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Abstract 23 

Atlantic salmon post-smolts of an average of 940g were fed six diets including two marine 24 

based commercial diets one with partial inclusion of vegetable proteins (VPs) and oils (VOs) 25 

(2011/12 EU standards) (MB) and a second with partial inclusion of VPs, land animal-by 26 

product (ABP) proteins and VOs (non-EU standards) (MBABP), a fully vegetable protein (VP) 27 

diet; a fully algal and VOs (VO) diet; a fishery-free vegetable-based (VP/VO) diet; and a 28 

fishery-free diet with a mix of VPs and ABP proteins and a mix of algal and vegetable oils 29 

(MFABP). Growth was assessed at Days 104 and 175, whereas fillet proximate composition, 30 

haematology and innate immune responses were assessed upon termination. Overall, MB 31 

salmon was the best performing group for the full period in terms of feed intake and overall 32 

weight gain. MB and VP salmon exhibited the highest FCRs compared to the other groups, 33 

while VP salmon exhibited the highest condition factor (K) and VO salmon the lowest K 34 

compared to the other groups. Fillet proximate composition did not present differences among 35 

the 6 groups. MB salmon demonstrated the highest plasma lysozyme activity compared to the 36 

other groups while MFABP, VP and VP/VO salmon demonstrated higher plasma anti-protease 37 

activity in contrast to MB salmon. The dietary groups did not present differences in plasma 38 

protein, total IgM or natural haemolytic activity while unaltered head kidney macrophage 39 

respiratory burst activity was also observed. Overall, diets free from marine proteins or oils 40 

and/or both were satisfactorily utilised by salmon without compromising their immune 41 

capacity, although longer adaptation periods are required. 42 

1. Introduction 43 

The stagnating supplies of marine proteins and oils from wild fisheries, have led the aquafeed 44 

sector to seek for alternative protein and lipid sources. Numerous alternatives to fishmeals 45 

(FMs) and fish oils (FOs) are available from other sources, mainly grains, oilseeds, material 46 

recovered from the processing of terrestrial livestock and unicellular organisms (yeasts, 47 
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moulds, bacteria and microalgae). The use of plant derived feedstuffs as sustainable 48 

alternatives to marine meals and oils in Atlantic salmon feeds however, has been the main focus 49 

of salmon nutrition, as these ingredients have high global availability at competitive prices in 50 

comparison to FM and FO, and premium nutritional properties for most farmed salmonids.  On 51 

the contrary, the use of terrestrial animal by-products (ABPs), although of great potential has 52 

not yet been explored to a similar extend in salmon diets, despite the fact that they have been 53 

used in many salmon producing countries including Australia, Canada and Chile. The main 54 

reason for that were the legal restrictions established by the European Union (EU), regarding 55 

the use of the greater majority of animal derived products, aiming the eradication of 56 

transmissible spongiform encephalopathies (TSE) (EU 2001, 2003). However, the rules 57 

regarding the use of non-ruminant ABPs such as poultry, feather and porcine blood meals in 58 

commercial aquafeeds have been revoked for the past few years (van Dyck 2012).  59 

Vegetable proteins in aquafeeds should be low in oligo- and poly-saccharides, largely 60 

free from antinutritional factors (ANFs), have a high protein content, favourable amino acid 61 

profile, high nutrient digestibility and be acceptable by the fish (Naylor et al. 2009). Plant 62 

protein concentrates, wheat and corn gluten meals possess most of these characteristics (Naylor 63 

et al. 2009). On the contrary, ABPs are free from ANFs and therefore their application in 64 

salmon feeds could be more desirable compared to their plant protein counterparts. As yet, 65 

several studies on various salmonids have assessed the potential of some of these ABPs with 66 

promising results (Higgs et al. 1979; Steffens 1994; Twibell et al. 2012; Hatlen et al. 2014). 67 

Moreover, it has been proven that close to 100% dietary FM replacement with premium plant 68 

and animal-proteins is possible for Atlantic salmon, with no negative effects on growth and 69 

feed intake when the dietary amino acid profile is well balanced (Espe et al. 2006; Torstensen 70 

et al. 2008). While studies have investigated the effects of moderate FM substitution with plant 71 

feedstuffs on Atlantic salmon immune responses (Krogdahl et al. 2000; Bransden et al. 2001) 72 
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the current knowledge about the effects of complete FM replacement on these is unexplored. 73 

Studies on partial FM replacement however, demonstrated that moderate levels of dietary SPC 74 

in salmon diets promoted gut immune responses such as lysozyme and total IgM levels and 75 

resistance to Aeromonas salmonicida (Krogdahl et al. 2000). Moreover, Bransden et al. (2001) 76 

showed that partial FM substitution with dehulled lupin meal (DLM) or a blend of DLM with 77 

hydrolysed poultry feather meal (HPFM) in Atlantic salmon diets does not compromise salmon 78 

growth, immune responses or resistance to Vibrio anguillarum.  79 

Similarly to FM, several studies have revealed that  FO can be completely substituted 80 

by selected single or mixed VOs in Atlantic salmon diets (Bell et al. 2001, 2002; Torstensen et 81 

al. 2005, 2008). In the present trial, diets with complete replacement of FO were supplemented 82 

with algal oil as a source of n-3 PUFAs while the n-6/n-3 C20 PUFA ratio was kept relatively 83 

constant (~1) among FO and FO-free diets. Carter et al. (2003) reported no changes on the 84 

growth performance of Atlantic salmon fed on diets containing a mixture of canola oil (CO) 85 

and FO or CO and algal (traustochytrids) oil. While, studies on partial or complete replacement 86 

of either FM or FO in salmon diets have been widely undertaken, the impact of a combined 87 

complete replacement of both, on salmon growth performance and immune responses has not 88 

yet been investigated.  89 

Currently FM inclusion in commercial salmon diets range from 15% to 55% while FO 90 

levels range from 3% to 40%. These variations largely depend on the country feeds are 91 

manufactured, and partially reflect differences in the employed production systems, local 92 

regulations or legal restrictions as well as differences among the farmed salmon breeds 93 

(DeSilva et al. 2012). The present study focused on the innate immune responses and 94 

performance of Atlantic salmon post-smolts, fed on two commercial FM- and FO-based feeds, 95 

combined with either blends vegetal proteins and oils solely, or a mix of vegetal and ABP 96 

proteins with VOs, and fish fed on fully VP or VO and algal oil diets or two feeds with complete 97 
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FM and FO substitution with vegetal products (VPs, VOs and algal oils) or a combination of 98 

the above with ABPs, was compared.  For the present trial, the FM used was tested against 99 

many other FM sources and was found to be consistently the highest performing source, while 100 

protein and lipid sources utilised in the present trial were selected based on their premium 101 

quality.  102 

2. Materials and Methods 103 

2.1. Diets and growth trial 104 

Six different feeds with different levels of FM and FO substitution (Table 1) were tested for 105 

their effects on growth performance and health status of Atlantic salmon post-smolts. Two 106 

commercial FM and FO based EWOS diets, the first with partial inclusion of vegetable protein 107 

concentrates and oils according to the EU standards of 2011-12, namely European marine 108 

based (MB) diet, and a second with partial addition of a mixture of VPCs, land ABP proteins 109 

and VOs according to non-EU standards, denoted as marine based with inclusion animal by-110 

products diet (MBABP), were used as control treatments. In the VP diet the FM was completely 111 

substituted by VPCs, while complete replacement of FO by VOs and algal lipids (the latter 112 

used as a source of long chain n-3 PUFAs) was applied in VO diet. Higher levels of FO were 113 

included in the VP-based diets in order to compensate for the residual amounts of lipid found 114 

in FM. Complete substitution of marine proteins and lipids was tested using two different diets, 115 

a fully vegetarian one with complete replacement of FM and FO with VPCs and a combination 116 

of VOs and algal oils denoted as VP/VO diet and a second one combining also the inclusion of 117 

land animal by-product proteins (poultry and porcine blood meal) namely MFABP diet. The 118 

raw materials used to replace FM, as well as the FM itself, were previously included in a routine 119 

program to measure protein digestibility and were selected for use in the study due to their high 120 

scores on this quality aspect (Crampton, personal communication). Diets with partial or total 121 

substitution of FM with alternative protein sources were supplemented with synthetic amino 122 
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acids and premixes with a starch binder in order to balance nutrients. All diets were formulated 123 

to meet the nutrient requirements of salmon according to NRC (1993). Diets were pelleted 124 

through extrusion (EWOS Innovation, Dirdal, Norway).  125 

 Growth trials were conducted at EWOS Innovation facilities at Dirdal, Norway. 126 

Unvaccinated Atlantic salmon post-smolts (S0 smolts) of 550g mean body weight, from a 127 

commercial SalmoBreed AS (Bergen, Norway) strain selected for improved growth 128 

performance were allocated in 24 seawater supplied tanks, until a total of 55 fish were in each 129 

tank. Fish were acclimatised to the experimental tanks for 84 days prior to the start of the 130 

experiment due to technical issues (delays in the delivery of some of the raw materials used in 131 

the experimental feed formulations and thus the manufacturing of the trial feeds), during which 132 

time they were fed a commercial diet (EWOS OPAL 500) and later allocated their experimental 133 

diet. Daily feeding throughout this period was based on appetite control. Uneaten pellets during 134 

this time were counted every day. The system consisted of cylindrical fibreglass tanks with a 135 

water volume of 3.0 m3. Each tank was supplied by running seawater pumped from the nearby 136 

fjord at 50m depth (salinity range of 29 ± 1.3 g × l-1 and temperature ranging from 6.3 ºC in 137 

March (lowest temperature recorded) to 9.1 ºC in August (25th) (highest temperature recorded) 138 

(Average water temperature 7.7 ± 1.4 ºC) at a flow rate of 0.8 l × kg × biomass-1× min-1.  139 

 A continuous lighting regime was used during the acclimation and feeding trial period. 140 

For the feeding trial, quadruplicate tanks of fish were provided one of the 6 experimental 141 

treatments. The fish were weighed prior to the acclimation period (16th of December 2010), at 142 

the start of the trial (day 0) (10th of March 2011), at days 104-105 (22nd and 23rd of June 2011) 143 

and at the end of the study (days 175-176) (2nd and 3rd of September 2011). The average weight 144 

of salmon at the start of the feeding trial was approximately 940g. During the feeding trial 145 

period, fish were given pellets of 5mm. Two different dietary batches were used for the full 146 

duration of the study. The first batch was given to the fish during the first period of the study 147 
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from the 10th of March until the 21st of June whereas the second lot was used for the second 148 

part of the trial from the 24th of June until the 31st of August. Fish were fed four times daily 149 

(feeding times: 01:00, 07:00, 19:00, and 22:00) using an automatic feeding system (Exact; 150 

Storvik Aqua, SV, Sundalsøra, Norway). The daily amount of feed was equally distributed 151 

within these four feed intervals. Feeding period for each feed interval was about 30-60 min 152 

depending on the total feed amount per day. Feed doses were delivered every 60 sec to the 153 

tanks for each feeding period whilst the total amount of feed delivered at each feeding time of 154 

the feeding period was 3-7 g. The specific feeding rate was the same for acclimation and trial 155 

period. The level of daily feed ratio was about 0.5-1.5 of total biomass. To ensure that all fish 156 

(or at least as many fish as possible) received adequate feed each day, the daily feed ration was 157 

adjusted accordingly so that the amount of uneaten feed laid between 15-30% of the total feed 158 

amount offered. An average of 25% "overfeeding" was obtained for the full trial period. 159 

Uneaten feed was collected using waste feed collectors. Therefore, estimates of the actual feed 160 

consumption and thereby FCRs were possible. The growth trial was conducted for a total of 161 

196 days, at which time all fish were removed from the tanks and weighed twice (days 125-162 

126 and days 194-197) after being anaesthetised (MS222,  2g × l-1). On days 125-126 twenty 163 

fish from each tank were euthanised with an overdose of  MS222 (7 g × l-1) to keep biomass 164 

densities below 90 kg × m-3 in the tanks resulting in a final number of 35 fish × tank-1 (starting 165 

mean biomass density of 52 kg × m-3 (55 post-smolts); intermediate mean biomass density of 166 

67 kg × m-3 after the removal of 20 salmon (35 salmon); final mean biomass density of 87 kg 167 

× m-3 (35 salmon)). 168 

2.2. Sample collection 169 

For immunological analyses, blood was withdrawn from the caudal vein of 6 fish from each 170 

tank, on days 194 and 195 from start of the experiment, using 1 ml syringes rinsed with heparin 171 

(10 IU × ml-1); Sigma-Aldrich, Dorset, UK) while pools of Norwegian quality cut (NQC) fillet 172 
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samples from 4 fish per tank were obtained for proximate composition analyses. A heparinised 173 

capillary tube per sampled fish was filled with blood from the syringe for haematocrit 174 

observations. Haematocrit determination was performed for 6 fish per tank. Haematocrit values 175 

were measured after centrifugation at 6000 revolution per minute (rpm) for 25 min. Blood from 176 

three individuals was used to determine total leucocyte and differential leucocyte numbers. A 177 

10-3 dilution of blood in L-15 was used to determine total leucocyte counts. The cells were 178 

counted in four squares of a haemocytometer per sample and expressed as:  179 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑒𝑙𝑙𝑠 × 𝑚𝑙−1 = 𝑁 × 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 × 104 180 

where N is the average number of counted blood cells.  181 

For the determination of differential leucocyte counts 3 blood smears were obtained 182 

(for the determination of the percentages of the different leucocyte types in each blood sample 183 

initially and their transformation into numbers of cells × ml-1 of blood according to total 184 

leucocyte numbers). The cells on the blood smears were left to air dry and were stained with 185 

Rapid Romanowsky stain (Raymond A lamb, Eastbourne, UK) in the Institute of Aquaculture, 186 

University of Stirling. The slides were later examined at × 400 magnification for the 187 

determination of differential leucocyte proportions. Two blood pools from three individuals 188 

per tank (6 individuals in total) were obtained in 1.5 ml eppendorf tubes (400 µl of blood × 189 

sampled fish-1 and thus 1200 µl of blood × tube-1). The blood was left to clot overnight at 4°C 190 

and the next day the pooled plasma was aliquoted into 7 eppendorf tubes (about 40-50 µl) and 191 

stored at -80°C until use for the assessment of salmon immune responses. Head kidney samples 192 

(approximately 5 mm) from three individuals (derived from the same tank), were aseptically 193 

removed according to Secombes (1990), pooled in plastic bjoux vials containing 5ml ice-cold 194 

L-15 medium containing 40 μl heparin (10 IU × ml -1) and used for respiratory burst assays. 195 

Two pools per tank were used to determine the level of superoxide anion (O-2) produced by 196 

head kidney macrophages. 197 
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2.3. Calculations 198 

Feed intake is the calculated amount of food ingested by fish per treatment expressed in g  199 

Feed Conversion Ratio (FCR): 200 

𝐹𝐶𝑅 =
 𝐹𝑒𝑒𝑑 𝐼𝑛𝑡𝑎𝑘𝑒 (𝐹𝐼) (𝑔)

𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛 (𝑔)
 201 

Thermal Growth Rate: 202 

𝑇𝐺𝐶 = (
√𝑊1
3

− √𝑊0
3

(𝑡 × 𝑇)
) × 100 203 

Weight gain (WG): 204 

𝑊𝐺 (
𝑔

𝑑𝑎𝑦
) =

𝑊𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛(𝑔)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 205 

Condition Factor (K): 206 

𝐾 =
𝐹𝑖𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝐹𝑖𝑠ℎ 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)3
 207 

 208 

In the above formulae W is the weight of the sampled fish in grams; W0 and W1 are the initial 209 

and the final fish mean weights in grams. 210 

2.4. Isolation of head kidney macrophages (HKM) and estimation of HKM respiratory burst 211 

activity  212 

For the isolation of head kidney macrophages, the head kidney was teased through a 100μm 213 

nylon mesh (BD Falcon; BD Biosciences, Franklin Lakes, NJ, USA) into 2.5 ml Leibovitz 214 

medium (L-15; Sigma-Aldrich) containing 40 µl of heparin (10 IU × ml-1). The mesh was 215 

rinsed with 2.5 ml of the medium and placed on ice. The O-2 production by head kidney 216 

macrophages was measured by the conversion of NBT (Sigma-Aldrich) to formazan, following 217 

the method of Secombes (1990) with some modifications described by Korkea-aho et al. 218 

(2011).  219 
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2.5. Determination of plasma protein concentration and lysozyme activity 220 

Plasma protein content was determined using the Pierce BCA (bicinchoninic acid) Protein 221 

Assay kit (Thermo Scientific, IL, USA) based on the conversion of Cu2+ to Cu1+ under alkaline 222 

conditions (Biuret reaction) using BSA as standard. Plasma lysozyme activity was based on 223 

the lysis of lysozyme sensitive Micrococcus lysodeikticus as described by Korkea-aho et al. 224 

(2011).  225 

2.6. Measurement of plasma natural haemolytic activity 226 

The assay used was based on a method described by (Langston et al., 2001) with modifications. 227 

Briefly sheep red blood cells (SRBC) (Oxoid, UK) were used as target cells at a final 228 

concentration of 2.5 × 108 cells × ml-1 of blood. Plasma was diluted in double serial dilutions 229 

in 0.1 % gelatine-complement fixation buffer (0.1% G-CFB) (1 complement fixation tablet 230 

(Oxoid, UK) and 0.1g of gelatin (Sigma-Aldrich) in 100 ml of warm distilled water) and 25 μl 231 

added to each well of a non-absorbent U-well micro-plate (Sterilin) in duplicate. Ten µl 0.5 % 232 

SRBC suspension was added to each plasma dilution. Controls on each plate comprised 0.1 % 233 

anhydrous Na2CO3 (v/v) (100 % lysis) replacing plasma. G-CFB replacing plasma (0 % lysis) 234 

and plasma blanks (duplicate wells of plasma dilutions with CFT-G buffer replacing SRBC 235 

suspension). The micro-titre plates were incubated at 22°C for 90 min with constant shaking 236 

and the reaction terminated by the addition of 140 μl G-CFB with 20mM EDTA, followed by 237 

centrifugation to spin down the remaining SRBC. After centrifugation 100 μl of the supernatant 238 

from each well was transferred to a new flat-bottomed 96-well non-absorbent micro-titre plate 239 

(Sterilin). The absorbance of the wells was read at 450 nm using a micro-plate reader (Synergy 240 

HT; BioTek Instruments, Winooski, VT, USA) and the percentage lysis of SRBCs calculated. 241 

The absorbance values of samples were corrected by subtracting the absorbance of the sample 242 

blank control (0 % haemolysis). A graph of log x (x = concentration of plasma) (ordinate axis) 243 

vs log y/ (1-y) (y = % SRBC haemolysis) (abscissa axis) was drawn and after estimating the 244 
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volume of plasma giving 50 % haemolysis (H50), and the H50 × ml-1 of plasma calculated by 245 

dividing the dilution factor of plasma with the estimated plasma volume causing lysis to the 246 

50% of the RBCs in the wells expressed in ml. 247 

2.7. Total plasma Immunoglobulin M (IgM) 248 

The level of plasma IgM in experimental salmon was determined using indirect enzyme linked 249 

immunosorbent assay (ELISA) (Magnadottir and Gudmundsdottir, 1992), with modifications. 250 

Briefly, two replicate rows of a 96-well an Immulon™ 4HBX plate (Thermo Scientific, Maine, 251 

USA) were coated with 100 µl × well-1 serial dilution of purified IgM (Aquatic Diagnostics,  252 

Stirling, Scotland) in 0.05M sodium carbonate/bicarbonate buffer, pH 9.6 (starting from 0.32 253 

mg × ml-1 – 0.00016 mg × ml-1) to form a standard curve of IgM concentration vs. absorbance 254 

at 450 nm. To the remainder of the wells 100 µl of a fold 1/500 and 1/1000 dilution of plasma 255 

from experimental fish was added, diluted in 0.05M sodium carbonate/bicarbonate buffer, pH 256 

9.6, using two replicate wells for each dilution. The plates were then incubated overnight at 257 

4°C and washed 5 times with low salt wash buffer (LSWB; 0.02 M  Trizma base, 0.38 M NaCl, 258 

0.05% (v/v) Tween 20, pH 7.2). The wells were blocked with 250 µl of 3 % w/v dried skimmed 259 

milk (Marvel, Dublin, Ireland) in water and the plates were incubated for 120 min at 21°C. The 260 

casein solution was removed before adding 100 µl of mouse anti-trout/salmon IgM (F11-261 

monoclonal anti trout/salmon IgM - Aquatic Diagnostics, Stirling, Scotland) solution (1:66) in 262 

1 % BSA in LSWB for 1 h at 21°C. Plates were then washed with 5 washes of high salt wash 263 

buffer (HSWB; 0.02 M Trizma base, 0.5 M NaCl, 0.01 % (v/v) Tween 20, pH 7.4) and 264 

incubated for 5 min on last wash before adding 100 µl × well-1 goat anti-mouse 265 

immunoglobulin-G labelled with horseradish peroxidase (HRP) (Sigma/Aldrich) diluted 1: 266 

4000 in conjugate buffer) incubating for 60 min at 21°C. Plates were washed with 5 washes of 267 

HSWB, incubating for 5 min on last wash and the reaction was developed by adding 100 µl × 268 

well-1 of substrate/chromogen (i.e. 15 ml substrate buffer containing 5 µl hydrogen peroxide 269 
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and 150 µl trimethyl-benzidine (TMB) di-hydrochloride) and incubating for 10 min at 22°C. 270 

The reaction was stopped with 50 µl × well-1 of 2M H2SO4 and plate read at 450 nm after 5 271 

seconds in a micro-plate reader (Biotek Synergy HT). 272 

2.8. Plasma anti-protease activity 273 

The method used was designed to detect anti-protease activity in trout plasma, and was based 274 

on the method described by (Ellis, 1990), modified for use in microtitre plates. A hundred 275 

micrograms per millilitre of trypsin solution was prepared by adding 1 ml of 25 mg × ml-1 of 276 

trypsin stock solution (Invitrogen, UK) in 249 ml 0.1 M Tris.HCl (pH 8.2). Plasma samples 277 

were diluted two-fold in the Tris.HCl buffer in round-bottomed 96 well plates (Sterilin), giving 278 

final plasma volumes of 2.5, 1.25, 0.625 and 0.313 µl. In a flat-bottomed 96 well plate, 5 µl of 279 

diluted samples were added to 15 µl trypsin and incubated for 5 min; duplicates were used 280 

where enough plasma was available. Finally, 200 µl of chromogen solution in distilled water 281 

(0.1% Nα-Benzoyl- L -arginine 4-nitroanilide hydrochloride or simply BAPNA (Sigma-282 

Aldrich)) was added to each well. Wells containing only BAPNA solution and Tris.HCl buffer 283 

without the addition of plasma samples served as a zero reference. The plates were then 284 

incubated for 30 min at 22°C before centrifuging them for 6 min at 750 × g. One hundred 285 

microliters from each well was transferred to wells of a flat bottom 96-well plate and the 286 

absorbance measured with a micro-plate reader (Biotek Synergy HT) set on a 5 min kinetic 287 

run, reading every 1 min at 410 nm. Tryptic activity was a measure of the difference in values 288 

at 5 min from the ones at time 0 divided by 5 (units expressed as change of 0.001 units of 289 

absorbance at 410 nm × min-1). The 75 % inhibition value was calculated from the blank 290 

samples, which represent the 100 % inhibition of tryptic activity and reference samples which 291 

represent the 0 % inhibition of trypsin. The volume of plasma required to achieve 75 % 292 

inhibition of trypsin activity was calculated from a graph of % trypsin inhibition against the 293 

volume of plasma used. The units of trypsin inhibited at a percentage of 75 % per ml of plasma 294 
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were obtained by multiplying the estimated value of tryptic activity by 1000; as a unit of trypsin 295 

activity was the amount of trypsin causing decrease in absorbance of 0.001 and dividing this 296 

number by the volume of plasma required to inhibit the activity of trypsin at a percentage equal 297 

to 75 %. The quotient was then multiplied by 1000 to transform μl to ml; so 75 % trypsin 298 

inhibition was expressed in units TI75 × min-1× ml-1. 299 

2.9. Dietary and NQC fillet composition analysis 300 

The assessment of dietary lipid and FA composition was conducted by The Nutrition Analytical 301 

Services (NAS) of the Institute of Aquaculture, University of Stirling and were run in 302 

duplicates. Dietary crude fat was determined using two different methodologies. Firstly dietary 303 

lipid content was determined following acid hydrolysis using a Soxtec System 1047 304 

hydrolysing unit (Tecator Application note 92/87) followed by exhaustive Soxhlet extraction 305 

using petroleum ether (40–60°C boiling point) on a Soxtec System HT6 (Tecator application 306 

note 67/83) as described by Bell et al. (2001). In addition, dietary lipid fraction was determined 307 

according to the Folch method (Folch et al. 1957) with non-lipid impurities removed by 308 

washing with 0.88% (w/v) KCl. The lipid weight was determined gravimetrically after 309 

evaporation of solvent under nitrogen and desiccation under vacuum for at least 16 h. Dietary 310 

Fatty acid methyl esters (FAME) were prepared from total lipid by acid catalyzed 311 

transesterification as described by Christie (2003) and FAMEs extracted and purified as 312 

described by Tocher & Harvie (1988). FAMEs were separated and quantified by Gas Liquid 313 

Chromatography (GLC) (Carlo Erba Vega 8160, Milan, Italy) using a 30 m × 0.32 mm 314 

capillary column (CP Wax 52CB, Chrompak, London, UK). Hydrogen was used as carrier gas 315 

and temperature programming was from 50 to 150°C at 40°C × min-1 and then to 230°C at 316 

2.0°C × min-1. Individual methyl esters were identified by comparison with known standards 317 

and by reference to published data (Ackman 1980). Peak data was processed using Chromcard 318 

for Windows (version 1.19) computer package (Thermoquest Italia S.P.A., Milan, Italy). Dry 319 
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weight and ash contents of the diets were determined after oven-drying the samples to constant 320 

weight and by ashing dried samples in an oven at 550°C (AOAC 1990). Dietary nitrogen was 321 

determined by Eurofins Scientific (Norway) after total combustion using a Nitrogen-Analyser 322 

(Perkin Elmer, 2410 Ser. II, Norwalk, CT, USA), crude protein content calculated assuming 323 

that proteins contain 16% N. Amino acid composition of the feed raw materials was analysed 324 

by near infrared reflectance (Fontaine et al. 2001) and was also performed by Eurofins 325 

Scientific (Norway). Amino acid composition of compound feed was analysed according to 326 

(Llames & Fontaine 1994) while dietary elemental composition was determined via Inductively 327 

Coupled Plasma - Mass Spectroscopy (ICP-MS) on dietary ash (Shearer 1994). 328 

Pools of homogenised NQC fillet samples (1 pool of 4 individuals per tank) for 329 

chemical  analysis  were  frozen  and  then  thawed  before  blending (whole). Dry matter, 330 

moisture, ash and crude protein levels were determined according to standard methods (AOAC 331 

1990) by oven drying to constant weight. Crude protein from dry NQC samples was estimated 332 

via application of the method described by Kjeldahl, using a Tecator Kjeltec System. Lastly, 333 

crude fat from dried NQC carcass was determined using petroleum ether (40–60°C boiling 334 

point) on a Soxtec System HT6 (Tecator application note 67/83) (Christie 2003). 335 

2.10. Statistics 336 

The statistical analysis was carried out with the help of the R language (R Core Development 337 

Team, 2014) and its lme4 package (Bates et al., 2014). Similar statistical analyses are presented 338 

by Espe et al. (2012) and Hartviksen et al. (2014).  To investigate the effect of the diets on the 339 

haematological and immunological responses, the data were fitted in two different models 340 

without (only the tank effect was added) and with the feed variable (tank effect nested within 341 

the dietary effect), which were then nested and compared with a likelihood ratio test (LRT).  342 

Feed intake (FI) and feed conversion ratio (FCR) over the full trial period and during 343 

first and second study period were modelled as ordinary linear models since there was no 344 
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multilevel structure (only one observation per tank). Gutted weights are available from a 345 

subsample of fish at the end of the trial. Daily WG for the same period was modelled with the 346 

help of splines to allow the identification of non-linear responses of the diets in time. Since 347 

there were three weight points available, the degree of freedom for the spline was constrained 348 

to 2. Two models were then fitted without and with the dietary effect, and compared with LRT. 349 

The modelling of the condition factor was conducted by fitting a length-weight 350 

relationship and adding the treatment as a covariate to the model. Since whole fish (ungutted) 351 

weights were available at the end of the trial, these were used as a predictor, in order for the 352 

model to adjust for an average-sized sampled fish and for a direct comparison to be possible. 353 

Lastly, two nested models were fitted, without and with the dietary effect, and compared with 354 

a LRT as above.  355 

Composition percentages were modelled with an ordinary linear model (only one 356 

observation per tank) using an arcsin transformation to the responses which were expressed as 357 

a percentage of wet weight and adding the mean weight of the sample as a covariate. Sample 358 

mean weights were mean-centred before the analysis so that the results are easy to interpret as 359 

for the average-sized sampled fish. 360 

Models demonstrating possibilities (P values) of 0.1 were selected for the description 361 

of data. For the modelled immune responses affected by the dietary treatments, the results are 362 

summarised as graphs with the mean response and 95% confidence interval. Confidence 363 

intervals were solved by a posterior simulation from the statistical model with 1500 random 364 

draws (Gelman and Hill, 2007). Differences among dietary treatments were revealed when the 365 

95% confidence intervals for a certain response of a dietary group did not overlap with the 366 

mean values of the same response from another group. 367 

3. Results and Discussion 368 

3.1. Diets  369 
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Total replacement of FM or FO and/or both marine ingredients in the experimental feeds was 370 

done in order to meet or exceed salmon known nutrient requirements (NRC 1993). In the 371 

present study the selection of the protein and oil sources was based on previous studies 372 

performed by EWOS, reporting high protein and energy digestibility (Crampton personal 373 

communication) as well as adequate growth (Crampton et al. 2010; Hartviksen et al. 2014; 374 

Hatlen et al. 2014). Nonetheless, the dietary amino acid profiles of the six experimental diets 375 

differed as a consequence of FM substitution with alternative protein sources (Table 2) 376 

reflecting the amino acid composition of the different ingredients used. Lower levels for most 377 

indispensable amino acids (IAA) were observed in the treatments that were free from marine 378 

proteins (VP, VP/VO and MFABP diet) in comparison to the marine protein based diets, with 379 

the exception of leucine and phenylalanine which were found at higher levels in FM-free feeds. 380 

The changes among IAA were less pronounced to those reported by Torstensen et al. (2008) 381 

regarding the differences between diets with partial substitution of FM and FO with plant 382 

derived ingredients compared to a fully marine based control feed. Mambrini and Kaushik 383 

(1994) and Green et al. (2002) reported that IAA: DAA ratio could affect several performance 384 

parameters in fish. Herein, dietary IAA: DAA ratios were kept constant among treatments. The 385 

dietary FA concentrations of the experimental diets are presented in Table 3. Lower amounts 386 

of saturated and monounsaturated FAs and higher levels of total n-6 and n-3 polyunsaturated 387 

FAs were observed for the VO-based diets. For the last group of FAs both marine based diets 388 

presented higher 20:5n-3 (eicosapentaenoic acid-EPA) levels while 22:6n-3 (docosahexaenoic 389 

acid-DHA) was higher for the VO-based feeds due to the inclusion of algal oils, characterised 390 

by increased levels in the aforementioned FAs which is in accordance to previous algal oil 391 

feeding studies performed by Carter et al. (2003) and Miller et al. (2007). Furthermore, n-3 to 392 

n-6 PUFAs ratio demonstrated a gradual decrease in the diets in the following order: 393 

MB=MBABP>VP>VO>VP/VO=MBABP. 394 
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3.2. Growth and chemical composition of NQC fillet samples 395 

The results of this study demonstrated negligible mortality (<1%) in all dietary groups during 396 

the full experimental period, which is a primary indication that all of the diets fulfilled the 397 

nutrient requirements of salmon (Table 4).  398 

However, salmon performance in terms of expected WG and FI for the first and full 399 

period of the study were largely influenced by the initial size differences of the fish assigned 400 

to the different diets. Reassignment of salmon populations in the tanks prior to the initiation of 401 

the feeding trial, could have given even more sound and clear results regarding the overall 402 

performance of salmon. However, comparable to the present study, were also the differences 403 

in salmon starting weights before the commencement of a similar commercial feeding study 404 

conducted by EWOS and reported by Crampton et al. (2011), utilising a commercial EWOS 405 

marine based and a low FM diet in Atlantic salmon post-smolts reared in sea cages. All the 406 

above, highlight the difficulties when conducting large scale scientific studies involving 407 

salmon of large size like the present one. However, this should not detract from the significance 408 

of this investigation as important conclusions could still be drawn from it.  409 

Salmon fed the control MB diet presented higher FI than the rest of the groups (Fig. 410 

1B) (since the expected mean FI values of the MB group did not overlap with the 95% C.I. of 411 

the other dietary groups). Furthermore, VP-fed salmon exhibited higher expected FI than the 412 

MBABP, MFABP and VP/VO groups, while the latter group, also demonstrated lower FI than 413 

VO-fed salmon. Studies have reported that total or partial replacement of FM  in salmonid diets 414 

can negatively affect the FI in fish (Gomes et al. 1995; De Francesco et al. 2004; Kaushik et 415 

al. 2004; Espe et al. 2006) and this could be due to the lack in certain FM components acting 416 

as feeding stimulators (Kousoulaki et al. 2012). Moreover, self-selecting feeding trials have 417 

shown that rainbow trout prefer diets containing FO over those with VO, suggesting that some 418 

fish do actively select feeds based on the oil origin (Geurden et al. 2005, 2007). Herein, the VP 419 
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diet was supplemented with higher levels of FO in order to compensate the lack of residual 420 

fish-derived lipid found in the FM fraction of the marine based diets resulting in a FA profile 421 

which was more closely related to that of the marine based diets. Liland et al. (2012), proposed 422 

that dietary FA composition might be a regulating component of Atlantic salmon appetite. This 423 

could explain the numerically lower FI in VO-fed fish in comparison to the VP group and the 424 

absence of differences between MBABP salmon in contrast to the former group, despite the 425 

size difference at the start of the study. Hence the suggestion made by Liland et al. (2012) 426 

seems to be valid for Atlantic salmon post-smolts. In contrast to the present findings, Carter et 427 

al. (2003) and Miller et al. (2007) reported unaffected FI in juvenile Atlantic salmon fed diets 428 

containing just algal oils, a combination of algal and VO compared to salmon fed fully or 429 

partially FO based diets. Unaffected growth was also reported for the aforementioned dietary 430 

groups compared to the FO-fed fish, which is in agreement with our results. 431 

  For the same period the MB control group exhibited higher expected weight gain (WG) 432 

than the majority of the dietary groups except for the VO-fed group (Fig. 1A). The majority of 433 

the other groups exhibited no differences in WG. The only exception was the VP/VO salmon 434 

which exhibited lower WG in contrast to the VO-fed fish. The initial size discrepancies 435 

promoting contrasting FIs and thus further size differences among the latter groups of salmon 436 

seem to be the main reason for the last observation. Higher FCR values were obtained for the 437 

MB and VP salmon, during the first period of the feeding trial (Fig. 1C), revealing the lower 438 

efficiency of salmon in the utilisation of  dietary nutrients from the two aforementioned feeds, 439 

compared to the other dietary treatments. 440 

Both expected FIs and WGs demonstrated no differences among the six dietary groups 441 

during the second period. Nevertheless, a significant increment in FI was observed for the 442 

MBABP, MFABP and VP/VO groups (the expected mean FI values for these groups during 443 

the second period did not overlap with the 95% C.I. of the FI values obtained during the first 444 
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period), while a rather substantial but not significant increase was also witnessed for the VO 445 

group for this period compared to the initial phase. Furthermore, a significant reduction in 446 

expected WG was observed for the MB group at the second period in comparison to the initial 447 

one while no significant differences were witnessed for all other groups. Increased feed 448 

consumption and thus growth (defined as “compensatory growth”) after periods of restricted 449 

FI have been demonstrated in Atlantic salmon (Johansen et al. 2001; Torstensen et al. 2008). 450 

The above findings demonstrate that Atlantic salmon requires long adaptation periods before 451 

accepting any diet with high levels of alternative protein and lipid sources as previously 452 

reported by Torstensen et al. (2008).  453 

Overall, MB salmon had a higher overall FI by the end of the trial compared to most of 454 

the other dietary groups, except VP salmon (Fig. 1B). In addition, higher overall FI was 455 

observed for VP-fed salmon in comparison to the MBABP salmon and the marine-free 456 

(MFABP and VP/VO) groups of salmon. The above observations highlight the importance of 457 

the oil fraction on the acceptability of aquafeeds by salmonids (Geurden et al. 2005; 2007; 458 

Liland et al. 2012), as lower FI was obtained for the VO group regardless of the greater initial 459 

size of these fish compared to VP salmon. Furthermore, higher WG was observed for the MB 460 

salmon compared to the MBABP, MFABP and VP/VO fed salmon (Fig. 1A). FCR values for 461 

the full duration of the trial were found to be higher for the MB and VP salmon in contrast to 462 

all other dietary groups while no differences were observed between the former groups (Fig. 463 

1C). Therefore, among the two marine based groups, MB salmon exhibited lower feed 464 

efficiency while MBABP salmon with intermediate growth performance values demonstrated 465 

better efficiency in the utilisation of dietary nutrients. Excluding VP salmon, the low FCR 466 

values demonstrated for the majority of the experimental groups during the full study period, 467 

indicate that judicious selection of alternatives to FM and FO and careful formulation of salmon 468 

feeds in order to satisfy their nutrient requirements could promote adequate growth even when 469 
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both marine-derived proteins and lipids are fully excluded. Espe et al. (2006) reported equal 470 

FCR values in Atlantic salmon fed a FM-based compared to FM-free diets, which in the case 471 

of the present study was true only for the MBABP compared to the VP and the two marine-472 

free dietary groups. However, in the latter study marine based by-products were included in 473 

the experimental diets in order to improve their acceptance by the fish. Contrary to our findings, 474 

were also the higher FCR values reported in Atlantic salmon post-smolts fed on diets where 475 

marine and plant derived ingredients from commercial salmon diets were partially substituted 476 

by terrestrial ABPs (Hatlen et al. 2013, 2014). Similar to our results, unaffected FCRs were 477 

also reported in Atlantic salmon fed low marine ingredient diets compared to a fully marine 478 

dietary group (Torstensen et al. 2008). Moreover, most FO replacement studies for Atlantic 479 

salmon diets demonstrated unaffected FCRs for VO- in comparison to FO-fed salmon which 480 

are partially in agreement with the present findings (Bell et al. 2002; Torstensen et al. 2005; 481 

Karalazos et al. 2007). 482 

Condition factor (K) values at the end of the trial ranged between 1.25 and 1.75 for the 483 

majority of the fish, describing salmon with fairly good to excellent quality (Barnham and 484 

Baxter 1998). Expected K values were found to be higher for the VP group, while salmon fed 485 

the VO diet exhibited lower K values compared to the rest of the groups. Moreover MBABP, 486 

salmon presented higher K values than the MB group and salmon maintained on the marine 487 

free diets (MFABP and VP/VO). Furthermore, higher K was obtained for VP/VO salmon in 488 

comparison to the MB salmon, while no difference was noticed between the latter group and 489 

MFABP salmon (Fig. 1D). Since K factor describes the relationship between the full (ungutted 490 

whole fish) weight and salmon length, the high values obtained for VP-fed salmon is an 491 

indication of thicker bodies whereas the low K values observed for the VO-fed fish point at 492 

much leaner fish compared to the other groups. In general, Atlantic salmon post-smolts of 2.5 493 

kg (mean final salmon weight for all groups) are characterised by increased muscle growth, 494 
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hepatic and visceral fat deposition (Shearer 1994). Therefore, the increased K values exhibited 495 

for the salmon maintained on the VP diet could actually be an indirect indication of higher 496 

hepatic and visceral fat accumulation, as no differences in fillet fat levels were observed among 497 

the dietary groups. Despite the fact that the opposite trend was illustrated for the VO-fed group, 498 

the assumption of lower adiposity in these fish requires a more thorough investigation. Studies 499 

by Ruyter et al. (2006) and  Jordal et al. (2007) demonstrated that high dietary VO or fully VO-500 

based diets could induce visceral and/or hepatic adiposity, while Torstensen et al.  (2011) 501 

reported increased visceral adiposity in salmon fed diets with high levels of VPs and VOs 502 

respectively. Since fat levels in the liver, intestine and pancreas were not estimated in the 503 

current study no further comments could be made on this matter. In contrast to our findings, 504 

Espe et al. (2006) demonstrated unaltered K values in Atlantic salmon fed VP-based diets. 505 

Furthermore, Torstensen et al. (2008) reported lower K values in Atlantic salmon maintained 506 

on diets with high levels of VPs and moderate or high supplementation with VOs compared to 507 

fish fed a marine-based diet or a diet containing a moderate inclusion of VPs and high inclusion 508 

of VOs. 509 

Proximate analysis of the NQC samples revealed no differences in moisture, crude 510 

protein, lipid and ash levels among the six dietary groups, suggesting similar levels of nutrient 511 

accumulation in the salmon fillets. Similarly, previous studies have reported unaffected fillet 512 

composition in salmonids fed fully VO-based feeds (Karalazos et al., 2007; Turchini and 513 

Francis, 2009). Contrary to our findings, a body of literature has demonstrated reductions in 514 

the lipid content and subsequent increases in the protein levels, in the fillets of VO-fed 515 

salmonids (Bell et al., 2002, 2001; Jokumsen and Alsted, 1990). The latter findings combined 516 

with the presence of increased hepatic fat levels, have triggered the hypothesis that VOs could 517 

induce adiposity (Bell et al., 2002). Recently, Torstensen et al. (2011) demonstrated that diets 518 

with high levels of both VPs and VOs could promote visceral adiposity and metabolic 519 
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imbalance which could affect salmon health. Based on the present data, the only indication for 520 

increased visceral adiposity as was previously mentioned were the high K values demonstrated 521 

for the VP group while no similar assumptions could be made for the other groups. 522 

3.3. Haematology and innate immune responses 523 

The haematological and immunological responses of salmon at the end of the trial are 524 

summarized in Table 5. No significant differences were revealed for the majority of the 525 

estimated haematological parameters. However, lower expected haematocrits were obtained 526 

for the MB group compared to the MBABP, MFABP and VP/VO groups, while the latter two 527 

groups of salmon presented higher values in comparison to the VO-fed group (Fig. 2A). 528 

Therefore, it is apparent that the elimination of the FM fraction from the diets resulted in 529 

increased haematocrit, while the elimination of both fractions promoted even higher 530 

haematocrit which could imply improved health status for the aforementioned groups. Most of 531 

the existent reports of FM and FO substitution with alternative feed ingredients are 532 

contradictory to the present findings. Twibell et al. (2012) reported lower haematocrit levels in 533 

coho salmon and rainbow trout (Oncorhynchus mykiss) fed on VP and ABP in combination 534 

with VO diets compared to salmon fed MB diets. Furthermore, complete replacement of dietary 535 

FM with ABPs did not significantly affect haematocrit levels in previous feeding trials with 536 

coho salmon (Higgs et al. 1979) or  rainbow  trout (Steffens 1994) compared with fish fed a 537 

FM control diet. On the other hand Hemre et al. (1995; 2005) reported decreased haematocrit 538 

levels in Atlantic salmon fed on diets with increased substitution of FM with soybean products 539 

or increased dietary inclusion of crude fibre which is the case at high levels of FM replacement 540 

with most plant derived feed proteins. In addition, Thompson et al. (1996) reported unaffected 541 

haematocrit in Atlantic salmon fed on diets with complete substitution of FO with sunflower 542 

oil (SO). Nonetheless, haematocrit values for all dietary salmon groups were found to be within 543 

normal ranges varying from 43-60%, indicating healthy fish (Hardie et al. 1990; Waagbø et al. 544 
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1994; Thompson et al. 1996) without compromised blood oxygen carrying capacity, since there 545 

was lack of anaemia which could be related to iron or other mineral deficiencies.  546 

No differences in total and differential leucocyte numbers were detected among the six 547 

dietary groups of Atlantic salmon post-smolts, indicating the modulation of similar levels and 548 

patterns in leucocyte production in the 6 groups of fish. Thompson et al. (1996) reported that 549 

Atlantic salmon parr fed on diets with complete replacement of FO with sunflower oil (SO) did 550 

not exhibit differences in total and differential circulating leucocyte levels. On the contrary 551 

Rumsey et al. (1994), showed that rainbow trout fed on soy proteins presented increased 552 

numbers of circulating leucocytes. 553 

No differences regarding credible plasma haemolytic activity, plasma protein and total 554 

IgM and expected respiratory burst activity in stimulated and non-stimulated head kidney 555 

macrophages, were observed among the six dietary salmon groups. Contrary to this, reduced 556 

levels of total plasma IgM were reported by Jalili et al. (2013) in rainbow trout fed on diets 557 

with total substitution of FM with VPs. Furthermore, Jalili et al. (2013) and Sitjà-Bobadilla et 558 

al. (2005) reported decreased alternative complement activity in rainbow trout and gilthead sea 559 

bream fed diets with 100% substitution of FM with VPs. In agreement with the present 560 

findings, no differences in HKM respiratory burst activity were observed in feeding trials 561 

where Atlantic salmon and rainbow trout were fed on FM-based diets supplemented only with 562 

soybean oil or linseed oil (Kiron et al. 2004; Seierstad et al. 2009). Furthermore, Carter et al. 563 

(2003) demonstrated no changes in total immunoglobulin and protein levels, anti-protease 564 

activity and circulating leucocytes respiratory burst activity for Atlantic salmon fed diets with 565 

complete replacement of FO with canola oil (CO) or 2 blends of CO and FO or CO and algal 566 

oil which are in line with the present findings. Similar results were also obtained by (Thompson 567 

et al. 1996) who demonstrated no differences in plasma complement, anti-protease and HKM 568 
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respiratory burst activities of Atlantic salmon fed full soybean oil diets compared to FO fed 569 

salmon.  570 

Higher expected lysozyme activity was demonstrated for MB salmon compared to all 571 

other dietary groups (Fig. 2B). No differences regarding lysozyme activity were witnessed 572 

amongst the MBABP group compared to the rest of the experimental groups. Reductions in 573 

lysozyme activity could render fish susceptible to diseases (Saurabh & Sahoo  2008). Several 574 

disease resistance selection studies, however, have observed a negative correlation between 575 

survival rate and lysozyme activity in Atlantic salmon challenged against several bacterial 576 

diseases (Røed et al. 1993; Fevolden et al. 1994; Lund et al. 1995), demonstrating that the 577 

resistance of salmon against diseases might be more dependent on other immune responses or 578 

their efficiency in detoxifying from the by-products of immune activation. Moreover, Fevolden 579 

et al. (1994) suggested that lysozyme activity following a disease challenge in salmonids, is 580 

not a reflection of a superior immune mobilisation, but an indication of stress induction which 581 

could increase the susceptibility of challenged salmonids. Therefore, increased stress as a result 582 

of the overall higher stocking density (promoted by their increased growth) in the tanks hosting 583 

MB salmon, at the first period of the study, could have promoted stress and higher lysozyme 584 

activity in these fish. This could also be supported by their inhibited growth performance 585 

compared to the other groups during the second study period (Pickering 1993; Plisetskaya & 586 

Duan 1994). 587 

Furthermore, higher expected anti-protease activity was exhibited for MFABP salmon 588 

compared to MB, MBABP and VO salmon while higher anti-protease activity was observed 589 

for the VP and VP/VO dietary groups in contrast to the MBABP group (Fig. 2C). Increased 590 

plasma anti-protease activity in salmon fed diets containing only plant proteins (VP and 591 

VP/VO) or high levels of plant proteins (MFABP) could be a favourable feature against several 592 

bacterial infections (Ellis 1990). Several plant extracts used as feed additives in previous 593 
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studies, demonstrated an increase in plasma anti-protease activity (Rao & Chakrabarti 2004; 594 

Kaleeswaran et al. 2011).  It is possible that high levels of plant derived ingredients and more 595 

specifically plant protein concentrates even after processing manipulations targeting the 596 

improvement of their nutritional quality might contain certain levels of bioactive compounds 597 

exerting an immunostimulatory activity to the fish.  598 

The findings of the current study suggest that marine protein-, marine oil- and marine-599 

free diets can be utilised satisfactorily by Atlantic salmon post-smolts, compared to commercial 600 

feed formulations, stimulating both adequate growth and innate immune responses. However, 601 

longer adaptation periods might be required for salmon to fully accept these diets. Moreover, 602 

dietary FO substitution seems to be easier than FM replacement. The future application of such 603 

feeds will depend on the availability and prices of these prime protein and lipid alternatives, 604 

which currently do not consist a cost-efficient solution for the production of aqua-feeds 605 

compared to the feedstuffs currently used in commercial feed formulations. Future studies on 606 

similar levels of FM and FO replacement in salmon feeds should focus on the testing of such 607 

treatments under the stressful cage-culture conditions and the assessment of salmon resistance 608 

and performance against industrially important diseases. 609 
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Figure Captions 1 

Figure 1. Expected performance indices at different study points. (A) Feed Intake (FI); (B) 2 

Daily weight gain (WG); (C) Feed Conversion Ratio (FCR) of the Atlantic salmon groups over 3 

the periods 1 and 2 and the full duration of the trial and (D) condition factor (K) of the salmon 4 

groups for the full period of the trial. These parameters were affected by the diets and the results 5 

are summarised as graphs with the expected mean response and 95% confidence intervals. 6 

Confidence intervals were solved by a posterior simulation from the statistical model with 1500 7 

random draws. Significant differences among dietary groups are revealed when the confidence 8 

intervals bars for a certain response of a dietary group do not overlap with the mean values of 9 

the same response from another group. The effect of feeds on the above growth performance 10 

indices was confirmed by fitting a model without the dietary effect (only tank effect) and with 11 

it (tank effect nested within it) and comparing the models with a likelihood ratio tests (LRT). 12 

FI and FCR are modelled as ordinary linear models since there is no multilevel structure (only 13 

one observation per tank) whereas WG modelled with the help of splines to allow non-linear 14 

response in time. FI and WG are expressed as g × fish-1× day-1 to adjust for the different 15 

duration of the periods. Diet abbreviations: MB, European commercial marine based diet 16 

(2011-12); VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 17 

protein/vegetable oil diet; MBABP, Non-EU commercial marine based diet with inclusion of 18 

animal-by-product (2011-12); MFABP, fish free animal-by-product diet. Significant 19 

differences (P values < 0.05) between dietary groups are denoted by different letters. 20 

Figure 2. Expected levels of the affected haematological and immunological responses.(A) 21 

Haematocrit (%); (B) Lysozyme (Units × min-1 × ml-1); Plasma anti-protease activity (Units 22 

TI75 × ml-1); (%); of the dietary groups of Atlantic salmon post-smolts for the full period of the 23 

trial. These parameters were affected by the diets and the results are summarised as graphs with 24 

the expected mean response and 95% confidence intervals. Confidence intervals were solved 25 

by a posterior simulation from the statistical model with 1500 random draws. Significant 26 

differences among dietary groups are revealed when the confidence intervals bars for a certain 27 

response of a dietary group do not overlap with the mean values of the same response from 28 

another group. The dietary effect on the health responses was confirmed by fitting a model 29 

without the dietary effect (only tank effect) and with it (tank effect nested within it) and 30 

comparing the models with a likelihood ratio tests (LRT).The modelling for all above 31 

parameters Diet abbreviations: MB, European commercial marine based diet (2011-12); VP, 32 

vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable protein/vegetable oil diet; 33 

MBABP, Non-EU commercial marine based diet with inclusion of animal-by-product (2011-34 

12); MFABP, fish free animal-by-product diet. Significant differences (P values < 0.05) 35 

between dietary groups are denoted by different letters. 36 
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Table 1 Feed formulations of the six diets. 1 

FEED FORMULATION 

Ingredient composition (g × kg-1) 

DIETS 

MB MBABP MFABP VP VO VP/VO 
LT Fishmeala 300.0 200.0 - - 300.0 - 

Plant Protein Concentratesb 255.3 207.6 386.8 528.1 255.3 528.1 

Starch Binder 87.9 85.4 88.6 92.8 87.9 92.8 

Animal By-Productsc - 155.0 160.0 - - - 

Amino Acidsd 9.1 7.4 15.2 1.7 9.1 1.7 

Vitamin/Mineral & Pigment Mixese 35.9 35.9 41.9 41.9 35.9 41.9 

Fish Oilf 148.0 157.6 - 177.0 - - 

Plant Lipidsg 163.8 150.9 220.3 138.4 239.0 228.2 

Algal Lipidsh - - 87.2 - 72.8 87.2 
       

Diet abbreviations: MB, European commercial marine based diet (2011-12); MBABP, Non-EU 2 
commercial marine based diet with inclusion of animal-by-products (2011-12); MFABP, fish free 3 
animal-by-product diet; VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 4 
protein/vegetable oil diet. a LT Fishmeal (low temperature fishmeal from Egersund Sildeoljefabrikk AS, 5 
Egersund, Norway): superior quality FM due to the fact that is treated at lower drying temperatures 6 
allowing FM to keep optimal essential amino acid profile, low biogenic amines with an apparent protein 7 
digestibility coefficient of 90.2%; b Vegetable proteins: includes protein concentrates from soy (Imcopa, 8 
- Importação, Exportação e Indústria de Óleos Ltda., Araucária - Paraná, Brazil) and pea (AgriMarin, 9 
Stavanger, Norway) and wheat gluten (Henan Tianguan, Nanyang City, China); c Animal by-products: 10 
includes Poultry by-product meal (Poultry by-product meal, GePro Geflügel-Protein Vertriebs- GmbH 11 
& Co, Diepholz, Germany) and porcine blood meal (Daka Proteins, Løsning, Denmark); d Amino acids 12 
from Evonik Degussa International AG, Hanau, Germany; e proprietary of EWOS Innovation; Plant 13 
lipids: includes mainly rapeseed oil (Cargill PLC, Lincoln, UK); f Fish Oil: Capelin oil (Egersund 14 
Sildeoljefabrikk AS, Egersund), Norway; Plant Lipids: includes rapeseed oil; h Algal lipids: includes oil 15 
from heterotrophically grown algal species (Origin Unknown).16 



Table 3 Chemical composition of the experimental diets (g × kg-1 of dietary wet weight) 

Chemical 

composition (w.w.) 

DIETS  

MB MBABP MFABP VP VO VP/VO 

Moisture (g × kg-1) 72.65 60.85 81.15 69.20 76.75 85.95 

Protein N*6.25 (g × kg-1) 390.00 373.00 385.00 373.00 385.50 380.00 

Lipid (g × kg-1) 374.15 355.60 358.45 352.15 373.45 342.35 

Crude fibre (g × kg-1) 9.05 9.85 10.85 10.80 8.05 10.80 

Ash (g × kg-1) 41.80 39.35 36.10 20.45 42.60 16.25 

P (g × kg-1) 11.10 11.90 11.50 8.20 11.85 9.30 

Ca (g × kg-1) 13.55 14.25 12.50 8.45 15.10 9.90 

Mg (g × kg-1) 1.50 1.15 1.15 0.85 1.30 0.80 

Zn (mg × kg-1) 272.50 281.00 281.00 254.50 258.50 275.50 
AMINO ACID COMPOSITION       

Alanine (g × kg-1) 20.00 22.50 22.45 19.45 19.95 19.55 

Arginine (g × kg-1)* 23.95 22.85 23.00 22.10 24.05 22.35 

Cysteine (g × kg-1) 4.55 4.55 4.40 4.95 4.50 5.00 

Glutamate (g × kg-1) 68.00 59.90 66.30 78.70 68.40 79.20 

Glycine (g × kg-1) 19.45 21.65 21.20 13.50 24.25 13.40 

Histidine (g × kg-1)* 8.85 9.25 7.75  8.55 8.90 8.35 

Hydroxyproline(g × kg-1) 1.35 2.70 4.50 0.10 1.05 0.10 

17.20 

43.95 

Isoleucine (g × kg-1)* 18.05 16.70 15.65   17.60 17.75 

Leucine (g × kg-1)* 29.50 31.65 41.60   43.00 29.30 

Lysine (g × kg-1)* 30.55 28.95 27.50 30.00 30.65 29.50 

8.55 

0.10 

Methionine (g × kg-1)* 9.20 8.30 8.00  8.40 9.35 

Ornithine (g × kg-1) 0.15 0.15 0.20 0.10 0.15 

Phenylalanine (g × kg-1)* 16.85 16.90 18.40 20.10 16.90 20.30 

25.60 

18.95 

14.80 

Proline (g × kg-1) 20.60 20.55 23.90 23.70 20.35 

Serine (g × kg-1) 17.70 17.50 17.90 17.75 17.75 

Threonine (g × kg-1)* 15.95 15.45 14.00  14.50 15.80 

Tryptophane (g × kg-1)* 4.40 4.20 3.70  3.90 4.05 3.45 

Tyrosine (g × kg-1) 13.10 13.15 13.65  15.50 13.35 15.35 

17.95 Valine (g × kg-1)* 19.75 19.00 17.00  18.60 19.55 

Sum IAA 177.00 178.66 176.95 185.88 176.15 196.15 

Sum DAA 164.90 162.35 170.40 174.35 177.35 183.10 

IAA/DAA 1.07 1.07 1.01 1.07 1.04 1.05 

       

Diet abbreviations: MB, European commercial marine based diet (2011-12); MBABP, Non-EU 

commercial marine based diet with inclusion of animal-by-products (2011-12); MFABP, fish free 

animal-by-product diet; VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 

protein/vegetable oil diet.  

* Amino acids followed by an asterisk are Indispensable (Essential) Amino Acids (IAA) for salmon 

and the ones without are dispensable (non-essential) amino acids (DAA). 

The data presented are consolidated averages of the two dietary batches used for the study.



Table 3 Fatty acid composition of the experimental diets (g × kg-1 of dietary wet weight) 

Fatty acid  

composition (g × kg-1)(w.w.) 

DIETS 

MB MBABP MFABP VP VO VP/VO 

14:0 31.50 31.50 17.00 32.00 18.00 15.50 

15:0 2.50 2.50 1.00 3.00 1.50 1.00 

88.50 16:0  110.50 117.00 100.00 118.00 89.50 

18:0  25.50 28.50 26.50 30.00 24.00 24.00 

20:0 3.50 4.00 4.50 4.00 4.50 4.50 

3.00 22:0 1.50 2.00 3.00 2.00 3.00 

Sum saturated 143.25 154.00 135.00 157.00 122.50 121.00 

16:1n-7 37.00 37.00 5.50 36.00 8.00 2.50 

16:1n-9 2.50 2.00 1.50 2.50 1.50 1.00 

18:1n-7  29.00 28.50 22.50 28.00 24.00 21.50 

18:1n-9 342.00 340.00 434.50 329.00 438.50 436.50 

20:1n-7 2.00 2.00 <1.00 2.50 1.00 <1.00 

20:1n-9  72.50 68.50 11.00 70.00 20.00 10.00 

20:1n-11 3.00 2.50 <1.00 2.50 <1.00 <1.00 

22:1n-9 8.50 8.00 3.00 8.50 4.00 3.00 

22:1n-11 68.00 64.00 3.00 62.50 14.00 1.00 

2.00 24:1n-9 6.00 6.50 2.00 6.00 3.50 

Sum MUFAs 570.25 558.75 484.00 547.25 515.25 478.50 

18:2n-6 108.50 110.00 165.00 126.00 146.00 172.50 

18:3n-6 <1.00 1.00 <1.00 <1.00 <1.00 <1.00 

20:2n-6 2.00 2.00 1.00 2.00 1.00 1.00 

20:3n-6 <1.00 <1.00 1.00 <1.00 1.00 1.00 

20:4n-6 2.50 2.50 2.50 2.50 2.00 2.00 

Sum n-6 PUFAs 115.00 116.50 170.50 132.50 151.00 177.50 

18:3n-3 45.00 42.50 57.50 41.50 59.50 61.50 

18:4n-3 12.00 11.00 1.00 11.00 2.50 1.00 

20:3n-3 <1.00 <1.00 <1.00 <1.00 <1.00 2.00 

20:4n-3 2.50 2.50 2.00 2.50 2.00 2.00 

20:5n-3 33.00 32.50 3.00 32.00 9.00 2.50 

22:5n-3 3.00 3.00 1.00 3.50 1.50 1.00 

99.00 

169.00 

0.95 

22:6n-3 41.50 42.50 93.00 37.00 89.00 

Sum n-3 PUFAs 138.00 135.00 158.50 128.50 164.50 

n-3/n-6 1.20 1.16 0.93 0.97 1.09 

       

Diet abbreviations: MB, European commercial marine based diet (2011-12); MBABP, Non-EU 

commercial marine based diet with inclusion of animal-by-products (2011-12); MFABP, fish free 

animal-by-product diet; VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 

protein/vegetable oil diet.  

The data presented are consolidated averages of the two dietary batches used for the study.



Table 4 Performance factors and NQC proximate composition of Atlantic salmon parr fed the experimental diets. 

Performance parameters DIETS 

MB MBABP MFABP VP VO VP/VO 

Initial weight (g)   992.3±119.8   901.8±58.1 924.8±32.3 940.7±127.2 983.9±66.8 892.9±29.9 

Intermediate weight (g) 2041.3±224.6 1858.4±111.9 1856.7±113.1 1927.1±301.2 2014.7±142.4 1795.7±39.3 

Final weight (g) 2608.7±268.6 2417.5±171.1 2415.6±197.1 2528.9±417.0 2626.9±286.8 2381.7±11.2 

**Feed Intake 1st Period (g×fish-1×day-1) 8.65±0.75A 6.16±0.62B 5.87±0.98B 7.50±1.79C 6.89±0.72BC 5.78±0.46B 

Feed Intake 2nd Period (g×fish-1×day-1) 8.11±1.33 7.69±1.21 7.53±1.23 8.29±1.56 8.30±1.58 8.12±0.70 

Feed Intake full Period (g×fish-1×day-1) 8.38±1.04A 6.93±0.91B 6.70±1.11B 7.90±1.67AC 7.60±1.15BC 6.95±0.58B 

*Wt gain (g× fish -1×day-1) 1st Period 10.84±0.52A 8.63±0.52BC 8.22±0.77BC 8,98±1.475BC 9.59±0.76B 8.10±0.32C 

Wt gain (g×fish -1×day-1) 2nd Period 8.11±2.01 7.87±1.77 7.87±1.80 8.48±1.68 8.58±2.09 8.25±0.55 

Wt gain (g×fish -1×day-1) full Period 9.74±0.71A 8.32±0.78B 8.08±0.87B 8.78±1.48AB 9.18±1.25AB 8.16±0.06B 

†FCR 1st Period 0.80±0.05A 0.71±0.03B 0.71±0.05B 0.83±0.07A 0.72±0.03B 0.71±0.06B 

FCR 2nd Period 1.02±0.11A 0.99±0.09B 0.97±0.08B 0.98±0.03B 0.98±0.08AB 0.98±0.02B 

FCR full Period 0.91±0.05A 0.85±0.05B 0.84±0.05B 0.90±0.04A 0.85±0.03B 0.85±0.04B 

‡Condition Factor (K) end of trial 1.52±0.11A 1.54±0.12B 1.51±0.11AC 1.61±0.12D 1.46±0.10E 1.52±0.10C 

Mortalities (%) 1st period 0.3±0.5 0 0 0 0.3±0.5 0 

Mortalities (%) 2nd period 0 0 0 0 0 0 

NQC composition       

Moisture (%) 65.07±0.23 65.19±1.17 65.67±1.10 64.27±0.57 65.75±1.08 65.65±0.29 

Protein (%) 18.46±0.23 18.87±0.27 18.69±0.51 18.82±0.81 18.89±0.70 18.99±0.28 

Crude Lipid (%) 13.56±0.21 12.57±0.58 12.64±0.82 13.47±1.03 12.07±0.32 12.92±0.48 

Ash (%) 1.37±0.04 1.34±0.05 1.27±0.06 1.38±0.08 1.33±0.09 1.38±0.11 
       

 The present data are the real mean values for each parameter with their standard deviation (SD). Statistical analysis using linear mixed effect models estimates 

the expected mean values the above parameters with their 95% confidence intervals (by using 1500 random draws). These are shown in Figure 1. Parameters 

in italics were the ones analysed statistically. Data for the proximate composition of Norwegian quality cut (NQC) fillet samples are referred as means ± SD of 

4 pooled samples per diet (1 pool per tank). Data for the performance factors are referred as means ± SD of 4 replicate tanks.  Significant differences between 

the groups due to the use of different diets (P values < 0.1) are denoted by different letters (Modelled based statistical analysis).  

*Wt gain (Daily Weight gain) (g/fish/day) =Total wt of fish within treatment (g) × (Number of fish within treatment)-1× (Number of trial days)-1; **Feed intake 

= Amount of food ingested by fish per treatment (g); †Feed Conversion Ratio (FCR) = Feed intake (g) × Overall Weight gain (g); ‡Condition Factor (K) = Fish 

Weight (g) × Fish Length (cm)3).  

Diet abbreviations: MB, European commercial marine based diet (2011-12); VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 

protein/vegetable oil diet; MBABP, Non-EU commercial marine based diet with inclusion of animal-by-products (2011-12); MFABP, fish free animal-by-

product diet.  



 

 

Table 5  Effect of experimental diets on immunological and haematological responses of Atlantic salmon post-smolts. 

 

Haematological & Immune 

parameters 
MB MBABP     MFABP          VP       VO VP/VO 

Haematocrit (%) 47.9±5.3A 51.4±5.7BC 52.7±6.5B 50.9±3.7ABC    48.6±3.7AC 53.5±6.3B 

Leucocytes (× 107×ml-1) 10.3±4.0 10.2±2.9 10.2±2.7 11.7±3.7 10.4±3.9 8.3±1.9 

Lymphocytes (× 107×ml-1) 5.2±2.1 5.6±1.4 4.8±1.4 5.8±1.6 4.9±1.4 4.3±1.3 

Thrombocytes (× 107×ml-1) 4.4±1.7 4.1±1.7 4.8±1.6 5.3±1.9 4.9±2.8 3.6±1.4 

Granulocytes (× 107×ml-1) 0.6±0.4 0.4±0.2 0.5±0.3 0.6±0.3 0.5±0.5 0.5±0.2 

Monocytes (× 107×ml-1) 0.05±0.08 0.03±0.04 0.04±0.05 0.05±0.06 0.06±0.06 0.03±0.03 

Lysozyme activity (units × min-1× ml-1) 1259.8±252.1A 913.7±319.5B 794.7±372.2B 791.9±289.6B 912.4±185.1B 830.1±317.0B 

Plasma haemolytic activity (units SH50×ml-1) 928±298.2 954.6±139.1 1043.1±378.3 928.5±260.1 986.8±444.2 906.8±271.4 

HKMs respiratory burst (NBT) (O.D.610 for 105 

nuclei) 
0.40±0.15 0.53±0.26 0.37±0.18 0.36±0.22 0.40±0.21 0.36±0.22 

Stimulated HKMs respiratory burst (O.D.610 for 105 

nuclei) 
0.55±0.22 0.66±0.29 0.51±0.19 0.50±0.28 0.52±0.23 0.49±0.29 

Total plasma protein (mg×ml-1) 66.4±6.3 66.1±8.3 65.3±6.7 66.5±6.3 67.9±4.3 67.9±5.9 

Plasma antiprotease act. (Units TI75 × min-1× ml-1) 713.6±15.9A 665.4±66.0B 757.9±32.1C 740.2±12.0AC 701±57.3AB 727.5±28.2AC 

Total plasma IgM (mg×ml-1) 6.4±2.8 5.8±2.6 3.7±2.8 5.1±3.1 7.9±2.6 3.9±2.8 

       

The present data are the real mean values for each parameter with their standard deviation (SD). Statistical analysis using linear mixed effect models estimates 

the expected mean values the above parameters with their 95% confidence intervals (by using 1500 random draws). Selected models are shown in Figure 2. 

Values for immune responses are means ± SD from 8 pools of 3 fish per diet; for haematocrit values are means ± SD from 24 individual fish per diet; and for 

leucocyte and differential leucocyte counts values are means ± SD from 12 individual fish per diet. Significant differences between the groups due to the use of 

different diets (P values < 0.1) are denoted by different letters (Modelled based statistical analysis).  

Diet abbreviations: MB, European commercial marine based diet (2011-12); VP, vegetable protein diet; VO, vegetable oil diet; VP/VO, vegetable 

protein/vegetable oil diet; MBABP, Non-EU commercial marine based diet with inclusion of animal-by-products (2011-12); MFABP, fish free animal-by-

product diet. 

 


