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ABSTRACT 

Archaeologists continue to search for techniques that enable them to analyze archaeological data efficiently with 

Artificial Intelligence approaches increasingly employed to create new knowledge from archaeological data. The 

purpose of this paper is to investigate the application of Pattern Recognition methods in detection of buried 

archaeological sites of the semi-arid Khorramabad Plain located in west Iran.  This environment has provided 

suitable conditions for human habitation for over 40,000 years. However, environmental changes in the late 

Pleistocene and Holocene have caused erosion and sedimentation resulting in burial of some archaeological sites 

making archaeological landscape reconstructions more challenging.  In this paper, the environmental variables 

that have influenced formation of archaeological sites of  the Khorramabad Plain are identified through the 

appliation of Arc GIS. These variables are utilized to create an accurate predictive model based on the application 

of One-Class classification Pattern Recognition techniques. These techniques can be built using data from one 

class only, when the data from other classes are difficult to obtain, and are highly suitable in this context. The 

experimental results of this paper confirm one-class classifiers, including Auto-encoder Neural Network, K-

means, Principal Component Analysis Data Descriptor, Minimum Spanning Tree Data Descriptor, K-Nearest 

neighbor and Gaussian distribution as promising applications in creating an effective model for detecting buried 

archaeological sites. Among the investigated classifiers, Minimum Spanning Tree Data Descriptor achieved the 

best performance on the Khorramabad Plain data set. 

KEY WORDS: Artificial Intelligence; Pattern Recognition; One-Class classification; Predictive Modeling; 

Khorramabad Plain; Environmental Variables.  

1 INTRODUCTION 

The detection and spatial characterisation of archaeological sites based on geomorphological parameters is now 

an essential aspect of landscape archaeology research (Ayala and French, 2005; Barton et al., 2002, 2010; Butzer, 

1982; Schiffer, 1983; Tartaron et al., 2006; Wells, 2001).  Increasingly this work is being integrated through the 

application of GIS based analyses that allows efficient spatial and locational analyses of site – environment 

relationships. (Gouma, 2011, Kuiper and Wescott, 1999; Bala et al., 2014).  Within the suite of quantitative GIS 

based techniques applied to landscape archaeology, predictive models are enabling researchers to estimate the 

possibility of presence or absence of archaeological evidence across extensive areas of search (Ebert, 2004; 

Kamermans  and Rensink, 1999).  Inductive based approaches used in both Archaeological Heritage Management 

(AHM) and scientific research, creates a model based on correlations between previously identified archaeological 

sites and variables that are obtained from the current physical landscape. Deductive approach, which are relatively 

rare, constructs the predictive model based on prior anthropological and archaeological knowledge, and uses 

previously identified sites to evaluate the model (Kamermans, 2006). Numerous predictive models have been 

developed using different methods including Bayesian statistics and Dempster-Shafer modelling to detect 

archaeological sites (Verhagen et al., 2010; Kvamme, 1990; Lang, 2000; Gibbon, 2000; Konnie et al. 2000; 

Fernandes et al. 2011) and in developing these approaches Kamermans (2010) has identified a range of problems 

concerned with quality and quantity of archaeological input data including relevance of the environmental input 

data, lack of temporal and/or spatial resolution, use of spatial statistics, testing of predictive models, and need to 

incorporate social and cultural input data. A number of recommendations to address these problems have been 

developed as archaeological experience with quantitative GIS has emerged (Verhagen et al, 2009). 

Artificial intelligence (AI) is the intelligence exhibited by machines or software. In recent years there has been 

growing interest in applying AI in many fields including data mining (Perumal et. al., 2015).  In archaeology its 

http://en.wikipedia.org/wiki/Intelligence
http://en.wikipedia.org/wiki/Data_mining
http://link.springer.com/search?facet-author=%22Mousi+Perumal%22
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application has been through Artificial Neural Networks (ANNs) and expert systems (Vitali, 1991; Voorrips, 

1990; Richards, 1998).  Deravignone and Jánica (2006) studied the basic concepts required to bring artificial 

intelligence, in particular ANNs into archaeological research investigating the application of ANNs in a raster 

GIS environment with the aim of creating archaeological predictive models. Barceló (2010) reviewed the 

implication of using Computational Intelligence in archaeology. He explained that artificial intelligence models 

are feasible in archaeological recognition systems just like other sciences. Puyol-Gruart (1999) has considered the 

possibility of using more recent subfields including Knowledge Discovery in Databases (KDD), Visual 

Information Management (VIM) and Multi-agent Systems (MAS) in archaeological research.  

 This paper is a first comparative analyses of the spatially predictive capabilities of different AI methods in a 

semi-arid regional context. Environmental variables that have influenced formation of archaeological sites located 

in the Khorramabad Plain, Iran, are derived through application of Arc GIS. These variables are then utilized to 

create a predictive model based on Pattern Recognition, one of the most important subfields of AI.  The term 

pattern recognition has evolved substantially from its roots in artificial intelligence, engineering and statistics. 

Patten recognition is the study of how machines perceive the environment, learn to recognize pattern of desired 

class from their background, and from these machine based observations make reasonable decisions about the 

categories of the different patterns (Jain, 2000). One-class classification as a pattern recognition method was 

developed by Moya and Hush (1996; Pimentel, et. al., 2014). One-class classification endeavours 

to identify objects of a specific class amongst all samples, by learning from a training set containing only the 

samples of that class. In one-class classification, it is assumed that only information of one of the classes, the 

target class, is available (Tax, 2001). So, the most valuable feature of one-class classifiers that makes it important 

to the objectives of this paper is that these types of classifiers can be built using only data from archaeological 

sites when the data from non-archaeological site class is difficult to obtain (which they usually are).  

In this paper applications of GIS spatial analysis and one-class classification methods are employed to detect 

buried archaeological sites of the Khorramabad Plain, a geomorphic unit located in the southern part of the 

Khorramabad Valley with antiquity more than 40,000 years of human settlement.  Section 2 of the paper examines 

the details of defined variables and generated data set together with a brief overview of pattern recognition models 

considered. Experimental results and discussion are drawn in section 3; in this section the efficacy of using one-

class classification in detecting buried archaeological sites is clearly shown and discussed. Section 4 gives a 

summary of this work and propose some ideas for future research in the field of Pattern Recognition applied to 

archaeology. 

1.1 Geographical and archaeological features of Khorramabad Plain 

Khorramabad Plain is located in Lorestan province, west Iran; it lies within E 48 11” to E 48 28” and N 33 19” 

to N 33 30”.  The Khorramabad River passes across the plain which is surrounded by high mountains. Northern 

and central parts of the plain include urban areas where the possibility of archaeological sites surviving is unlikely 

and so the southern part of the plain is investigated in this paper. This area of the plain is characterised by alluvial 

deposits and the Zagros folded zone (Figure 1). The plain has low sloping topography with the minimum altitude 

1135 meters and a maximum height of 1436 meters. The annual average of temperature in the area is 17.2 ° C and 

average precipitation is 502 mm per year.   

Khorramabad Plain is one of the oldest residential plains, occupied from the Palaeolithic period through to the 

Islamic era.  The Kunji and Ghamari caves in mountain areas around the plain (Palaeolithic), Masour mound in 

southern parts of the plain (Neolithic to the Islamic) and Falak-al-aflak castle in central parts of the plain 

(Sasanian), indicate the rich history as one of the first and longest lasting human habitations in the region.  Water 

resources, fertile soil and a flat topography in the southern parts of this plain serves to indicate the existence of 

numerous cultures and archaeological sites in this area (Hole, 1970) and this together with the compactness of the 

plain  has led to the plain becoming an important focus for archaeological investigation.  Archaeological 

excavations including Hole and Flannery during the years 1959 to 1960 and 1963 to 1965, Demorgan (1891), 

Herzfeld (1928), Cl.Coff (1961), Berman (1978), Wright, Nelly and Johnson (1975) and Wenen (1972) and Javadi 

et al (2000) in caves, rock shelters and archaeological sites indicate the importance of this area of Iran to the 

understanding the dynamics of social, cultural and environmental change (Javadi and Borazjani , 2000). 

Archaeologically, Khorramabad Plain has a sequence of Islamic, historic and prehistoric eras and by the year 

2000 some 43 known historical sites have been identified (Table 1). However, environmental changes in the late 

Pleistocene and Holocene such as formation of the Kar-Gah Lake and morphological changes in the Khorramabad 

River’s path, has caused erosion and sedimentation processes over time such that some archaeological sites have 

disappeared and others have been buried under soil and sediment. This paper outlines application of one-class 

classification methods, in the detection of these buried archaeological sites. 

http://www.sciencedirect.com/science/article/pii/S016516841300515X
http://en.wikipedia.org/wiki/Training_set
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Figure 1) Location of Khorramabad Plain in Iran together with the location of 43 previously known sites in the study area. 

Table 1: Archaeological sites of Khorramabad Plain (Javadi and Borazjani, 2000) 

Period Name Altitude of the site 

with respect to pre-site 

ground level (meter) 

Code 

Sasanian to Chalcolithic Masour mound 12 Kp1 

Historical Tagh and togh mound 10 Kp2 

Islamic-Historical-Prehistoric Bagheno mound 1 Kp3 

Islamic Margaymeh tombs 5.8 Kp4 

Historical Dinarvand mound 2.5 Kp5 

Early and Middle Islamic-Historical Sofreh mound 19 Kp6 

Chalcolithic Khaki mound 3 Kp7 

Historical-Calcholithic Dinarvand 1 mound 1 Kp8 

Islamic-Historical Sorkh deh mound 17 Kp9 

Middle Islamic-Historical Bazgir mound 3.5 Kp10 

Historical Gorbacheh cemetery 2 Kp11 

Middle Islamic-Historical-Bronze Age Sarkalak site 10 Kp12 

Chalcolithic Rava hell mound 5.5 Kp13 

Early Islamic-Historical Armani mound 11 Kp14 

Late Islamic-Historical Daraei cemetery 2 Kp15 

Historical Daraei site 1.5 Kp16 

Chalcolithic-Neolithic Naservand 2 mound 5 Kp17 

Historical Sorkh deh 1 site 3 Kp18 

Chalcolithic Dehbagher mound 2.3 Kp19 

Middle Islamic-Historical-Bronze Age Angoz site 8 Kp20 

Chalcolithic-Historical Naservand 1 mound 5 Kp21 

Middle Islamic-Historical Chesmeh sorkheh site 5.5 Kp22 
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Parthian-Bronze 

 

Pol baba hossein 

mound 

3 Kp23 

Chalcolithi-Historical Pirjed site 2.5 Kp24 

Historical Sorkh deh 2 site 2.5 Kp25 

Middle Islamic-Parthian Poll babahossein site 8 Kp26 

Parthian-Iron age Ali sabz site 16 Kp27 

Early Islamic-Sasanian-Bronze-

Chalcolithic 

Chegahoroshi 1 mound 7.5 Kp28 

Parthian Pakoreh mound 1.25 Kp29 

Early and Middle Chalcolithic-Parthian Asgarabad 1 mound 1 Kp30 

Middle Islamic-Parthian Chi kham la mound 1.5 Kp31 

Middle Islamic-Historical Deh mohsen mound 1.5 Kp32 

Historical-Chalcolithic-Neolithic Asgharabad mound 2 Kp33 

Historical-Bronze-Calcholithic Sohel baigi 2 mound 5 Kp34 

Historical- Chalcolithic-Neolithic Sohel baigi 1 mound 5 Kp35 

Historical Chegahoroshi 3 mound 1.25 Kp36 

Sasanian-Parthian Daymeh araban mound 1.25 Kp37 

Early and Middel Islamic-Historical Rusi mound 2.5 Kp38 

New Neolithic-Chalcolithic Roghani mound 2.5 Kp39 

New Chalcolithic Fathollah mound 2 Kp40 

Early and Middle Islamic-Sasanian-

Parthian 

Hellat rashno mound 20 Kp41 

Bronze Age Chegahoroshi 2 mound 2.5 Kp42 

Middle Islamic-Sasanian Cham khoregh mound 1 Kp43 

2 METHODOLOGY 

The methodology used here can be divided into two main stages. Firstly, the environmental factors of 43 

archaeological sites of Khorramabad Plain are collected using Arc GIS. These 43 archaeological sites were 

detected in 2000 by the Cultural Heritage of Lorestan province (Javadi and Borazjani , 2000). Secondly, the results 

of the first part are applied as input to create predictive models based on one-class classification methods.  

Environmental factors of the 43 archaeological sites including elevation (1:25000), slope (1:25000), precipitation 

(1:50000), distance to river (1:25000), distance to accessible roads (the roads which are used in this research 

highly overlapped with the ancient roads) (1:50000) and water resources (1:50000) were prepared, and then raster 

layers of these factors were generated utilizing Arc GIS. Slope, elevation, distance to roads and distance to river 

are generated using digital topography maps which are prepared by National Cartographic Center, Iran. 

Precipitation is generated using data from synoptic and climatology stations and interpolation methods 

incorporated in ArcGIS. Water ground level is produced using data from piezometric wells in the area of study 

and interpolation methods. Figure 2 represents these raster layers in which the sizes of each cell is 20 * 20 m. 

Digital values for each factor were extracted using the Sample tool in Arc GIS and then they were exported into 

Microsoft Excel 2010; Min-Max normalization (Han and Kamber, 2006) was performed on the data set to reduce 

the effect of measurement unit on the learning process of models. As outcomes, a digital database of the 

environmental characteristics of 43 historical sites is used to build Artificial Intelligence (AI) based predictive 

models.  

Our analyses have access only to data from the target class, the 43 detected archaeological sites data. In order 

to evaluate the models, samples from the outlier class (parts of the plain where there are no archaeological sites) 

are required. To do so a new dataset containing 43 target samples (archaeological samples) and another 43 

artificially generated non-targets (non-archaeological samples) are created. The non-targets are drawn from a 

block-shaped uniform distribution that covers the target data (Tax, 2001; Tax, 2014). It is worth noting that the 

block-shaped distribution works efficiently for this work which models a low dimensional data set. However, an 

alternative for high dimensional data sets are Gaussian distribution or Gaussian Mixture Models which can be 

used to cover high dimensional data sets (Bishop, 2006; Tax, 2001).  Finally, a dataset which contains 86 

archaeological and non-archaeological samples is created and used to train, validate and test the predictive models 

using a nested 10-fold cross validation (Alpaydin, E., 2004) method. Training a pattern recognition model and 

testing it on the same data is not reliable because a model that simply repeats the labels of samples that it has just 

seen would have a perfect performance but would have a high error on yet-unseen samples. To avoid this, it is 
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common practice when performing pattern recognition experiments to hold part of the available data as a set for 

testing the trained model.  Additionally, by using only one test set the results may be biased towards the specific 

situation of this test set, especially when the data set is small. Consequently, the tuning experiments are repeated 

many times with different validation and test sets to gather enough statistical validity. More precisely, parameters 

of the models are trained and optimized using a nested K-fold cross validation (Alpaydin, E., 2004) method in our 

work. 

As a result of the above experiment, a model is identified which can efficiently separate archaeological sites 

from non-archaeological sites. Then, this best model is assessed using a new test set generated using field studies 

of the Khorramabad Plain as a ground validation of the model. In this policy of non-archaeological test sample 

generation, 45 locations on the plain such as areas excavated for building different facilities including roads, 

tunnels and transects are considered non-archaeological samples. Figure 3 shows some examples of the 

archaeological and non-archaeological sites. The 45 non-archaeological test sites are combined with the 

previously known 43 archaeological sites to create a real world data set including both archaeological and non-

archaeological samples which are used to better evaluate the best method identified in our first experiment using 

artificially generated non-archaeological test samples.   

 

 

 

 
Figure 2) Environmental-based raster layers used in the models together with the location of 43 previously known sites in the study 

area. 
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   (a)  A known archaeological site example (Bagheno mound)     (b) A known archaeological site example (Daraei site) 

 

 
(c) A non-archaeological test site (a trench)   (d) A non-archaeological test site (a seasonal river) 

Figure 3) Examples of archaeological and non-archaeological test sites obtained from field studies on the Khorramabad Plain. 

 
There are a number of one-class classifiers in the literature (TAX, 2001; Khan and Madden, 2010). In this 

paper, several sophisticated one-class classifiers that have been widely used in the literature are investigated. The 

implemented classifiers are: auto-encoder neural network, k-means data descriptor, Principal Component 

Analysis data descriptor (PCA_DD), Minimum Spanning Tree data descriptor (MST_DD), k-nearest Neighbour 

and Gaussian distribution; a short outline for each classifier is given below. 

2.1 Auto-encoder neural network 

Artificial neural networks provide a general and practical method for learning functions from examples and 

which are inspired by biological neural networks. ANNs basically consist of inputs (like synapses in the biological 

neural network), which are multiplied by weights (strength of the respective signals), and then computed by a 

mathematical function which determines the activation of the neuron. Another function (which is usually the 

identity function) calculates the output of the artificial neuron. ANNs combine some artificial neurons in order to 

process data and perform various tasks including classification. A full explanation of artificial neural networks is 

outside the scope of this paper with details and explanation given by Bishop (1995). The auto-encoder is a one-

class classifier algorithm with architecture like a feed-forward neural network. It is very similar to the multilayer 

perceptron (MLP), with an input layer, an output layer with equally as many nodes as the input layer, and one or 

more hidden layers connecting them.  The functions endeavour to learn an approximation to the identity function; 

the difference between the input and output pattern is used as a characterization of the target class. This results in: 

𝑓(𝑥)  =  (𝑥 −  𝑁𝑒𝑢𝑟𝑁(𝑥))2    
       (1) 

In which, x is the input pattern and NeurN(x) is the output of the network. The classifier then is defined as 

(TAX, 2001): 

h(x) = {
target  if f(x) ≤ θ

outlier  if f(x) > 𝜃
          (2) 

The threshold θ is a tuning parameter set according to the target error.  

http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Multilayer_perceptron
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2.2 Gaussian Distribution 

Many random phenomena obey the normal distribution, at least approximately. Therefore, a Gaussian 

distribution can be used to model the target class in one-class classification. In other words, the Gaussian model 

can be used to characterise a group of samples of any number of dimensions with two values: a mean vector and 

a covariance matrix. This model can then be used to find the label of any unknown sample and to find out if the 

unknown sample belongs to the Gaussian model of training samples or not. This classifier models the training 

data as a Gaussian distribution using the Mahalanobis distance to model the archaeological sites as a Gaussian 

distribution (Equation 3): 

 

𝑓(𝑥) = (𝑥 − 𝜇)𝑇𝛴−1(𝑥 − 𝜇)                        (3)
 

Here, x indicates the input pattern, and the mean μ and covariance matrix Σ are sample estimates. The classifier 

then becomes as in Equation 2. The density function for a Gaussian distribution is defined as Equation 4. 

N(x; μ, Σ) =
1

(2π)d/2|Σ|1/2
exp {−

1

2
(x − μ)TΣ−1(x − μ)}        (4) 

Where, μ specifies the mean of the distribution and Σ is a d × d matrix specifying the covariance of the 

distribution. 

2.3 K-nearest neighbours 

The k-nearest neighbours algorithm is a method for classifying new samples based on closest training samples 

in the feature space. The k-nearest neighbours algorithm can be summarized as follow: 

 Suppose each sample in the data set has n features which are combine to form an n-dimensional vector 

(Equation 5): 

𝑥 =  (𝑥1,  𝑥2, . . , 𝑥𝑛)                                                      (5) 
 Given an unknown sample, find the k closest neighbours of this input sample using Euclidian distance 

function. The Euclidean distance between points x and u is defined as (Equation 6).  

𝑑(𝑥, 𝑢) = √∑ (𝑥𝑖 − 𝑢𝑖)
2𝑛

𝑖=1                                        (6) 

 The average of these distances is calculated and considered as f(x).   

 The classifier then becomes as in Equation 2. 

2.4 K-means 

The k-means algorithm (MacQueen, 1967) is a simple unsupervised learning algorithms that has been utilized 

in many problem domains. In k-means clustering algorithm, n input patterns are divided into k clusters in which 

each pattern belongs to the cluster with the nearest mean (cluster centre). The location of cluster centres has an 

important effect on the final results. So, the k-means algorithm try’s to place the cluster centres as distant as 

possible from each other. The k-means algorithm can be summarized in the following steps: 

1. Initialize K points into the feature space of the training samples randomly, as initial cluster's centres. 

2. Assign each training sample to the cluster that has the closest centre with regard to the Euclidian distance 

(Equation 6). 

3. When all training samples have been assigned, recalculate the new means of each cluster and consider 

these means as new centres for new clusters. 

4. Repeat Steps 2 and 3 until the centres no longer move. This algorithm minimizes the following error 

function (Equation 7). 

 𝑗 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛
𝑖=1

𝑘
𝑗=1                          (7) 

In Equation 7, k and n are the number of clusters and the number of training samples, respectively. Also, 

‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2
 indicates the Euclidian distance from the sample 𝑥𝑖

(𝑗)
 to the cluster centre 𝑐𝑗. Then, a new sample is 

characterized by: 

𝑓(𝑥)  =  𝑚𝑖𝑛𝑗(𝑥 − 𝑐𝑗)2      (8) 

In which, x is the new input sample and cj indicate the cluster centres. The classifier then becomes as in Equation 

2. 

2.5 Minimum Spanning Tree Data Descriptor 

The MST_DD (Juszczak et. al., 2009) is a non-parametric method based on graphical representation of the 

target training data. This method assumes that if two examples represent two similar objects in reality, not only 

these two mentioned points but also the other proper neighbours of these two points should be neighbours in the 

feature space RN. MST_DD firstly constructs a fully connected and undirected graph on training target samples. 

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html#macqueen
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MST_DD algorithm assigns a weight for all edges related to their lengths. A minimum spanning tree of this graph 

is then extracted. In the recognition phase, the shortest distance of the input pattern x to the minimum spanning 

tree is used as the similarity to the target class. In other words, first the distance of the input pattern to all edges is 

calculated and then the shortest distance is considered as the distance of the input pattern to the tree. To calculate 

distance of an input pattern to an edge, the projection of the new pattern x onto each edges is calculated using 

Equation 9: 

Peij
(x) = xi +

(xj−xi)T(x−xi)

‖xj−xi‖
2  (xj − xi)        (9) 

If Peij
(x) lies on the edge eij, then the distance of the pattern x to the edge is computed as the Euclidian distance 

between x and its projection on eij. Should Peij
(x) not lie on the edge, the distance of the input pattern x to the 

edge eij is calculated as the shortest Euclidian distance to one of the vertices {xi, xj}. Finally, the distances of the 

pattern x to all edges is calculated and the shortest distance to all edges selected as the distance of input pattern x 

to the tree. 

2.6 Principal Component Analysis Data Descriptor 

 

The missions of principal component analysis are to (1) extract the most important information from the data 

table; (2) reduce the dimensionality of the data by keeping only the important information; (3) simplify the 

description of the data set; and (4) visualize and analyze the structure of the data and the variables. However, here 

it has been utilized to describe the archaeological site data by a linear space. Then, the difference between an 

original new object and the projection of that new object onto the linear space (in the original data) is calculated 

and used for classification.  

In PCA, the criterion is maximizing variance. The principal component is W1 such that the sample, after 

projection onto W1, has maximum spread so that difference between the sample points becomes most apparent 

(Alpaydin, 2004). In other words, this method describes the target data by a linear subspace with this subspace 

defined by eigenvectors of the data covariance matrix Σ. The projection is shown in Equation 10. 

𝑓(𝑥) = 𝑊(𝑊𝑇𝑊)−1𝑊𝑇x         (10) 
Where, W indicates a d×k matrix that includes k eigenvectors of the data covariance matrix. Then, the f(x) 

function is defined as squared distance from the original sample and its mapped version (TAX, 2001):  

𝑓(𝑥)  =  ||𝑥 −  𝑥𝑝𝑟𝑜𝑗||2    (11) 

In which, x is the new input pattern and xproj is projection of this object onto the subspace (in the original data). 

The classifier then becomes as in Equation 2. 

3 EXPERIMENTAL RESULTS AND DISCUSSION 

As highlighted in Section 2, Methodology, two procedures were used to obtained samples from non-

archaeological sites: 1) Generating non-archaeological test samples using a block-shaped uniform distribution that 

covers the target data (known archaeological samples), 2) Generating non-archaeological samples using field 

studies of the Khorramabad Plain. The first procedure gives a data set containing 43 previously known 

archaeological samples and 43 artificially generated non-archaeological samples is obtained and used to train, 

validate and test the models using a nested 10-fold cross validation. Nested 10-fold cross validation includes two 

loops; in the inner loop the training data is partitioned into 10 parts in equal sizes, then 9 of the parts are used to 

train (optimize the parameters of) the model and evaluated on the remaining part. This procedure is repeated for 

all 10 possible choices for the held-out part and the performance scores from the 10 runs are averaged. The outer 

loop is executed three times and each time it chooses a different 30 per cent of the whole data and allows the other 

70 per cent to be used in the inner loop. The average performance over these three test sets for different classifiers 

is represented in Table 2. It is worth noting that to build the one class classifiers only target data are used with the 

outliers used for evaluating and testing the models. All algorithms were implemented in Matlab using ddtools 

package (Tax, 2014). Each experiment was repeated 10 times and the results in Table 2 are averaged. 

In Table 2, the experimental evaluation of the proposed models are represented, based on different measures 

including False Positive Rate (FPR), False Negative Rate (FNR), Area Under Curve (AUC), Precision and Recall 

(Alpaydin, 2004). Here, the archaeological site samples are considered as positive samples (target samples) and 

other samples are considered (non-target) as negative samples. False Positive Rate, False Negative Rate, Precision 

and Recall are defined in equations 12, 13, 14 and 15, respectively. To fine-tune and to evaluate a classifier, 

another approach is to calculate the area under the curve (AUC), the receiver operating characteristics (ROC) 

curve. ROC curve shows recall versus false positive rate for different values of related parameter.  

True Positive (TP) is the number of times that the predictive model classifies an input sample as an 

archaeological site correctly. True Negative (TN) stands for the number of times that the system classifies a sample 

as a non-archaeological site sample correctly. Similarly, False Positive (FP) refers to the number of times that the 
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predictive model classifies a sample as an archaeological site wrongly. False Negatives (FNs) is the number of 

times that the system classifies a sample as a non- archaeological site sample wrongly. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (12) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
   (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (14) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (15) 

 
Table 2: Experimental results based on different measures including False Positive Rate (FPR), False Negative Rate (FNR), Area 

Under Curve (AUC), Precision and Recall. 

Classifier FNR FPR Precision Recall AUC 

Minimum Spanning Tree data Descriptor 0.04 0.09 0.91 0.96 0.98 

k-nearest neighbour 0.07 0.12 0.90 0.93 0.98 

k-means 0.12 0.07 0.93 0.88 0.97 
auto-encoder 0.14 0.09 0.92 0.86 0.97 

PCA 0.16 0.07 0.93 0.84 0.95 

Gaussian Target  Distribution 0.20 0.11 0.90 0.79 0.84 

 

Both precision and recall measures are sometimes used together in the F1-measure to provide a single 

measurement for a system. The F1-measure, represented in Equation 16, can be interpreted as a weighted average 

of the precision and recall, where an F1-measure reaches its best value at 1 and worst score at 0. To highlight the 

efficacy of pattern recognition methods in detection of buried archaeological sites, Figure 4 shows a comparison 

of F1-Measure values for implemented methods. 

F1 − measure =
2.precision.recall

precision+recall
   (16) 

 

 

 

Figure 4) Comparison of F1-Measure values for implemented methods. 

It is apparent from Table 2 and Figure 4 that the applied one-class classifiers have a promising performance in 

building predictive models for detecting buried archaeological sites. With regard to the experiments represented 

in Table 2, the minimum spanning tree data descriptor has the best performs in comparison to other classifiers. In 

this classifier, targets and edges are effectively classified, and even neighbourhoods of the (graph) edges can be 

considered as target classes and are an additional set of virtual target objects. These additional objects, in turn, 

can help model a target distribution in multi-dimensional spaces and where small sample sizes can otherwise be 

problematic. Positively, the experiments of this paper corroborate with previous research on MST_DD features 

with the MST_DD classifier performing well in multi-dimensional spaces and in small sample size problems in 

comparison to other existing one-class classifiers (Juszczak et. al., 2009).  

As mentioned above, we use a second experiment to generate real world non-archaeological test samples in 

addition to artificially generated non-archaeological test samples. To further evaluate the MST_DD classifier and 

to visualize its performance, the trained MST_DD model is assessed using a new test set generated using field 

study of the Khorramabad Plain.  45 points of the plain including the bed of current rivers exposed by water and 

other areas excavated for building different facilities including roads, tunnels and transects are considered as 

outliers (non-archaeological samples). These 45 samples are randomly divided into 3 parts of 15 samples. Each 

of these parts is combined with 14 randomly extracted samples from archaeological site samples. Consequently, 

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Gaussian Auto-encoder K-means KNN MST

http://en.wikipedia.org/wiki/F1_Score
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three different test sets are generated, each with 29 samples. The test sets are entered into the trained MST_DD 

model and predicted model results together with the real labels of the test set samples are represented in Figure 5. 

As is evident from Figure 5, the MST_DD algorithm effectively represents results from the test sets. The 

MST_DD algorithm is able to recognize all archaeological and non-archaeological sites correctly and did not miss 

any samples in Figure 5.a. In both Figures 5.b and 5.c the classifier missed only one sample from target samples 

and predict all non-archaeological sites correctly. 

 

 
                                                                         (b)                                        (a) 

 
(c) 

Figure 5) Performance of the MST_DD model on three different test sets. 

One of the main goals of this experiment is the attempt to study the properties and possible advantages of using 

pattern recognition methods in archaeology and consequently find new ways to identify new archaeological sites 

locations by using one-class classification techniques.  Experiments have also been carried out to generate a map 

showing where previously undiscovered sites might be and with varying degrees of certainty. To do so, 100 co-

ordinates were generated randomly from the study area using Arc GIS; MST_DD (see Table 2 and Figure 4) was 

then utilized to investigate the randomly generated coordinates. Figure 6 shows four different maps that represent 

some of the randomly generated co-ordinates as potential locations for previously undiscovered archaeological 

sites, with 4 different degree of certainty. Different degrees of certainty were obtained by varying MST_DD’s 

threshold and which is a tuning parameter for the MST_DD model. The MST_DD’s threshold determines the 

training target samples that are allowed to be rejected and classified as outliers during the training process. The 

MST_DD’s threshold was varied from 0.01 to1 by steps equal to 0.01 and the results observed. In practice, the 

MST_DD model is trained and created using previously known archaeological sites (43 samples) with 100 

different thresholds in the interval between [0, 1], and then the trained MST_DD models are used to label each of 

the randomly generated coordinates as archaeological site or non-archaeological site. As a result, 100 different 

maps with 100 degree of certainty are generated; each of them introduces some of the randomly generated 

coordinates as previously undiscovered sites. The interval between [0,1] is divided into 4 equal sub-intervals and 

Figure 6 shows 4 of the generated maps for Thresholds equal to 0.25, 0.5, 0.75 and 1.  
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Based on the outcomes presented in Figure 6, as the threshold becomes larger, less randomly generated samples 

are considered as archaeological sites. The effect of the threshold values on the results in Figure 6 is evident.  The 

smaller threshold would result in higher numbers of predicted sites (and higher true positives) but lower degree 

of certainty (and higher false positives) are attained and is an appropriate approach when a lower, conservative, 

prediction is sought. Conversely, the larger threshold would result in lower number of proposed sites (and lower 

false positives) but higher degree of certainty (and lower true positives) and is appropriate when more speculative 

approaches are required.  The control parameter, threshold, can also be used to achieve a balance between high 

number of proposed site and low degree of certainty and is perhaps its most useful application. 

 
                                  (a) Threshold= 0.25                        (b) Threshold= 0.5 

 
                           (c)  Threshold= 0.75                                               (d) Threshold= 1 

Figure 6) Possible location of previously undiscovered sites with various degree of certainty. 

Our analyses of the Khorramabad Plain establishes that there are common environmental constraints on 

settlement patterns from prehistory through to the Islamic - historical period, making it possible to efficiently 

model archaeological site distribution by pattern recognition algorithms.  This includes the first village based 

settlements from ca. 7500 BP with an economy based on domestic livestock (goats and ewes) and later arable 

based settlements that introduced wheat, barley, lentils and flax to the region (Table 1; Javadi and Borazjani, 

2000; Hole, 1970). 

Artificial Intelligence is attracting widespread interest in many sciences because of its emerging robust 

predictive capabilities. AI enables archaeologist to more fully exploit knowledge from extensive amount of 

archaeological data and assists archaeologists in reasoning and making decisions that range from appropriate 

conservation and protection strategies to where best to excavate in a complex cultural landscape. The experimental 

results of this paper provides clear evidence that the application of Pattern Recognition has real potential as an 

effective AI application for the detection of buried archaeological sites. It can ensure that archaeologist avoid 

expensive and time consuming efforts to survey and excavate more archaeologically limited landscape areas.  

Although in this study MST_DD represents an indisputably better performance compared with other one-class 

classifiers, we also highlight that there is no single method that for any data set represents the most accurate 

method (the No Free Lunch Theorem; Alpaydin, 2004).  Although the MST_DD model may be successfully 

applied as a predictive model in other semi-arid area, especially when there is small number of previously 

identified sites and where there has been substantial accumulation of eroded soils, we would suggest the approach 
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developed by this paper.  That is, an investigation and testing of a range of algorithms with selection based on 

best performance against a test data set. 

 

4 CONCLUSIONS 

Artificial intelligence, in particular one-class classifiers hold promise when applied to the detection of buried 

archaeological sites. One-class classifiers were trained using extracted data (using Arc GIS) from previously 

identified archaeological sites of Khorramabad Plain and then able to automatically classify unseen input patterns 

as potentially archaeological sites (for further investigation) or non-archaeological areas. The results indicated 

that application of one-class classification methods, and in particular the minimum spanning tree data descriptor, 

construct efficient predictive models for semi-arid areas.  We now anticipate that our findings can be reliably 

applied in other study areas without a significant degradation in performance. Our future work will now explore 

the application of one-class classifiers using data sets from other study areas and environments.  To aid these 

endeavours we recommend that a plug-in software of the proposed one-class classifiers for Arc GIS software 

should be built. 
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