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Summary  13 

Ticks are vectors of pathogens which are important both with respect to human health and 14 

economically.  15 

They have a complex lifecycle requiring several blood meals throughout their life. These 16 

blood meals take place on different individual hosts and potentially on different host species. 17 

Their lifecycle is also dependent on environmental conditions such as the temperature and 18 

habitat type. 19 

Mathematical models have been used for the more than 30 years to help us understand how 20 

tick dynamics are dependent on these environmental factors and host availability.  21 

In this paper we review models of tick dynamics and summarise the main results. This 22 

summary is split into two parts, one which looks at tick dynamics and one which looks at tick 23 

borne-pathogens. 24 

In general, the models of tick dynamics are used to determine when the peak in tick densities 25 

is likely to occur in the year and how that changes with environmental conditions. The 26 

models of tick borne pathogens focus more on the conditions under which the pathogen can 27 

persist and how host population densities might be manipulated to control these pathogens. 28 

In the final section of the paper we identify gaps in the current knowledge and future 29 

modelling approaches. 30 
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1. INTRODUCTION  34 

Ticks are the most important vectors of zoonotic disease-causing pathogens in Europe, 35 

transmitting the tick-borne encephalitis (TBE) complex of viruses, Anaplasma 36 

phagocytophyllum, Babesia and Rickettsia species and Borrelia burgdorferi sensu lato, the 37 

complex of bacteria that cause Lyme borreliosis, amongst others. Ixodes ricinus L. ticks are 38 

particularly implicated in pathogen transmission because they are almost ubiquitous across 39 

Europe and are generalist feeders, which allows for pathogen transmission among different 40 

host species. I. ricinus are increasing in number and range in many parts of northern Europe 41 

(reviewed by Medlock et al. 2013). 42 

In any given geographical region tick population dynamics are dependent on a number of 43 

biotic and abiotic factors including the density of different host species, and other factors that 44 

influence survival and activity such as temperature and humidity and vegetation types, the 45 

latter of which provide habitats for different hosts and create different microclimates. 46 

Mathematical models have been used extensively to predict the dynamics of tick populations 47 

under different conditions including climate change. However, high tick densities do not 48 

necessarily mean high prevalence or risk of tick-borne pathogens, since this is dependent not 49 

only ticks but also competent transmission hosts. Therefore, models have also been used to 50 

predict the tick-borne pathogen dynamics and the theoretical effectiveness of different tick-51 

borne pathogen control methods under different environmental or management scenarios. In 52 

this paper we will review the use of those models for different systems, summarise they key 53 

results in different contexts and discuss possible future directions of mathematical modelling 54 

of tick-borne pathogens. 55 

 56 



2. MATHEMATICAL MODELS OF TICK POPULATION DYNAMICS. 57 

Although there are a number of different tick species globally this review will focus on I. 58 

ricinus and we will specify when we cite any papers which refer to other species.  59 

The I. ricinus life cycle develops from the egg, through two immature stages (larvae and 60 

nymph) to the adult stage. Each immature stage requires a blood meal from a suitable 61 

vertebrate host before developing to the next stage and the adult female requires a blood meal 62 

before producing eggs. Adult females feed primarily on large mammals such as deer, sheep 63 

or hares whilst the immature stages can also feed on smaller vertebrates such as mice, voles 64 

and birds (e.g. Gray 1998). The I. ricinus life cycle usually takes 3-4 year to complete (Fig. 65 

1).  66 

In winter ticks often enter behavioural diapause induced by cold and/or short day length 67 

(Randolph et al. 2002; but see Gray 1987). Therefore, tick activity is highly seasonal with 68 

ticks in northern Europe being active mainly between spring and autumn when temperatures 69 

are warm enough. Activity is inhibited by cold temperatures but increases with temperature 70 

up to a limit (12-20°C depending on population e.g. Gilbert et al. (2014); Tomkins et al. 71 

(2014)). Tick host-seeking (questing) activity can also be inhibited by low relative humidity 72 

or high saturation deficits (this is a function of relative humidity and temperature and gives 73 

an estimate of the drying power of the air; Perret et al. 2000). After feeding, ticks also 74 

become inactive due to physiological diapause while they develop into the next stage 75 

(Randolph et al. 2002).  76 

One of the first mathematical models developed to describe tick population dynamics was 77 

published in 1981 (Gardiner, et al. 1981). This study used empirical data from experiments to 78 

predict how tick development times depend on temperature. They did not put this into a 79 



formal predictive modelling framework but they did try to determine functional relationships 80 

between development time and different measures of temperature (i.e. air and soil 81 

temperature). In particular they looked at how experimentally predicted development times 82 

estimated in the laboratory translated to the field where temperature fluctuations are much 83 

less predictable. They found that soil temperatures recorded at a depth of 50mm are useful 84 

predictors for larval and nymphal development phases. In terms of egg development time 85 

they found that air temperatures are useful for predicting the development time of eggs laid in 86 

the spring but soil temperature is a better predictor for those laid in autumn. They suggested 87 

that this might be because during diapause eggs may be conditioned to develop according to 88 

the temperature of their environment rather than air temperature. 89 

Mount and Haile (1989) developed a computer simulation model of the American dog tick 90 

Dermacentor variabilis (Say). This model simulated the effects of environmental variables 91 

such as ambient temperature, habitat and host density on American dog tick population 92 

dynamics. They validated the model by comparing its predictions with empirical data from 93 

Virginia, Maryland and Massachusetts. The authors concluded that the model produced 94 

acceptable values for equilibrium population densities and seasonal activity patterns and went 95 

on to extend this model to include Rocky Mountain spotted fever dynamics (Cooksey et al. 96 

1990). 97 

Over the last 40 years Sarah Randolph and collaborators have written a large number of 98 

papers on tick biology and population dynamics. These are largely empirical; however there 99 

are also some which model tick population dynamics. The first of these came in 1997 100 

(Randolph and Rogers 1997) where they presented a simulation model of the African tick 101 

Rhipicephalus appendiculatus. This simulation model incorporated temperature dependent 102 

rates of egg production and development, climate driven density independent mortality rates 103 



and density dependent regulation of both nymphs and adults. The model successfully 104 

described both the seasonality and annual range of variation in numbers of each tick stage 105 

observed at each of four test sites in Uganda, Burundi and South Africa.  106 

 In 2002 Randolph et al. used empirical data on tick counts, various microclimatic factors and 107 

fat contents of ticks to create a population model explaining seasonality of I. ricinus in the 108 

UK. This study showed large variation in questing activity between years, but the date of 109 

questing (i.e. host-seeking activity) in one year was used to predict the start of questing for 110 

the next stage the following year, with reasonable accuracy. This was an important paper that 111 

also found evidence of two cohorts of ticks within a life stage within a season. Those nymphs 112 

with higher relative fat contents had emerged and become active more recently than those 113 

with lower fat contents. The suggestion was that spring-questing nymphs had overwintered, 114 

having fed as larvae the previous late summer or autumn; meanwhile autumn-questing 115 

nymphs had fed as larvae in the spring of the same calendar year. 116 

More recently, Dobson et al. (2011) used a stage-classified Leslie matrix model to break the 117 

tick life cycle into the key parts, with a particular focus on two types of diapause: 118 

developmental and behavioural, with the latter being important in determining how many 119 

times a year an individual tick might feed. This model was then used by Dobson and 120 

Randolph (2011) to make long-term predictions of the effects of host densities, climate and 121 

acaricide treatment of hosts on tick populations.  122 

In 2005 Ogden et. al. developed a model of Ixodes Scapularis Say (1821) in which tick 123 

development rates were modelled as temperature dependent time delays. Time spent in egg 124 

and engorged tick states and questing activities were all temperature dependent. The 125 

parameters were estimated using data taken from Ogden et.al. (2004). The model was 126 

validated using data from Ontario and Maryland and in both cases the observed seasonal 127 



activity patterns were predicted by the model. The models were then used to predict 128 

theoretical geographical limits for the establishment of I. Scapularis in Canada. The model 129 

predicted that the temperature conditions which are suitable for the tick are wider than the 130 

existing distribution, implying that there is potential for spread. 131 

At a similar time a different group used an age-structured stochastic model to describe the 132 

dynamics of tick populations (Hancock et al. 2011). They focused on the effect of 133 

temperature on the development between each stage of the tick life cycle, i.e. from egg to 134 

larva, larva to nymph, nymph to adult, and adult laying eggs. This model also introduced 135 

pathogen dynamics into the model. This allowed the model to predict that, if a pathogen is 136 

introduced into the system, it is most likely to persist if it is introduced at a time of year of 137 

peak tick questing. 138 

A completely different approach was adopted by Schwarz et al. (2009) who used statistical 139 

methods to identify the relationship between vegetation and tick distribution. I. ricinus tick 140 

count data were correlated with plant communities, and the resulting relationship used to 141 

predict I. ricinus distribution across the German nature reserve Siebengebirge, using 142 

Geographic Information Systems (GIS). A similar process was undertaken by Braga et al. 143 

(2012) to identify the associations between habitat, host densities, temperature and other 144 

climatic factors on observed tick abundance at sites across Scotland. The resulting output was 145 

used to predict tick abundance over all of Scotland according to GIS-based environmental 146 

data, and visualised as a series of raster maps showing predicted tick abundance. The key 147 

parameters in this basic algorithm were then altered in accordance with environmental change 148 

projections (climate change and woodland expansion), to produce predictions of future tick 149 

abundance over Scotland due to environmental change scenarios. 150 



Jore et al. (2011) also used a statistical method to investigate I. ricinus tick dynamics. A 151 

principle component analysis provided a model which explained 67% of the variation in past 152 

I. ricinus densities in Norway. The study suggests that I. ricinus have expanded northwards 153 

since 1983. 154 

2.1 Summary:  155 

For almost 35 years mathematical models of tick dynamics have been developed. The 156 

models have largely focussed on the impact of environmental factors on these dynamics. 157 

Field observations show that tick life stages emerge at different points in the season and 158 

peak at different times in different geographical regions. In some areas we can have 159 

bimodal tick dynamics within a year (e.g. Tagliapietra et al 2011) and in other areas there 160 

is only one peak.  The models described above have been able to replicate the observed 161 

tick dynamics for particular geographical areas, tick species and environmental 162 

conditions. However it is clear that in order to be able to predict tick dynamics we would 163 

need to have key pieces of information about the environment (and particularly the 164 

temperature) in which they live.  165 

Lorenz et al (2014) explicitly looked at the extrapolation of landscape model results to 166 

other spatial or temporal systems for Lyme disease and I. scapularis and concluded that 167 

models based on measures of vegetation, habitat patch characteristics and herbaceous 168 

landcover emerged as effective predictors of observed disease and vector distribution. 169 

These would therefore be important characteristics of an area to measure in order to 170 

predict these distributions. 171 

 172 

 173 



3. MATHEMATICAL MODELS OF TICK-BORNE PATHOGEN DYNAMICS. 174 

Modelling of tick-borne pathogens has focussed on a small number of pathogens which are 175 

important for human or animal health and welfare. The three main systems which have been 176 

modelled extensively are louping-ill virus (LIV), western tick-borne encephalitis virus 177 

(TBEV) and Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. This 178 

section will focus largely on LIV since this pathogen has the largest body of modelling work 179 

and it is the area of expertise of the authors. It also illustrates many of the biological features 180 

which need to be incorporated into models and so is a good case study for models of other 181 

system.  182 

In general transmission of these pathogens can occur in three ways (although also see Park et 183 

al. 2001 discussed below for Louping Ill Virus). The most common form of transmission 184 

occurs when susceptible ticks feed on infected hosts with virus in their bloodstream (viraemic 185 

hosts) and pick up the virus. These ticks then moult into their next developmental stage and 186 

when they take their next blood meal then they can pass the pathogen onto a susceptible host, 187 

this will be a different individual and can also be a different host species (Labuda and Nuttall 188 

2004). The second method is vertical transmission, for some pathogens infection is passed 189 

from adult ticks to eggs and onto larvae (Labuda and Nuttall 2004). Finally, for some hosts 190 

and some pathogens there can be non-viraemic or co-feeding transmission in which 191 

susceptible ticks feeding near to infectious ticks can pick up infection without the host having 192 

a viraemic response (Jones et al 1987).  193 

3.1 Louping Ill Virus 194 

 A large body of increasingly complex models have been used to help us understand LIV, 195 

which is the western-most variant of Western tick-borne encephalitis virus. LIV is 196 



transmitted by I. ricinus and causes disease in livestock, especially sheep Ovus aries, as well 197 

as red grouse Lagopus lagopus scoticus, a valuable game bird. A vaccine has been developed 198 

for livestock but not for red grouse that are highly susceptible to the disease, with 78% 199 

mortality rates in experimentally infected birds in the laboratory (Reid 1976).  The hosts and 200 

transmission cycle of this complex virus system has been recently reviewed (Gilbert 2015), 201 

but mathematical models can be extremely useful in helping to identify gaps in our biological 202 

knowledge of the system, identifying the relative importance of different host species hosts, 203 

and predicting the effectiveness of potential control strategies.  204 

The first mathematical model of LIV was presented by Hudson et al. (1995), where a series 205 

of coupled ordinary differential equations describing LIV on red grouse moorland was 206 

presented. This model explored the interactions between ticks and red grouse and their role in 207 

the dynamics of LIV. The model predicted that grouse alone cannot support a tick population 208 

since very few adult ticks feed on grouse, therefore other hosts are required to complete the 209 

tick life cycle. Within this model the alternative hosts were mountain hares Lepus timidus, 210 

although similar later studies examined the role of red deer Cervus elaphus (Gilbert et al. 211 

2001; Norman et al. 2004) and sheep (Porter et al. 2011). Hudson et al. (1995) also calculated 212 

a formula for the conditions for persistence of both ticks and LIV. For tick persistence a 213 

sufficient number of hosts (or combination of host types) which can feed all stages of ticks 214 

are required, while LIV persistence also requires a competent LIV transmission host (red 215 

grouse in this model) to make up a sufficient proportion of the total tick hosts. This means 216 

that, in order for the pathogen to persist one needs enough tick hosts to maintain the tick 217 

population, with a sufficient number of these being pathogen-transmitting hosts. This 218 

threshold formula comes from the basic reproductive rate or number, R0, when R0>1 then the 219 

pathogen persists and when R0<1 the pathogen dies out. Some more complex later LIV 220 

models have also predicted an eventual ‘dilution effect’ where pathogen prevalence declines 221 



if there are too many non-pathogen transmitting tick hosts (hosts which do not transmit the 222 

pathogen such as deer) compared to competent transmission hosts which causes potential 223 

pathogen transmitting bites to be “wasted” and the effect of the pathogen to be diluted 224 

(Norman et al. 1999; Gilbert et al. 2001). 225 

Sheep are known to produce a LIV viraemia after infection, and are known to be competent 226 

transmission hosts. However, the role of lambs is less well understood; if ewes have been 227 

bitten by infected ticks, their young lambs acquire immunity from the virus from drinking the 228 

colostrum from their mothers in the first few days or weeks of life. However, as the lambs 229 

age this immunity wanes, leaving them at risk of contracting LIV.  Thus, lambs could 230 

potentially have a role as a reservoir host. Therefore, another differential equation model was 231 

created to understand the role that lambs may play as a reservoir of LIV. The model predicted 232 

that, whilst in theory large numbers of lambs could act as a reservoir for the virus, it is more 233 

likely that, in most situations, these numbers are probably small (Laurenson et al. 2000).  234 

Laurenson et al. (2003) examined the impact of near-eradication of mountain hares on tick 235 

burdens and LIV seroprevalence in red grouse, using both empirical data and differential 236 

equation models. The models compared the scenario where mountain hares simply act as tick 237 

amplifying hosts to a scenario where hares were both tick hosts and non-viraemic 238 

transmission hosts. It was found that the model which included non-viraemic transmission 239 

produced predictions that fitted the data better than the simpler model did. Laboratory 240 

experiments had already identified mountain hares as competent transmission hosts (through 241 

supporting non-viraemic transmission between co-feeding ticks) in the laboratory (Nuttall 242 

and Jones 1991; Jones et al. 1997). In addition, models have shown that non-viraemic 243 

transmission via co-feeding may allow the virus to persist more readily than it would 244 

otherwise have done, and allow the virus to persist even in the absence of viraemic hosts if 245 



the level of non-viraemic transmission is high enough (Norman et al. 2004). However, the 246 

Laurenson et al. (2003) study was important in demonstrating that mountain hares can be LIV 247 

reservoir hosts in the field. There were large management repercussions to this research, as 248 

many grouse moor managers over Scotland began large-scale culls of mountain hares, 249 

leading to political issues (reviewed by Harrison et al. 2010; Gilbert 2015). Models again had 250 

political impact by providing evidence against culling mountain hares: while the Laurenson et 251 

al. (2003) system included only red grouse and mountain hares, most areas in Scotland 252 

managed for grouse hunting also have deer. Therefore, Gilbert et al. (2001) modelled a three-253 

host system, including deer as well as red grouse and mountain hares. Importantly, this three-254 

host model predicted that LIV would always persist in the presence of even low densities of 255 

deer, even if all mountain hares were culled. This was because red grouse are transmission 256 

hosts for the virus while deer, although not competent transmission hosts, are important hosts 257 

for all stages of tick, so together both virus and tick life cycles can be maintained. This 258 

Gilbert et al. (2001) model has been crucial in the arguments against large-scale mountain 259 

hare culls (Harrison et al. 2010; Gilbert 2015).  260 

Mathematical models have also been used in helping identify which pathogen control 261 

methods could be theoretically most effective in LIV control. Porter et al. (2011) developed 262 

models to predict the effectiveness of using acaricide-treated sheep as a tool to control ticks 263 

and LIV in red grouse.  The model predicted that the presence of deer limits the effectiveness 264 

of such a strategy, but for certain conditions the use of acaricide on sheep could theoretically 265 

be a viable method for controlling ticks and LIV providing that high numbers of sheep are 266 

treated and acaricide efficacy remains high, while deer densities must be very low (Porter et 267 

al. 2011). Due to this predicted adverse impact of deer on the success of treating sheep to 268 

control ticks and LIV, and because deer are known to maintain high tick population densities 269 

in Scotland and move ticks between habitats (Ruiz-Fons and Gilbert 2010; Jones et al. 2011; 270 



Gilbert et al. 2012), models were then developed to test the theoretical effectiveness of 271 

acaricide-treated deer on controlling ticks and LIV (Porter et al. 2013a). The model predicted 272 

that treating deer could control ticks and LIV if high acaricide efficacies were maintained and 273 

if a large proportion of the deer population was treated. Furthermore, effectiveness was 274 

improved if there were only low densities of deer. However, although the model predicted 275 

that this control method is theoretically plausible, it is unlikely that the conditions could be 276 

met in practical terms, in wild deer. Therefore, using an age-structured differential equation 277 

model, including splitting the grouse life cycle to represent the different behaviour between 278 

chicks and adults, Porter et al. (2013b) investigated whether acaricide treatment of the grouse 279 

themselves could help reduce ticks in the environment and LIV in the grouse population. 280 

Again, this was theoretically possible, but in the presence of deer, high acaricide efficacies 281 

were required and high proportions of the grouse population treated, were needed for 282 

successful control. This is due to the deer amplifying the tick population. These types of 283 

models can therefore be of use in decision-making by land managers for choosing disease 284 

control options, such as whether to try a certain control method or not depending on the 285 

situation in a specific area, taking into account any practical difficulties.  286 

It is generally assumed that LIV is transmitted through ticks biting their hosts, and model 287 

parameterisation generally reflects this assumption. However, red grouse chicks frequently 288 

eat invertebrates, including ticks (Park et al. 2001). This is a potentially important route of 289 

transmission: it has been suggested that 73-98% of LIV infection in red grouse in their first 290 

year could stem from ingestion (Gilbert et al. 2004). Introducing this infection route to LIV 291 

modelling has an interesting effect: when using the standard method for calculating the basic 292 

reproduction number for the persistence of LIV, then the algebraic results and numerical 293 

simulations do not match. The standard method of analysis causes virus persistence to be 294 

underestimated, as the ingestion of infected ticks causes a feedback loop where the virus can 295 



persist with seemingly insufficient hosts (Porter et al. 2011). This phenomenon requires 296 

further investigation, as it may indicate interesting gaps in our knowledge of the biology of 297 

the LIV system as well as an anomaly in the current modelling approach.  298 

In the LIV models described above there has been no explicit spatial component to the 299 

models. However, Watts et al. (2009) investigated the interaction between neighbouring areas 300 

by expanding the previously-existing LIV models into a two-patch system with host 301 

movement between patches. Comparison with empirical data showed that whilst the one-302 

patch model was a reasonable indicator for tick numbers, it tended to underestimate the 303 

prevalence of the LIV. When considering the two-patch model, the results depended largely 304 

on finding the appropriate balance of deer movement between the two sites (Watts et al. 305 

2009). Jones et al. (2011) developed a different type of differential equation model, which 306 

explicitly tracked the number of ticks on each host, to predict how deer moving ticks from 307 

forest onto moorland might affect ticks and LIV in red grouse on the moorland. The 308 

assumption was that ticks are more abundant in forest than on moorland, which is supported 309 

by empirical data (Ruiz-Fons and Gilbert 2010). This model predicted the highest levels of 310 

LIV in moorland to occur where it is bordering forest regions, due to higher tick numbers 311 

there. Furthermore, this model was important in examining for the first time the impact of 312 

landscape heterogeneity on predicted pathogen levels: virus prevalence was predicted to be 313 

higher in landscapes that have larger forest patches, and higher landscape fragmentation, 314 

which increases the number of borders between the two habitats (Jones et al. 2011). 315 

3.1.1 Summary:  316 

The transmission, persistence and dynamics of Louping Ill virus are complex with many 317 

interacting factors to take into account. The focus of the modelling work described above 318 

has been on trying to understand the roles that different hosts play in maintaining these 319 



dynamics. Hosts can play three possible roles, they can either simply act as tick amplifiers 320 

(e.g. deer) or they can both amplify ticks and transmit virus (e.g. sheep for viraemic 321 

transmission or hares for non-viraemic transmission) or finally they can transmit the 322 

disease but not support the ticks (e.g. grouse).  The ability to control the virus in any 323 

particular system is highly dependent on the densities of other hosts. In addition there are 324 

practical issues involved in trying to control the virus in this system which is made up of 325 

mostly wild hosts. There are both practical difficulties in delivering treatment and 326 

legislative difficulties in which treatments are permitted. 327 

Louping ill virus does not infect humans but is of economic importance and has particular 328 

impact in rural areas and on rural livelihoods. 329 

3.2 Other tick-borne pathogens. 330 

3.2.1 Tick-borne encephalitis: Tick-borne encephalitis is a neurological disease which is of 331 

significant public health interest across mainland Europe. It is caused by the tick-borne 332 

encephalitis virus (TBEV), which is primarily transmitted by I. ricinus ticks, where rodents 333 

act as the competent host for the virus.  334 

There are two significant ways in which deer can influence TBEV dynamics. Firstly, as deer 335 

are the main host which I. ricinus adults feed on, their presence, as with LIV, has an 336 

amplification effect on tick abundance. Secondly, as deer do not support TBEV transmission, 337 

very high deer densities can eventually lead to the dilution effect lowering TBEV levels 338 

(again similar to model predictions of LIV).  339 

In both 2003 and 2007 Rosa and co-authors extended the models of Norman et. al. (1999) to 340 

explicitly include the questing and feeding tick stages and the aggregation of ticks on the 341 

hosts. They investigated changes in host densities and different infection pathways to 342 



determine when the dilution effect might occur. They found the new result that the dilution 343 

effect might occur at high densities of disease competent hosts. The authors state that better 344 

information on tick demography would be needed before it would be possible to predict 345 

whether this effect would happen in the field. However, there is some evidence that this is the 346 

case in the TBE system (Perkins 2003).  347 

In 2012 the same Italian group published a pair of papers taking both an empirical and 348 

theoretical approach to understanding the effect of deer density of tick distributions on 349 

rodents and therefore the risk of TBE. Cagnacci et al. (2012) empirically found a hump-350 

shaped relationship between deer density and ticks feeding on rodents, and a negative 351 

relationship between deer density and TBE occurrence. Twinned with this, a model was 352 

developed by Bolzoni et al. (2012) to explain these findings. They found hump-shaped 353 

relationships between deer density and both the number of ticks feeding on rodents and 354 

TBEV prevalence in ticks. For low deer densities this can be explained by the tick 355 

amplification effect, for high deer densities the virus dilution mechanism dominates the 356 

dynamics. 357 

The role of climate change on tick-borne pathogen prevalence was scrutinised by Randolph 358 

(2008). In this study, TBEV was used as a case example. A statistical model was used to 359 

show that climate change is not enough to explain historical changes in TBE incidence within 360 

Europe. An alternative model was presented, showing how the introduction of further factors 361 

allowed for a better model fit of the data. Crucially, such a model included socio-economic 362 

factors such as unemployment, agricultural practices and income. Zeman et al. (2010) used 363 

GIS analysis to similarly find that heterogeneity in TBE trends cannot be fully explained by 364 

geographic and climatic factors. However, they also found that the inclusion of socio-365 

economic conditions could not satisfactorily explain the anomalies.  366 



3.2.2 Summary 367 

As with Louping ill the persistence and dynamics of TBE are dependent on host densities 368 

and deer play a crucial role in this. Some of the papers described above, particularly the 369 

2003 and 2007 Rosa et al papers present general results which could apply to a number of 370 

different tick borne pathogens and, in particular the results that dilution effects are very 371 

dependent on tick demography and density dependent constraints are true more generally 372 

than just for TBE. In most of the models presented here TBE has been a case study of a 373 

model which addresses more general questions. 374 

3.2.2 Lyme Disease: Borrelia burgdorferi s.l. is the suite of spirochete bacteria which causes 375 

Lyme disease. This is a pathogen which has a wildlife reservoir but infects humans in the 376 

northern hemisphere. 377 

Porco (1999) used a time-independent differential equation model to investigate how the 378 

prevalence of B. burgdorferi s.l. in I. scapularis (Say) nymphs is affected by various model 379 

parameters. The infectivity of white-footed mice Peromyscus leucopus (a key transmission 380 

host in the eastern USA) was predicted to be the parameter which increased B. burgdorferi 381 

s.l. prevalence the most, whilst a ten-fold increase in the density of deer (which do not 382 

transmit the pathogen) significantly reduced B. burgdorferi s.l. prevalence, suggesting that 383 

this is another system where the dilution effect can occur. 384 

Zhang and Zhao (2013) presented a seasonal reaction-diffusion model of Lyme disease, 385 

utilising it to study the dynamics of the system in bounded and unbounded spaces. For 386 

bounded habitats a threshold for pathogen persistence was predicted, whilst for unbounded 387 

habitats they were able to predict the speed of pathogen spread.  388 



In their 2007 paper Ogden et al considered the work of Wilson and Spielman (1985) and 389 

hypothesized that the transmission cycles of B. burgdorferi are very efficient in north-eastern 390 

North America because the seasonal activity of nymphal and larval I. scapularis is 391 

asynchronous. They then developed a simulation model which integrated transmission 392 

patterns imposed by seasonal asynchronous nymph and larvae with a model of infection in 393 

white footed mice. They parameterised the model for B. burgdorferi and Anaplasma 394 

phagocytophilum as examples. They found that duration of host infectivity, transmission 395 

efficiency to ticks and co-feeding transmission are the major factors determining fitness of 396 

pathogens in I. scapularis in North America.  397 

The same group then wrote a series of papers looking I. Scapularis in Canada where is is 398 

established in some places and emerging in others. In Wu et al (2013) they developed a 399 

temperature driven map of the basic reproductive number for the ticks and found that for 400 

while the geographical extent of suitable tick habitat is expected to increase with climate 401 

warming the rate of invasion will also increase. In a subsequent paper Ogden et al (2013a) 402 

investigated the speed of B. burgdorferi invasion after establishment of ticks. The model 403 

showed that the number of immigrating ticks was a key determinant of pathogen invasion and 404 

so the authors hypothesized that a 5 year gap would occur between tick and B. burgdorferi 405 

invasion in Eastern Canada but a much shorter gap in Central Canada. This was consistent 406 

with empirical evidence. This was investigated more generally in Ogden et al (2013b). 407 

3.2.1 Summary 408 

Borrelia burgdorferi  is another pathogen for which the dilution effect appears to occur. In 409 

this case rodents are the main reservoir host and B. burgdorferi is emerging in a number of 410 

different areas as the tick hosts expand their range in response to climate change or socio-411 

economic factors. 412 



3.3 More general models of tick borne pathogen. 413 

More generally Hartemink et al. (2008) determined ways of characterising the basic 414 

reproductive number in a tick-borne pathogen system which has multiple transmission routes 415 

using the next generation matrix (e.g. Diekmann et al. 2010). They showed that the 416 

complexities of the tick transmission cycle can be overcome by separating the host 417 

population into epidemiologically different types of individuals and constructing a matrix of 418 

reproduction numbers. They then used field and experimental data to parameterise this next-419 

generation matrix for B. burgdorferi s.l. and TBEV. 420 

Dunn et al (2013) used a general model of tick-borne pathogens to study the basic 421 

reproductive number and found that the transmission efficiency to the ticks, the survival rate 422 

from feeding larvae to feeding nymphs and the fraction of nypmhs to find a competent host 423 

are the most important factors in determining R0. 424 

Another general tick-borne pathogen model was created by Zeman (1997), where reported 425 

cases of disease were smoothed over to create risk maps for Lyme disease and TBE in 426 

Central Bavaria. This study indicated that B. burgdorferi s.l. is wider spread than TBEV, but 427 

that both pathogens share the same main foci. Similarly, Hönig et al. (2011) assessed the 428 

suitability of various habitats for supporting I. ricinus ticks, creating a model with which they 429 

were able to create a tick-borne pathogen risk map for South Bohemia, which was compared 430 

to clinical cases of TBE for validation. The model suggested that the areas most suitable for 431 

tick-borne pathogens were along river valleys. However, when human activity is taken into 432 

account, the surroundings of large settlements are equally likely to provide tick-borne 433 

pathogen cases.  434 



Another aspect of transmission which is considerably less well understood is the pattern of 435 

aggregation of ticks on hosts. Ferreri et al (2014) analysed a nine year time series of Ixodes 436 

ricinus feeding on Apodemus flavicollis mice, the reservoir host for TBE in Trentino, 437 

Northern Italy. The tail of the distribution of the number of ticks per host was fitter to three 438 

theoretical distributions. The impact of these distributions on pathogen transmission was 439 

investigated using a stochastic model. Model simulations showed that there were different 440 

outcomes of disease spread with different distribution laws amongst ticks.  441 

The models discussed above are not an exhaustive list, but do describe models which help us 442 

to understand many of the different complexities of tick-borne pathogen systems, and 443 

showcase the diversity of models now being developed for a wide range of end uses.  444 

 445 

4. KNOWLEDGE GAPS AND FUTURE DIRECTIONS 446 

As we have seen mathematical models have been used for more than 30 years to help to 447 

predict tick dynamics and subsequently pathogen dynamics. The models presented here have 448 

been used in two ways, firstly to predict when tick densities are at their peak within a year 449 

and how that peak varies with environmental factors. Secondly, they have been used to 450 

predict pathogen persistence for different combinations of available host species with 451 

different transmission competencies. In particular, they have looked at the interaction 452 

between tick amplifying hosts and disease transmitting hosts and how densities of these hosts 453 

could be manipulated to control the disease. 454 

One of the problems of these modelling studies is the difficulty in gathering empirical data to 455 

validate the model results. This is largely because there is a great deal of variability between 456 

sites in terms of habitat cover, microclimate and host densities. This is not unique to the tick 457 



system, it is difficult for a number of reasons to carry out experiments in natural systems. It is 458 

also difficult to measure realistic tick densities (e.g. Dobson 2014). 459 

However, most of the models described here have succeeded in doing some type of validation 460 

and they provide useful qualitative results. 461 

Future modelling approaches are likely to be focussed in three areas. One is to look at spatial 462 

patterns of tick and disease risk, and in particular to link environmental information in GIS 463 

systems to models of tick and pathogen dynamics in a mechanistic way. These models can 464 

then be used to predict the impact of climate change on tick and disease risk across a given 465 

geographical region. This type of modelling is currently being carried out at the University of 466 

Stirling for Scotland. The advantage of this type of modelling is that it is generalizable and 467 

could be applied to any country with the right type of environmental data available in GIS 468 

form. It can also predict risks are going to change over time rather than only looking at the 469 

end points as has been done before (e.g. Braga et al 2012). 470 

If we can identify which areas are going to have significant increases in disease risk then we 471 

can inform policy makers and target control efforts. For example, if we could identify which 472 

areas are going to have higher and lower Lyme disease risk then we could target efforts to 473 

educate the public on how to avoid being bitten in those high risk areas. 474 

The second direction which we predict tick modelling will move is to further a new 475 

modelling technique which was introduced in Jones et al (2011). In that paper the authors 476 

developed a model which keeps track of the number of hosts with a particular number of ticks 477 

on it 478 

Third route- more work on aggregation and individual differences (Rosa and Pugliese.) 479 

 480 
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Figure 1: Schematic diagram of the I. Ricinus lifecycle with the type of host that they are able 677 

to feed on at each stage. 678 
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