the 3 

pellets were vacuum infused with their formulated allocation of oil. To infuse the oil an allocation 4 

(~5kg) of the warm, dried uncoated pellets were weighed into the mixing bowl of a Hobart mixer 5 

(Hobart, Ohio, USA) and the formulated allocation of warmed (60°C) oil slowly poured over the 6 

pellets whilst they were being mixed. Once all the pellets were evenly coated, the bowl was 7 

removed, a lid applied and the bowl chamber evacuated of air using vacuum pump. The vacuum 8 

was maintained until all signs of air escaping from the pellets were seen to stop. At this point the 9 

air pressure was slowly re-equilibrated, the lid removed and the pellets removed, bagged and 10 

stored at 4ºC ready for use. The composition of each diet is shown in Table 3. 11 

2.3 Chemical and digestibility analysis 12 

All samples were dried (or already dry) and milled to a fine powder prior to analysis. Faecal 13 

samples were dried by freeze drying prior to being analysed for dry matter, yttrium, nitrogen and 14 

gross energy content. In addition, diet samples were analysed for ash and total lipids and 15 

carbohydrate content calculated. Dry matter was calculated by gravimetric analysis following oven 16 

drying at 105°C for 12 h. Ash content was determined gravimetrically following the loss of mass 17 

after combustion of a sample in a muffle furnace at 550°C for 4 h. Protein levels were calculated 18 

from the determination of total nitrogen using a ThermoFlash Elemental Analyser, based on N x 19 

6.25. Total starch content was measured using enzymatic methods with the Megazyme Total 20 

Starch Kit, K-TSTA, following a modified AOAC Method 996.11. Amino acid analysis involved the 21 

samples being hydrolysed at 110°C for 24 h in 6 M HCl with 0.05 % Phenol. Cystine was derivatized 22 

during hydrolysis by the addition of 0.05 % 3-3-dithiodipropoinic acid. The acid hydrolysis 23 

destroyed tryptophan making it unable to be determined. Separation of the amino acids was 24 

performed by HPLC on a Hypersil AA-ODS 5µM column using an 1100 series Hewlett Packard HPLC 25 

system. Total lipid content of the diets was determined gravimetrically following extraction of the 26 

lipids using chloroform:methanol (2:1). Gross energy was determined by isoperiobol bomb 27 

calorimetry. Carbohydrates were calculated based on the dry matter content of a sample minus 28 

the protein, lipid and ash. Fatty acids were analysed as methyl ester derivatives based on the 29 

method of O’fallon et al. (2007). Esterified lipids were separated by gas chromatography (GC) and 30 

detected using flame ionisation detection according to standard methods (O’fallon et al., 2007). 31 

Specific fatty acid peaks were identified by comparing retention times relative to standards.  32 



Differences in the ratios of dry matter, protein or gross energy to yttrium, in the feed and faeces in 1 

each treatment were calculated to determine the apparent digestibility (ADdiet) for each of the 2 

nutritional parameters examined in each diet based on previously published methods (Blyth et al., 3 

2014).  4 

2.4 Fish management  5 

 Fish were obtained from BettaBarra (Cairns, QLD, Australia), and on-grown to 154.4 ± 1.08 g/fish 6 

(mean ± SD, n=768) in preparation for the experiment. During the on-growing period all fish were 7 

fed the same diet (MarineFloat 4mm, Ridley Aquafeeds, Australia) and kept in 3 x 5,000L seawater 8 

tanks. Water temperature was maintained at 30.1 ± 0.10°C (mean ± S.D.) and dissolved oxygen at 9 

6.1 ± 0.05 mg/L (mean ± SD.) for the 56-day duration of the experiment. At the initiation of the 10 

trial 40 fish were weighed on an electronic top-loading balance to 0.1 g accuracy to determine the 11 

mean and standard deviation of the population. Following this, 16 fish were randomly allocated to 12 

each of 48 tanks (24 x 300L or 24 x 600L) based on having to be within the mean ± 1 x SD. Five fish 13 

were euthanized from the population at the beginning of the experiment as a representative initial 14 

sample.  15 

 Each diet was manually fed to each tank of fish once daily (0900 – 1000) to slight excess, based on 16 

observation of several pellets being ignored by the fish during the feeding process, seven days a 17 

week for 56-days. All feed fed and all uneaten feed was accounted for and correction factors 18 

applied to the collected uneaten feed to allow the determination of feed consumption within each 19 

tank (Helland et al., 1996). This also ensures potential feed palatability effects could be evaluated 20 

(Glencross et al., 2011). Feeding once a day has already been proven to be suitable for this species 21 

at this size (Williams et al., 2001). 22 

 At the end of the experiment (day 56) all fish in each tank were anesthetised prior to weighing and 23 

tissue sample collection. A total of five fish were euthanized by AQUI-S™ overdose. Three of the 24 

fish from each tank were towel dried to remove excess water and then frozen whole for total 25 

carcass analysis. The other two fish were dissected for liver samples. The remaining fish were 26 

stripped of faeces using the methods reported by Blyth et al. (2014). 27 

 Frozen whole fish samples were minced by two passes through an industrial food processor to 28 

ensure sample homogeneity. Samples were then collected and their moisture content determined 29 

by oven drying at 105°C for 24 h and a second sample freeze-dried for chemical analysis. Freeze-30 

dried samples were milled to a powder prior to analysis. Blood samples were collected via the 31 



caudal tail vein from each of the five fish from each tank using a 1mL Li-Heparinised syringe and an 1 

18G needle. Blood from each of the fish was pooled within a single Vacutainer™ tube. The tube 2 

was then centrifuged at 1000 x g for 5 min to settle the erythrocytes and the plasma transferred to 3 

a new Eppendorf™ tube prior to it being frozen and sent for plasma analysis. Samples of liver were 4 

collected separately from each of the other two fish from each tank and frozen on dry-ice before 5 

being stored at -80°C.  6 

2.5 Plasma chemistry 7 

Samples of plasma were sent to the West Australian Animal Health Laboratories (South Perth, 8 

Western Australia) for plasma enzyme and chemistry assessment. The assays were run on an 9 

Olympus AU400 automated chemistry analyser (Olympus Optical Co. Ltd). Each of the assays used 10 

was a standard kit developed for the auto-analyser (absbiomedical.com). The tests performed 11 

included Alanine Aminotransferance (ALAT) (ALT2-125), Creatine Kinase (CK) (OSR6179), 12 

Glutamate Dehydrongenase (GLDH) (Randox kit Cat. No. GL441), Total Protein (TPT2-125), 13 

Creatinine (CRE2-125), Cholesterol (CHO2-125), Calcium (CAA2-125), Magnesium (MAG2-125), 14 

Phosphorus (PHO2-125), Iron (IRO2-125), Urea (BUN2-125), Albumin (ALB2-125) and Haem 15 

(Randox test kit Cat. No. HG1539). Trace elements were determined after mixed acid digestion 16 

using inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Data are 17 

presented in Table 6. 18 

2.6 Gene expression analysis 19 

Total RNA extractions from the liver samples, cDNA synthesis and quantitative PCR analysis were 20 

conducted as described previously (Wade et al., 2014). Briefly, RNA was extracted using Trizol 21 

reagent (Invitrogen, Scoresby, VIC, Australia) according to the manufacturer’s instructions, 22 

including DNase digestion with the Turbo DNA-free kit (Applied Biosystems, Scoresby, VIC, 23 

Australia). RNA quantity was assessed on a NanoDrop spectrophotometer (NanoDrop 24 

Technologies, Wilmington, DE, USA) and RNA quality was assessed using a Bioanalyser (Agilent 25 

Technologies, Santa Clara, CA, USA) and RNA nanochips (Agilent #5067-1511). Reverse 26 

transcription was performed on 1 µg of total RNA using Superscript III (Invitrogen). Real-time PCR 27 

primers specific to each gene of interest (Table 7) were designed with PerlPrimer v1.1.17 28 

(Marshall, 2004). 29 



Primer optimisation and expression of a range of genes that regulate various metabolic pathways 1 

was analysed by real-time PCR as described previously (Wade et al., 2014). Verification that there 2 

was no gDNA contamination was carried out by PCR amplification of a pool of DNAse-treated RNA 3 

samples using gene-specific primers. Real-time PCR amplification reactions were carried out using 4 

SYBR Green PCR Master Mix (Applied Biosystems) and run in triplicate on a Viia7 real-time PCR 5 

system (Applied Biosystems). Normalization was performed using the ΔCq method by normalizing 6 

the cycle threshold values for each gene to Ef1α, then using the average cycle threshold of all 7 

genes at each time point to express relative transcript abundance. The variation in amplification of 8 

Ef1α across all samples was 0.68 cycles and did not significantly change over time (data not 9 

shown).  10 

2.7 Statistical analysis 11 

All values are means unless otherwise specified. Effects of inclusion level of soybean meal on 12 

digestibility parameters were examined using linear regression analysis. Limits for all critical 13 

ranges were set at P < 0.05. A MANOVA (two-way ANOVA) design was used for analysis of the 14 

factorial design study. Levels of significance were determined using a Fishers Least Significant 15 

Difference (LSD) test. The MANOVA and LSD tests were undertaken using Statistica™ (Statsoft, 16 

Tulsa, OK, USA). Co-expression analysis was undertaken using a correlation analysis of the various 17 

treatments between each of the genes. The fish-in fish-out ratio for each diet were calculated 18 

based on: (%diet fishmeal + %diet fishoil) / 29% * FCR (Crampton et al 2010).  19 



3. Results 1 

3.1 Fish growth and feed utilisation 2 

All treatments showed substantial increases in weight during the trial (Table 4), and all treatments 3 

more than doubled their initial weight (Table 4; Figure 1). Weight gain was poorest by those fish 4 

fed the FM:20-FO:0 diet (gain of 167.1 g/fish) and best by those fish fed the FM:30-FO:15 diet 5 

(gain of 221.0 g/fish). However, the weight gain by the poorest performing fish was not 6 

significantly different from that of each of the FM:0 diets, which all performed sub-optimally 7 

relative to the remainder of the treatments. Weight gain was significantly affected by fishmeal 8 

inclusion, but not by fish oil inclusion and there was no interaction term. Feed intake by fish was 9 

significantly affected by fishmeal content, but not fish oil content (Figure 1 and 2). Overall there 10 

was a close relationship between weight gain and feed intake across all treatments (R2=0.838). 11 

Daily feed intake was consistently lower in the FM:0 series of diets compared to the FM:30 series 12 

of diets (Figure 2A). However, no such differences were observed with different inclusions of fish 13 

oil (Figure 2B). Feed conversion ratio values ranged from 0.99 (diet FM:20-FO:15) to 1.13 (diet 14 

FM:0-FO:0) and averaged 1.04 ± 0.01 (Table 4, Figure 1), and was affected by fishmeal content 15 

(P=0.040). Fish survival was high (>95%) across all treatments with no significant effects 16 

attributable to either fishmeal of fish oil inclusion (Table 4). 17 

3.2 Fish composition and nutrient deposition 18 

Fish proximate composition was relatively consistent across all treatments (Table 5). Virtually all 19 

treatments increased their lipid content relative to the initial fish sample. Similarly, there was also 20 

a minor increase in protein content relative to the initial sample. However, there were no 21 

significant effects on carcass dry matter, protein or lipid content relative to dietary fishmeal or fish 22 

oil content. There was substantially more variability in the fatty acid content of the fish from each 23 

treatment. The SFA and MUFA were the least variable of the total fatty acids. The total SFA ranged 24 

from 31.8% of total fatty acids to 38.0% of total fatty acids (Table 5).  Total MUFA ranged from 25 

39.4% of total fatty acids to 45.6% of total fatty acids (Table 5).  Variability was greater in the total 26 

PUFA, which ranged from 9.8% of total fatty acids to 19.6% of total fatty acids (Table 5).  Similarly, 27 

the total LC-PUFA was also quite variable, ranging from 3.3% of total fatty acids to 13.2% of total 28 

fatty acids (Table 5).   29 



Protein deposition efficiency (as defined by the protein gain relative to protein consumed) was 1 

poorest in those fish fed the FM:30-FO:15 diet, but generally there were no significant effects 2 

attributable to fishmeal or fish oil inclusion levels (Figure 3; P>0.05). Lipid deposition was more 3 

responsive to fishmeal inclusion level (P=0.001), with a decline in lipid deposition efficiency seen 4 

at complete replacement of fishmeal (FM:0 series of diets). However, there was no effect 5 

attributable to fish oil inclusion level (Figure 3; P>0.05). Energy deposition mirrored that of the 6 

lipid deposition (P=0.003), being poorest in those fish fed the FM:0 series of diets, but only 7 

marginally so. The effect of fishmeal level on energy deposition was not as dramatic as that of the 8 

lipid deposition (Figure 3). 9 

Deposition efficiency of the n-3 fatty acids was poorest in those fish fed the FM:0-FO:0 diet, but 10 

most of the FM:0 diets had lower levels of n-3 deposition efficiency (Figure 4). However significant 11 

effects were attributable to both fishmeal (P=0.003) and fish oil (P=0.033) inclusion levels, but 12 

there was no interaction term (Figure 4; P>0.05). Deposition of n-6 fatty acids was also responsive 13 

to both fishmeal (P=0.001) and fish oil (P=0.001) inclusion levels, but there was no interaction 14 

between the two (Figure 4). Deposition of LC-PUFA was poorest in those fish fed the FM:0-FO:0 15 

diet, and there were significant effects attributable to both fishmeal (P=0.001) and fish oil 16 

(P=0.011) inclusion levels, but in this case there was also an interaction between the two (P=0.015; 17 

Figure 4). 18 

3.3 Plasma chemistry 19 

There were very few significant differences among the plasma chemistry parameters based on the 20 

different dietary treatments (Table 6). The only notable effect was attributable to fish oil 21 

replacement on the plasma cholesterol levels. Cholesterol levels declined significantly in response 22 

to fish oil replacement, from peak values of 6.2 mmol/L in the FO:100 diets to 4.9 mmol/L in the 23 

FO:0 diets. An effect of fishmeal inclusion was also noted, though not significant (P=0.071), and 24 

there was no interaction between fishmeal and fish oil inclusion levels (P=0.950). Despite some 25 

large numerical differences in other plasma chemistry parameters there were no other significant 26 

differences.  27 

3.4 Liver gene expression 28 

There was a significant effect of treatment on the expression of lipid metabolism genes (Table 7). 29 

In particular FADS2 was significantly (P=0.044) up-regulated in fish fed the FM:0-FO:0 diet relative 30 



to the other treatments which by comparison where all mildly down regulated. A similar 1 

relationship among the treatments and the expression of ELOVL5 was also seen, but this was not 2 

significant (P= 0.173). Fatty acid synthase (FAS) also had a similar response among treatments as 3 

the other two lipid metabolism genes, in that there was an increased level of FAS expression in the 4 

liver of fish fed the FM:0-FO:0 diet, but it was down regulated in the other diets. These effects 5 

were also non-significant (P=0.363; Table 7). Other genes analysed for their expression in the liver 6 

included C-reactive protein (CRP), heat shock protein 70 (HSP70) and cytosolic alanine 7 

aminotransferase (cALAT). Variability among and within the different treatments was substantial 8 

with these genes and as such no significant effects (P>0.05) were observed (Table 7).  9 

There was a high degree of similarity in the manner in which cALAT and FAS were expressed 10 

among the different treatments. Co-expression analysis indicated that there was a significant 11 

positive correlation of R2=0.606 (P=0.001) between these two genes. Significant co-expression 12 

correlations were also observed between ELOVL5 and FADS2 (R2=0.498; P=0.006), FAS and ELOVL5 13 

(R2=0.608; P=0.001), cALAT and ELOVL5 (R2=0.579; P=0.001), and FADS2 and FAS (R2=0.714; 14 

P=0.001). 15 

 16 



4. Discussion 1 

 2 

This study examined the co-replacement of both fishmeal and fish oil in diets for juvenile 3 

barramundi (Lates calcarifer). The diets were all formulated on an equal digestible nutrient and 4 

energy basis, which has previously been shown to enable effective use of a wide range of 5 

alternatives (Glencross et al., 2011). Based on the diets being formulated on an equivalent 6 

digestible energy and nutrient basis, it was hypothesised that the main response by the juvenile 7 

barramundi would be towards the threshold values for fishmeal inclusion for palatability reasons 8 

and to fish oil for essential fatty acid reasons (Glencross and Rutherford, 2011; Glencross et al., 9 

2011). This added degree of rigour in the diet formulation process additionally sets this piece of 10 

work apart from others attempting the replacement of either fishmeal or fish oil to date 11 

(Boonyaratpalin et al., 1998; Raso and Anderson, 2002; Williams et al., 2003b; Tantikitti et al., 12 

2005; Alhazzaa et al., 2011). No other studies examining the joint replacement of either fishmeal 13 

or fish oil in this species, or indeed any other species, were found in the literature. 14 

4.1 Growth and feed utilisation 15 

It is important to note that the fish in this study grew close to their predicted potential (90% of 16 

modelled optimal growth (Glencross and Bermudes, 2012).  Many other studies report growth 17 

studies of fish where growth was clearly suboptimal and therefore it can be questioned as to how 18 

much influence the dietary treatments alone are having if other factors are affecting performance. 19 

The performance of fish at moderate levels of fishmeal replacement (e.g. FM:30, FM:20 and 20 

FM:10) shows that there is clear utility to replace this ingredient without introducing growth 21 

performance problems, subject to the diets being balanced for digestible protein, essential amino 22 

acids and digestible energy. The results for replacement of fish oil were even more conclusive and 23 

showed that virtually all the fish oil can be replaced and not affect performance (based on weight 24 

gain and feed conversion). However, at the higher levels of fishmeal replacement (FM:0) there was 25 

a clear effect on feed intake, weight gain and also feed conversion. These results demonstrate that 26 

the primary apparent response by barramundi to the replacement of fishmeal is to reduce their 27 

feed intake, presumably for palatability reasons. Feed intake was notably lower in the FM:0 series 28 

of diets compared to the FM:30 series of diets within the first few weeks (Figure 2A). This 29 

observation supports a potential palatability effect rather than a feedback effect from growth, 30 

given the response time involved. Despite this suggestion, it cannot be ruled out that there is a 31 



potential deficiency which has a feedback effect of reducing growth, which in turn results in 1 

reduced feed intake and poorer feed conversion. Similar such results to a decline in fishmeal 2 

inclusion were reported by Glencross et al. (2011), who examined the effects of a serial dilution of 3 

fishmeal against an amino acid balanced plant protein concentrate diet. In that study, a critical 4 

threshold of 150 g/kg of fishmeal was reported after which the authors saw a dramatic decline in 5 

feed intake. The present study obtained good feed intake and growth results for diets 6 

incorporating 100 g/kg of fishmeal, in contrast to the work of Glencross et al. (2011). A potential 7 

explanation for this difference between the diets in each case was the use of an animal protein 8 

(poultry meal) and the supplementation of taurine to the diets in the present study. 9 

Studies by Williams et al, (2003a) also examined the replacement of fishmeal using rendered 10 

bovine and ovine meals. These authors found that there was no reduction in feed intake with the 11 

complete replacement of fishmeal using these rendered animal meals.  However, comparison of 12 

the growth data against the growth model of Glencross and Bermudes (2012) identified that these 13 

fish only grew at 66% of their potential. Studies on fishmeal-free diets for Atlantic salmon (Salmo 14 

salar) found a small but a significant decline in feed intake (Espe et al. 2006), similar to the effect 15 

observed in the present study. However, a study by Hansen et al. (2007) examined diets fed to cod 16 

(Gadus morhua) where there was the serial replacement of fishmeal with a suite of plant proteins 17 

(wheat gluten, soy meal and soy protein concentrate). These authors observed a significant 18 

decline in feed intake and growth with complete replacement of fishmeal, but no significant 19 

decline at 180 g/kg fishmeal inclusion. 20 

In the present study the “fish-in-fish-out ratio” ranged from 1.33 for the FM:30-FO:0 diet to 0.00 21 

for the FM:0-FO:0 diet (Table 4). The additional use of FO replacement strategies in this study, 22 

implemented concurrently with the FM replacement, has clearly shown that it is possible to obtain 23 

a “fish-in-fish-out ratio” considerably less than one (Tacon and Metian, 2008; Kaushik and Troell, 24 

2010). If fish production from those diets in the FM:20 and FM10 range are considered acceptable 25 

then the findings from this study demonstrate that there is clear scope for the production of 26 

barramundi to be “fish-production-positive”, with more fish being produced than that being used 27 

to provide the feed.  28 

4.2 Body composition and nutrient deposition 29 

It was observed that the fish proximate composition was relatively consistent across all treatments 30 

in this study. The protein content of the fish was not affected by treatment and lipid content was 31 



generally related to fish size and weight gain as has been shown in other studies with this species 1 

(Glencross and Bermudes, 2012). Importantly, there were no significant effects on carcass dry 2 

matter, protein or lipid content that could be attributed to diet fishmeal or fish oil content. 3 

However, there was substantially more variability in the fatty acid content of the fish from each 4 

treatment and this is typical from studies where the fatty acid content of the diet has been 5 

manipulated (Raso and Anderson, 2002; Alhazzaa et al., 2011; Glencross and Rutherford, 2011). 6 

There was a trend with increasing FM replacement towards a reduction in total SFA, although the 7 

replacement of FO produced a greater reduction in SFA. The total MUFA increased with FM 8 

replacement and a similar degree of MUFA enrichment was also noted due to the FO replacement. 9 

In this study the FO was replaced by ricebran oil which is relatively low in SFA and has a moderate 10 

level of MUFA, and as such the composition of the fatty acids in the carcass of each treatment can 11 

be seen to be largely reflecting those of their respective diets.   12 

The deposition efficiency (as defined by the gain relative to nutrient consumed) was largely 13 

unaffected by diet for protein deposition, but was so for both lipid and accordingly energy 14 

deposition (Figure 3). This effect on lipid and energy deposition was clearly responsive to fishmeal 15 

inclusion but not to fish oil inclusion level (Figure 3). It can be argued that these effects are 16 

consistent with those expected based on fish size differences, but also the marginal effect of feed 17 

intake relative to daily energy demands (Glencross, 2006; Glencross and Bermudes, 2012).  18 

Deposition efficiency of the different fatty acids was slightly more variable than that of the macro-19 

nutrients and energy. Notably n-3 deposition efficiency declined significantly with decreasing 20 

levels of FM and also somewhat with decreasing levels of FO, but not to the same extent (Figure 21 

4). Deposition of n-6 fatty acids also declined with decreasing FM inclusion levels, but in contrast 22 

improved with increasing FO replacement (Figure 4). However, most dramatic was the deposition 23 

of the LC-PUFA which not only showed highly significant effects attributable to both FM and FO 24 

replacement and an interaction term, but also presented a negative deposition efficiency, implying 25 

a loss of LC-PUFA from those fish fed the FM:0-FO:0 diet (Figure 4). This observation is in direct 26 

contrast to earlier work of Glencross and Rutherford (2011), who observed an increase in the 27 

deposition (retention) efficiencies of DHA, EPA and ARA in diets largely devoid of LC-PUFA. 28 

However, it is notable that these low LC-PUFA diets still contained 8.4% LC-PUFA (equivalent to ~ 9 29 

g/kg) in their total fatty acids in contrast to the FM:0-FO:0 diets in the present study which had 30 

0.2% LC-PUFA. This difference in deposition efficiency therefore perhaps highlights that at low 31 

levels of LC-PUFA that barramundi are capable of scavenging the small amounts available, thereby 32 



improving their utilisation. This is consistent with observations in other studies on a wide range of 1 

species (Francis et al., 2007; Stubhaug et al., 2007). However, in absolute (or near) absence of LC-2 

PUFA in the diet then there is a net loss as the animal turns over those essential nutrients through 3 

its growth and maintenance processes. Although the SFA and MUFA were the least variable of the 4 

total fatty acids in the carcass of the animals, there was still a clear pattern in the deposition 5 

efficiencies of these fatty acids in mirroring the pattern of weight gain response to varying FM and 6 

FO levels. 7 

4.3 Plasma chemistry 8 

Despite some large numerical differences in a range of the plasma chemistry parameters there 9 

were few significant effects attributable to the treatments in this study. This suggests that the 10 

health of the fish being fed diets with high levels of replacement of both FM and FO is not being 11 

compromised. In an earlier study the authors had noted a range of sub-clinical effects due to 12 

replacement of fishmeal on the juvenile barramundi relative to the reference diet (Glencross et al., 13 

2011). In contrast to the present study, in the earlier study noted effects in levels of creatinine 14 

kinase (CK), alanine aminotransferase (ALAT) and glutamate dehydrogenase (GLDH) which are 15 

markers of muscle and liver damage respectively (Glencross et al., 2011). In the earlier study, it 16 

was suggested that the hard physical properties of some of the pellets in that study were 17 

responsible for physical trauma to the gastrointestinal tract and this presented as the elevated 18 

levels of these plasma marker enzymes. However, similar such physical extremes in the pellet 19 

properties were not seen in the present study. 20 

The only significant effect on plasma chemistry in the present study was attributable to fish oil 21 

replacement on the plasma cholesterol levels (Table 6). It was noted that cholesterol levels 22 

declined significantly in response to fish oil replacement. However, although effects associated 23 

fishmeal inclusion were also notable, they were not significant. Earlier studies examining FM or FO 24 

replacement in barramundi have not examined plasma cholesterol content (Glencross and 25 

Rutherford, 2011; Glencross et al., 2011), so a direct comparison was not possible. However, 26 

studies examining the replacement of FO with rapeseed oil in Atlantic salmon found no significant 27 

changes in plasma cholesterol levels with increasing FO replacement (Torstensen et al., 2004). 28 

However, it was unclear in this study as to what the FM inclusion level was and this may have been 29 

a pertinent factor. Interestingly, other studies have shown that modification of the dietary 30 

essential fatty acid profiles can affect the plasma chemistry, immune response and the gut and 31 



liver structure (Montero et al., 2003; Glencross and Rutherford, 2011).  It is likely that the 1 

observed changes in plasma enzymes are indicative of such changes in the test fish.  2 

4.4 Liver gene expression 3 

In the present study, a focus was made on the expression of genes in the liver involved in the LC-4 

PUFA synthesis pathways and accessory lipid metabolism (FADS2, ELOVL5, FAS), and also a range 5 

of stress and inflammatory responses (HSP70, CRP, cALAT). Of those six genes, the only significant 6 

expression response to treatment was the significant up-regulation of the fatty acid metabolism 7 

gene FADS2 in those fish fed the FM:0-FO:0 diet, relative to the other treatments which were all 8 

down regulated. It can be reasoned that this up-regulation of the FADS2 gene (a delta-6-9 

desaturase) occurred in fish fed the diet devoid of any LC-PUFA as those fish are attempting at ‘all 10 

costs’ to produce the essential fatty acids of EPA and DHA from whatever substrates it can access 11 

(Mohd-Yusof et al., 2010; Tu et al., 2012; Betancor et al., 2014). However, at even low levels of LC-12 

PUFA present in the other diets the expression of the gene is maintained at low levels suggesting 13 

that barramundi have a tolerance for very low levels of these nutrients, just not complete absence 14 

(Salini et al., 2015b). Other studies examining FADS2 and ELOVL5 (Elongase of very long-fatty acids 15 

– 5) in barramundi have also found that the expression of these two genes is up-regulated when 16 

the levels of the LC-PUFA become low (Alhazzaa et al., 2011; Salini et al., 2015b). The expression of 17 

fatty acid synthase (FAS) was also similar to the other two lipid metabolism genes (FADS2, 18 

ELOVL5), in that there was an increase level of FAS in the liver of fish fed the FM:0-FO:0 diet, but it 19 

was down regulated in the other diets. Of more significant note though, was that there was a 20 

significant level of co-expression of FAS with FADS2 and also FAS with ELOVL5. This co-expression 21 

suggesting that the up-regulation of the desaturation (FADS2) and elongation (ELOVL5) genes is 22 

consistent with a stimulation of other aligned growth pathways (Wade et al., 2014). 23 

The other genes analysed for their expression in the liver in this study (CRP, HSP70 and cALAT) 24 

where those primarily directed at examining potential inflammation effects. However, consistent 25 

with the observations from the plasma chemistry data there were no significant effects 26 

attributable to any inflammation events due to the replacement of either FM or FO (Figure 5). 27 

However, substantial temporal variation in the expression of some of these genes has been 28 

previously observed (Wade et al., 2014). This may explain the large level of variance seen around 29 

some of these genes which makes it difficult to define a significant effect, where as some genes, 30 

like FAS are much more stable in their expression over a longer time period. 31 



The co-expression observed between cALAT and FAS expression may be linked to the fact that 1 

these two genes are generally up-regulated in those fish growing well (Wade et al., 2014).  2 

However, in the earlier study of Wade et al. (2014) there was only a moderate linkage between 3 

FAS and cALAT, but there were strong relationships between FAS and other similar enzymes like 4 

ASAT.  5 

4.5 Conclusions 6 

The findings from this study demonstrate that there is clear potential to reduce both the FM and 7 

FO content of barramundi diets to as little as 10% FM and 0% FO without loss in productivity. 8 

However, at this level of inclusion of FM and FO there are substantial impacts on the fatty acid 9 

profile of the fish, most notably the LC-PUFA levels which are about one third of those of the fish 10 

fed the FM:30-FO:100 diet. It would be of value to consider a sensory evaluation of the impact 11 

that this has on the fish product produced (Williams et al., 2003c). Importantly, for most of the 12 

inclusion levels of both FM and FO used in this study, the production of barramundi was 13 

demonstrated to be “fish-production-positive”, with more fish being produced than that being 14 

used to provide the feed. This therefore provides solid support for notion of sound feed 15 

sustainability for production of barramundi. 16 

However, the present study relies on three key ingredients (poultry meal, soybean meal, ricebran 17 

oil). To reduce feed risk further, additional raw materials need evaluation and development and 18 

this remains one of the highest priorities to provide enhanced flexibility for formulation options 19 

for use in barramundi feeds (Glencross et al., 2007). To follow from this work therefore further 20 

effort needs to be spent on defining those factors that affect the nutritional value of a broader 21 

range of raw materials, most notably by defining their digestible value (Glencross, 2011; Glencross 22 

et al., 2007; 2011).  23 

 24 
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Figures 

Figure 1.  Heat maps of each of the performance parameters for each of the treatments 
in the study. Green is identified in the top 80% -100% percentile while red is 
identified in the lowest 20% to 0% percentile of performance in each 
criterion. 

Figure 2.  Daily feed intake (g/tank) of pooled FM:30 series and FM:0 series treatments 
(A) over the full eight weeks. Note that the FM0 series are nearly always 
lower than the FM30 series. Daily feed intake (g/tank) of pooled FO:100 
series and FO:0 series treatments (B) over the full eight weeks. Note that 
there is essential no difference between treatment series. 

Figure 3.  Heat maps of each of the protein, lipid and energy deposition efficiency 
parameters for each of the treatments in the study. Green is identified in the 
top 80% -100% percentile while red is identified in the lowest 20% to 0% 
percentile of performance in each criterion. 

Figure 4.  Heat maps of each of the n-3 and n-6 fatty acid deposition efficiency 
parameters for each of the treatments in the study. Green is identified in the 
top 80% -100% percentile while red is identified in the lowest 20% to 0% 
percentile of performance in each criterion. 
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Top Bottom

100% 80% 60% 40% 20% 0%

1A. Weight Gain p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 189.8 196.4 175.6 167.5 182.3 0.182 0.096 0.621

FO 30% 198.2 199.0 189.5 172.5 189.8 0.144 0.126 0.323

FO 15% 221.0 190.0 199.0 167.6 194.4 0.005 0.219 0.087

FO 0% 201.9 167.1 197.1 171.9 184.5 0.160 0.788 0.129

mean 202.7 188.1 190.3 169.9

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.593 0.091 0.202 0.810 Fishmeal (FM) 4.839 0.007

30% vs 0% 0.895 0.072 0.602 0.977 Fishoil (FO) 0.714 0.551

15% vs 0% 0.265 0.194 0.996 0.844 FM x FO 0.857 0.572

1B. Intake p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 195.2 194.5 184.6 181.1 188.9 0.340 0.365 0.813

FO 30% 204.7 201.0 192.7 182.0 195.1 0.127 0.199 0.464

FO 15% 230.8 187.3 201.4 176.2 198.9 0.001 0.450 0.092

FO 0% 215.6 174.1 198.4 193.9 195.5 0.145 0.183 0.759

mean 211.6 189.2 194.3 183.3

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.170 0.170 0.836 0.233 Fishmeal (FM) 5.623 0.003

30% vs 0% 0.460 0.073 0.700 0.418 Fishoil (FO) 0.667 0.578

15% vs 0% 0.303 0.371 0.350 0.387 FM x FO 1.285 0.283

1C. Feed Conversion p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 1.03 0.99 1.05 1.08 1.04 0.072 0.019 0.234

FO 30% 1.03 1.01 1.02 1.06 1.03 0.679 0.460 0.511

FO 15% 1.04 0.99 1.01 1.05 1.02 0.706 0.206 0.549

FO 0% 1.07 1.04 1.01 1.13 1.06 0.548 0.191 0.054

mean 1.04 1.01 1.02 1.08

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.333 0.399 0.298 0.787 Fishmeal (FM) 3.114 0.040

30% vs 0% 0.347 0.582 0.850 0.261 Fishoil (FO) 0.809 0.498

15% vs 0% 0.437 0.341 0.706 0.318 FM x FO 0.478 0.879



Figure 2.  Daily feed intake (g/tank) of pooled FM:30 series and FM:0 series treatments (A) 
over the full eight weeks. Fish were not fed on the day they were weighed in 
week 4. Note that the FM:0 series are nearly always lower than the FM:30 
series. Daily feed intake (g/tank) of pooled FO:100 series and FO:0 series 
treatments (B) over the full eight weeks. Note that there is essentially no 
difference between these two treatments. 
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Figure 3.  Heat maps of each of the protein, lipid and energy deposition efficiency 
parameters for each of the treatments in the study. Green is identified in the top 80% -100% 
percentile while red is identified in the lowest 20% to 0% percentile of performance in each 

criterion. 
 

 

  

Top Bottom

100% 80% 60% 40% 20% 0%

2A. Protein deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 38% 45% 43% 36% 40% 0.679 0.093 0.195

FO 30% 45% 41% 44% 43% 43% 0.728 0.622 0.799

FO 15% 35% 46% 41% 40% 41% 0.304 0.187 0.769

FO 0% 45% 40% 50% 37% 43% 0.092 0.484 0.011

mean 41% 43% 45% 39%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.158 0.378 0.139 0.899 Fishmeal (FM) 2.034 0.129

30% vs 0% 0.905 0.953 0.242 0.215 Fishoil (FO) 0.783 0.512

15% vs 0% 0.037 0.221 0.080 0.546 FM x FO 1.428 0.218

2B. Lipid deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 69% 59% 63% 41% 58% 0.000 0.008 0.002

FO 30% 60% 60% 61% 39% 55% 0.002 0.002 0.001

FO 15% 71% 69% 60% 46% 61% 0.000 0.001 0.037

FO 0% 67% 69% 52% 38% 56%

mean 67% 64% 59% 41%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.766 0.148 0.099 0.591 Fishmeal (FM) 26.624 0.000

30% vs 0% 0.252 0.172 0.143 0.896 Fishoil (FO) 1.429 0.252

15% vs 0% 0.601 0.944 0.238 0.237 FM x FO 0.968 0.484

2C. Energy deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 38% 39% 34% 33% 36% 0.034 0.013 0.694

FO 30% 36% 39% 37% 36% 37% 0.883 0.190 0.672

FO 15% 40% 40% 37% 34% 38% 0.025 0.026 0.300

FO 0% 40% 38% 37% 35% 37% 0.127 0.373 0.626

mean 39% 39% 36% 34%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.654 0.535 0.240 0.278 Fishmeal (FM) 5.695 0.003

30% vs 0% 0.184 0.626 0.996 0.954 Fishoil (FO) 0.825 0.490

15% vs 0% 0.756 0.342 0.927 0.643 FM x FO 0.629 0.763



Figure 4.  Heat maps of each of the n-3 and n-6 fatty acid deposition efficiency 
parameters for each of the treatments in the study. Green is identified in 
the top 80% -100% percentile while red is identified in the lowest 20% to 0% 

percentile of performance in each criterion. 

Top Bottom

100% 80% 60% 40% 20% 0%

3A. n-3 deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 62% 50% 44% 27% 46% 0.004 0.058 0.149

FO 30% 55% 55% 57% 51% 55% 0.689 0.685 0.609

FO 15% 52% 53% 38% 26% 42% 0.030 0.024 0.319

FO 0% 48% 40% 35% 24% 37% 0.052 0.186 0.344

mean 54% 50% 43% 32%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.214 0.406 0.459 0.819 Fishmeal (FM) 5.602 0.003

30% vs 0% 0.511 0.190 0.075 0.029 Fishoil (FO) 3.304 0.033

15% vs 0% 0.699 0.258 0.845 0.887 FM x FO 0.558 0.820

3B. n-6 deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 26% 25% 22% 12% 21% 0.057 0.066 0.168

FO 30% 38% 30% 42% 32% 35% 0.414 0.775 0.152

FO 15% 51% 47% 46% 32% 44% 0.012 0.038 0.058

FO 0% 51% 54% 43% 29% 44% 0.004 0.002 0.059

mean 42% 39% 38% 26%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.001 0.001 0.006 0.024 Fishmeal (FM) 7.335 0.001

30% vs 0% 0.073 0.002 0.930 0.693 Fishoil (FO) 17.644 0.000

15% vs 0% 0.976 0.403 0.702 0.709 FM x FO 1.028 0.440

3C. LC-PUFA deposition p-value Fishmeal

30%FM 20%FM 10%FM 0%FM mean 30% vs 0% 20% vs 0% 10% vs 0%

FO 100% 61% 52% 46% 26% 46% 0.254 0.406 0.516

FO 30% 50% 46% 59% 33% 47% 0.588 0.670 0.395

FO 15% 58% 58% 37% 20% 43% 0.215 0.225 0.581

FO 0% 44% 44% 40% -125% 1% 0.000 0.000 0.000

mean 53% 50% 46% -11%

p-value Fishoil Summary Statistics F p value

100% vs 0% 0.574 0.795 0.837 0.000 Fishmeal (FM) 8.117 0.000

30% vs 0% 0.853 0.935 0.524 0.000 Fishoil (FO) 4.358 0.011

15% vs 0% 0.642 0.654 0.924 0.000 FM x FO 2.816 0.015



 

 

Table 1. Nutrient composition of key experimental ingredients (all values are g/kg 
DM unless otherwise indicated. Fatty acid data is percent of total fatty acids) 

 

 Fish Meal a 
Poultry 
Meal b 

Wheat 
Flour c 

Wheat 
Gluten c 

Soybean 
Meal a 

Fish oil b 
Ricebran 

Oil e 

        
Dry matter 934 974 866 929 877 1000 997 
Protein 657 530 121 823 515 4 6 
Digestible protein 466 461 121 823 350 

 

- - 
Lipid 85 179 15 53 27 993 912 
Carbohydrates 7 138 856 114 386 3 80 
Ash 234 149 6 6 68 0 0 
Energy* 19.4 22.6 18.8 23.7 20.1 38.6 39.7 
Digestible energy* 10.9 14.7 12.2 23.0 

 

7.0 35.5 36.6 
        
Alanine 41 41 4 21 22 - - 
Arginine 38 45 4 27 36 - - 
Aspartic acid 59 52 6 30 57 - - 
Cysteine 9 13 3 20 9 - - 
Glutamic acid 78 83 39 294 89 - - 
Glycine 44 58 4 27 20 - - 
Histidine 17 12 3 14 14 - - 
Isoleucine 26 26 4 28 21 - - 
Leucine 48 48 8 56 38 - - 
Lysine 47 33 2 12 26 - - 
Methionine 19 15 2 15 8 - - 
Phenylalanine 26 28 6 40 26 - - 
Proline 29 46 13 113 24 - - 
Serine 28 39 6 41 28 - - 
Taurine 1 2 0 0 0 - - 
Threonine 30 27 4 21 21 - - 
Tyrosine 20 20 3 29 18 - - 
Valine 30 31 4 30 21 - - 
        
C14:0 3.0 1.2 0.0 0.0 0.0 8.2 0.5 
C16:0 25.3 24.6 19.8 19.6 17.4 18.9 19.8 
C16:1 3.6 6.9 1.0 0.0 0.0 10.2 0.0 
C18:0 9.6 9.1 1.9 1.5 4.9 3.7 2.2 
C18:1 17.7 43.4 15.2 14.5 15.6 13.6 41.8 
C18:2n-6 2.8 11.3 56.0 59.7 53.4 1.9 32.4 
C18:3n-3 0.0 1.5 3.7 2.9 8.2 0.7 1.2 
C20:4n-6 2.6 1.3 0.0 0.0 0.0 1.1 0.0 
C20:5n-3 4.6 0.0 1.3 0.8 0.0 17.6 0.0 
C22:6n-3 23.5 0.8 1.3 0.0 0.0 13.9 0.0 
SFA 40.8 34.9 21.7 21.1 22.8 33.1 23.7 
MUFA 24.4 50.2 16.1 15.5 15.6 26.2 42.3 
PUFA 2.8 12.8 59.6 62.6 61.6 5.9 33.6 
LC-PUFA 32.0 2.1 2.5 0.8 0.0 34.9 0.5 
n-3 29.3 2.3 6.2 3.7 8.2 37.4 1.6 
n-6 5.5 12.6 56.0 59.7 53.4 3.0 32.4 
               

*Gross energy and digestible energy data is in MJ/kg. a Fish meal - Tuna meal, Solvent extracted soybean meal : BEC Feed Solutions, 
Carole Park, QLD, Australia. b Fish oil – anchovy and Poultry meal – Pet food grade : Ridley Aquafeeds, Narangba, QLD, Australia. c 

Wheat flour - whole wheat and Wheat gluten: Manildra, Auburn, NSW, Australia.  d Ricebran oil: Alfaone, Condell Park, NSW, 
Australia. 



 

 

Table 2. Formulations of the diets (all values are g/kg). 

 

Treatment 30-100 20-100 10-100 0-100 30-30 20-30 10-30 0-30 30-15 20-15 10-15 0-15 30-0 20-0 10-0 0-0 

Fishmeal 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 

Fish oil 100% 100% 100% 100% 30% 30% 30% 30% 15% 15% 15% 15% 0% 0% 0% 0% 

                 
Fishmeal 300 198 102 0 300 198 102 0 300 198 102 0 300 198 102 0 
Soybean Meal 150 196 239 285 150 196 239 285 150 196 239 285 150 196 239 285 
Poultry Meal 280 338 392 450 280 338 392 450 280 338 392 450 280 338 392 450 
Fish oil 60 61 61 62 18 18 18 19 9 9 9 9 0 0 0 0 
Ricebran Oil 0 0 0 0 42 42 43 43 51 52 52 53 60 61 61 62 
Vitamin Premix 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
Wheat Flour 142 138 134 130 142 138 134 130 142 138 134 130 142 138 134 130 
Wheat Gluten 50 47 43 40 50 47 43 40 50 47 43 40 50 47 43 40 
Ca2PO4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
DL-Methionine 7 9 12 14 7 9 12 14 7 9 12 14 7 9 12 14 
L-Lysine 0 2 5 7 0 2 5 7 0 2 5 7 0 2 5 7 
L-Taurine 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
                                  



 

 

Table 3. Composition of the diets (all values are g/kg, except fatty acids which are percent of total fatty acids). 

 

Treatment 30-100 20-100 10-100 0-100 30-30 20-30 10-30 0-30 30-15 20-15 10-15 0-15 30-0 20-0 10-0 0-0 

Fishmeal 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 

Fish oil 100% 100% 100% 100% 30% 30% 30% 30% 15% 15% 15% 15% 0% 0% 0% 0% 

                 

Dry matter 961 979 984 976 966 978 982 980 929 976 976 981 924 975 979 975 
Protein 523 532 536 515 530 541 525 515 518 515 534 519 529 505 471 514 
Digestible Protein* 479 478 485 448 465 483 448 431 460 455 464 460 480 456 427 457 
Lipid 125 134 123 146 132 139 127 130 132 132 131 130 133 129 129 129 
Carbohydrates 224 218 235 246 207 200 242 261 219 235 228 258 207 247 294 265 
Ash 127 116 107 93 130 120 106 94 131 118 107 93 131 119 106 92 
Energy 21.5 21.8 21.9 22.4 21.6 21.7 21.9 22.3 21.7 21.9 21.9 22.4 21.6 21.7 21.9 22.2 
Digestible Energy* 17.1 16.5 16.8 15.8 15.1 16.0 14.1 13.9 15.9 15.9 14.9 16.5 16.6 16.9 15.5 16.5 
                 
C14:0 4.5 4.7 4.6 4.6 2.2 2.1 2.0 2.1 1.7 1.6 1.8 1.3 1.3 1.5 0.0 0.9 
C16:0 23.4 22.0 22.7 23.2 23.9 23.3 23.3 24.1 22.9 22.8 24.4 22.3 22.5 22.8 24.0 22.6 
C18:0 6.5 6.2 6.4 6.5 6.1 5.8 5.9 6.5 5.6 5.7 6.1 5.4 5.5 5.6 6.0 5.4 
SFA 34.4 32.9 33.7 34.2 32.3 31.2 31.1 32.7 30.2 30.1 32.3 29.5 29.3 29.8 29.9 29.5 
C16:1 7.1 7.6 7.8 8.0 4.2 4.3 4.4 4.7 3.4 3.6 4.0 3.8 3.0 3.5 3.5 3.2 
C18:1 26.7 24.6 26.8 28.5 34.1 35.4 36.0 36.1 35.7 36.2 37.4 38.4 36.2 36.9 38.8 40.4 
MUFA 33.8 32.2 34.6 36.5 38.2 39.8 40.4 40.7 39.1 39.8 41.4 42.7 39.2 40.4 42.2 43.7 
C18:2n-6 10.9 9.2 10.9 11.3 18.7 20.7 20.8 20.4 21.8 22.3 20.4 22.9 22.4 22.5 24.0 25.1 
C18:3n-3 0.0 1.3 1.5 1.5 1.3 0.0 1.6 1.7 1.4 1.5 1.4 1.7 1.4 1.5 1.6 1.8 
PUFA 12.2 13.4 13.9 14.2 20.0 20.7 22.4 22.1 23.2 23.8 21.8 24.6 23.8 24.1 25.6 26.8 
C20:4n-6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
C20:5n-3 7.9 8.7 8.4 7.7 2.9 3.0 2.6 2.4 2.2 2.0 1.8 1.4 1.4 1.8 1.2 0.1 
C22:6n-3 10.3 9.9 8.2 6.1 5.2 5.3 3.4 2.0 5.4 4.3 2.7 1.2 4.9 3.9 2.2 0.1 
LC-PUFA 19.5 20.0 17.8 15.0 9.5 8.3 6.0 4.4 7.5 6.3 4.5 3.2 7.7 5.6 3.4 0.2 
n-3 20.8 22.7 20.8 17.9 9.4 8.3 7.6 6.1 8.9 7.8 5.9 4.9 7.8 7.2 5.0 1.8 
n-6 10.9 9.2 10.9 11.3 20.1 20.7 20.8 20.4 21.8 22.3 20.4 22.9 23.7 22.5 24.0 25.1 
                 

*Digestible protein and energy values are those as measured.  



 

 

 

Table 4. Performance parameters of Lates calcarifer from each treatment.  

 

Treatment   30-100 20-100 10-100 0-100 30-30 20-30 10-30 0-30 30-15 20-15 10-15 0-15 30-0 20-0 10-0 0-0     

Fishmeal  30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% Pooled P-value   

Fish oil units 100% 100% 100% 100% 30% 30% 30% 30% 15% 15% 15% 15% 0% 0% 0% 0% SEM FM FO FM x FO 

                      
Initial  (g/fish) 155.2 154.7 154.2 153.5 153.9 154.2 153.9 153.3 153.4 153.8 153.8 154.3 152.5 153.5 155.5 153.4 0.18 0.431 0.485 0.229 
Week 8 (g/fish) 345.0 ab 351.1 a 329.8 b 321.0 b 352.1 a 353.2 a 343.4 ab 325.8 b 374.3 a 343.8 ab 352.7 a 321.8 b 354.4 a 320.5 b 352.6 a 325.3 b 3.39 0.007 0.550 0.572 
Survival % 100 100 98 96 100 100 100 100 100 100 98 100 98 100 100 98 0.01 0.485 0.485 0.685 
                      
FIFO (g/g) 1.28  0.88  0.59 0.23  1.13  0.75  0.42 0.07 1.11 0.70 0.39 0.03 1.10 0.71 0.35 0.00  0.06    
FMIFO (g/g) 1.29  0.82  0.45  0.00  1.29  0.83  0.43 0.00 1.31 0.81 0.43 0.00 1.33 0.86 0.43  0.00  0.07    
FOIFO (g/g) 1.23  1.20  1.29  1.34  0.37  0.37  0.37 0.39 0.19 0.18 0.19 0.20 0.00 0.00 0.00  0.00  0.07    
                                        
FIFO : Fish-in fish out ratio. FMIFO : Fishmeal-in fish out ratio. FOIFO : Fish oil-in fish out ratio. FIFO, FMIFO and FOIFO values not statistically analysed as they derived values. Parameters with 
a P-value >0.05 are not discriminated.  



 

 

Table 5. Whole body composition of Lates calcarifer from each treatment at the end of the experiment 

 

Treatment Initial   30-100 20-100 10-100 0-100 30-30 20-30 10-30 0-30 30-15 20-15 10-15 0-15 30-0 20-0 10-0 0-0 Pooled 

Fishmeal   30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% SEM 

Fish oil     100% 100% 100% 100% 30% 30% 30% 30% 15% 15% 15% 15% 0% 0% 0% 0%  

                    
Composition                    
Dry matter (%) 26.9  30.5 31.0 30.7 29.9 31.0 30.8 30.2 30.8 31.6 31.4 31.0 30.3 30.5 30.4 30.9 30.7 0.12 
Protein (%) 16.6  18.4 20.2 20.3 18.3 20.6 19.1 20.2 19.9 17.2 20.1 19.5 19.1 20.7 18.6 19.8 18.9 0.25 
Lipid (%) 6.7  7.9 7.1 7.7 6.7 6.9 7.8 7.5 7.3 7.6 8.0 7.4 6.6 7.7 7.9 7.4 7.8 0.11 
Ash (%) 2.9  3.2 3.7 4.5 3.3 3.6 3.5 3.7 4.2 3.3 4.0 3.5 4.1 3.3 3.8 3.8 3.3 0.08 
Gross energy (kJ/g) 6.34  7.51 7.63 7.33 7.22 7.37 7.53 7.43 7.51 7.81 7.66 7.39 7.35 7.70 7.51 7.61 7.71 0.04 
                    
C14:0 1.9  4.1 4.1 3.9 3.9 2.4 2.8 2.5 2.2 2.2 2.2 2.0 2.1 1.9 1.9 1.7 1.8 0.13 
C16:0 24.1  25.5 24.7 24.7 25.4 23.7 27.0 24.1 23.3 24.1 24.7 24.9 24.2 23.7 25.2 23.9 24.1 0.16 
C18:0 6.6  7.6 7.0 7.0 7.4 6.7 7.4 6.6 6.3 6.3 6.6 7.0 6.6 6.2 6.7 6.5 6.4 0.07 
Total SFA 32.6  38.0 36.4 36.0 36.7 33.1 37.6 33.3 31.8 32.9 33.6 34.1 32.9 32.1 33.9 32.1 32.4 0.33 
C16:1 4.0  7.3 7.3 7.3 7.5 4.9 5.4 5.1 5.0 4.6 4.6 4.5 4.8 4.1 4.1 4.1 4.3 0.18 
C18:1 37.1  31.3 31.5 32.6 35.0 36.0 39.4 37.1 37.4 38.3 38.1 38.8 39.6 38.8 39.1 40.0 39.6 0.41 
C20:1 16.9  0.9 0.8 0.7 0.8 0.8 0.8 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.01 
Total MUFA 41.9  39.4 39.6 40.8 43.3 41.6 45.6 43.0 43.1 43.7 43.5 44.0 45.0 43.5 43.9 44.8 44.6 0.27 
C18:2n-6 16.9  8.0 8.7 9.4 10.2 14.6 12.7 15.2 16.2 15.7 15.5 15.8 16.4 17.0 16.5 17.6 17.6 0.47 
C18:3n-3 1.1  0.9 1.0 1.1 1.1 1.1 0.8 1.2 1.3 1.0 1.0 1.0 1.2 1.0 1.0 1.1 1.2 0.02 
Total PUFA 18.6  9.8 10.8 11.6 11.8 16.1 13.4 16.9 18.6 17.0 17.0 17.4 17.9 18.6 17.9 19.4 19.6 0.47 
C20:4n-6 0.7  0.9 0.9 0.8 0.3 0.7 0.0 0.4 0.6 0.6 0.4 0.3 0.3 0.6 0.4 0.4 0.2 0.04 
C20:5n-3 1.5  4.3 4.6 4.1 3.3 2.4 1.1 2.1 2.0 1.5 1.5 1.2 1.3 1.1 1.0 0.9 1.0 0.18 
C22:5n-3 0.9  1.6 1.7 1.6 1.3 1.2 0.6 1.1 1.1 0.9 0.9 0.8 0.8 0.8 0.5 0.5 0.6 0.02 
C22:6n-3 3.9  6.0 6.0 5.1 3.4 4.8 1.7 3.3 2.7 3.5 3.1 2.2 1.8 3.3 2.4 1.9 1.5 0.21 
Total LC-PUFA 7.0  12.8 13.2 11.6 8.2 9.1 3.3 6.9 6.5 6.5 5.9 4.5 4.2 5.8 4.2 3.7 3.3 0.46 
Total n-3 7.4  13.7 14.3 12.8 9.6 9.7 4.1 7.8 7.7 6.9 6.6 5.2 5.1 6.2 4.8 4.4 4.4 0.47 
Total n-6 18.2  8.9 9.7 10.4 10.5 15.6 12.7 15.9 17.5 16.6 16.4 16.7 17.0 18.1 17.3 18.6 18.6 0.49 
n-3 : n-6 0.41  1.55 1.47 1.22 0.91 0.62 0.32 0.49 0.44 0.41 0.40 0.31 0.30 0.34 0.28 0.24 0.24 0.11 
                                       

All fatty acid data are % of total fatty acids.



 

 

Table 6. Plasma chemistry of Lates calcarifer fed each of the experimental diets 

 

Treatment  30-100 20-100 10-100 0-100 30-30 20-30 10-30 0-30 30-15 20-15 10-15 0-15 30-0 20-0 10-0 0-0      

Fishmeal   30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% 30% 20% 10% 0% Pool
ed  

P-values  

Fish oil  units 100% 100% 100% 100%% 30% 30% 30% 30% 15% 15% 15% 15% 0% 0% 0% 0% SEM FM FO FM x FO 

                      
CK U/L 2564 660 2586 2875 566 768 1655 3792 4730 2891 1982 2584 905 1655 1216 1018 312 0.671 0.225 0.619 
ALT U/L 5.7 3.7 8.3 6.3 3.7 5.3 5.7 8.3 14.3 11.3 5.0 11.7 12.0 6.0 7.0 4.7 0.8 0.660 0.128 0.482 
GLDH U/L 12.3 9.3 7.7 12.3 6.7 9.7 8.0 10.0 11.0 8.3 10.0 11.0 8.7 13.7 10.0 14.3 0.7 0.582 0.587 0.948 
Urea mmol/

L 
3.2 3.6 4.0 3.4 3.1 3.8 4.0 3.8 2.8 3.9 3.1 4.1 3.2 4.0 3.7 4.4 0.1 0.101 0.744 0.902 

Creatinine umol/L 16.0 17.3 16.3 16.7 15.0 19.0 18.3 15.0 17.0 18.7 13.7 17.3 16.7 18.3 16.7 16.0 0.4 0.210 0.992 0.699 
Calcium mmol/

L 
2.0 3.1 2.1 2.2 2.1 3.3 3.1 2.2 2.1 3.1 1.1 2.2 3.1 3.1 3.1 3.2 0.2 0.394 0.268 0.921 

Magnesium mmol/
L 

0.7 1.1 0.7 0.7 0.7 1.0 1.0 0.7 0.9 1.1 0.4 0.8 1.1 1.1 1.0 1.1 0.1 0.446 0.431 0.895 
Phosphorus mmol/

L 
2.5 2.9 2.7 2.6 2.7 3.0 2.9 2.6 2.8 3.1 2.6 2.8 2.7 3.0 2.9 2.8 0.0 0.071 0.621 0.964 

Iron umol/L 13.5 17.8 12.4 11.9 8.0 16.1 16.4 10.9 10.4 18.0 5.9 10.3 16.4 15.5 12.8 18.5 1.0 0.348 0.503 0.804 
Cholesterol mmol/

L 
6.0a 6.8 a 6.1 a 6.0 a 5.5 ab 6.4 a 5.8 ab 4.9 b 5.6 ab 5.6 ab 5.0 ab 4.8 b 5.5 ab 5.4 ab 4.5 b 4.4 b 0.2 0.071 0.017 0.950 

Total Protein g/L 42.5 49.5 44.8 48.6 48.1 53.8 51.9 46.4 47.4 51.6 43.2 49.3 50.1 50.1 49.9 52.3 0.9 0.434 0.408 0.891 
Albumin g/L 12.3 13.5 13.2 14.5 13.8 15.0 14.8 13.9 13.7 14.0 13.2 14.7 14.1 14.3 13.8 15.1 0.2 0.231 0.223 0.808 
Haem mg/dL 6.3 1.3 8.3 3.7 1.3 2.0 2.3 6.0 16.3 31.3 2.3 9.0 16.0 2.7 4.3 3.7 2.1 0.729 0.228 0.593 
                        

Parameters with a P-value >0.05 are not discriminated. 

  



 

 

Table 7. Hepatic gene expression from fish fed experimental diets across the factorial array of treatments. Positive relative expression 
values mean that those genes were upregulated relative to the reference genes. While those values that were negative were down-regulated 
relative to the reference genes. 

 

        Relative Expression      

 Gene 
Abbreviation 

Name EC Number Primers 
FM:30 
FO:100 

FM:0 
FO:100 

FM:10 
FO:15 

FM:30 
FO:0 

FM:0 
FO:0 

Pooled 
SEM 

P-value 

           
Lipid metabolism genes          
FADS2 Delta 6 desaturase EC 1.14.19.- F-TCATACTACCTTCGCTACTTCTC -1.001a -0.749 a -0.537 ab -0.402 ab 0.545 b 0.159 0.044 
   R-ACAAACCAGTGACTCTCCAG        
ELOVL5 Elongase of very long fatty acids EC 2.3.1.n8 F-ATCCAGTTCTTCTTAACCGT -0.952 -0.024 -0.135 0.075 0.329 0.157 0.173 
   R-GGTTTCTCAAATGTCAATCCAC        
FAS Fatty acid synthase EC 2.3.1.85 F-TGAATCTCACCACGCTTCAG -0.887 -1.067 -0.210 -0.657 0.309 0.215 0.363 
   R-AGGCAGCAATAGAACCCTCA        
Amino acid metabolism genes          
ALAT  Alanine aminotransferase EC 2.6.1.2 F-GATGAACCCTCCTACACCAC -0.541 -0.659 -0.176 -0.422 0.053 0.150 >0.5 
   R-TTTGAGGTAGAGTGATGCGG        
Inflammation response genes          
HSP70  Heat shock protein 70 n/a F-CAAGGTGATTTCAGATGGAGG -0.388 -0.025 -0.355 -0.520 -0.071 0.110 >0.5 
   R-CTTCATCTTCACCAGGACCA        
CRP C-reactive protein n/a F-ATGGTGTTTCCGATTGAGAC -0.459 0.216 -0.997 -0.956 -1.086 0.194 >0.5 
   R-CTAGCGAGGTATAAGGACAG        
Reference genes          
EF1a Elongation factor 1 alpha n/a F- AAATTGGCGGTATTGGAAC        
   R- GGGAGCAAAGGTGACGAC        
Luc Luciferase n/a F-GGTGTTGGGCGCGTTATTTA        
   R-CGGTAGGCTGCGAAATGC        
                      

Parameters with a P-value >0.05 are not discriminated. 

 

 



 

 

 

 


