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 26 

Abbreviations 27 

ACTH: Adrenocorticotropic hormone 28 

ARA: Arachidonic acid (20:4n-6) 29 

CAT: Catalase 30 

COX: Cycloxygenase 31 

CYP11β: cythochrome 11β- hydroxylase 32 

DHA: Docosahexaenoic acid (22:6n-3) 33 

EPA: Eicosapentaenoic acid (20:5n-3) 34 

GH: Growth Hormone  35 

GLC: Gas Liquid chromatography 36 

GPX: Glutathione peroxidase  37 

GR: Glucocorticoid receptor 38 

HSP: Heat Shock Protein 39 

HPI: Hypothalamic-pituitary-Interrenal 40 

IGF: Insuline growth factor 41 

LC-PUFA: Long chain polyunsaturated fatty acid 42 

MW: Molecular weight 43 

PIn: Peroxidation index 44 

PGE: Prostaglandin E 45 

RT-PCR: Real time polymerase chain reaction 46 

SGR: Specific growth rate 47 

SOD: Superoxide dismutase 48 

StAR: Steroidogenic acute regulatory protein. 49 

 50 
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 51 

Abstract 52 

This study reports for the first time in European sea bass, Dicentrarchus labrax (L.), larvae, 53 

the effect of different levels of dietary arachidonic acid (ARA; 20:4n-6) on the expression of 54 

genes related to the fish stress response. Copies of mRNA from genes related to 55 

steroidogenesis (StAR (steroidogenic acute regulatory protein), c-Fos, and CYP11β (11β- 56 

hydroxylase gene)), glucocorticoid receptor complex (GR (glucorticoid receptor) and HSP 57 

(heat shock proteins) 70 and 90) and antioxidative stress (catalase (CAT), superoxide 58 

dismutase (SOD), and glutathione peroxidase (GPX)) were quantified. Eighteen day-old 59 

larvae were fed for 14 days with three experimental diets with increasing levels of ARA 60 

(0.3, 0.6 and 1.2% d.w.) and similar levels of docosahexaenoic (DHA; 22:6n-3) and 61 

eicosapentaenoic (EPA; 20:5n-3) acids (5 and 3%, respectively). The quantification of 62 

stress-related genes transcripts was conducted by One-Step TaqMan real time RT-PCR 63 

with the standard curve method (absolute quantification). Increase dietary levels of ARA 64 

induced a significantly (p<0.05) down-regulation of genes related to cortisol synthesis, 65 

such as StAR and CYP11β and up-regulated genes related to glucocorticoid receptor 66 

complex, such as HSP70 and GR. No effects were observed on antioxidant enzymes gene 67 

expression. These results revealed the regulatory role of dietary ARA on the expression of 68 

stress-related genes in European sea bass larvae.  69 

 70 

 71 

 72 

 73 

 74 

 75 
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 76 

Introduction  77 

Stress response has been widely studied in fish within the last years [1,2,3,4,5,6]. The 78 

rapid elevation of plasma corticosteroid levels in response to stressor challenges is a 79 

constant within the different vertebrates. The stress response in vertebrates is initiated by 80 

the activation of the hypothalamic–pituitary–interrenal (HPI) axis, leading to the increase of 81 

plasma levels of cortisol, which is the main corticosteroid in teleost [1]. Fish interrenal cells 82 

located at the head kidney synthesize cortisol from cholesterol through a series of 83 

isomerizations and hydroxylations, including a final step catalyzed by the P450 11β-84 

hydroxylase enzyme (11β). This enzyme belongs to the cytochrome P450 (CYP) family 85 

proteins, and is encoded by the CYP11β gene [7]. Another protein, the steroidogenic acute 86 

regulatory protein (StAR), is involved in the transport of cholesterol through the 87 

mitochondrial membrane of the steroidogenic cells to be used as substrate for steroids 88 

synthesis [8]. 89 

Following the stimulation by the adrenocorticotropic hormone (ACTH), cortisol is 90 

released into the blood and enters into the cells by passive diffusion. Cortisol effects in the 91 

cells are mediated by the intracellular glucocorticoid receptors (GR), which are members 92 

of the nuclear receptor superfamily and act as ligand-dependent transcription factors to 93 

control and regulate gene expression [4,9]. Glucocorticoid receptor is part of a multiprotein 94 

heterocomplex, which includes several heat shock proteins (HSP) such as HSP70 and 95 

HSP90, whose functions are the assembly, functionality and transport of GR [10]. HSP90 96 

is associated to the GR until a hormone signal induces a conformation with lower affinity 97 

for HSP90. This action enables the GR to target sites of transcriptional activation [10]. 98 

HSP90 and HSP70 play a fundamental role on the folding and assembling of other cellular 99 

proteins and they are involved in regulation of kinetic partitioning between folding, 100 
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translocation and aggregation as well as having a wide role in relation to the immune, 101 

apoptotic and inflammatory processes [11]. Furthermore, HSP molecules help organisms 102 

to survive during conditions of stress, by playing a critical role on the host defenses 103 

against neoplasia and chronic pathogens [11,12].  104 

Dietary lipids have been found to be involved in the regulation of the stress 105 

response in fish [13,14,15,16,17,18,19,20,21]. However, most studies have focused on the 106 

effect of dietary lipids on the ability of fish to cope with stressful conditions and very little is 107 

known about the specific role of particular fatty acids on the activation of the HPI axis.   108 

Watanabe and co-authors [22] showed the essentiality of docosahexaenoic acid 109 

(DHA, 22:6n-3) for the stress response in marine fish larvae. These authors found 110 

progressive lower survival rates of red sea bream, Pagrus major, larvae after air exposure 111 

when DHA decrease in the diet. Dietary arachidonic acid (ARA, 20:4n-6) has been also 112 

shown to increase survival and resistance to stress in gilthead sea bream, Sparus aurata 113 

L., larvae [15,16,23, 24], whereas Liu and co-authors [25] demonstrated the essentiality of 114 

EPA for gilthead sea bream larvae to cope with different types of stress (air exposure, 115 

salinity and temperature shocks) even when DHA and ARA requirements were covered for 116 

this species. For juvenile fish, n-3 long chain – polyunsaturated fatty acids (n-3 LC-PUFA) 117 

have been shown to alter both basal and post-stress plasma cortisol concentration [14] 118 

acting as modulators of the in vitro ACTH-induced release of cortisol from interrenal cells 119 

[26]. On the other hand, ARA seems to regulate stress response in juvenile fish, since Van 120 

Anholt and co-authors [17] found that gilthead sea bream juveniles fed a ARA-121 

supplemented diet (containing 2.4% of total fatty acids) showed lower plasma cortisol 122 

levels after an acute stress (5 min of confinement in a submerged dip-net) as compared to 123 

those fed a low ARA diet (0.9% of total fatty acids). This is in agreement with the 124 

regulatory role of ARA on the ACTH-induced release of cortisol described in vitro for 125 
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gilthead sea bream by Ganga and co-authors [25] and for European sea bass by Montero 126 

and co-authors [21].  127 

Like in mammals, there are some reported evidences on the role of ARA on the 128 

expression of stress-related genes in fish [27]. Indeed, ARA has been reported to have an 129 

effect on the expression of StAR gene in Senegalese sole whole post-larvae [27], but a 130 

correlation between dietary levels of ARA and the expression of this gene was not found. 131 

In another study, Montero and co-authors [21] found no effect of ARA in the expression of 132 

the steroidogenic gene StAR, in European sea bass head kidney but demonstrated a 133 

direct effect of ARA on the in vitro mRNA levels of another steroidogenic gene, the 134 

CYP11β.   135 

Arachidonic acid has also been described as a potent modulator of HSPs in a dose 136 

dependent manner in human respiratory epithelial-like cells [29], but also in fish [21]. 137 

Furthermore, a direct effect of dietary lipids and in particular of ARA on the expression of 138 

GR gene has been demonstrated in fish [28,30].  139 

Accordingly, the aim of this study was to evaluate the effect of different dietary 140 

levels of ARA on basal expression levels of stress-related genes in European sea bass, 141 

Dicentrarchus labrax (L.), at larval stage in order to elucidate how ARA is affecting stress 142 

response at early stages of development of this species. European sea bass is one of the 143 

most important species of Mediterranean aquaculture and it has been reported to have a 144 

high susceptibility to stressful conditions [4].   145 

 146 

Materials and methods 147 

All the experimental conditions and sampling protocols have been approved by the 148 

Animal welfare and bioethical committee of the University of Las Palmas de Gran Canaria 149 

(Ref 007/2012 CEBA ULPGC). 150 
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Experimental diets 151 

Three isonitrogenous and isolipidic (64/19 protein/lipid) experimental microdiets (Pellet 152 

size < 250 μm) with similar DHA and EPA content (5 and 3%, respectively), with constant 153 

EPA/DHA ratio, and with increasing ARA levels (0.3, 0.6 and 1.2 %) were formulated using 154 

EPA50, DHA50 (CRODA, East Yorkshire, England, UK) and ARA44 (Polaris, Pleuven, 155 

France) as sources of EPA, DHA and ARA in triglyceride form, respectively. Composition 156 

of the diets and their fatty acid content are shown in Table 1 and 2, respectively.  157 

 158 

Experimental fish 159 

European sea bass larvae were obtained from natural spawning at Ecloserie Marine de 160 

Gravelines, Gravelines, France and the experiment was carried out at the Aquaculture 161 

facilities of University of Las Palmas de Gran Canaria (Telde, Las Palmas, Canary Islands, 162 

Spain). Larvae (standard length 6.77 ± 0.71 mm (mean ± SD), mean dry body weight 350 163 

± 21μg), previously fed a commercial microdiet until they reached 18 days old, were 164 

randomly distributed over the experimental tanks at a density of 1200 larvae tank-1 and 165 

fed one of the experimental diets tested in triplicates (3 tanks/diet) for 14 days, at a water 166 

temperature of 19.6 to 20.9 ºC. All tanks (170 L light grey color cylinder fibreglass tanks) 167 

were supplied with filtered seawater (37 ppm salinity) at an increasing rate of 0.4 - 1.0 L 168 

min-1 to assure optimal water quality along the whole trial. Water entered the tank from the 169 

bottom and flow out from the top to maintain high water quality, which was tested daily. 170 

Water was continuously aerated (125 ml/min) attaining 5-8 g L-1 of dissolved O2 and 60-171 

80% of saturation in all tanks. Photoperiod was kept at 12h light: 12h dark. Feeds were 172 

manually supplied; fourteen times per day every 45 min from 9:00-19:00. Daily feed 173 

supplied 2.0 and 2.5 g tank-1 during the first and second week of feeding respectively.  174 

 175 
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Sampling procedures 176 

Final survival was determined by counting live larvae at the beginning and end of the 177 

experiment. Growth was determined by measuring the dry body weight (105°C, 24 h) and 178 

the total length (Profile Projector V-12A; Nikon, Tokyo, Japan) of 30 fish tank-1 at the 179 

beginning, in the middle, and at the end of the trial. The specific growth rate (SGR) was 180 

determined according to the equation: SGR= (ln final body weight)-(ln initial body weight) x 181 

100/t, where t is days of the feeding period. In addition, at the end of the trial and after 12 182 

h of starvation, all the larvae in each tank were washed with distilled water, sampled and 183 

kept at -80°C for biochemical composition analysis. In addition, at the end of the 184 

experiment, twenty larvae (32 days old) from each tank were sampled randomly, quickly 185 

frozen in liquid nitrogen and then kept at -80ºC until gene expression analysis.  186 

After the end of the experiment, an activity test was conducted by handling 20 larvae per 187 

tank out of the water in a scoop net for 1min. After this, the larvae were placed in another 188 

tank supplied aeration to determine survival rate after 24h of activity test.  189 

 Biochemical composition analysis 190 

The moisture [31], protein [31] and crude lipid [32] contents of larvae and diets were 191 

analyzed. Fatty acid methyl esters were obtained by transmethylation of crude lipids as 192 

described by Christie [33]. Fatty acid methyl esters were separated by GLC (GC-14A; 193 

Shimadzu, Tokyo, Japan) in a Supercolvax-10-fused silica capillary column (length: 30m; 194 

internal diameter: 0.32mm; Supelco, Bellefonte, PA, USA) using helium as a carrier gas. 195 

The column temperature was set at 180°C for the rest 10 min, increasing to 215 °C at a 196 

rate of 2.5°Cmin-1, and then held at 215°C for 10 min. Fatty acid methyl esters were 197 

quantified by FID (GC- 14A; Shimadzu) following the conditions described in Izquierdo and 198 

co-authors [34] and identified by comparison with previously characterized standards (EPA 199 

28, Nippai, Ltd. Tokyo, Japan) and GLC-MS. The peroxidation index (PIn) was used to 200 



 9 

estimate the susceptibility of lipids to oxidation and was calculated by the formula: PIn= 201 

0.025 × (percentage of monoenoics) + 1 × (percentage of dienoics) + 2 × (percentage of 202 

trienoics) + 4 × (percentage of tetraenoics) + 6 × (percentage of pentaenoics) + 8 × 203 

(percentage of hexaenoics) [35]. 204 

 205 

Quantitative real-time RT-PCR 206 

Preparation of total RNA 207 

Total RNA was extracted from all the sampled whole larvae using PureYield RNA Midiprep 208 

System (Promega, Italy), following the protocol described in PureYield™ RNA Midiprep 209 

System Technical Manual #TM279, available online at: www.promega.com/tbs.  210 

The quantity of the extracted RNA was calculated using the absorbance at 260 nm, 211 

whereas the integrity of RNA was assessed by agarose gel electrophoresis. Crisp 18S and 212 

28S bands, detected by ethidium bromide staining were indicator of the intact RNA. 213 

 214 

Generation of in vitro-transcribed mRNAs for standard curves 215 

The approach used for the real-time quantification of our target genes expression relied on 216 

the standard curve method for target mRNA quantification. The target genes were c-Fos, 217 

StAR, CYP11β, HSP70 and HSP90, SOD, CAT, and GPX. Following this method, the 218 

number of each gene transcript copies could be quantified by comparing them with a 219 

standard graph constructed using the known copy number of mRNAs of each target gene. 220 

The first step in this direction is the generation of standards of mRNAs by in vitro-221 

transcription. As an example, in the case of c-Fos, a forward and a reverse primer were 222 

designed based on the mRNA sequences of D. labrax c-Fos we have previously identified 223 

[36] (Genebank accession nº.  DQ838581). This primer pair was used to create templates 224 

for the in vitro transcription of mRNAs for c-Fos: the forward primer was engineered to 225 
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contain a T3 phage polymerase promoter gene sequence to its 5’ end (5’-226 

caattaaccctcactaaagggTCTCACAGAGCTCACCCCTA- 3’) and used together with the 227 

reverse primer (5’- TGGTCTCCATTACTCCTTCCC -3’) in a conventional RT-PCR of total 228 

sea bass head kidney RNA. RT-PCR products were then checked on a 2.5 % agarose gel 229 

stained with ethidium bromide, cloned using pGEM®-T cloning vector system (Promega, 230 

Italy) and subsequently sequenced in the SP6 direction.  231 

In vitro transcription was performed using T3 RNA polymerase and other reagents 232 

supplied in the Promega RiboProbe In Vitro Transcription System kit according to the 233 

manufacturer’s protocol.  234 

The molecular weight (MW) of the in vitro-transcribed RNA for c-Fos was calculated 235 

according to the following formula:  236 

c-Fos MW = [129(n° of A bases) x 329.2) + 69 (n° of U bases) x 306.2) + 66(n° of C 237 

bases) x 305.2) + 98(n° of G bases) x 345.2) ] + 159. The result was 126182.2. 238 

Spectrophotometry at 260 nm gave a concentration of 132.8 ng/l for c-Fos. Therefore, 239 

the concentration of the final working solution was 6.34 x 1011 molecules/l.  240 

The same aforementioned approach was used for the in vitro transcription of the other 241 

target genes such as StAR, CYP11β, GR, HSP90, HSP70, CAT, SOD, and GPX. The 242 

primers used are shown in Table 3.  243 

The MW of the in vitro-transcribed RNAs calculated according to the aforementioned 244 

formula were 117433.8 for HSP70; 73451.4 for StAR, and 96414.6 for CYP11β. 245 

Spectrophotometry at 260 nm gave a concentration of 33.7 ng/l for HSP70; 201.1 for 246 

CYP11β, and 104.0 for StAR. Therefore, the concentration of the final working solutions 247 

were 1.73 x 1011 molecules/l for HSP70, 1.26 x 1012 for CYP11β, and 8.53 x 1011 248 

molecules/l for StAR.  249 
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The mRNAs of target genes produced by in vitro transcription were used as quantitative 250 

standards in the analysis of experimental samples. Defined amounts of mRNAs of each 251 

gene, at 10-fold dilutions, were subjected to real-time PCR using One-Step TaqMan EZ 252 

RT-PCR Core Reagents (Life Technologies, Italy), including 1x Taqman buffer, 3 mM 253 

MnOAc, 0.3 mM dNTP except dTTP, 0.6 mM dUTP, 0.3 M forward primer, 0.3 M 254 

reverse primer, 0.2 M FAM-6 (6-carboxyfluorescein-labeled probe), 5 units rTH DNA 255 

polymerase, and 0.5 units AmpErase UNG enzyme in a 30 l reaction. The RT- PCR 256 

conditions were: 2 min at 50°C, 30 min at 60°C, and 5 min at 95°C, followed by 40 cycles 257 

consisting of 20 s at 92°C, 1 min at 62°C. The Ct values obtained by amplification were 258 

used to create standard curves for target genes. 259 

 260 

Quantification of mRNAs by One-Step TaqMan real time RT-PCR 261 

A hundred nanograms of total RNA extracted from the experimental samples was 262 

subjected, in parallel to 10-fold-diluted, defined amounts of standard mRNAs, to real-time 263 

PCR under the same experimental conditions. Real-time Assays-by-DesignSM PCR 264 

primers and gene-specific fluorogenic probes were designed by Life Technologies. Primer 265 

sequences and Taqman probes of the four target genes are shown in Table 4. 266 

TaqMan® PCR was performed on a StepOne Real Time PCR System (Life Technologies). 267 

To reduce pipetting errors, master mixes were prepared to set up duplicate reactions (2 x 268 

30 µl) for each sample.  269 

Data from Taqman® PCR runs were collected with StepOne Real Time Sequence Detector 270 

Program. Cycle threshold (CT) values corresponded to the number of cycles at which the 271 

fluorescence emission monitored in real time exceeded the threshold limit. The Ct values 272 

were used to create standard curves to serve as a basis for calculating the absolute 273 

amounts of mRNA in total RNA.  274 
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 275 

Statistical analysis 276 

The qPCR data were analysed by one way analysis of variance (ANOVA) and each time 277 

point was analysed separately. A post hoc test was applied (Tukey). We used statistics 278 

package was IBM SPSS Statistics 21 (SPSS Inc., Chicago, IL, USA). The other data were 279 

statistically compared using one-way ANOVA followed by a Tukey multiple comparison of 280 

means (SPSS Inc., Chicago, IL, USA). To model the relationships between ARA inclusion 281 

levels and other studied parameters multiple linear regression analysis was used. The 282 

level of statistical significance was set at P< 0.05.  283 

 284 

Results  285 

Larval culture performance 286 

Fish accepted well all the experimental diets, regardless the ARA content in the diet. 287 

Increase in dietary ARA significantly (R2=0.9739, p= 0.0002) reduced the PIn in the larvae 288 

(Fig.1a), despite similar PIn values were found in the diet. Raising dietary ARA levels also 289 

increased (R2=0.9963, p=0.0001) incorporation of ARA into larval tissues (Fig.1b), which in 290 

turn were also correlated (R2=0.9905, p=0.1619) with slight increase in larval survival 291 

(Fig.1c). Nevertheless, final survival rate was not significantly different among larvae fed 292 

the different affected ARA levels. Larval growth in terms of SGR was also significantly 293 

(p<0.05) increased by dietary ARA levels (4.03±0.38, 4.71±0.62 and 5.26±0.24 for 0.3, 0.6 294 

and 1.2 %ARA respectively), and was highly correlated (R2=0.9908, p=0.0096) with the 295 

ARA content in larval whole body (Fig. 1d). Whole body lipid content of the larvae was not 296 

significantly affected by the experimental diets (data not showed) and fatty acid 297 

composition of total lipids from whole larvae reflected the dietary fatty acid profiles. Thus, 298 
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increased dietary ARA levels were followed by increased 18:0, 18:2n-6, and ARA and 299 

reduced monounsaturated and n-9 fatty acids, and 18:1n-9 (Table 5).  300 

StAR, c-Fos, CYP11β, GR, HSP70 and HSP90 mRNA copies in sea bass larvae fed 301 

different levels of dietary ARA  302 

Larvae fed low levels of ARA in the diet (0.3%) showed significantly higher (p<0.05) mRNA 303 

copies of StAR gene, in comparison to larvae fed high levels of dietary ARA (1.2%) (Fig 304 

2a). Moreover, elevation of dietary ARA was negatively correlated (R2=0.9929, p=0.0001) 305 

with the expression of StAR gene. In the same way, mRNA copies of CYP11β gene were 306 

significantly higher (p<0.05) in larvae fed on the 0.3ARA diet in comparison to those fed on 307 

0.6ARA and 1.2ARA diets, and was also negatively correlated (R2=0.4433, p=0.4592) to 308 

dietary ARA although in a lower extent than StAR gene expression (Fig. 2c). Arachidonic 309 

acid levels in the diet did not influence the mRNA copy number of c-Fos, as no differences 310 

were found in the expression levels of this gene in larvae fed different diets (Fig.2b).  311 

The mRNA levels of GR gene increased in larvae with the increase of ARA in their diet. 312 

Indeed, larvae fed with 1.2ARA showed the highest (p<0.05) copies of this gene mRNAs, 313 

with a value of (5.80E+01), 2 folds higher than that found in larvae fed 0.3ARA diet 314 

(2.93E+01) (Fig. 3a). Thus, a significant (R2=0.9952, p=0.0008) positive correlation was 315 

observed among the mRNA copies of GR gene and dietary ARA. The lowest ARA content 316 

in the diet induced the expression of HSP90 (Fig. 3b). Indeed the mRNA abundance of 317 

this gene was significantly higher (p<0.05) in larvae fed 0.3ARA than in those fed 0.6 and 318 

1.2ARA (Fig. 3b), and therefore, a positive correlation (R2=0.9996, p=0.1500) was found 319 

with the increased dietary ARA levels (Fig. 3b). An opposite trend was recorded for 320 

HSP70: the highest mRNA copies of this gene were found in sea bass larvae fed on the 321 

1.2 ARA diet and the lowest in larvae fed on 0.3 and 0.6 ARA (Fig. 3c), with a significant 322 

correlation (R2=0.7427, p=0.0009) among both parameters. Moreover, survival of larvae 323 
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after a handling stress was correlated (R2=0.4006, p=0.1541) to the increased mRNA 324 

copies of GR gene (Fig 3d). 325 

Regarding the expression of oxidative stress enzymes, there were no significant 326 

differences on mRNA copies of CAT, SOD, or GPX genes (Fig. 4a,b,c). Nevertheless, a 327 

negative correlation was found among SOD and CAT gene expression with dietary ARA 328 

(Fig. 4a,b). Thus a high positive correlation (R2=0.9915, p=0.0001) was found among the 329 

CAT gene expression and the PIn in the larvae (Fig. 4d). 330 

 331 

Discussion 332 

As it occurs in other species [17,37,38,39,40], in the present study dietary ARA levels 333 

included in microdiets significantly improved European sea bass growth and were 334 

positively correlated to final larval survival (R2 = 0.9997), suggesting the importance of 335 

ARA to promote European sea bass performance along larval development. Accordingly, 336 

higher Insuline Growth Factor-1 (IGF-1) and growth hormone (GH) gene expressions were 337 

found in larvae fed higher levels of ARA (data not shown) denoting the role of this fatty 338 

acid as a growth promoter. Fatty acids seem to increase IGF-1 gene expression through 339 

the effect of arachidonic acid- cycloxygenase (COX)-derived prostaglandin E (PGE) [41, 340 

42]. These growth factors are also related to stress and stress-mediated cortisol release, 341 

being IGF-I expression reduced by cortisol in sea bass juveniles [43] and in silver sea 342 

bream (Sparus sarba Forsskål) hepatocytes [44]. In the present study, fish fed higher 343 

dietary ARA levels showed higher growth-related genes expression and low expression of 344 

CYP11β, suggesting a combined effect of dietary ARA on growth and resistance to stress 345 

in European sea bass larvae.  346 

The mRNA levels of genes related to cortisol synthesis (StAR and CYP11β) were 347 

reduced in larvae fed the highest ARA level, in agreement with studies conducted in 348 
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gilthead sea bream larvae [40]. Since increased abundance of CYP11β mRNA has been 349 

related to cortisol synthesis, this result suggests lower basal cortisol levels when ARA 350 

increases in diet [45]. Furthermore, ARA is a preferred substrate for COX to produce 351 

prostaglandins [46] that mediate a rapid ACTH-induced release of corticosteroid stored in 352 

microvesicules [47] and regulate steroidogenesis, inhibiting StAR gene expression and 353 

decreasing progesterone production in a dose-dependent manner [47]. Indeed, the effect 354 

of ARA levels on in vitro ACTH-induced release of cortisol from gilthead sea bream 355 

interrenal cells depends, at least in part, on COX activity [26]. Moreover, there is a dose-356 

dependent effect of fatty acids on the in vitro ACTH-induced release of cortisol by 357 

interrenal cells in fish [26]. Accordingly, in the present study, increased dietary ARA would 358 

enhance COX activity and prostanoids synthesis down-regulating StAR gene expression 359 

that would reduce basal cortisol release.  360 

Dietary ARA did not seem to have an effect on the other steroidogenic gene 361 

studied, c-Fos, which is a member of the activation protein one (AP-1) response elements 362 

[49].  The role of the AP-1 response elements on the steroidogenesis has been described 363 

in mammals [50]. In fish, we have previously found an effect of DHA but not of ARA on the 364 

mRNA levels of c-Fos [21] that could explain the lack of an effect of dietary ARA levels on 365 

c-Fos mRNA levels in the present study, since DHA levels were equal in both diets and 366 

whole larvae. On the other hand, it could also be feasible that c-Fos regulation occurs at 367 

protein level, as opposed to transcriptional level of mRNA expression.  368 

A positive relationship between dietary ARA and larval GR mRNA copies was found 369 

in the present study, whereas a negative relationship was found in the case of CYP11β, 370 

which is involved in cortisol synthesis. These results are in agreement with the high 371 

correlation between basal GR expression levels and ARA content in Senegalese sole 372 

larvae [28]. Besides, the type of dietary oils and, hence, dietary essential fatty acids 373 
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markedly affects GRs genes expression in different tissues of Senegalese sole [30]. Thus, 374 

significantly higher levels of GR expression were found after a chasing stress in 375 

Senegalese sole fed a fish oil-based diet (with high ARA levels) in comparison to animals 376 

fed a vegetable oil-based diet (with low ARA levels) [30].  In previous studies in juvenile 377 

European sea bass reared at high density, a reduction of GR mRNA levels was found with 378 

increased blood cortisol concentration [4]. Similar relationship between cortisol and GR 379 

mRNA levels has been also described in mammals [51]. On the contrary, a previous in 380 

vitro study in rainbow trout (Oncorhynchus mykiss) hepatocytes found an up-regulation of 381 

GR mRNA abundance by cortisol [52], and similar results were also obtained in vivo [53] 382 

when trout were treated with cortisol mimicking stressed physiologically elevated plasma 383 

cortisol concentration. The authors of both studies suggested a negative feedback 384 

regulation of GR transcripts, through inhibition of the translational machinery and/or post-385 

translational modifications resulting in enhanced GR breakdown [53]. However, this 386 

apparent controversy may be due to species-specific differences and the effect of different 387 

stressors, taking into account that our results targeted cortisol receptor basal levels, rather 388 

than ACTH-induced level of expression. Besides, whole body larvae have been used in 389 

this study, and ARA effects have been shown to regulate activation of GR complexes in a 390 

dose-tissue-dependent manner [54].  391 

In this way, a dose-dependent relationship has been also described between ARA 392 

and the transcription levels of chaperone proteins associated to GR, the heat shock 393 

proteins, via acquisition of DNA-binding activity and phosphorylation of heat shock factor 394 

[55]. In the present study, larvae fed with highest ARA level showed the highest HSP70 395 

basal expression, together with the highest GR basal expression, pointing out the 396 

important function of HSP70 in GR assembly and maintenance. Besides, larvae with 397 

highest expression of HSP70 had the lowest transcript levels of CYP11β, which agrees 398 
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with previous studies that have demonstrated that cortisol reduces the HSP70 expression 399 

[56, 57] . In our previous studies in Senegalese sole, dietary vegetable oils (low in ARA) 400 

reduced the expression of HSP90 gene in muscle and that of HSP70 in intestine, in 401 

comparison to fish fed a fish oil based diet (high in ARA) [30]. PUFAs and, particularly, 402 

ARA have been shown to increase the heat induced stress response in rainbow trout 403 

leukocytes [58]. 404 

Although the stress response has been linked to the activity of the antioxidant 405 

enzymes in fish [59, 60], there were no significant differences on CAT, SOD and GPX 406 

transcripts. We can thus exclude an indirect effect on stress-related gene expression due 407 

to changes in antioxidant enzymes. Nevertheless, it must be noted that the peroxidation 408 

index, a parameter that measures the susceptibility to oxidation, was similar in tissues of 409 

larvae fed three different diets. This fact could explain why antioxidant enzymes gene 410 

expression did not differ among sea bass larvae fed increasing dietary ARA contents. In 411 

addition, the oxidative potential of ARA is known to be not as high as that of other n-3 LC-412 

PUFA such as EPA or DHA [61]. In this sense, a recent study in zebrafish (Danio rerio) 413 

demonstrated diverging GPX3 and GPX4b gene expression in liver of fish fed diets with 414 

high or low peroxidation index generated by increasing DHA dietary levels [63].  415 

Dietary and larval ARA contents were also found to be correlated to survival after 416 

activity test in European sea bass larvae [23]. The relation between dietary ARA and 417 

resistance to stress in fish larvae has been discussed in several studies [37]. Dietary 418 

supplementation with ARA at 6–12% promoted the adaptive physiological responses to 419 

hypersalinity stress and hypo-osmoregulatory ability in black sea bass (Centropristis 420 

striata) larvae [63]. Gilthead sea bream larvae fed ARA enriched rotifers prior to an acute 421 

handling stress showed significantly reduced accumulated mortality following tank transfer 422 

[15]. However, the same enrichment in Artemia had no effect on larvae survival when fed 423 
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after transfer stress [15]. Moreover, in red sea bream [64] dietary ARA levels similar to 424 

those used in gilthead sea bream [15] did not affect handling stress resistance, whereas 425 

higher ARA levels markedly reduced it. Overall, these studies suggest the difference in 426 

quantitative ARA requirements among species, the dose-dependant effect of this fatty acid 427 

and the interrelations with other fatty acids [65]. Indeed, in the present study, ARA was 428 

increased in microdiets maintaining constant levels of DHA and EPA, whereas when 429 

gilthead sea bream was fed on Artemia [15], ARA supplementation reduced both EPA and 430 

DHA in this live prey. Thus the positive relationship between ARA and whole body cortisol 431 

found in gilthead sea bream larvae [15] could have been also related to the reduction in 432 

other essential fatty acids, such as DHA. Therefore, ARA effects on stress resistance 433 

seem to depend on ARA doses, species or type of stress, and on the dietary ratios with 434 

other fatty acids such as EPA and DHA, since these fatty acids are also essential for 435 

stress resistance [13,22,25].  436 

In conclusion, 1.2% of ARA in the diet seems to have beneficial effects on 437 

European sea bass larvae, when EPA and DHA requirements are fulfilled, by optimizing 438 

the basal levels of stress-related genes. By decreasing cortisol-synthesis related CYP11β 439 

gene expression, basal (unstressed) circulating cortisol concentration is expected to be 440 

lower, avoiding the negative effects of chronic high levels of glucocorticoids in the blood. 441 

Besides, by increasing glucocorticoid receptor complex-related genes (GR and HSP70) 442 

basal expression, tissues are expected to be better prepared to cope with a stress-related 443 

increase of circulating glucocorticoids, optimizing thus the ability of these animals to cope 444 

with a stressful situation and enhancing larvae welfare.  445 
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List of Figures 659 

Fig. 1.- Composition and performance of European sea bass fed 3 different dietary ARA 660 

levels for 14 days: a) Peroxidation index in larval whole body, b) ARA contents in larval 661 

whole body, c) survival rate at the end of the trial, d) larval growth during the trial. n = 3 (20 662 

larvae in each tank). Different letters indicate significant (p<0.05) differences among fish 663 

fed different diets  664 
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Fig. 2.- Absolute mRNA levels of genes related with steroidogenesis: a) StAR, b) c-Fos 665 

and c) CYP11β in whole body European sea bass larvae fed 3 different dietary levels of 666 

ARA. n = 3 (20 larvae in each tank). Different letters indicate significant (p<0.05) 667 

differences among fish fed different diets  668 

Fig. 3.- Absolute mRNA levels of genes related with glucocorticoid receptor complex: a) 669 

GR, b) HSP90 and c) HSP70 in whole body European sea bass larvae fed 3 different 670 

dietary levels of ARA, and their relation to stress resistance. n = 3 (20 larvae in each tank). 671 

Different letters indicate significant (p<0.05) differences among fish fed different diets 672 

Fig. 4.- Absolute mRNA levels of genes related with oxidative stress enzymes: a) SOD, b) 673 

CAT and c) GPX in whole body European sea bass larvae fed 3 different dietary levels of 674 

ARA and d) their relation with the peroxidation index. n = 3 (20 larvae in each tank). 675 

Different letters indicate significant (p<0.05) differences among fish fed different diet 676 

  677 
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Table 1. Main lipid ingredient composition and analyzed lipid, protein, moisture contents 678 

and peroxidation index of the experimental diets (g/100g diet d.w.) 679 

 Diets 

 0.3ARA 0.6ARA 1.2ARA 

Defatted squid powder 1  69.00 68.85 68.60 

DHA452 8.00 8.00 7.90 

EPA452 4.50 4.50 4.30 

ARA442 0.00 0.70 2.00 

Oleic acid3 2.40 1.70 0.70 

Vitamin premix4 6.00 6.00 6.00 

Mineral premix5 2.50 2.50 2.50 

Lipid content (d.w.) 20.72 20.46 20.50 

Protein content (d.w.) 70.38 70.27 70.17 

Moisture content (%) 9.2 8.91 8.93 

ARA (% dw) 0.30 0.62 1.25 

Peroxidation index (PIn) 75.18 75.18 75.25 
 680 

1 Riber and Son, Bergen, Norway. 2Polaris, Pleuven, France.3Merck, Darmstadt, Germany. 4Vitamin premix 681 

supplied per 100g diet: Cyanocobalamine, 0.030; Astaxanthin, 5.00; folic acid, 5.44; pyridoxine-HCI, 17.28; 682 

thiamine, 21.77; riboflavin, 72.53; Ca-pantothenate, 101.59; paminobenzoic acid, 145.00; nicotinic acid, 683 

290.16; myo -inositol, 1450.90; retinol acetate, 0.180; -tocopherol acetate, 150.000. 5Mineral premix 684 

supplied g per 100g diet: NaCl, 215.133; MgSO4 ·7H2 O, 677.545; NaH2 PO4 ·H2 O, 381.453; K2 HPO4 , 685 

758.949; Ca(H2 PO4 )·2H2 O, 671.610; FeC6 H5 O7 , 146.884; C3 H5 O3 ·1/2Ca,1617.210; Al2 (SO4 )3 686 

·6H2 O, 0.693; ZnSO4 ·7H2 0, 14.837; CuSO4 ·5H2 O, 1.247; MnSO4 ·H2 O, 2.998; KI, 0.742; CoSO4 ·7H2 687 

O, 10.706. 688 
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Table 4. Primers and probes used for One Step quantitative real-time RT-PCR. 698 

Gene Symbol Nucleotide sequence (5’-3’) 

One step Taqman  

real time  

standard curve 

quality 

 

c-Fos 

 

c-Fos 

 

Fw: CAGCAAAATGCCGCAACAG 

Rv: TGGACTTCTCATCCTCTAGCTGATC 

Taqman Probe: GAGCTTACAGACACTCTG 

 

R2 = 0.995 

Efficiency = 89.45% 

 

Steroidogenesis 

acute 

regulatory 

protein 

StAR 

Fw: AGCGGAGAATGGACCTACCT 

Rv: GAAGACCCAAATAAGACCAAGTTCAC 

Taqman Probe: 

ATAGTCATGAAGCCCTGTG 

 

R2 = 0.982 

Efficiency = 90.379% 

Cytochrome 

P450 11β 
CYP11 β 

Fw: CTTCGGCAGTAAAGTGCTTTCTAC 

Rv: GGATTTCTGTCGAATGCTGCG 

Taqman Probe: GCTTGATGAGGTGGCGA 

 

R2 = 0.993 

Efficiency = 82.47% 

Heat shock 

protein 70 
HSP70 

Fw: GGACATCAGCCAGAACAAGAGA 

Rv: GAGAACCCTGTCCTCCAGC 

Taqman Probe: GCTTGTGAGAGGGCCAA 

 

R2 = 0.996 

Efficiency = 99.276% 

Glucocorticoid 

receptor 
GR 

Fw: GCCTTTTGGCATGTACTCAAACC 

Rv: GAACAGGTATGGAGAGTCGTCC 

Taqman Probe: GTGGTTGGGGAGAGCTG 

 

R2 = 0.997 

Efficiency = 94.417% 

Heat shock 

protein 90 
HSP90 

Fw: CCAACGACTGGGAGGATCAC 

Rv: GAGTTCCGGGCCCTGC 

Taqman Probe: CTGTCAAGCACTTCTCG 

 

R2 = 0.998 

Efficiency = 86.23% 

Superoxide 

dismutase 
SOD 

Fw: TGGAGACCTGGGAGATGTAACTG 

Rv: CAAGATAGACATCACGGACAAGA 

Taqman Probe: CAGGAGGAGATAACATTG 

 

R2 = 0.994 

Efficiency = 96.23% 

Catalase CAT 

Fw: ATGGTGTGGGACTTCTGGAG 

Rv: CATCAGGTGTCTTTCTTGTTCAGC 

Taqman Probe: TGAGGCCTGAGTGTCTG 

 

R2 = 0.996 

Efficiency = 97.23% 

Glutathione 

peroxidase 
GPX 

Fw: AGTTAATCCGGAATTCGTGAG 

Rv: GTTTTACGACCTGACAGCTAAGCT 

Taqman Probe: AATGGCTGGAAACGTG 

 

R2 = 0.998 

Efficiency = 93.23% 
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 703 

Table 5. Fatty acid composition of total lipids from European sea bass larvae after 704 

14 days of feeding different levels of dietary ARA. 705 

   706 
 0.3ARA 0.6ARA 1.2ARA 

14:0 0.64±0.01 0.97±0.56 0.60±0.04 

14:1n-7 0.09±0.02 0.10±0.01 0.07±0.0 

14:1n-5 0.08±0.03 n.d. 0.09±0.01 

15:0 0.32±0.03 0.34±0.04 0.30±0.03 

15:1n-5 0.13±0.01 0.13±0.00 0.11±0.00 

16:0ISO 0.23±0.02 0.22±0.03 0.24±0.06 

16:0 15.84±1.73 15.20±0.90 19.74±4.48 

16:1n-9 0.79±0.35 1.27±1.20 19.74±4.48 

16:1n-7 6.07a±0.25 6.65b±0.07 0.65±0.21 

16:1n-5 0.14±0.09 0.18±0.14 0.15±0.12 

16:2n-6 0.28±0.01 0.29±0.04 0.24±0.04 

16:2n-4 0.34±0.01 0.41±0.17 0.29±0.01 

17:0 0.66±0.09 0.62±0.07 0.85±0.26 

16:3n-4 0.44±0.03a 0.45±0.10a 0.31±0.04b 

16:4n-3 0.47±0.30 0.68±0.10 0.70±0.12 

16:4n-1 0.53±0.15 0.40±0.06 0.36±0.11 

18:0 7.51±6.67 8.70±1.02 14.05±6.49 

18:1n-9 11.84±2.38 12.76±01.08 10.51±2.12 

18:1n-7 6.85±6.42 3.18±0.13 2.74±0.51 

18:1n-5 1.25±1.91 0.17±0.02 0.17±0.01 

18:2n-6 2.32±1.89 3.52±0.27 3.18±0.61 

18:3n-6 0.29±0.1a 0.35±0.01ab 0.50±0.09 b 

18:3n-3 1.02±0.05 1.08±0.02 0.94±0.21 

18:4n-3 0.53±0.02 0.84±0.54 0.45±0.04 

20:0 0.45±0.15 0.34±0.05 0.58±0.35 

20:1n-9 1.79±0.05a 1.77±0.08a 1.46±0.19 b 

20:1n-7 014±0.04 0.10±0.01 0.09±0.02 

20:2n-9 0.73±0.01 0.70±0.05 0.69±0.09 

20:3n-9 0.11±0.05 0.19±0.00 0.22±0.08 

20:4n-6 2.96±0.15a 4.06±0.38a 5.80±1.22 b 

20:4n-3 0.36±0.01 0.42±0.12 0.29±0.02 

20:5n-3 10.18±0.64 ab 11.32±2.21a 7.92±1.17b 

22:1n-11 0.22±0.04 0.34±0.19 0.21±0.04 

22:4n-6 0.72±0.05 0.69±0.05 0.61±0.11 

22:5n-3 1.13±0.11 1.27±0.29 1.04±0.11 

22:6n-3 26.26±2.31 25.95±0.90 23.09±4.48 

ΣSaturated 25.23±8.10 25.95±1.52 35.94±11.57 

ΣMonoenoics 24.10±6.24 20.70±0.39 17.22±3.17 

Σn-3 39.93±3.02 38.74±1.79 32.34±5.75 

Σn-6 6.57±1.87a 8.91±0.66ab 10.32±2.25b 

Σn-9 15.27±2.5 16.69±0.18 13.53±2.25 

Σn-3 HUFA 37.93±3.02 38.74±1.79 32.34±5.75 

EPA/DHA 0.39±0.01 0.44±0.10 0.34±0.02 

ARA/EPA 0.29±0.01a 0.36±0.09a 0.73±0.07b 

n-3/n-6 6.08±2.24a 4.64±0.61ab 3.34±0.03b 

n.d.: not detected. Different letters within a line denote significant differences (P≤0.05) for each tissue. 707 
Values expressed in mean ± SD. (n = 3 tanks/diet). 708 
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Figure 1 714 
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Figure 2 719 
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Figure 3 726 
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Figure 4 732 
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