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Abstract  

The potential benefits of dietary long-chain polyunsaturated fatty acids to fish include improved 

growth, survival and stress resistance, reproduction and regulation of immune function. The 

metabolism of eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6) into 

short-lived hormones know as eicosanoids play central roles in the regulation of these responses. 

However, little is known about the EPA and ARA requirements and their effect on fatty acid and 

eicosanoid metabolism in barramundi (Lates calcarifer). Therefore, a two part experiment was 

conducted to assess the response of juvenile barramundi (initial weight = 10.3 ± 0.03 g; mean ± S.D.) 

fed one of five diets with graded levels of EPA (diets EPA 1.2, EPA, 4.5, EPA 9.5, EPA 17.0, EPA 

20.1) or one of four diets with graded levels of ARA (diets ARA 1.1, ARA 5.3, ARA 11.5 and ARA 

16.4) compared against a fish oil control diet. A six week feeding trial demonstrated that the addition 

of EPA or ARA did not have any impact on growth performance or feed utilisation. Analysis of the 

whole body fatty acid composition showed that these fatty acids reflected those of the diets. The 

retention and marginal utilisation efficiency suggests that dietary ARA and to a lesser extent EPA are 

required in juvenile barramundi; however, a modified metabolic response was observed. The partial 

cDNA sequences of genes regulating eicosanoid biosynthesis were identified in barramundi tissues, 

namely cyclooxygenase 1 (Lc COX1a, Lc COX1b), cyclooxygenase 2 (Lc COX2) and lipoxygenase 

(Lc ALOX-5). Both COX2 and ALOX-5 expression in the liver tissue were elevated in response to 

increasing dietary ARA, meanwhile expression levels of Lc COX2 and the mitochondrial fatty acid 

oxidation gene Lc CPT1a were elevated in the kidney. Dietary EPA levels had little effect on the 

expression of eicosanoid biosynthesis genes in the liver or kidney. The present study demonstrates 

that consideration should be given to the ARA supply for juvenile barramundi in light of pro-

inflammatory and inducible nature of the cyclooxygenase and lipoxygenase enzymes.  

 

  



Introduction 

Eicosapentaenoic (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6) are important for many 

metabolic and physiological functions, and are precursor molecules for the production of eicosanoid 

hormones that play a role in the inflammatory response, immune function and regulation as well as 

ionic regulation and reproduction in fish and mammals (Calder, 2004; Rowley et al., 1995). In 

humans, the incidence of diseases involving inflammatory processes can be related to the production 

these eicosanoids, for example prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) that are derived 

from high cellular concentrations of ARA (Tocher, 2015; Wall et al., 2010). The cyclooxygenase 

(COX; prostaglandin G/H synthase) and lipoxygenase (LOX; arachidonate 5-lipoxygenase) enzymes 

interact and compete for the EPA and ARA substrates and as such the eicosanoids produced are 

determined by their availability (Calder, 2012; Tocher, 2003).  

The COX enzyme catalyses 20-carbon chain fatty acids (ARA or EPA) through bis-dioxygenation 

and subsequent reduction to produce 2 - and 3 - series prostaglandins (PGG2/3 and PGH2/3) that are 

substrates for the synthesis of biologically active PGs, prostacyclins and thromboxanes (Calder, 

2012; Rouzer and Marnett, 2009; Rowley et al., 1995). While the LOX enzyme catalyses the same 

substrates to yield biologically active metabolites of hydroperoxy-eicosatetraenoic acid (HPETE) 

such as leukotrienes and lipoxins (Matsumoto et al., 1988; Rowley et al., 1995). Unlike most 

vertebrate organisms, the COX enzyme system in teleost fish is further complicated by an 

evolutionary duplication event that led to alternative chromosomal regions of COX genes, often 

identified as ‘a and b’ isoforms of either the COX-1 or -2 series, but rarely both (Ishikawa and 

Herschman, 2007; Ishikawa et al., 2007b). There is also an accepted paradigm that COX-1 is 

constitutively expressed whereas COX-2 is inducible, however this is now widely viewed as an 

oversimplified as inducible COX-1 genes and constitutively expressed COX-2 genes have been 

identified (Breder et al., 1995; Cha et al., 2006; Olsen et al., 2012; Rouzer and Marnett, 2009). 

It has been shown in rainbow trout (Oncorhynchus mykiss) cell lines that fatty acids such as 18:4n-3 

and 20:4n-3, can reduce the production of 2-series prostanoids and 4-series leukotrienes by 

conversion to EPA and subsequent competition with ARA (Ghioni et al., 2002). In many vertebrate 

and fish species, EPA and ARA are required for important metabolic and physiological functions, 

and the optimal as well as dietary requirements are well understood (Bell and Sargent, 2003; Das, 

2006; Glencross, 2009; Izquierdo, 1996; Tocher, 2010; Tocher, 2015). In addition, there is great 

potential for dietary ARA to affect growth, stress response, immune response and survival, 



particularly at early life stages (Atalah et al., 2011a; Atalah et al., 2011b; Bell and Sargent, 2003; 

Castell et al., 1994; Montero et al., 2015b; Norambuena et al., 2016; Yuan et al., 2015). 

Information on the EPA and ARA requirements in the barramundi or Asian seabass (Lates 

calcarifer) are scarce. In the only study available thus far, increased levels of dietary ARA in the 

absence of EPA showed negative effects on fish health, including disproportionate tissue LC-PUFA 

retention and pathophysiological effects such as subcutaneous haemorrhaging and disrupted ionic 

regulation (Glencross and Rutherford, 2011). There is evidence to suggest that wild barramundi 

(either from fresh or salt water) can contain ARA levels more than 5-fold higher than EPA in their 

tissues (Nichols et al., 2014). The increasing use of alternative oils in farmed fish, often containing 

high levels of omega 6 fatty acids which can act as ARA precursors (eg. soybean oil, sunflower oil) 

may present issues associated with modified lipid metabolism (Brown and Hart, 2011).  

Based on previous observations, the present study hypothesised that the effect of changing the 

dietary ARA or EPA level may significantly modify fatty acid metabolism in barramundi. A two 

part, dose-response experimental design was used to determine the effect of increasing the dietary 

EPA and ARA. To achieve this, commercial preparations of an EPA rich fish oil and an ARA rich 

fungal oil were incrementally added to a series of barramundi diets. It was also hypothesised that 

there may be effects on the transcription of genes involved in eicosanoid synthesis. The genes 

regulating eicosanoid synthesis have not been identified in barramundi, and no information is 

available on their nutritional regulation. 

 

Materials and methods 

Ingredient and diet preparation 

A single basal diet was formulated and prepared without the addition of dietary oils (lipids). The dry 

ingredients were passed separately through a hammermill (Mikro Pulverizer, type 1 SH, New Jersey, 

USA) such that the maximum particle size was less than 750 µm. All dry ingredients were then 

thoroughly mixed using an upright commercial mixer (Bakermix, Model 60 A-G, NSW, Australia). 

Fish meal was defatted prior to use by manually mixing n-hexane and fish meal (2:1 respectively) in 

a large drum. The mix was left to soak for 3h before draining the excess hexane and repeating the 

process a second time. The fish meal was oven dried overnight at 60 ˚C to a constant dry matter. The 

chemical composition of the main dietary ingredients is presented in Table 1. The single batch of 

basal diet was produced using a laboratory-scale twin-screw extruder with intermeshing, co-rotating 



screws (MPF24, Baker Perkins, Peterborough, United Kingdom). The pellets were extruded through 

a 2 mm tapered die and obtained a 1.5-fold increase in diameter by expansion. The pellets were cut 

off at lengths of 3-4 mm using a variable speed 4-blade cutter and dried overnight at 60 ˚C to a 

constant dry matter. The dietary treatments were generated by vacuum-infusion of the different lipid 

sources (lipid added at 8.2% diet) to batches of dried pellets. Five dietary treatments were formulated 

with increasing eicosapentaenoic acid (added via; Incromega™ TG500, CRODA, United Kingdom) 

up to 20.1 g/kg inclusion (EPA 1.2, EPA, 4.5, EPA 9.5, EPA 17.0, EPA 20.1) and four treatments 

were formulated with increasing arachidonic acid (added via; ARASCO®, Martek Biosciences, USA) 

up to 16.4 g/kg inclusion (ARA 1.1, ARA 5.3, ARA 11.5 and ARA 16.4). A diet containing only fish 

oil was used as a unique control for both experiments (FO CTRL). The diets were then stored at -20 

˚C until required. The formulation and chemical composition of the ten diets are presented in Table 

2. 

Barramundi husbandry and growth 

Juvenile barramundi (Lates calcarifer) were sourced from the Betta Barra fish hatchery (Atherton, 

QLD, Australia), on-grown in a 10,000L tank and fed a commercial diet (Marine Float; Ridley 

Aquafeed, Narangba, QLD, Australia). Prior to commencement of the experiment the fish were 

transferred to a series of experimental tanks (1000L) with flow-through seawater (salinity =38 PSU; 

dissolved oxygen 5.4 ± 0.01 mg /L) of 28.9 ± 0.01 ºC (mean ± SD) at a flow rate of about 3 L/min 

being supplied to each of the tanks. At the beginning of the experiment, each of the tanks held 30 

fish of 10.3 ± 0.1 g (mean ± SD, n = 900 individually weighed fish). The two experiments were 

nested within one and conducted simultaneously utilising a common control diet for both 

experiments. The ten experimental diets were therefore randomly distributed amongst thirty tanks 

with each treatment having three replicate tanks. The fish were restrictively fed a sub-satietal 

(approximately 80%) pair-feeding regime in order to avoid the potentially confounding issue of 

unregulated feed intake (Glencross et al., 2003a). 

Sample collection, preparation and digestibility analysis 

Ethical clearance was approved (Approval A05/2014) for the experimental procedures by the CSIRO 

animal ethics committee. Six fish of similar size from the original stock were euthanized by an 

overdose of AQUI-S™ (Lower Hutt, New Zealand) at the beginning of the experiment and stored at 

-20 ºC until analysis. A further three fish from each treatment were euthanized upon termination of 

the experiment and they were frozen at -20 ºC until analysis. 



Upon termination of the growth assay, faeces were collected using established abdominal stripping 

protocols (Blyth et al., 2014). Briefly, the fish were netted from their tanks and anesthetised, then 

gentle abdominal pressure was applied to the distal intestine to extract the faeces. Care was taken by 

the operator to avoid contamination of the sample with foreign material and hands were rinsed after 

each stripping. The faecal sample was placed into a small plastic vial on ice before being stored in a 

freezer -20˚C until analysis.  

Chemical analysis 

Prior to analysis the diets were each ground to a fine powder using a bench grinder (KnifeTec™ 

1095, FOSS, Denmark). The initial and final fish were processed using the following method. The 

frozen whole fish were passed through a commercial meat mincer (MGT – 012, Taiwan) twice to 

obtain a homogeneous mixture. A sample was taken for dry matter analysis and another sample was 

freeze-dried along with the faecal samples until no further loss of moisture was observed (Alpha 1-4, 

Martin Christ, Germany). Dry matter was calculated by gravimetric analysis following oven drying 

at 105ºC for 24 h. Crude protein was calculated after the determination of total nitrogen by organic 

elemental analysis (CHNS-O Flash 2000, Thermo Scientific, USA), based on N x 6.25. Total lipid 

content was determined gravimetrically following extraction of the lipids using chloroform:methanol 

(2:1) following Folch et al. (1957). Gross ash content was determined gravimetrically following loss 

of mass after combustion of a sample in a muffle furnace at 550 ˚C for 24 h. Gross energy was 

determined by adiabatic bomb calorimetry (Parr 6200 Calorimeter, USA). Total yttrium 

concentrations in the diets and faeces were determined after nitric acid digestion in a laboratory 

microwave digester (Ethos One, Milestone, Italy) using inductively coupled plasma-mass 

spectrophotometry (ICP-MS) (ELAN DRC II, Perkin Elmer, USA). 

Fatty acid composition was determined following the methods of Christie (2003). Lipids were 

esterified by an acid-catalysed methylation and 0.3 mg of an internal standard was added to each 

sample (21:0 Supelco, PA, USA). The fatty acids were identified relative to the internal standard 

following separation by gas chromatography (GC). An Agilent Technologies 6890N GC system 

(Agilent Technologies, California, USA) fitted with a DB-23 (60m x 0.25mm x 0.15 μm, cat 122-

2361 Agilent Technologies, California) capillary column and flame ionisation detection was used. 

The temperature program was 50–175 ºC at 25 ºC /min then 175–230 ºC at 2.5 ºC /min. The injector 

and detector temperatures were set at 250 ºC and 320 ºC, respectively. The column head pressure 

was set to constant pressure mode at 170 kPa using hydrogen as the carrier gas. The peaks were 

identified by comparing retention times to the internal standard and further referenced against known 



standards (37 Comp. FAME mix, Supelco, PA, USA). The resulting peaks were then corrected by 

the theoretical relative FID response factors (Ackman, 2002) and quantified relative to the internal 

standard. 

Cloning of putative prostaglandin G/H synthase (COX) and arachidonate 5-lipoxygenase (LOX) 

genes 

Sequences of the prostaglandin G/H synthase and arachidonate 5-lipoxygenase (COX1a, COX1b, 

COX2 andALOX-5) genes from several teleost species were identified in the Genbank database. 

Highly conserved regions from protein alignments across species were used to design pairs of 

degenerate primers that were subsequently synthesised by Sigma-Aldrich (Table 3). Pooled 

barramundi liver cDNA (1000 ng) was amplified in reactions, with each degenerate primer pair (F 

and R; 10 μm) using platinum TAQ mix (Thermofisher). Polymerase chain reaction (PCR) 

conditions including an initial denaturation step at 90°C for 2 min followed by 35 cycles of 94°C/10 

s, 50°C/30 s (50% ramp speed) and 72°C/30 s with a final extension step of 72°C/5 min were used. 

The amplification products were separated by size using electrophoresis on a 1% agarose gel and 

then excised and extracted using the QIA quick gel extraction kit (QIAGEN). The target was then 

ligated using the pGEM-T Easy vector system (Promega). Ligation reactions were then transformed 

onto One Shot TOP10 chemically competent Escherichia coli cells (Thermofisher) which were then 

cultured overnight on LB ampicillin plates (100 μg/mL). Positive clones were selected by PCR 

amplification with primers flanking the multiple cloning site (M13F and M13R), using an initial 

denaturation step at 94°C/5 min followed by 35 cycles of 94°C/20 s, 55°C/30 S, 72°C/1.5 min with a 

final extension step of 72°C/5 min. Randomly selected positive clones were prepared for sequencing 

with a QIAprep Miniprep kit (QIAGEN) and then the plasmid insert was sequenced using the 

BigDye® Terminator V3.1 sequencing kit (Applied Biosystems) with an ABI 3130 Automated 

Capillary DNA Sequencer (Applied Biosystems). 

Sequencing analysis 

Multiple alignments of the target genes (Lc COX-1a, Lc COX-1b, Lc COX-2 and Lc ALOX-5) were 

made using the CLC Genomics Workbench software (CLC Bio, Aarhus, Denmark). The ORF and 

amino sequence alignment and analysis were conducted using the Create Alignment tool, and 

confirmed as the target gene sequence using the BLASTX algorithm 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequence analysis of the previously unreported Lates 

calcarifer COX and LOX genes identified expressed sequence tags (EST) of between 752 and 999 

http://blast.ncbi.nlm.nih.gov/Blast.cgi


base pairs, open reading frame protein alignments showing similarity with other teleost fish are 

presented in supplementary figures 1 a-d.  

RNA extraction, cDNA synthesis and quantitative real-time RT-PCR 

Total RNA was extracted from the livers and kidneys of fish from the FO CTRL, EPA 1.2, EPA 

20.1, ARA 1.1 and ARA 16.4 treatments using TRIzol® reagent (Invitrogen) according to the 

manufacturer’s instructions. Only the two extreme dietary treatments of each experiment were used 

in this analysis as it was anticipated that only minor differences in gene expression would be 

observed. RNA extraction and cDNA synthesis were performed following previously reported 

methods from the same laboratory (Salini et al., 2015b; Wade et al., 2014). Real-time PCR primers 

specific to each target gene (Table 4) were designed using PerlPrimer v.1.1.17 (Marshall, 2004). 

Quantitative real-time RT-PCR was performed using 2X SYBR Green PCR master mix (Applied 

Biosystems), 0.2 μm RT-PCR primers for each gene and the equivalent of 7.5 ng of reverse 

transcribed RNA following previously reported cycling and processing conditions from the same 

laboratory (Salini et al., 2015b; Wade et al., 2014). Changes in expression levels were normalised for 

each gene to the endogenous reference gene elongation factor 1 alpha (EF1α) and the exogenous 

reference gene Luciferase. The variation in amplification across all samples was very small, 0.57 

cycles and 0.40 cycles for EF1α Luciferase, respectively. The EF1α and Luciferase genes have been 

routinely used as a reference in this species (De Santis et al., 2011; Wade et al., 2014).  

Calculations and statistical analysis 

Differences in the ratio of dry matter, protein, lipid and energy to yttrium in the diet and faeces were 

calculated to determine the apparent digestibility coefficients (ADC) following Maynard and Loosli 

(1979) using the formula: 

𝐴𝐷𝐶 =  (1 − (
𝑌𝑑𝑖𝑒𝑡  × 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑓𝑎𝑒𝑐𝑒𝑠

𝑌𝑓𝑎𝑒𝑐𝑒𝑠  × 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑑𝑖𝑒𝑡
))  × 100 

Where Ydiet and Yfaeces are the yttrium content in the diet and faeces respectively and Parameterfaeces 

and Parameterdiet are the nutritional parameter of concern in the diet and faeces respectively. 

Nutrient retention efficiencies were calculated as the ratio of the nutrient or specific fatty acid gained 

relative to their respective consumption during the study period following Maynard and Loosli 

(1979) using the formula: 



𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (%) = (
𝑁𝑓 − 𝑁𝑖

𝑁𝑐
) × 100 

Where Nf and Ni are the nutrient composition in the final and initial fish (g/fish) on a live-basis and 

Nc is the amount of the nutrient consumed (g/fish) during the study period.  

To provide a size independent function for the calculation of maintenance demands and utilisation 

efficiencies of specific fatty acids, modelling of the specific fatty acid retention efficiency data was 

initially carried out (unpublished laboratory study). Live-weight exponents of 0.679 and 0.857 were 

recorded for EPA (20:5n-3) and ARA (20:4n-6) respectively as size independent functions for the 

determination of maintenance demands. Maintenance demands and utilisation efficiencies were then 

determined from the regression of marginal fatty acid intake against marginal fatty acid gain on a 

transformed live-weight basis following (Glencross, 2008) using the formula:  

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐼𝑛𝑡𝑎𝑘𝑒 𝑜𝑟 𝐺𝑎𝑖𝑛 = 𝐼𝑛𝑡𝑎𝑘𝑒 𝑜𝑟 𝐺𝑎𝑖𝑛 𝐹𝐴 /𝐺𝑀𝑊𝑥/𝑑 

Where Intake FA or Gain FA is the specific fatty acid consumed or gained (g/fish) on a weight specific 

(geometric mean live-weight g/fish) basis then transformed to a fatty acid specific exponent. The 

duration of the study period in days is defined as d. 

All data are expressed as mean with pooled standard error mean unless otherwise specified. All data 

were checked for normal distribution and homogeneity of variance by qualitative assessment of 

residual and normal Q-Q plots. Growth performance data were analysed using polynomial contrasts 

and all other data were analysed by one-way ANOVA. Levels of significance were compared using 

Tukey’s HSD a posteriori test. The RStudio package v.0.98.501was used for all statistical analyses 

(R Core Team, 2012). Any percentage data were arcsine transformed prior to analysis. Significance 

among the treatments defined as P < 0.05. 

  



Results 

Growth performance and feed utilisation 

The results of the 42 d growth assay demonstrated that the barramundi responded well to the 

experimental diets in both experiments exceeding over 400% of their original weight at a rate of 

more than 1 g/d. The growth parameters for each experiment were analysed separately using 

polynomial contrasts (Table 5 and 6). When the fish were fed increasing EPA there were no 

significant contrasts in any of the growth parameters (Table 5). Similarly, the barramundi did not 

show any significant contrasts in response to the increasing ARA in the second experiment (Table 6). 

The only exception being a slight improvement in FCR with the addition of ARA however the 

numerical differences were minor. There was also a linear improvement in survival with increasing 

ARA. Several moribund fish were removed from the system after a weight check at day 28. These 

fish were considered non-contributing as they had not consumed any feed. Additionally, the growth 

performance of the fish fed different EPA and ARA treatments were compared by one-way ANOVA 

against the control. There were no significant differences in any of the growth parameters measured 

(data not reported).  

Digestibility analysis of the diets 

While no differences were recorded in the digestibility of dry matter, protein or energy across the 

treatments, the digestibility of lipid was significantly higher in the control (FO CTRL) fed fish 

(Table 7). Significantly lower digestibility levels of MUFA and C18PUFA were recorded in the FO 

CTRL compared with other treatments, predominantly from reduced 18:1 and 18:2n-6. Increased 

levels of dietary EPA or DHA resulted in a significantly reduced digestibility of SFA fatty acids, 

predominantly from reduced 18:0. There were numerically minor differences in the digestibility of 

LC-PUFA (20:4n-6, 20:5n-3, 22:5n-3, 22:6n-3). 

Whole-body composition.  

When compared against the control (FO CTRL), there were significant differences in whole body 

composition for many parameters (Table 8). Dry matter was significantly reduced in the EPA 1.2 

treatment compared with all other treatments. This change was reflected in the lipid and energy 

composition, with significantly reduced levels recorded in the EPA 1.2 treatment. Protein 

composition was unaffected by the treatments. As expected, significant elevation of ARA (20:4n-6) 

and EPA (20:5n-3) levels were recorded in the fish fed the ARA 16.4 and EPA 20.1 diets, 

respectively. Increased levels of EPA (20:5n-3) in the EPA 20.1 treatment led to a significant 



increase in DPA levels (22:5n-3) The FO CRTL treatment had significantly elevated DHA (22:6n-3) 

and total SFA.  

Nutrient retention efficiency 

Fatty acid retention efficiency in the control fed fish (FO CTRL) did not differ from the quadratic 

trendlines (Figure 1a-j). There was a quadratic effect on the retention efficiency of 20:4n-6 when 

dietary EPA or ARA increased (Fig1 c, h; Table 9).There was a significant quadratic effect on 20:5n-

3 retention in response to increasing dietary EPA diets with a decrease in retention before increasing 

at the highest inclusion whereas increasing ARA had no effect (Fig.1d, i; Table 9). Retention 

efficiency of 22:6n-3 was not affected by increasing dietary EPA however there was a significant 

quadratic effect in response to increasing dietary ARA with a decrease in retention before increasing 

at the highest inclusion (Fig.1e, j; Table 9).  

Marginal utilisation efficiencies 

The marginal utilisation efficiencies are presented for both EPA and ARA fed fish (Fig. 3a, 3b 

respectively). Based on the linear assessment of marginal EPA intake against marginal EPA gained, 

a significant difference was observed (P<0.01). The positive y intercept value indicates that no 

maintenance demand could be established for 20:5n-3. Using the live-weight exponent value of 

0.679 the EPA fed fish had a 20:5n-3 utilisation efficiency of 62.1% described by the linear equation 

of y = 0.621x + 0.0003, R2 = 0.975 (Fig. 3a). Similarly, there was a significant linear relationship of 

marginal ARA intake against marginal ARA gain (P<0.05). The negative y intercept value suggests 

that a maintenance value of around 0.01 g/kg0.85/d could be determined for 20:4n-6. Using the live-

weight exponent of 0.85 the ARA fed fish had a 20:4n-6 utilisation efficiency of 91.9% described by 

the linear equation of y = 0.919x – 0.011, R2 = 0.965 (Fig. 3b). A summary of the maintenance 

demand and utilisation efficiencies is presented in Table 9. 

Gene identification and quantitative expression 

Partial cDNA sequences of Lc COX1a, Lc COX1b, Lc COX2 and Lc ALOX-5 were identified through 

degenerate PCR. BLAST similarity searches showed that barramundi gene orthologs shared between 

88 and 91 % similarity with other teleost fish at the amino acid level, and protein alignments showed 

similarity with other teleost fish (Supplementary Figure 1a-d). The expression of eicosanoid pathway 

genes (Lc COX1a, Lc COX1b, Lc COX2 and Lc ALOX-5), as well as the mitochondrial ß-oxidation 

gene (Lc CPT1a) were analysed in the liver and kidney by quantitative real-time RT-PCR.  



The expression of all genes analysed was up regulated in the liver of fish fed the EPA 1.2 diet 

compared with the FO CTRL fed fish (Fig. 3). There was a significant difference in the expression of 

Lc COX1b among the EPA 1.2 and EPA 20.1 treatments. No other genes were nutritionally regulated 

in the liver or kidney tissue of fish fed increasing EPA. In the case of the ARA fed fish, expression of 

Lc COX1b, Lc COX2 and Lc CPT1α in the kidney tissue was lowest in the ARA 1.1 and highest in 

the ARA16.4 treatments. Similarly, the expression of Lc COX2 was also significantly up regulated in 

the liver tissue (Fig. 4). 

  



Discussion 

The growth performance of juvenile barramundi in the present study, using a pair-fed feeding 

regime, was not affected by increasing dietary EPA or ARA content. Moreover, the response was 

compared to a control diet containing only fish oil and no significant differences in growth 

performance were reported. Although it is an unlikely real-world scenario to include high levels of 

any one LC-PUFA, these observations and those of a previous study, confirm that there are no 

growth stimulatory effects owing to any individual LC-PUFA in juvenile barramundi (Glencross and 

Rutherford, 2011). In many species, EPA can exert cardio-protective benefits such as lowering 

triglycerides and low-density lipoprotein levels (Aarsland et al., 1990; Cahill et al., 1988; Cottin et 

al., 2011; Wei and Jacobson, 2011; Weiner et al., 1986). Whereas ARA on the other hand, is an 

essential and necessary precursor to the 2-series and 4-series eicosanoids that mediate homeostasis 

during times of environmental or physiological stress (Bell and Sargent, 2003). 

Studies examining the dose-response of EPA in juvenile or growing fish are relatively scarce and 

mostly concentrate on larval fish requirements. However, many studies have investigated 

interactions between DHA, EPA and ARA or n-3 to n-6 ratios in fish and the general consensus is 

that size and species differences exist and that an appropriate balance between these essential fatty 

acids is critical (Sargent et al., 1999; Tocher, 2015). Consistent with the present study, several 

studies in larval and juvenile fish such as the Atlantic salmon Salmo salar (Thomassen et al., 2012), 

cobia Rachycentron canadum (Trushenski et al., 2012), gilthead sea bream Sparus aurata (Atalah et 

al., 2011a), Senegalese sole Solea senegalensis (Villalta et al., 2008), striped jack Pseudocaranx 

dentex (Watanabe et al., 1989) and turbot Scophthalmus maximus (Bell et al., 1995) all concluded 

that EPA does not stimulate an improved growth response. However, larval and juvenile red 

seabream Pagrus major were found to have an EPA requirement with linear improvements in growth 

and survival observed (Furuita et al., 1996; Takeuchi et al., 1990). 

Also in agreement with the present study, a range of larval and juvenile marine species such as 

Atlantic cod Gadus morhua (Bransden et al., 2005), gilthead sea bream Sparus aurata (Alves Martins 

et al., 2012; Atalah et al., 2011a; Fountoulaki et al., 2003), Senegalese sole (Villalta et al., 2005) and 

turbot (Estévez et al., 1999), were able tolerate a wide range of dietary ARA levels with growth and 

survival found to be independent of ARA inclusion. In agreement, several recent studies have further 

demonstrated that balanced ARA and EPA are more critical than either individual FA in terms of 

growth and other metabolic processes further highlighting the need for understanding the optimal 

LC-PUFA balance (Norambuena et al., 2015; Norambuena et al., 2016). 



Many studies, including the present study, have demonstrated that the fatty acid composition of the 

tissues is representative of the profile of the fed diet (Rosenlund et al., 2011). However, the 

efficiency by which fatty acids are retained may represent a more metabolic or biological importance 

to the fish. The DHA retention of the fish in the present study fed increasing EPA did not change. 

However, the EPA and ARA retention were inversely related and responded in a curvilinear fashion. 

The effect was not dramatic however it indicated a point of sensitivity as EPA in the diet increased 

and the barramundi retained more of the endogenous ARA. Glencross and Rutherford (2011) 

reported disproportionate EPA and ARA retention in barramundi however this was likely an effect of 

the increasing DHA level in combination with either EPA or ARA. Atlantic salmon were also shown 

to conserve ARA (Norambuena et al., 2015) while Senegalese sole attempt to synthesise ARA when 

dietary supply is limited (Norambuena et al., 2013). 

A recent study has already suggested that the marginal efficiency of LC-PUFA utilisation are low 

compared to other fatty acids in growing barramundi (Salini et al., 2015a). The present study 

describes a more up to date and relevant assessment of the marginal efficiency of EPA and ARA 

assessed in a dose-response manner, while simultaneously controlling for other LC-PUFA (rather 

than FO substitution). On closer examination of dietary ARA demands in juvenile barramundi, we 

report the maintenance requirement, albeit low, of this fatty acid to be 0.01 g/kg LW0.85/d. This 

confirms that ARA is perhaps unusual in its characteristic metabolic requirement for this species. 

EPA on the other hand is apparently not required for maintenance in juvenile barramundi suggesting 

that they have a very low dietary requirement for this fatty acid and that their endogenous reserves 

are sufficient for maintenance. In addition, the EPA retention figures were modest with a calculated 

intake to gain ratio of 1.6:1 confirming this. This is consistent with other studies on barramundi and 

red sea bream in that EPA is only modestly retained unless there is a gross imbalance of other LC-

PUFA (Glencross et al., 2003b; Glencross and Rutherford, 2011).  

There is a very large body of research into the mechanisms of action of n-3 LC-PUFA on 

inflammatory pathways (Rangel-Huerta et al., 2012). The data from the present study build upon this 

in barramundi by presenting the nutritional regulation of key eicosanoid pathway enzymes. The 

current work verifies that barramundi possess two variants of the cyclooxygenase 1 enzyme (COX1a, 

COX1b) and a single cyclooxygenase 2 (COX2). The fish in the present study were not exposed to 

any form of physical or environmental stressors (apart from being in research aquaria) that could 

cause an inflammatory response and therefore the only trigger for a response is from the diets.  



The gene expression analysis in the present study demonstrated that EPA supplied in excess mostly 

did not affect the gene expression between the treatments in either the liver or kidney tissue. 

However, the slight exception to this was the nutritional regulation of the COX1b isoform in the liver 

of the EPA fed fish. COX1 isoforms are widely distributed and generally constitutively expressed 

however this homeostatic function is now considered to be an oversimplified view (Rouzer and 

Marnett, 2009). In agreement with the present study, there were non-significant yet quite measurable 

differences in COX1b expression in larval tongue sole Cynoglossus semilaevis (Yuan et al., 2015). 

The results of the present study confirm that the COX1b gene in barramundi is inducible however the 

differences warrant further investigation into the potential for pathophysiological effects. Some 

explanation for these inconsistencies may be found in whole-body composition of wild barramundi 

collected from different environments (Nichols et al., 2014; Sinclair et al., 1983). These authors 

found that Northern Australian barramundi, maintain a characteristically high ARA content 

regardless of their environment. Therefore, it is suggested that barramundi can modify the 

transcription of these genes depending on the potentially transient nature of dietary ARA supply.  

The EPA or anti-inflammatory derived eicosanoids are known to be cross-linked with changes in 

transcription of fatty acid synthesis and beta-oxidation genes (Aarsland et al., 1990; Calder, 2007; 

Chen et al., 2014; Sijben and Calder, 2007) . However, the CPT1α expression data in the present 

study are inconsistent in that they are not affected by the inclusion level of either EPA or ARA albeit 

with a slight decrease in the kidney tissue of the ARA1.1 fish. However, our data showed that 

CPT1α expression is elevated in both low and high EPA treatments compared to the control fish. 

Additionally, the ALOX-5 expression was affected in much the same way as CPT1α and this may 

suggest that some other characteristic, perhaps of the fish oil base used in the control diet caused the 

response. Further exploration of these responses is warranted as the optimal ratio of EPA to ARA to 

DHA is likely to be species and potentially size specific in barramundi (Sargent et al., 1999).  

In agreement with many vertebrates, nutritionally inducible COX2 genes have been identified in 

several teleost species (Ishikawa and Herschman, 2007; Ishikawa et al., 2007a; Montero et al., 

2015a; Olsen et al., 2012; Rouzer and Marnett, 2009; Yuan et al., 2015; Zuo et al., 2015). The role of 

COX2 as an active and rapidly inducible gene has undoubtedly played a role in the modified 

metabolic function of the ARA fed fish during the present study. The COX2 expression was 

significantly increased in both liver and kidney tissues suggesting that the highest inclusion of ARA 

was excessive or that the EPA to ARA ratio was unbalanced. 



To conclude, the present study supports that there is no phenotypic response by barramundi to the 

addition of either EPA or ARA to the diets. However, there are some metabolic changes to the 

retention and marginal utilisation efficiencies as a result of the diets. Increasing the dietary EPA or 

ARA level also modulated the expression of several eicosanoid metabolism and fatty acid oxidation 

genes. Investigation is warranted into the most appropriate balance of dietary LC-PUFA in light of 

the current levels of fish oil substitution in aquafeeds. Further refinements could also be made to 

factorial growth and feed utilisation models for barramundi with respect to specific fatty acids and 

their marginal utilisation efficiencies. 
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Table 1. Composition of key ingredients used in diet formulations (g/kg DM). Fatty acids are percentages of 

total fatty acids (%). 

 

Fish 

meal* 

Poultry 

meal 

Fish 

oil 

Palm 

flake 

Olive 

oil 
ARASCO®  

Incromega 

EPA 

TG500 

Incromega 

DHA 

TG500 

Dry matter (g/kg) 974 966 985 997 992 991 990 992 

Lipid 44 157 946 958 911 972 971 975 

Ash 191 151 ND ND ND ND ND ND 

Protein 684 660 7 7 5 10 6 5 

Energy (MJ/kg) 18.6 20.9 35.6 39.5 39.7 40.1 39.1 40.1 

16:0 27.0 23.8 22.5 47.4 10.4 9.3 ND 1.7 

18:0 6.3 8.6 5.2 51.3 4.0 8.3 ND 4.2 

18:1 16.1 41.9 19.5 ND 72.3 23.0 1.2 8.7 

18:2n-6 1.3 10.6 2.6 ND 10.8 7.2 ND 0.8 

18:3n-3 ND 1.4 1.2 ND 1.0 ND ND ND 

20:4n-6 1.1 1.2 1.6 ND ND 42.5 3.5 2.7 

20:5n-3 13.4 0.6 11.6 ND ND ND 70.2 9.2 

22:5n-3 3.3 0.4 2.1 ND ND 0.9 2.3 2.8 

22:6n-3 14.6 0.8 15.4 ND ND ND 17.5 64.6 

SFA 39.9 33.9 35.2 100.0 14.9 22.5 2.1 6.5 

MUFA 25.8 49.9 29.4 ND 73.3 23.0 4.6 13.3 

C18 PUFA 1.3 12.1 3.8 ND 11.8 7.2 ND 0.8 

LC-PUFA 32.5 4.0 30.8 ND ND 47.3 93.4 79.4 

n-3 31.3 3.3 30.3 ND 1.0 0.9 89.9 76.6 

n-6 2.4 12.8 4.2 ND 10.8 53.6 3.5 3.6 

* Fish meal was defatted prior to use. See methods for details. ND, not detected; GE, gross energy.  

18:1, sum of 18:1n-7, 18:1n-9 cis, 18:1n-9 trans; saturated fatty acids (SFA), sum of 12:0, 14:0, 16:0, 

18:0, 20:, 22:0, 24:0; monounsaturated fatty acids (MUFA), sum of 14:1n-5, 16:1n-7, 18:1n-7, 18:1n-9 

(cis and trans), 20:1n-7, 20:1n-9, 22:1n-9, 24:1n-9; polyunsaturated fatty acids, with 18 carbon atoms 

(C18 PUFA), sum 18:2n-6 (cis and trans), 18:3n-6, 18:3n-3, 18:4n-3; long chain polyunsaturated fatty 

acids, with 20 or more carbon atoms (LC-PUFA), sum 20:2n-6, 20:3n-6, 20:4n-6, 22:4n-6, 20:3n-3, 

20:5n-3, 22:5n-3, 22:6n-3; n-3, sum of omega 3 C18 PUFA and LC-PUFA; n-6, sum of omega 6 C18 

PUFA and LC-PUFA. 

 

  



Table 2. Formulation and composition of experimental diets (g/kg DM). Fatty acids are percentages of total fatty acids (%)   

  CTRL FO EPA 1.2 EPA 4.5 EPA 9.5 EPA 17.0 EPA 20.1 ARA 1.1 ARA 5.3 ARA 11.5 ARA 16.4 

Fish meal 1 150 150 150 150 150 150 150 150 150 150 

Poultry meal 1 97 97 97 97 97 97 97 97 97 97 

Casein 2 150 150 150 150 150 150 150 150 150 150 

Soy protein isolate 3 150 150 150 150 150 150 150 150 150 150 

Wheat gluten 3 150 150 150 150 150 150 150 150 150 150 

Wheat flour 3 150 150 150 150 150 150 150 150 150 150 

Pregel wheat starch 3 50 50 50 50 50 50 50 50 50 50 

Methionine 2 5 5 5 5 5 5 5 5 5 5 

Premix 4 6 6 6 6 6 6 6 6 6 6 

Dicalcium phosphate 5 5 5 5 5 5 5 5 5 5 

Choline chloride 2 2 2 2 2 2 2 2 2 2 

Stay-C 2 2 2 2 2 2 2 2 2 2 

Yttrium 5 1 1 1 1 1 1 1 1 1 1 

Fish oil 1 82.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Palm Flake 6 0.0 31.0 28.5 25.4 22.0 19.0 28.5 23.5 17.2 11.0 

Olive oil 6 0.0 38.7 36.0 31.9 28.0 24.0 36.0 30.0 21.9 13.7 

ARASCO® 7 0.0 2.3 1.8 1.2 0.5 0.0 1.8 13.0 27.6 42.2 

Incromega™ EPA TG500 8 0.0 0.0 7.7 18.2 29.0 39.0 7.7 7.5 7.1 6.9 

Incromega™ DHA TG500 8 0.0 10.0 8.0 5.3 2.5 0.0 8.0 8.0 8.2 8.2 

Composition 
          

Dry matter (g/kg) 959 961 959 955 946 950 959 952 961 963 

Lipid 90 100 96 106 96 94 96 92 97 96 

Ash 69 67 67 66 67 63 67 107 68 68 

Protein 577 586 566 584 563 559 566 568 577 596 

GE (MJ/kg) 21.8 21.6 21.7 21.5 21.4 21.3 21.7 21.6 21.7 21.7 

FA (mg/g lipid)^ 866.3 832.7 876.3 828.2 824.0 854.4 876.3 823.8 848.9 866.9 

16:0 22.4 25.8 25.6 18.9 18.7 17.7 25.6 20.3 17.7 15.8 



18:0 5.6 17.8 17.1 16.3 15.2 12.9 17.1 14.9 13.6 11.3 

18:1 21.4 33.6 31.4 29.4 29.3 26.8 31.4 31.3 29.1 26.4 

18:2n-6 9.9 10.3 10.4 11.7 6.7 9.5 10.4 11.7 9.9 10.6 

18:3n-3 1.5 0.8 0.8 1.2 0.7 1.0 0.8 1.0 0.8 0.8 

20:4n-6 1.5 1.3 1.1 1.3 1.3 1.9 1.1 5.3 11.5 16.4 

20:5n-3 8.9 1.2 4.5 9.5 17.0 20.1 4.5 5.7 5.3 5.6 

22:5n-3 1.7 0.5 0.5 0.9 0.8 0.9 0.5 0.6 0.8 0.9 

22:6n-3 11.5 4.8 5.2 5.6 6.3 5.8 5.2 5.4 6.5 5.6 

SFA 34.3 45.1 44.3 37.6 35.1 32.0 44.3 36.5 33.0 29.1 

MUFA 29.9 35.0 33.2 31.9 31.0 28.9 33.2 32.9 30.6 28.3 

C18 PUFA 11.4 11.6 11.3 13.1 7.4 10.5 11.3 13.1 11.5 12.5 

LC-PUFA 23.7 8.3 11.3 17.3 26.5 28.7 11.3 17.5 24.9 30.1 

n-3 23.7 7.3 11.0 17.3 26.0 27.8 11.0 12.7 13.3 12.8 

n-6 11.4 12.5 11.5 13.2 8.0 11.4 11.5 17.9 23.1 29.8 

^ Refer to Table 1 for definitions of fatty acids.  

1 Ridley Aquafeed, Narangba, QLD, Australia.         

2 Bulk Powders, www.bulkpowders.com.au 
         

3 Manildra Group, Rocklea, QLD, Australia 
         

4 Vitamin and mineral premix (IU kg-1 or g/kg of premix): vitamin A, 2.5MIU; vitamin D3, 0.25 MIU; vitamin E, 16.7 g; vitamin K3, 1.7 g; vitamin B1, 2.5 g; 

vitamin B2, 4.2 g; vitamin B3, 25 g; vitamin B5, 8.3; vitamin B6, 2.0 g; vitamin B9, 0.8; vitamin B12, 0.005 g; biotin, 0.17 g; vitamin C, 75 g; choline, 166.7 g; 

inositol, 58.3 g; ethoxyquin, 20.8 g; copper, 2.5 g; ferrous iron, 10.0 g; magnesium, 16.6 g; manganese, 15.0 g; zinc, 25.0 g 

5 Yttrium oxide, Stanford materials, Aliso Viejo, CA, 

USA.         

6 Sydney Essential Oil Co., Sydney, NSW, Australia 
        

7 ARASCO®, Martek Biosciences Co., Columbia, MD, USA. 
       

8 CRODA™, Snaith, East Yorkshire, UK. 
         

 

  



Table 3. Forward and reverse primer pairs (5ʹ – 3ʹ) used the cloning of eicosanoid metabolism genes 1 

in barramundi. 2 

Target   Abbreviation Genbank* Sequence (F/R) Product 

Degenerate primers 

 
Prostaglandin 

G/H synthase 

Lc COX-1a KU188276 TTTGGGAATGTACGCTACGC 752 bp 

   
GTGATAGAGGAGTATGTGCAGCA 

 

 
Prostaglandin 

G/H synthase 

Lc COX-1b KU188277 TCAGTGTGCGTTTCCAGTACAG 999 bp 

   
GGATTCTTTCTCCAGACAGC 

 

 
Prostaglandin 

G/H synthase 

Lc COX-2 KU188278 GTGATGTGCTGAAGGAGGTG 997 bp 

   
AGGATTGCGGACATTTCTTTCTC 

 

 
Arachidonate 5-

lipoxygenase 

Lc ALOX-5 KU188279 TTTACCATCGCCATCAACAC 976 bp 

   

GAGATGACGGCTACAGGGTG 

 * Genbank accession numbers 3 

 4 

Table 4. Forward and reverse primer pairs (5ʹ – 3ʹ) used in real-time qPCR expression analysis of 5 

eicosanoid metabolism genes 6 

Target Abbreviation EC number Sequence (F/R) Length 

RT- qPCR primers 

    

 

Prostaglandin G/H 

synthase 

Lc COX-1a 1.14.99.1 AACCGAGTCTGTGACATCCT 20 

 
  

CAACGTGGGATCAAACTTCAG 21 

 

Prostaglandin G/H 

synthase 

Lc COX-1b 1.14.99.1 CAGCCCTTCAATCAGTACAG 20 

 
  

TCTCACCGAATATGCTACCA 20 

 

Prostaglandin G/H 

synthase 

Lc COX-2 1.14.99.1 AGTTTGTCTTCAACACCTCTG 21 

 
  

ATTTCTCTGCTGTTCTCAATGG 22 

 

Arachidonate 5-

lipoxygenase 

Lc ALOX-5 1.13.11.34 TTTACCATCGCCATCAACACC 21 

 
  

CTCTTCCTTGCTGTCCACAC 20 

 

Carnitine 

palmitoyltransferase 

Lc CPT1a 2.3.1.21 TGATGGTTATGGGGTGTCCT 20 

 
  

CGGCTCTCTTCAACTTTGCT 20 

 

Luciferase Luc NA GGTGTTGGGCGCGTTATTTA 20 

 
   

CGGTAGGCTGCGAAATGC 18 

 

Elongation factor 1 

alpha 

EF1α NA AAATTGGCGGTATTGGAAC 19 

  
  

GGGAGCAAAGGTGACGAC 18 

NA, Not available 

 7 
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Table 5. Growth performance and feed utilisation of barramundi fed increasing EPA analysed using 9 

polynomial contrasts. 10 

 11 

  12 

  Diets          Polynomial contrasts ^ 

 

EPA 

1.2 

EPA 

4.5 

EPA 

9.5 

EPA 

17.0 

EPA 

20.1 

P  

SEM 
Linear Quadratic Cubic 

Initial weight (g) 10.0 10.4 10.3 10.3 10.3 0.00 0.815 0.556 0.553 

Final weight (g) 55.6 53.8 54.2 53.6 53.6 0.40 0.126 0.437 0.550 

Weight gained (g) 45.3 43.5 43.9 43.3 43.3 0.40 0.126 0.413 0.526 

BW gain (%) 439.5 419.7 426.0 419.5 420.3 3.80 0.132 0.329 0.444 

Daily gain rate (g/d) 1.08 1.03 1.05 1.03 1.03 0.01 0.118 0.417 0.496 

Feed conversion 0.70 0.73 0.72 0.74 0.73 0.01 0.132 0.654 0.820 

Survival (%) 91.1 93.3 93.3 92.2 93.3 0.40 0.649 0.754 0.639 

^ Degrees of freedom 4, 10; linear, quadratic and cubic values are P values at an alpha level 

of 0.05.  

BW, Body weight, P SEM, Pooled standard error mean. 
 

  



Table 6. Growth performance and feed utilisation of barramundi fed increasing ARA analysed using 13 

polynomial contrasts. 14 

  Diets         Polynomial contrasts ^ 

 

ARA 

 1.1 

ARA 

 5.3 

ARA 

 11.5 

ARA 

 16.4 

P 

SEM 
Linear Quadratic Cubic 

Initial weight (g) 10.4 10.2 10.4 10.4 0.02 0.466 0.230 0.062 

Final weight (g) 53.8 53.7 53.2 54.8 0.51 0.435 0.209 0.357 

Weight gained (g) 43.5 43.5 42.8 44.4 0.52 0.466 0.239 0.299 

BW gain (%) 419.7 424.9 412.6 428.7 4.96 0.625 0.427 0.153 

Daily gain rate (g/d) 1.03 1.04 1.02 1.06 0.01 0.466 0.239 0.299 

Feed conversion 0.73 0.73 0.72 0.70 0.01 0.014 0.053 0.698 

Survival (%) 93.3 93.3 97.8 98.9 1.65 0.017 0.730 0.301 

^ Multiple R2 0.30, df 3,8; linear, quadratic and cubic values are P values at an alpha level of 0.05.  

BW, Body weight; P SEM, Pooled standard error mean. 

 15 

 16 

 17 

  18 



Table X. Growth performance and feed utilisation of barramundi fed EPA and ARA diets analysed by 19 

one-way ANOVA. 20 

 

EPA 

1.2 

EPA 

9.5 

EPA 

20.1 

ARA 

1.1 

ARA 

16.4 

FO 

CTR

L 

P 

SE

M 

F  

Valu

e 

P  

Value

^ 

Initial weight (g) 10.3 10.3 10.3 10.4 10.4 10.3 0.01 0.57 0.717 

Final weight (g) 55.6 54.2 53.6 53.8 54.8 56.1 0.31 2.29 0.112 

Weight gained (g) 45.3 43.9 43.3 43.5 44.4 45.8 0.31 2.33 0.106 

BW gain (%) 
439.

5 

426.

0 

420.

3 

419.

7 

428.

7 
442.3 2.99 2.41 0.098 

Daily gain rate (g/d) 1.08 1.05 1.03 1.03 1.06 1.09 0.01 2.33 0.106 

Feed conversion 0.70 0.72 0.73 0.73 0.70 0.69 0.01 2.09 0.137 

Survival (%) 91.1 93.3 93.3 93.3 98.9 91.1 0.01 1.85 0.178 

^ Degrees of freedom 5, 

12. 

 
    

    

BW, Body weight, P SEM, Pooled standard error mean. 

 
 21 
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Table 7. Apparent digestibility (%) of nutrients and fatty acids in diets analysed by one-way ANOVA. 23 

 

EPA 

1.2 

EPA 

9.5 

EPA 

20.1 

ARA 

1.1 

ARA 

16.4 

FO 

CTRL 

P 

SEM 

F  

value 

P  

Value^ 

Dry matter 70.2 69.1 74.0 70.8 67.3 69.2 1.1 0.46 0.800 

Protein 92.3 91.7 93.1 92.0 91.1 92.4 0.3 1.05 0.435 

Lipid 79.3 a 85.2 a 89.3 ab 78.3 a 86.4 a 94.9 b 1.6 11.12 0.001 

Energy 82.3 79.2 84.7 80.0 81.1 83.3 0.8 1.27 0.340 

16:0 70.1 52.7 51.4 63.6 51.8 63.8 2.7 1.64 0.223 

18:0 64.9 a 42.1 cd 28.2 d 53.8 abc 30.7 d 56.8 abc 3.5 16.56 0.000 

18:1 92.1 ab 93.1 a 94.7 a 89.3 ab 93.3 a 84.1 b 1.0 4.87 0.014 

18:2n-6 95.9 ab 94.9 ab 97.0 a 94.4 ab 95.3 ab 92.5 b 0.4 4.31 0.017 

18:3n-3 100.0 100.0 100.0 100.0 100.0 100.0 0.0 NA NA 

20:4n-6 100.0 100.0 99.0 100.0 96.9 100.0 0.3 NA NA 

20:5n-3 100.0 97.8 ab 99.2 b 96.1 a 97.6 ab 96.7 a 0.4 8.70 0.002 

22:5n-3 100.0 100.0 100.0 100.0 95.3 90.4 1.1 NA NA 

22:6n-3 95.6 96 97.9 92.9 95.8 95.7 0.5 2.74 0.071 

SFA 71.3 a 54.5 ab 49.6 b 63.9 ab 50.7 b 66.9 ab 2.4 4.89 0.011 

MUFA 92.4 a 93.6 a 96.0 a 89.8 ab 93.3 a 83.7 b 1.1 8.10 0.002 

C18 PUFA 96.3 a 95.4 ab 97.3 a 94.9 ab 96.0 ab 93.5 b 0.4 5.07 0.010 

LC-PUFA 98.2 a 98.2 a 98.9 a 94.5 c 96.9 ab 95.9 bc 0.4 10.16 0.000 

n-3 96.9 ab 98.2 a 98.9 a 94.4 c 96.7 ab 95.9 bc 0.4 7.88 0.002 

n-6 97.6 a 95.6 ab 97.4 a 95.1 ab 96.6 a 93.5 b 0.4 7.60 0.002 

^ Degrees of freedom 5, 12. 

P SEM, Pooled standard error mean. 
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Table 8. Whole body and fatty acid composition of barramundi analysed by one-way ANOVA (g/kg 26 

live-basis). 27 

  

Initial 

fish 

EPA 

1.2 

EPA 

9.5 

EPA 

20.1 

ARA  

1.1 

ARA 

16.4 

FO 

CTRL 

P 

SEM 

F 

statistic 

P 

value^ 

Dry matter 225.4 266.2a 280.6 ab 284.6 b 275.3 ab 280.4 ab 287.5 b 2.0 4.95 0.011 

Protein 144.4 173.0 182.3 181.1 182.2 178.0 177.4 1.5 0.95 0.482 

Lipid 32.9 55.0 a 63.9 b 66.0 b 61.2 ab 67.5 bc 73.5 c 1.5 12.7 0.000 

Energy (MJ/kg) 47.2 59.9 a 67.0 b 66.4 b 65.2 ab 66.6 b 67.3 b 0.8 4.50 0.015 

16:0 5.5 9.5 a 10.2 a 9.9 a 10.2 a 9.7 a 13.7 b 0.4 36.0 0.000 

18:0 1.8 2.9 a 3.4 b 3.0 ab 3.1 ab 3.5 c 3.5 c 0.1 7.51 0.002 

18:1 7.7 15.1 16.4 15.1 16.5 14.5 14.4 0.3 3.32 0.041 

18:2n-6 2.4 4.8 5.1 5.1 5.2 5.3 4.9 0.1 1.28 0.333 

18:3n-3 0.3 0.4 a 0.4 a 0.5 b 0.4 ab 0.4 a 0.6 c 0.0 33.05 0.000 

20:4n-6 0.2 0.4 a 0.5 a 0.5 a 0.5 a 5.3 b 0.5 a 0.5 1638.9 0.000 

20:5n-3 0.7 0.5 a 2.7 c 5.6 d 1.3 b 1.5 b 2.4 c 0.5 186.1 0.000 

22:5n-3 0.3 0.4 a 1.0 c 1.3 d 0.7 b 0.7 b 1.2 d 0.1 108.9 0.000 

22:6n-3 1.4 1.9 a 2.3 a 2.4 a 2.1 a 2.4 a 4.2 b 0.2 82.93 0.000 

SFA 8.2 13.1 a 14.3 a 13.9 a 14.1 a 13.9 a 19.4 b 0.5 38.90 0.000 

MUFA 9.3 16.6 18.0 16.6 18.1 16.0 18.0 0.3 2.92 0.059 

PUFA 2.8 5.5 5.8 5.9 5.9 6.3 5.8 0.1 2.08 0.139 

LC-PUFA 2.5 3.3 a 6.6 c 9.8 e 4.8 b 10.9 e 8.3 d 0.7 108.47 0.000 

n-3 2.6 3.1 a 6.4 c 9.8 e 4.6 b 4.9 b 8.3 d 0.6 98.78 0.000 

n-6 2.7 5.7 a 6.0 a 5.9 a 6.1 a 12.3 b 5.7 a 0.6 152.3 0.000 

^ Degrees of freedom 5, 12. 

P SEM, Pooled standard error mean. 
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Table 9. Retention efficiency of selected fatty acids in barramundi fed either increasing EPA or ARA 30 

analysed by polynomial contrasts. 31 

  EPA Polynomial contrasts ^ ARA Polynomial contrasts ^ 

  Linear Quadratic Cubic Linear Quadratic Cubic 

18:2n-6 retention 0.000 0.242 0.006 0.000 0.660 0.001 

18:3n-3 retention 0.020 0.989 0.104 0.001 0.094 0.001 

20:4n-6 retention 0.057 0.006 0.209 0.911 0.000 0.178 

20:5n-3 retention 0.167 0.047 0.165 0.303 0.339 0.682 

22:6n-3 retention 0.965 0.201 0.061 0.004 0.006 0.180 

^ Degrees of freedom EPA 4, 10; ARA 3, 8; linear, quadratic and cubic values are P values at an alpha 

level of 0.05. 

 32 

Table 10. Summary of maintenance demand and utilisation efficiencies by barramundi fed either 33 

increasing EPA or ARA. 34 

 

Maintenance 

demand (g/kg LWx/t) 

Efficiency constant 

 k 

Intake:Gain  

ratio 
R2 P value 

20:5n-3; EPA 0.000 0.621 1.610 0.975 <0.01 

20:4n-6; ARA 0.011 0.919 1.088 0.966 <0.05 

  

 35 

  36 



 37 

Figure 1. Specific fatty acid retention efficiency by barramundi fed increasing EPA (a-e) or 38 

ARA (f-j). The control (FO CTRL) fed fish are represented in each figure with a triangle (∆). 39 

Bars indicate standard error means (n=3). 40 
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 42 

Figure 2. Marginal utilisation efficiency assessments of 20:5n-3 (a) and 20:4n-6 (b) gain with 43 

varying intake by juvenile barramundi. Efficiency functions are described by the linear 44 
regression for 20:5n-3 gain y = 0.621x + 0.0003, R2 = 0.975 and 20:4n-6 gain y = 0.919x - 45 
0.011, R2 = 0.965). 46 
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 48 

Figure 3. Eicosanoid pathway and mitochondrial fatty acid oxidation gene expression in the 49 
liver (L) and kidney (K) of juvenile barramundi fed increasing EPA. Gene expression is 50 

normalised to the EF1α and Luc reference genes. Data were analysed by one-way ANOVA 51 

(df 4,28) with letters above bars indicating differences defined as P<0.05. 52 
 53 

 54 

 55 

Figure 4. Eicosanoid pathway and mitochondrial fatty acid oxidation gene expression in the 56 
liver (L) and kidney (K) of juvenile barramundi fed increasing ARA. Gene expression is 57 

normalised to the EF1α and Luc reference genes. Data were analysed by one-way ANOVA 58 

(df 4,28) with letters above bars indicating differences defined as P<0.05. 59 

 60 
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