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Abstract—We define a logical framework that permits runtime
verification to take place when a monitor has incomplete or
uncertain information about the underlying trace. Uncertainty is
modeled as a stateful access control proxy that has the capacity to
turn events into sets of possible events, resulting in what we call a
“multi-trace”. We describe a model of both proxy and monitor as
extensions of Mealy machines, and provide an algorithm to lift a
classical monitor into a sound, loss-tolerant monitor. Experiments
on various scenarios show that the approach can account for
various types of data degradation and access limitations, provides
a tighter verdict than existing works in some cases, and preserves
scalable performance of the model.

Index Terms—stateful, proxy, multi-trace, loss-tolerant moni-
tor, degradation, access limitation

I. Introduction
Runtime Verification (RV) is the process of observing a

sequence of events produced by a running software system,
and determining whether this sequence satisfies a given
property expressed in a formal notation [15]. Depending on the
context, the source of events given to the monitor may come
from instrumentation instructions manually inserted inside the
system’s code, logging statements normally produced by the
system, external readings from devices such as sensors, packets
sniffed from communication links, or a combination thereof.
Despite the variety of event types and event sources that can
be used for analysis, a widely held assumption in RV is that
the monitor has complete and error-free access to the set of
events against which to evaluate a given property [7], [10],
[11].
However, it has been acknowledged that this assumption is

not completely warranted, as there exist multiple situations
where the monitor may operate with some level of uncertainty
about the content of the underlying trace. As a matter of fact, a
recent Dagstuhl seminar report has emphasized the importance
of dealing with incomplete, imprecise and faulty sources of
events [3], as did a recent survey of challenges related to
Runtime Verification [17].
In this paper, we present a formal model to account for

access restrictions in a monitoring context. We group under
the term “access restrictions” the conditions that cause a
source of events to become imperfectly known by a monitor.
First, in Section II, we enumerate various such situations,
including new use cases not studied in existing literature.
We also review the few works that have already studied the
problem of monitoring over incomplete event sources or event

sources containing uncertain events. These approaches focus
on designing monitoring algorithms that are tolerant to missing
or uncertain events; however, we shall see that they present
some limitations in the kind of information degradation they
can account for.
In Section III, we define an abstract model of access

restrictions over event traces. Our contribution stands out
from related works in that it incorporates a formal model
of the degradation of events, in the form of an access proxy,
interposed between a source of events and a monitor. Each
concrete event is modeled as a completely defined “possible
world”; the action of the proxy has the effect of potentially
turning a unique world into a set of such worlds, or deleting
events altogether. Obviously, the presence of the proxy and the
degradation it causes on the input events have an impact on
the verdict produced by the monitor: for instance, it can result
in multiple possible verdicts, a phenomenon we call ambiguity.
A first advantage of our model is that it makes possible, for a
given input trace and a monitor, to study the effect of various
kinds of degradation on the monitor’s verdict. It is also flexible:
the manipulations made to the input trace can be stateful (i.e.
the alteration applied to an event, if any, may depend on the
past), and the “multi-events” resulting from an input event
can account for various types of data degradation and access
limitations, including some that cannot be modeled by existing
related works.

Yet another advantage of this abstract model is that, contrary
to existing works, it is agnostic to the concrete way in which
the proxy and the monitor are specified. In Section IV, we
present one such possible way, by defining an extension of
Mealy machines where symbols for transitions and outputs are
replaced by logical formulas. We describe a construction that
lifts a loss-tolerant “multi-monitor” from a classical monitor,
and show that it runs in linear time in the size of the trace
and the size of the underlying monitor. In the case where an
imprecise trace leads to more than one possible verdict, it
quantifies the likelihood of each possible verdict on-the-fly.
These concepts have been concretely implemented as an

extension to an event stream processing engine called BeepBeep
[9], which is described in Section V. Experiments with a
number of different scenarios show that the multi-monitor
adds constant memory overhead and linear time overhead over
an input trace, which means that it can scale to large traces
and large monitors (106 events and more than 109 states).



Furthermore, we show that some types of data degradation can
only be accounted for in related works by an over-approximation
of uncertainty, which has a significant negative impact on the
precision of a monitor’s verdict and its performance, compared
to the finer modeling presented in this paper. Finally, this model
opens the door to numerous exciting theoretical questions,
which we briefly enumerate in Section VI as future work.

II. RV with Partial Information

Typically, Runtime Verification (RV) is used for testing
purposes by verifying formal properties on the execution of
a software system. A program is instrumented to periodically
relay information about its state to a monitor; the data
objects produced by this instrumentation are called events. The
properties that are monitored generally involve conditions on the
sequence of such events, as well as the data inside these events.
This analysis can take place on-the-fly while the system executes
(“online” monitoring), or occur a posteriori on pre-recorded
logs of the system (“offline” monitoring). RV is a generic
process that has been applied on various sources of events:
system calls, method calls, database logs, sensor readings, and
logging statements manually inserted by a developer.

A. Causes of Incomplete and Uncertain Events in Logs

We first shed some light on the most commonly occurring
causes and situations that lead to the logging of incorrect
information or to the corruption of the existing information in
the logs, in a way that affects the monitoring process.

1) Log Corruption: The first obvious cause for the presence
of incomplete and uncertain log information is the fortuitous
corruption of logs for various reasons, such as hardware failure.
Mechanisms such as error correcting codes can be used to
detect the presence of corrupted data. However, in some cases,
the error can only be detected, but not corrected. A monitor
receiving such a piece of corrupted log could, for example,
know that some event occurred, without being able to ascertain
for sure what event happened due to its corrupted nature. The
same can be said of values within an event: some parameters
in an event could be detected as missing or corrupted using
the same mechanism.
A stronger form of corruption happens when an event, or

an interval of events, is dropped from the stream, for example
because of a temporary disruption of a communication link.
In such a case, assuming that each event is given a unique
and incrementing ID, a monitor connected to the event source
can uncover the occurrence of such a drop by the presence of
non-successive IDs. This makes it possible to determine how
many events occurred, but not what these events were.

2) Incorrect Instrumentation or Logging: In the case where
the source of events is the execution of a software system,
the correct monitoring of a property is dependent on the
fact that the system provides all the relevant events to the
monitor. Indeed, Bartocci et al., in their introduction to Runtime
Verification [4], describe various instrumentation techniques,
but assume this instrumentation to be complete and correct.

However, this hypothesis may be unwarranted in cases when
logging statements are manually inserted by the developers
[21]; moreover, each logging statement is typically assigned a
severity level, and studies have shown that usage of these levels
by developers can be highly unreliable [16]. Consequently, a
monitor that analyzes a log containing only events of a specific
level can miss statements that are relevant to the property being
monitored. Such manually-generated logging statements can
also be imprecise in themselves, with multiple distinct events
being assigned the same general error message.
3) Imprecision and Uncertainty: The previous example

brings forward the fact that an event source can be imprecise
and/or uncertain. For example, a temperature reading produced
by a sensor can be associated with an error range, such as
T = 20◦±0.5. In this case, a monitor evaluating a property that
produces different outcomes depending on whether T ≤ 20 or
T > 20 may produce an incorrect verdict for a range of values
of T . A finer description of imprecision can be employed, such
as the work of Heintz et al. [19] where the altitude a of the
drone is modeled as a probability distribution instead of a
flat range. In such a model, definite statements such as a > 3
must be turned into statements about a probability, such as
Pr(a > 3).
4) Load Shedding and Throttling: In many cases, feeding

an event to a monitor involves an additional amount of work
for the executing system. A possible solution is to make load
shedding which consists of the deliberate deletion of events
in order to reduce resource consumption. For example, Joshi
et al. [12] describe a scenario where a media player software
is instrumented with a library given a fixed time budget. In
a given time interval T , the instrumentation can produce at
most B events; any event exceeding this threshold within this
interval is replaced by a special “non-event” called χ.
5) Impedance Mismatch: Finally, incomplete knowledge

about event parameters can also be caused by the fact that the
monitor watches a property expressed using parameters that do
not perfectly align with those provided by the event source it is
connected to. For example, a property ϕ may involve conditions
on individual values of parameters x and y, while the source
of events, for whatever reason, can only provide their sum s.
We call this situation impedance mismatch. This may be the
case if the log to be analyzed contains information that is of
confidential nature, such as database transaction logs, or events
coming from an instrumented program whose parameters reveal
sensitive information. In such a case, access control mechanisms
may block the reading of some individual data elements, but
allow queries on aggregations of multiple elements. Here, s
can be seen as an aggregation of the individual values of x
and y. This can also occur in the case of log repurposing,
when one wishes to evaluate a new property over a log that
has been recorded in the past for another purpose, and contains
attributes that do not directly align with those expressed in
the property. A final cause of mismatch can be found in the
manual logging instructions discussed above: for example, the
distinct events “open socket” and “open file” could both have
the message “open”, making them undistinguishable.
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B. Existing Approaches

Bartocci et al. [5] and Stroller et al. [18] proposed to use
statistical models to learn the underlying application’s expected
behavior, and use it to add values to the trace when they are
found missing. Such an analysis could form the basis for the
creation of the proxies introduced in Section III, allowing both
methods to work in tandem. In such a case, the segments
of the trace for which this model guesses values correspond
to the parts of the trace where the proxy produces multi-
events instead of uni-events. Kalajdzic et al. [13] likewise use
a statistical model to monitor a trace that contains “observation
gaps” during which the program was not monitored.

Wang et al. [20] consider a model where changes of values
for multiple variables are recorded independently. In this model,
the values are assumed correct, and the uncertainty lies in their
actual interleaving. For their part, Aceto et al. [1] study the
monitoring of systems that exhibit silent actions, a common
feature of formal specifications that captures the occurrence
of an internal action, whose specific nature is not observable
by the monitor. They study the monitorability of branching-
time logic that employs silent actions and also considered
the possibility that the information received by the monitor
about silent actions may be incomplete. Our approach is more
granular, since we can model different levels of uncertainty
about the actions that occur.
Joshi et al. [12] presented a novel approach to verify LTL

formulas on lossy traces. Moreover, it determines if there exists
a loss-tolerant monitor for the LTL property, and builds one
when it does. The approach only accounts for complete loss of
events, and not uncertain events. In contrast, in our approach the
multi-monitor lifted from πM is loss-tolerant by construction.
If the presence of lossy events has no impact on the monitor,
π̂M will produce a single verdict.
A different angle of attack is taken by works on probabilistic

specifications. In such a case, ground statements are typically
associated with probabilities, and the truth value of a specifi-
cation is similarly associated with a quantitative measure of
its likelihood. Probabilistic Signal Temporal Logic (ProbSTL)
[?] has been introduced to deal with imprecise measurements.
Basin et al. [6] use a model that represents uncertainties

over event occurrences, by means of what they call a log-
ging knowledge base. This knowledge base is a sequence
D = D0,D1, . . . of first-order structures defined over the
set of ternary Boolean values {>,⊥, ?}, where “?” represents
the unknown truth value. Each first-order structure represents
a discrete time point, and totally defines the (ternary) truth
value of each event predicate. Informally, for some predicate
r of input arity n, r(a1, . . . , an) = > in a given time point τ
indicates that the event r(a1, . . . , an) happened at τ. Conversely,
r(a1, . . . , an) = ⊥ in a given time point τ indicates that the
event r(a1, . . . , an) did not happen at τ. Finally, r(a1, . . . , an) =?
represents a knowledge gap with regard to whether r(a1, . . . , an)
happened at τ.

Abstract TeSSLa is an extension of the TeSSLa specification
language that accounts for known “gaps” in timed event streams

[14]. Our approach does not deal with time, and is hence
simpler. However, gaps can be represented in our model by a
series of events that the proxy replaces by the “total” multi-event
Ω. TeSSLa can model complex operations on input streams
and produce intervals of possible values in the presence of
gaps; our framework produces a multi-verdict, but quantifies
the likelihood of each possible verdict.
These last two approaches are the closest to the model we

propose in this paper. However, as we shall see in Section
III-C, they have in common that some forms of imprecision
and uncertainty handled by our framework are difficult to model
and result in over-approximations in these models.

III. Trace Proxies
In this section, we describe a formal framework in which the

various situations described in Section II can be modeled. Since
our modeling of traces must account for access restrictions
in the contents of events in a trace, we must first define an
appropriate logical framework for dealing with it. Then, we
show how the traditional definition of trace and monitor can
be generalized to uncertain or “lossy” traces.

A. Multi-Traces and Proxies
Let B = {⊥,>} be the set of Boolean truth values; let A =
{a, b, . . . } be a finite set of atomic propositions. A valuation
is a total function ω : A → B that assigns a truth value to
every atomic proposition. For b ∈ B and a ∈ A, we note
by ω[a 7→ b] the valuation ω′ such that ω′(x) = ω(x) when
x , a, and ω′(a) = b. We denote by Ω the set of all valuations
over A.

In our context, a uni-trace is a finite sequence of valuations
ω = ω0, ω1, . . . , ωn; we denote the set of uni-traces as Ω∗.
Valuations, when seen as elements of a trace, will be called
“events”. The notation ω[i] will be used to denote the event at
the i-th position in a trace ω. The length of a trace ω will be
noted |ω |. The concatenation of two finite traces ω and ω′ is
noted as ω·ω′. We shall use a special symbol, ε , to designate the
empty event, which behaves in the usual way: ε ·ω = ω · ε = ω.
Uni-traces correspond to the concept commonly referred to as
a trace in the literature on runtime verification. However, our
introduction of a more general concept of trace in the following
necessitates that the distinction be made explicit.
The modeling of events as sets of Boolean variables may

seem primitive at first sight. However, we shall remind the
reader that the same argument applies here as for SAT solving,
and that such a setting is sufficient to model a very wide range
of finite structures, given the proper amount of syntactical sugar.
Case in point, one of our implemented scenarios in Section
V models manipulations of a virtual shopping cart containing
a set of purchased items, while another models temperature
readings by a sensor.
Let Φ be the set of Boolean propositions that can be built

using the classical Boolean connectives over A. The definition
of a valuation can be extended to propositional formulas by
interpreting Boolean connectives in the usual way. For a given
formula ϕ, a valuation ω is said to be positive if ω(ϕ) = >, and
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negative if ω(ϕ) = ⊥. We shall define the positive interpretation
of a propositional formula ϕ ∈ Φ, noted nϕo>, as the set of its
positive valuations. A formula is said to be uniquely positive
if it has a single positive valuation. The set Φ> represents the
subset of Φ composed of uniquely positive formulas.

Traces can be generalized to multi-traces, where each element
is not a single valuation, but rather a set of valuations; the set
of multi-traces is noted (2Ω)∗. Given a multi-trace v ∈ (2Ω)∗,
a uni-projection is a uni-trace ω ∈ Ω∗ such that ω[i] ∈ v[i] for
all i. We shall denote by U(v) the set of all uni-projections of
a multi-trace. The intuition behind uni-traces and multi-traces
is that each event of a uni-trace represents a single, completely
defined “world”. In contrast, an event of a multi-trace may
represent multiple, alternate “possible worlds”. This vehicle
will allow us to represent uncertainty and imprecision about
the contents of an event.
As a convention, we shall use the symbol ω to represent a

valuation (a uni-event), and v to represent a set of valuations
(a multi-event). Given a formula ϕ ∈ Φ and a set of valuations
v ∈ 2Ω we say that v supports ϕ, and note v � ϕ, if v ⊆ nϕo>.
Intuitively, a set of valuations supports a formula ϕ if it only
contains possible worlds where ϕ holds.

Our next step in the management of uncertainty is to define
a special type of transducer on multi-traces.

Definition 1. Let v, v′, v′′ ∈ (2Ω)∗ be three multi-traces and
v ∈ 2Ω be a multi-event. A multi-trace proxy is a relation
π ⊆ (2Ω)∗ × (2Ω)∗, such that, if (v, v′) ∈ π and (v · v, v′′) ∈ π,
then v′ is a prefix of v′′.

A multi-trace proxy is defined as a special type of transducer
π : (2Ω)∗ → (2Ω)∗ that does not rewrite the past: that is, if v is
a prefix of v′, then π(v) is a prefix of π(v′). When defined in
this manner, it is possible to treat a proxy as a stateful relation
that can be fed input (multi-)events one by one, and which
produces zero or more output (multi-)events for each of these
inputs. We shall abuse notation and also accept that a proxy
reads uni-traces by taking each input uni-event as a singleton
multi-event.

To this basic definition, we can further qualify various kinds
of proxies depending on additional properties. If π : (2Ω)∗ →
(2Ω)∗ is a trace proxy, and v ∈ (2Ω)∗ is a multi-trace, we
say that π is deterministic if there exists a single v′ ∈ (2Ω)∗
such that (v, v′) ∈ π. Similarly, π is k-bounded if for every
v ∈ 2Ω and v, v′, v′′ ∈ (2Ω)∗, if (v, v′) ∈ π and (v · v, v′′) ∈ π,
|v′′ | − |v′ | ≤ k.
When a proxy is deterministic, we shall use the notation

π(v) to designate the unique multi-trace v′ such that (v, v′) ∈ π.
A proxy is called world-preserving when it produces exactly
one output event for each input event, and all valuations of the
input multi-event are still valuations of the output multi-event,
i.e. possible worlds are not removed.

B. Monitors for Multi-Traces
A multi-trace proxy generalizes the notion of a monitor for

some abstract property P. In what follows, we override the
definition of ε to represent an empty trace. Our (propositional)

monitor πP : Ω∗ → {Ω, ∅, ε} is a deterministic transducer on
uni-traces; each event of the trace is a valuation that can be
seen as the binary encoding of a symbol of an input alphabet. It
produces in return the empty trace (ε), or the multi-trace made
of a single multi-event, Ω or ∅. These three outcomes represent
the usual verdicts produced by a monitor: Ω represents the
true verdict, ∅ the false verdict, and ε the inconclusive verdict.
One can define a proxy such that for every (uni-)trace ω, we
have that (ω,Ω) ∈ πP if and only if ω satisfies P, (ω, ∅) ∈ πP
if and only if ω violates P, and (ω, ε) ∈ πP otherwise. It is
also required that for every x ∈ {Ω, ∅} and every uni-trace
ω ∈ Ω∗, if πP(ω) = x, then πP(ω · ω′) = x for every ω′ ∈ Ω∗.
This corresponds to the intuition that a monitor producing a
conclusive verdict for an input trace does not change its verdict
when appending events to that trace.

We devise a construction to turn a monitor for uni-traces (a
“uni-monitor”) into one for multi-traces (a “multi-monitor”).

Definition 2. Let πP : Ω∗ → {Ω, ∅, ε} be a uni-monitor for
some property P. The multi-monitor lifted from πP , noted π̂P ,
is the multi-trace proxy π̂M : (2Ω)∗ → 2{Ω,∅,ε } such that, for
every multi-trace v ∈ (2Ω)∗: π̂P(v) ,

⋃
ω∈U(v) {πP(ω)}.

For a given multi-trace, the output of the multi-monitor is the
set of outputs obtained by running the underlying uni-monitor
on every possible uni-projection. This set of outputs will be
called the multi-verdict.

The fact that events fed to a monitor can now contain multiple
valuations has an impact on the possible verdicts produced by
the monitor. We say that a uni-monitor πP is ambiguous for
a multi-trace v if |π̂P(v)| > 1. This corresponds to the fact
that two uni-projections of v result in two different verdicts.
The monitor is strongly ambiguous for v if {Ω, ∅} ⊆ π̂P(v);
in such a case, the monitor produces two contradictory
verdicts. Otherwise, the monitor is called weakly ambiguous
(for example, if π̂P(v) = {Ω, ε}). In the case where a monitor
is ambiguous for a given multi-trace, we can provide a measure
of this ambiguity; each verdict can be associated to the fraction
of all uni-traces that yield this verdict, and hence be used as a
quantitative indication of its likelihood.

For v ∈ {Ω, ∅, ε}, we define a function ρvπP : (2Ω)∗ → [0, 1]
as:

ρvπP (v) ,
|{ω ∈ U(v) : πP(ω) = v}|

|U(v)|

The function ρvπP represents the fraction of all uni-projections
of v for which the monitor πP produces the verdict v.
We shall now consider a binary system composed of an

access proxy and a monitor, in such a way that the output of
the first is given as the input to the second.

Definition 3. Let πA : Ω∗ → (2Ω)∗ be a proxy that turns
uni-traces into multi-traces, and πP : Ω∗ → {Ω, ∅, ε} is a
uni-monitor as defined earlier. The access-controlled monitor
M(πA, πP) : Ω∗ → 2{Ω,∅,ε } is the trace proxy defined as
M(πA, πP) , π̂P ◦ πA.

The intuition between an access-controlled monitor is that
uni-events are produced from some abstract source; these
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uni-events are then transformed by the action of the proxy
πA, resulting in a multi-trace. Hence, πA represents the
“degradation” of the original uni-trace. This multi-trace is then
fed to the multi-monitor lifted from πP , and its set of verdicts
represents the output of the access-controlled monitor.

We can then extend the definition of ambiguity to an access-
controlled monitor. Given a uni-monitor πP for some property
P and an access control proxy πA, we say that πP is strongly
(resp. weakly) affected by πA if there exists a uni-trace for
whichM(πA, πP) is strongly (resp. weakly) ambiguous. Finally,
a monitor πP is called sound under πA if, for every uni-trace
ω, the verdict of M(πA, πP) contains the verdict of πP . It is
easy to see that world preservation is a sufficient condition for
soundness:1

Theorem 1. If πA is world-preserving, then π̂P is sound
under πA.

C. Modeling Access Restrictions with Proxies
Equipped with these basic definitions, we can now illustrate

how the concept of access proxy can be used to model
the various use cases about imprecise and uncertain data
enumerated in Section II, including situations that cannot be
accounted for in existing models of “lossy RV” discussed
earlier.
1) Missing, Corrupted or Encrypted Values and Events:

Missing values can first be modeled by altering the set of
valuations of an input event. Consider for example the proxy
π1 defined as π1(v1, . . . , vn) , π1(v1, . . . , vn−1) · f1(vn), where
f1 : 2Ω → 2Ω is defined as:

f1(v) ,
⋃
ω∈v

{ω[a 7→ >], ω[a 7→ ⊥]}

The action of function f1 can be explained as follows: whatever
the input multi-event v ∈ 2Ω, in the output event f1(v) we have
neither f1(v) � a nor f1(v) � ¬a (all other variables being left
unchanged).2 In other words, in the output event, we can no
longer conclude anything about the value of a in the input
event. This is equivalent to a representation of uncertainty
using a third “unknown” Boolean value [6]. It can be used
to represent the fact that one of the readings inside an event
is corrupted, missing, or encrypted with a key that is not in
the possession of the recipient. In the case where each event
represents a set of observations at a given time point, this
proxy can also represent the fact that it is unknown whether a
occurred or not in a time point.

An extreme case is a known missing event —that is, an event
whose occurrence is known or has been deduced (for example
by observing gaps in indexes, or after a database request has
been denied), but whose content is completely missing. This
can be represented in our model by an event that contains
all valuations, i.e. Ω. The case of load shedding discussed in
Section II-A4 can be modeled using such a mechanism, which

1Due to lack of space, proofs of theorems have been moved into an appendix
at the end of the paper.

2The condition is actually even stronger: for any formula ϕ such that v � ϕ,
we have neither ϕ → a nor ϕ → ¬a.

is equivalent to the non-event χ used by [12] precisely to
account for this situation.
For example, consider the proxy π′1 defined as

π′1(v) , v

π′1(v1, . . . , vn) , π′1(v1, . . . , vn−1) if vn−1 , vn

π′1(v1, . . . , vn) , π′1(v1, . . . , vn−1) · Ω otherwise

This proxy compresses an input trace by replacing any stuttering
events by Ω, symbolizing a deleted event. Alternately, a proxy
could emit and discard events in an alternating fashion, to
represent a form of systematic preemptive load shedding. One
can also imagine variations over this basic mechanism: for
example, the proxy could output all events until the occurrence
of some trigger that activates load shedding, while some other
trigger returns the proxy to normal operation.
2) Uncertainty and Fuzziness: Values inside an event may

not be completely unknown, and only involve some amount of
fuzziness. This is especially the case for sensor readings, where
numerical values are typically accompanied by a precision
interval. A discrete set of numerical values D can be modeled
with Boolean variables in various ways —an easy one being
to associate each value d ∈ D to a Boolean variable bd.
Uncertainty can then be represented as a function γ : D→ 2D.
A proxy π2 can be defined as π2(v1, . . . , vn) ,

π2(v1, . . . , vn−1) · f2(vn), where f2 : 2Ω → 2Ω is defined as:

f2(v) ,
⋃
ω∈v

⋃
b∈γ(bv )

{ω[bv 7→ ⊥, b 7→ >]}

where bv is the unique bi in ω such that bi = >. In other words,
the proxy turns each valuation where bd is true into the set
of valuations where each bi ∈ γ(d) is made successively true
(and leaves any other variables unchanged). This corresponds
to the intuition that in any possible world, the numerical value
can be any one of γ(d), but only one of them at a time and
none of the other values. Stated in this way, it is the discrete
equivalent of the notion of abstract data domain in Abstract
TeSSLa’s modeling of uncertainty [14].

Note however that this form of imprecision cannot be
accounted for in a model where each event is a single possible
world with ternary Boolean values (i.e. [6]). Giving the value
“unknown” to all temperature variables in γ(d) misses the
fact that in any possible interpretation, exactly one of them
must be the value. In other words, this modeling is an over-
approximation that introduces the spurious possible world
where the event can contain “no value”, or many values. This
situation cannot be modeled either by Joshi et al.’s approach
[12], where events are atomic and are either completely known
or completely unknown (except for their occurrence).

3) Correlated Uncertainty and Fuzziness: So far, the exam-
ples of degradation we have shown apply in an independent
manner to a single input variable or signal at a time. Correlated
uncertainty occurs when deterioration of information is applied
in a way that depends on more than one input variable.

Consider the proxy π3 defined in the same way as π2, but with
f2 replaced by f3(v) , v ∪

⋃
ω∈v{ωa↔b}. The notation ωa↔b
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designates the valuation that swaps the assignments of a and b
in ω. This has the effect of making a and b indistinguishable:
an input multi-event that supports a is transformed into an
output multi-event that only supports the weaker proposition
a ∨ b (and similarly for events that support b). In other words,
it is no longer possible to conclude precisely that a is true or
that b is true, only that at least one of them is true. This is a
simple form of the impedance mismatch use case we discussed
in Section II.

This situation cannot be accounted for in any of the models
we surveyed in Section II-B. In three-valued logics, the
reasoning is the same as before: the best one can do in such a
model is to over-approximate uncertainty by stating that the
occurrence of both a and b is unknown (this abstraction is still
precise for events where neither a nor b are true). For abstract
data domains [14], the situation becomes even less desirable:
since these domains are defined for each variable separately,
and must remain the same for the entire trace, the only world-
preserving abstraction is the one that replaces values of a and
b with both their possible values at all time points, which is
an even greater over-approximation.

IV. Automata-Based Trace Proxies

As one can see, the multi-event model and the definition of a
trace proxy is very flexible in its ability to model various forms
of imprecision, uncertainty and missing or incorrect values. In
the following, we shall focus on one concrete representation
of multi-trace proxies, by providing an extension of Mealy
machines.

A. Propositional Mealy Machines

In the following, we shall assume that the representation of
trace proxies is based on a special type of finite-state machine
called a propositional machine. It is formally defined as follows.

Definition 4. A propositional machine is a triplet M =

〈S, s0, µ〉 consisting of a finite set of states S, a unique start state
s0 ∈ S, and a marking µ ⊆ S ×Φ× S associating propositional
formulas to pairs of states.

Figure 1 shows two examples of propositional machines
represented graphically. As one can see, the main difference
between a propositional machine and a traditional finite-state
machine is the fact that input symbols and transitions are
replaced by a marking with propositional formulas. Note that
there can be two formulas ϕ, ϕ′ associated with the same two
states; these would be represented as two distinct edges in the
graph representation of the machine.
The figure illustrates a few notational shortcuts we shall

use in the following. Given propositional variables A =

{a1, . . . , am}, the notation Ûak represents the propositional
formula (

∧
i,k ¬ai) ∧ ak . Moreover, the special symbol ? is

meant as a notation shortcut meaning “otherwise”: in a given
state, it corresponds to the propositional formula made by
the conjunction of the negation of all formulas in the other
outgoing edges. For example, assuming that A = {a, b, c}, the

(a) πA (b) πM

Figure 1: Access-controlled monitor represented as a pair of
propositional machines.

? symbol in state 1 of Figure 1a corresponds to the formula
¬a ∨ b ∨ c (which is the negation of Ûa = a ∧ ¬b ∧ ¬c).

Definition 5. Let µ ⊆ S × Φ × S be a marking over a
propositional machine M . The transition relation induced by
µ, is the relation µ̃ ⊆ S × 2Ω × S such that, for every s, s′ ∈ S
and every v ∈ 2Ω, we have that (s, v, s′) ∈ µ̃ if and only if
v ∩ nϕo> , ∅.

Intuitively, in a state s and given an input multi-event v ∈ 2Ω,
the transition s−ϕ → s′ is possible if the positive valuations of
ϕ contain at least one valuation of v. In other words, there exists
one “possible world” admitted by ϕ that is compatible with
v. In turn, this definition of a transition relation can be lifted
to multi-traces expressed as sequences of Boolean formulas;
given a multi-event ϕ′ ∈ Φ, the transition s−ϕ → s′ is possible
if nϕo> ∩ nϕ′o> , ∅. This corresponds to the situation where
both ϕ and ϕ′ share at least one positive valuation.

Boolean formulas are a useful shortcut to succinctly represent
sets of valuations. In the following, we shall concentrate on
multi-traces viewed as elements of Φ∗. Given a multi-trace ϕ
of length n, a possible run of M is any sequence s0 − ψ0 →

s1 − ψ1 → · · · − ψn−1 → sn such that nϕ[i]o> ∩ nψio , ∅ and
(si, ψi, si+1) ∈ µ for every i ∈ [0, n − 1]. In such a case, the
complexity of determining if a sequence of transitions is a run
for some ϕ ∈ Φ∗ can be precisely established.

Theorem 2. Let A = {a1, . . . , am} be a set of m propositional
variables. Let ϕ = ϕ0, . . . , ϕn−1 be a finite multi-trace over
A and M be a propositional machine. Let s0, . . . , sn be a
sequence of states, and ψ0, . . . , ψn−1 a sequence of transition
labels in µ. Determining if s0−ψ0 → s1−ψ1 → · · ·−ψn−1 → sn
is a run of M for ϕ is NP-complete.

In the general case, a propositional machine run is not
necessarily uniquely defined, even when the formulas on each
outgoing transition in a state are mutually exclusive. Case in
point, consider the machine of Figure 1b; in state 1, if the
machine receives for its input event the proposition a ∨ b, one
can see that the input event can fire both the transitions Ûa and
Ûb, and therefore both 2 and 3 are possible next states.
This basic definition can be extended by allowing the

propositional machine to produce output symbols. To achieve
this, we define an output function γ : S × Φ × S → (Φ→ Φ).
To each transition s − ψ→ s′ in M , the function γ associates
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a function ` : Φ→ Φ which transforms an input multi-event
into another output multi-event. Given an input multi-trace that
induces a run in M , the resulting output multi-trace is defined
as follows:

Definition 6. Let ϕ = ϕ0, . . . , ϕn−1 be a finite multi-trace and
let s0 − ψ0 → s1 − ψ1 → · · · − ψn−1 → sn be a run of M
for ϕ. The output multi-trace produced by M is the sequence
ϕ′ = ϕ′0, . . . , ϕ

′
n−1, where ϕ

′
i = γ(si, ψi, si+1)(ϕi) for each i ∈

{0, . . . , n − 1}.

Simply put, an input formula is replaced by applying to it
the function ` : Φ→ Φ associated by γ to the corresponding
transition in M . This function effectively turns a propositional
machine into an extended version of a Mealy machine. We can
further extend the definition of `, and allow its image to be
Φ ∪ {ε}. In such a case, the machine may produce no output
(ε) for an input event. This representation makes it possible to
model the class of 1-bounded trace proxies.

In the following, we will represent a few functions ` : Φ→ Φ
by special symbols. Function ι will designate the identity, i.e.
ι(ϕ) = ϕ for all ϕ ∈ Φ. For a given formula ϕ, we will abuse
notation and use ϕ to designate the constant function that turns
any input formula into ϕ (the most notable ones being the
constants > and ⊥). Although ` accepts and returns a Boolean
formula, it is not excluded that its definition be made in terms
of sets of valuations. For example, the proxy π3, defined in
Section III-A could be defined by first converting an input
formula ϕ into its set of positive valuations nϕo>, performing
the transformations on that set, and converting this set back
into a Boolean formula ϕ′.3
To illustrate this point, Figure 1 shows a simple example

of a pair of access proxy and monitor, on the input alphabet
A = {a, b, c}. In this case, the function f in πA is the function
f3 already given as an example in Section III-B, which makes it
impossible to know which one of a or b is true in an input event,
only that at least one of them is true. This has an impact on
the verdict that can be produced by πM for some of the traces
it receives. For example, the uni-trace Ûa, Ûb, Ûc, Ûa is transformed
by the access proxy into Ûc, Ûa ∨ Ûb, Ûa ∨ Ûb, Ûc, Ûa ∨ Ûb. There are 8
possible runs in πM for this input multi-trace, including one
that visits the states 1–2–4–5, and produces the verdict ⊥, and
another that visits the states 1–3–6–6, and produces the verdict
>. Therefore, the verdict becomes ambiguous.
B. A Monitoring Algorithm

Equipped with such definitions, we can now define an algo-
rithm which, given an access-controlled monitor M(πA, πM )
expressed as a pair of propositional machines and a finite multi-
trace prefix ϕ ∈ Φ∗, computes the multi-verdict associated to
this prefix. Furthermore, this multi-verdict is quantified —that
is, if its output set contains more than one value, the fraction
computed by ρ, as defined in Section III-B, will be associated
to each value.
The procedure is defined in Algorithm 1, for an access

proxy πA = 〈s0
A
, SA, µA〉 and a uni-monitor πP = 〈s0

P, SP, µP〉.

3One easy way being by creating the disjunction of each valuation.

Algorithm 1 Access-controlled update algorithm
1: procedure Update(ϕ, sA, σ)
2: σ′ ← ∅ . σ′ : SP → N
3: β← ∅ . β : {Ω, ∅, ε} → N
4: (ψA, s′A) ← the unique ψA, s′A s.t. (sA, ψA, s′A) ∈ µ̃πA

5: `A← γπA (sA, ψA, s′A)
6: ϕ′ ← `A(ϕ)
7: for (sP, n) ∈ σ do
8: for (sP, ψP, s′P) ∈ µ̃πP do
9: c← |nψPo> ∩ nϕ′o> |
10: if c > 0 then
11: σ′(s′P) ← σ′(s′P) + (n ∗ c)
12: l ← γπP (sP, ψP, s

′
P)

13: β(l) ← β(l) + (n ∗ c)
14: end if
15: end for
16: end for
17: return 〈s′

A
, σ′, β〉

18: end procedure

We assume that πA and πP are both deterministic and that
their transition relation is total. The algorithm takes as input
a multi-event ϕ ∈ Φ, a state sA ∈ SA, and a partial function
σ : SP → N. Intuitively, ϕ is the new input event to ingest,
sA is the current state in πA reached after reading a trace
prefix ϕ, and for some s ∈ SP , σ(s) designates the number of
uni-projections of ϕ that result in a run of πP ending in state s
(σ(s) being undefined can be assimilated to the case σ(s) = 0,
which indicates that no uni-projection ends in s).

Lines 2–3 initialize an empty partial function σ′ : SP → N,
and an empty partial function β : {Ω, ∅, ε} → N. Function σ′
stores the update of σ after ingesting the input event; β maps
each of the three verdicts to the number of uni-projections being
mapped by πP to that verdict. Line 4 identifies the transition
(sA, ψA, s′A) ∈ µ̃πA that can be taken from sA and input event ϕ;
since we assumed that ϕ is a uni-event and that πA is total and
deterministic, this transition exists and is unique. Lines 5–6
then apply the output function γπA(sA, ψA, s′A) that associates
the transformation function `A to the transition producing the
resulting output multi-event ϕ′.
The second part of the algorithm is made of the lines 7–

16, and corresponds to the update of both the uni-monitor’s
states, and the count of uni-projections for each verdict. The
algorithm takes in succession each state sP ∈ SP of the uni-
monitor reached after processing one of the uni-projections
of ϕ. From each such state sP , it computes the count c of
uni-projections that can fire the condition ψP on each outgoing
transition. When this is the case, the number of uni-projections
reaching state s′P , stored in σ′, is incremented by nc (line 11),
where n is the number of uni-projections of ϕ reaching sP .
This calculation can be explained by the fact that, if there are
n uni-projections of ϕ that reach sP , and c uni-projections of
ϕ allow us to take the transition sP − ψ→ s′P , then there are
nc uni-projections of ϕ · ϕ whose last two visited states are sP
and s′P .
The verdict l produced by πP on taking the transition

sP − ψ→ s′P is fetched (line 12). Then, mapping β is updated:
the number β(l) of uni-projections producing verdict l is
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incremented by nc (line 13), by the same reasoning as for
the update of σ′. The process repeats for all states sP ∈ SP

defined in σ. Upon termination, the algorithm returns the triplet
〈s′A, σ

′, β〉: s′A is the new current state of πA, σ′ maps each
possible current state of πM with a number of uni-projections,
and β does the same with each verdict.
In order to compute the verdict of an access-controlled

monitor M(πA, πM ) on a uni-trace ϕ, it suffices to call the
procedure Update repeatedly. A straightforward procedure
called Monitor (not shown due to lack of space) can iterate
over each event in σ, call Update repeatedly, and output
the current mapping β associating each of the three verdicts
to the corresponding number of uni-projections. The start
configuration of this procedure is simply the unique initial
state s0

A
and the mapping that stipulates that a single uni-

projection of the empty trace reaches the unique initial state of
πP . The following theorem states that the output map produced
by Monitor on a uni-trace ϕ does correspond to the number
of uni-projections of πA(ϕ) that result in each of the three
possible verdicts.

Theorem 3. Let M(πA, πM ) be an access-controlled monitor
expressed as two propositional machines, ϕ be a uni-trace
and β : {Ω, ∅, ε} → N be the mapping produced by calling
Monitor(ϕ). For v ∈ {Ω, ∅, ε}, we have that:

β(v)∑
v′∈{Ω,∅,ε } β(v

′)
= ρvπP (πA(ϕ))

C. Discussion
A few remarks must be made about this algorithm. First,

it operates “on-the-fly”: each new input event is handled by
updating states and uni-projection counts obtained on the
previous computation step. In other words, the algorithm does
not need to recalculate everything from the start, which makes
it possible to operate in streaming fashion. In particular, it does
not explicitly enumerate all uni-projections. Second, it merges
the operation of the access proxy πA and the monitor πP . An
algorithm only for the multi-monitor lifted from πP (i.e. π̂P)
can easily be obtained by removing lines 2–6 of Algorithm 1
and using ϕ′ as the input to Update.
In terms of complexity, a call to Update is dominated by

the loop in lines 7–16; one can easily see that the number
of iterations of the inner loop of lines 9–14 is bounded by
|SP | · | µ̃πP |. However, each such iteration involves an execution
of line 9, which computes the number of positive valuations
that are common to two Boolean formulas. A naïve way of
obtaining this count it is to enumerate all 2 |A | valuations. From
this, we can conclude that the complexity of Monitor is linear
in the length of the input trace, the number of states and the
number of transitions of πP , and exponential in the number of
propositional variables encoding each event.
The fact that each call to the monitor involves solving

multiple NP-complete problems may seem alarming. However,
this is mitigated by two observations. First, SAT instances
typically involve very large numbers of variables. It is expected
that the Boolean encoding of events, in a monitoring context,

will be much smaller. For example, a monitoring problem with
an alphabet of 1,000 different events can be encoded using
only 10 Boolean variables. Therefore, the model counting and
SAT problems involved are expected to be, in comparison, very
small.

V. Experimental Results
An implementation of propositional machines has been

realized in the form of a Java library that extends the BeepBeep
event stream processing engine [9]. The library is open source
and publicly available4. In this library, multi-events exist in two
flavors: the ConcreteMultiEvent is implemented as a set of
valuations, while the SymbolicMultiEvent is implemented
as a propositional formula. Both classes implement the same
methods to enumerate their valuations and determine if two
events have a non-empty intersection. Hence, a trace of events
and a propositional machine can use either of these two multi-
event types interchangeably. Propositional Mealy machines
are implemented as an object that descends from BeepBeep’s
Processor class; this means that once they are instantiated,
they can be connected to any other BeepBeep processor to
form a potentially complex pipeline. Similarly, propositional
formulas are descendants of BeepBeep’s Function class. A
downloadable instance containing all the experiments of this
paper can be obtained online5. All the experiments were run
on a Intel CORE i5-7200U 2.5 GHz running Ubuntu 18.04,
inside a Java 8 virtual machine with 1746 MB of memory.

A. Overhead Experiments
A first set of experiments is meant to assess the overhead,

both in terms of running time and memory consumption,
incurred by the presence of an access proxy and the lifting of a
uni-monitor into a multi-monitor. Our experiments are made of
a number of “scenarios”, where each scenario corresponds to a
source of uni-events, an access proxy and a property to monitor,
the latter two expressed as propositional Mealy machines:

Simple: the running example discussed in this paper, and
represented in Figure 1.

MPlayer: a generated sequence of operations (play, pause,
etc.) of the operation of a media player (cf. [12]), with an
access proxy applying the load shedding strategy discussed in
Section II-A4. The monitor verifies the correct ordering of the
operations; it has 5 states and 20 transitions.

Temperature Threshold: a scenario made of CPU temperature
readings from a cyber-physical system, adapted from [2]. Tem-
peratures are encoded using 20 Boolean variables representing
intervals of 1 degree. The access proxy applies a transformation
that adds an uncertainty of ±2 degree. The monitor checks
that for the first 100 units of time, whenever the temperature
falls below a certain threshold T , it will again be above the
threshold within 5 units of time. This monitor has 486 states
and 966 transitions.

Shopping Cart: a scenario made of Boolean-encoded sequen-
ces of shopping cart manipulation operations. The monitor

4https://github.com/liflab/propositional-machines
5https://github.com/liflab/propositional-machines-lab
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Table I: Global impact of the presence of an access proxy for
the tested scenarios.

(a) Throughput (Hz)

Scenario With Without
MPlayer 42158.516 1428571.4

Shopping Cart 33277.87 609756.1
Simple 452488.7 1086956.5

Tempreature Threshold 53966.54 431034.47

(b) Memory (B)

Scenario With Without
MPlayer 23622 9214

Shopping Cart 124344 119696
Simple 10722 7714

Tempreature Threshold 87600 85508

verifies properties on the sequence of operations based on a
study of an Amazon web service [8]; it has 1,154 states and
7,267 transitions. The access proxy replaces 5% of events by
the multi-event Ω symbolizing data loss.

CPU Load: a scenario made of Boolean-encoded CPU load
values. The monitor uses the same property as in [14], which
checks that the average load over a sliding window of five
readings does not exceed some arbitrary threshold T . The
access proxy adds an uncertainty of ±1% to each reading. Due
to the presence of a sliding window and the use of arithmetic,
this last example has a very large state space, consisting of
2 × 109 states and more than 1010 transitions.
For each of these scenarios, we ran a randomly-generated

input trace of 100000 uni-events into the uni-monitor alone,
and then into the access-controlled monitor made of the access
proxy and the multi-monitor. We measured the difference in
terms of throughput (number of events ingested per unit of time)
and memory consumption. The global impact of the presence
of the access proxy is summarized in Table I. In terms of
throughput, it can be observed that the inclusion of an access
proxy induces a slowdown on the monitoring process, since
the monitor must handle multi-events instead of uni-events,
and track the various possible states the uni-monitor can be in.
However, for the traces and properties included in our tests,
this slowdown ranges between 2× and 8×, which seems to
indicate that the handling of multi-events does not impose too
big an overhead on the performance of the monitor.
This should be put in perspective with the extremely large

number of uni-traces handled by the multi-monitor. In the
Simple scenario, the access proxy generates a multi-trace that
corresponds to 108631 distinct uni-traces; in the Shopping Cart
scenario, this number reaches 1026400. However, the complexity
of Algorithm 1 does not depend on the number of uni-traces,
but rather on a much simpler metric, which is the number of
multi-events produced for each input uni-event; moreover, only
a count of uni-traces needs to be maintained, and uni-events
are discarded after processing. This is why our approach scales
despite the large number of “possible worlds” introduced by
the insertion of uncertainty by the proxy.
The impact is less noticeable in terms of memory (Table

Figure 2: Impact of the presence of an access proxy on the
throughput and memory consumption of the monitor, for the
Shopping Cart scenario.
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Ib). Even though the presence of multi-events does increase
the maximum amount of memory consumed by the access-
controlled monitor with respect to the single uni-monitor, this
increase is relatively negligible and never exceeds a factor 1.5.
To get further details on the actual behavior of the access-

controlled monitor, we also measured the evolution of time and
memory consumption across a trace. Running time is shown
in Figure 2a for the Shopping Cart scenario (plots for the
remaining scenarios are not shown but exhibit very similar
trends). An important point is that processing time per event
is higher, yet constant. This feature is important for an access-
controlled monitor to be usable for long-running systems.
Memory consumption is plotted in Figure 2b. One can

observe that the memory consumption of both the uni-monitor
and the access-controlled monitor is constant throughout the
whole trace. This observation is not surprising, as Algorithm
1 uses data structures (the mappings β and σ) of constant or
bounded size. More importantly, although each input uni-event
may result in multiple uni-events being processed, these events
are discarded at the end of the processing and only their count
needs to be kept.

B. Comparison to Over-Approximations
As we mentioned earlier, our modeling of imprecision and

uncertainty can account for finer-grained restrictions that can
only be expressed as conservative (i.e. world-preserving) over-
approximations in the state of the art. To better highlight the
impact that such approximations can have on the performance
of a monitor, we designed a second set of experiments that
revisits three of the scenarios. In each case, we describe the
operation of two access proxies: the first is the one used by
our approach, and the second is an over-approximation of this
proxy that is the “best effort” that can be modeled by one of
the related approaches mentioned in Section II-B.

Simple: to symbolize impedance mismatch, our access proxy
replaces values of Ûa and Ûb by the less precise assertion Ûa ∨ Ûb.
Models that do not handle correlated uncertainty (e.g. [12],
[14]) must rather resort to an over-approximation where all
occurrences of Ûa and Ûb are replaced by possible worlds where
they can be either true or false whenever one of them is true
in the original event.

Temperature Threshold: our proxy is left unchanged from the
original set of experiments; the over-approximation replaces
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Table II: Impact of using an over-approximation for the various
scenarios.

(a) Throughput (Hz)
Scenario Our approach Over-approx.
MPlayer 1666.6666 666.6667
Simple 1818.1818 2857.1428

Tempreature Threshold 229.88506 175.4386

(b) Verdict precision
Scenario TP IP FP TB IB FB
MPlayer 0 4.85 4.85 0 4.85 11.08
Simple 0 0.0 1.94 5.83 10.25 8.28

Temperature Threshold 0 0 28.82 0 59.07 60.83

all variables in the temperature interval of each event by the
possible worlds where they can hold any value. As discussed in
Section III-C2, this approximation is necessary in a framework
where all variables must be given a single ternary Boolean
value (e.g. [6]).

MPlayer: to show the impact of impedance mismatch, our
proxy has the Stop and Pause events conflated into a fuzzier
Interrupted event that stands for both of them. Similar to the
Simple scenario, the over-approximation replaces their value
into possible worlds where they can both be either true or false
(as would be required in e.g. [12], [14]).

The results are summarized in Table II. Table IIa shows that
the use of a coarser-grained modeling of imprecision generally
has a negative impact on throughput (with the exception
of Simple), mostly caused by the larger number of possible
worlds that must be handled by the over-approximation. More
interestingly, Table IIb shows that, as we already hinted earlier,
this over-approximation also impacts the precision of the verdict
returned by the underlying monitor. For each scenario, it shows
the base-10 logarithm of the number of uni-projections mapped
to each verdict T(rue), F(alse) and I(conclusive), for both
our access-controlled proxy (P) and the “best effort” over-
approximation (B).
In all scenarios, the over-approximation cannot produce

a definite verdict. For Temperature, about 10% of all uni-
projections are mapped to the “unknown” verdict instead of
the correct false verdict. In comparison, our access-controlled
proxy produces a single clear false verdict. For scenarios
such as Simple, the over-approximation fares even worse: it
causes all three verdicts to be possible, whereas our proposed
access controlled monitor still produces a single (false) verdict.
Although it can be observed that, in the over-approximation,
only 0.1% of all uni-traces are mapped to the incorrect verdict,
we argue there is nevertheless a fundamental qualitative gap
between a definite correct verdict and a merely likely one,
especially in the context of safety-critical systems, where
monitoring is commonly employed.

The case of the MPlayer scenario also deserves discussion.
The correct verdict of the original uni-trace should be “?”. In
this case, both our proxy and the over-approximation produce
an equivocal verdict. However, the over-approximation makes
the false verdict many orders of magnitude more likely than the
(correct) inconclusive verdict, while in our proxy, both verdicts
are relatively nose-to-nose. This shows that, in some cases,

an over-approximation can not only result in a clear verdict
being turned into an uncertain one, it can also be such that the
verdict given as the most likely is the incorrect one.

VI. Conclusion and Future Work

In this work, we presented a flexible framework to deal with
access restrictions on the events in a trace. A stateful proxy
is used to model the known gaps and imprecise values in the
events and impose other types of uncertainty on the events
before feeding it to the monitor. We introduced a construction
of a loss-tolerant multi-monitor from a uni-monitor that runs in
linear time and quantifies the multi-verdict, and adds constant
memory and time overhead on each input event.

Our proposed framework paves the way to a large number of
ancillary research questions centered on the notion of ambiguity.
First is the question of deciding ambiguity: given an access
proxy πA and a monitor πP , determine if there exists a trace
for which M(πA, πP) is ambiguous; ties to existing results on
monitorability could be exploited. Second is the question of
fixing ambiguity: find the minimal modifications required to
πA such that ambiguity is lifted for a given monitor. Finally,
the reverse question of introducing ambiguity could also be
considered: given a monitor πP , find the “least disturbing”
proxy πA such thatM(πA, πP) becomes ambiguous. This latter
question could be studied to determine what access restrictions
should be introduced in order to prevent an attacker from
deducing some property πP from a sensitive log.

The access restrictions presented in the paper were all world-
preserving; however, our model of an access proxy can also
be used to inflict transformations to an input trace that do not
satisfy this condition. It highlights an interesting side effect of
the presence of an explicit model of event degradation, as it can
be used to study the impact of feeding a monitor with a trace of
events that is not only imprecise, but also incorrect according to
some systematic pattern. For example, one could define a proxy
that removes events according to some pattern (to study the
impact of dropped events going undetected), or that adds events
according to some pattern (for example, to study the impact
of inserting stuttering into the trace). Obviously, in such cases,
a multi-monitor receiving such traces can no longer guarantee
the soundness of its multi-verdict. Restoring soundness of the
multi-monitor without the hypothesis of world-preservation is
left as future work.
A possible refinement of this scenario could address the

notion of throttling we touched upon in Section II. A monitor
could be given an access “budget” to the events of a log,
with each access request imputing a charge on this budget.
Depending on the property and its current state, a monitor
could decide whether or not to make an access request for an
event, in order to save as much access budget as possible. This
could turn monitoring into a form of optimization problem.
A direct extension of the model would be the symbolic

manipulation of infinite or continuous variables. This would
allow the convenient expression of a wider range of event types
and access restrictions. Moreover, the notion of uncertainty
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and loss tolerance could be extended to other formal notations
apart from Mealy machines, such as Linear Temporal Logic.

Another angle of future work can be in the field of runtime
enforcement, where the proxy can be modeled to make the
modifications so that each trace it produces is a replacement
of the input trace that satisfies the given property, and all
output traces can be evaluated to choose the most optimal
trace that can replace the input trace with minimal amount of
modifications.
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Appendix: Proofs
Proof of Theorem 2
Proof. Let ψ be a propositional formula. We create the
propositional machine made of a single state s, with a single
transition s − ψ→ s. Let ϕ = > be the multi-trace made of the
single multi-event >. By Definition 5, the sequence s − ψ→ s
is a run of M for the trace made of the single multi-event ψ
if and only if n>o> ∩ nψo> , ∅, i.e. if ψ is satisfiable. This
shows that the problem is NP-hard.
Let ψ0, . . . , ψn−1 be the sequence of formulas such that ψi

is the formula associated to the transition si → si+1 in M.
For each i, define the set of propositional variables Ai as
{ai1, . . . , a

i
m}. Given a formula ϕ over A, the renaming of

A to Ai , noted ρi(ϕ), is the propositional formula obtained
by replacing aj by aij for every j ∈ [1,m]. Let ϕ̂ be the
propositional formula defined as:

ϕ̂ ,
n−1∧
i=0
(ρi(ϕi) ∧ ρi(ψi))

The sequence s0 − ψ0 → · · · − ψn−1 → sn is a run of M for ϕ
if and only if ϕ̂ is satisfiable, hence the problem is in NP. �

Proof of Theorem 3
Proof. Let ϕ be a multi-event, sA ∈ SA, sP ∈ SP be states
in the access proxy and the multi-monitor, and σ : SP → N.
For some multi-trace ϕ = ϕ0, . . . , ϕn−1 and every state s ∈ SP ,
σ(s) is the number of runs of the form s0−ϕ0 → . . .−ϕn−1 → s
in πP . For every s′ ∈ SP , σ′(s′) is the number of runs of the
form s0 − ϕ0 → . . . − ϕn−1 → s′ − ϕ → s′′ in πP .
Moreover, we have that for every iteration of lines 8–15,

nc = σ(sP) + |nψPo> ∩ nϕ′o> |; i.e. nc is the number of runs
of the form s0 − ϕ0 → . . . − ϕn−1 → sP − ϕ → s′P . We can
finally observe that for a given verdict l ∈ {Ω, ∅, ε}, β(l) is the
sum of all values nc in iterations where γπP (sP, ψP, s′P) = l.
In other words, β(l) is the number of runs of ϕ · ϕ in πP that
end up in a state labeled with verdict l. Then β(v)∑

v′∈{Ω,∅, ε } β(v
′)
is

the fraction of all runs that end up in this verdict, which is
equal to ρvπP (πA(ϕ)). �
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