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General abstract 

Environmental gamma-ray spectroscopy provides a powerful tool that can be used in 

environmental monitoring given that it offers a compromise between measurement 

time and accuracy allowing for large areas to be surveyed quickly and relatively 

inexpensively.  Depending on monitoring objectives, spectral information can then be 

analysed in real-time or post survey to characterise contamination and identify 

potential anomalies.   

Smaller volume detectors are of particular worth to environmental surveys as they can 

be operated in the most demanding environments.  However, difficulties are 

encountered in the selection of an appropriate detector that is robust enough for 

environmental surveying yet still provides a high quality signal.  Furthermore, 

shortcomings remain with methods employed for robust spectral processing since a 

number of complexities need to be overcome including: the non-linearity in detector 

response with source burial depth, large counting uncertainties, accounting for the 

heterogeneity in the natural background and unreliable methods for detector 

calibration.   

This thesis aimed to investigate the application of machine learning algorithms to 

environmental gamma-ray spectroscopy data to identify changes in spectral shape 

within large Monte Carlo calibration libraries to estimate source characteristics for 

unseen field results.  Additionally, a 71 × 71 mm lanthanum bromide detector was 

tested alongside a conventional 71 × 71 mm sodium iodide to assess whether its higher 

energy efficiency and resolution could make it more reliable in handheld surveys.   



v 

 

The research presented in this thesis demonstrates that machine learning algorithms 

could be successfully applied to noisy spectra to produce valuable source estimates.  

Of note, were the novel characterisation estimates made on borehole and handheld 

detector measurements taken from land historically contaminated with 226Ra.  

Through a novel combination of noise suppression and neural networks the burial 

depth, activity and source extent of contamination was estimated and mapped.  

Furthermore, it was demonstrated that Machine Learning techniques could be 

operated in real-time to identify hazardous 226Ra containing hot particles with much 

greater confidence than current deterministic approaches such as the gross counting 

algorithm.  It was concluded that remediation of 226Ra contaminated legacy sites could 

be greatly improved using the methods described in this thesis.  

Finally, Neural Networks were also applied to estimate the activity distribution of 

137Cs, derived from the nuclear industry, in an estuarine environment.  Findings 

demonstrated the method to be theoretically sound, but practically inconclusive, given 

that much of the contamination at the site was buried beyond the detection limits of 

the method. 

It was generally concluded that the noise posed by intrinsic counts in the 71 × 71 mm 

lanthanum bromide was too substantial to make any significant improvements over a 

comparable sodium iodide in contamination characterisation using 1 second counts. 
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1 Introduction 

1.1 Radioactivity in the environment 

Radioactivity is an integral part of the environment, from the bombardment of cosmic 

rays from space and subsequent excitation products to primordial radioisotopes and 

their respective decay chains that can be linked back to the formation of the universe 

itself (Dauer, 2002).  Humans have evolved around natural sources of radiation and 

as a result have built up, to a certain extent, a biological resistance to its ionising 

effects.  Nonetheless, significant implications on human health were only formally 

recognised with exposure to anthropogenic-derived radionuclides (Stannard & 

Baalman Jr, 1988).   

The first well documented example of human exposure to radioactivity is that of 226Ra, 

a naturally occurring radioactive material (NORM) first isolated from pitchblende by 

Marie and Pierre Curie (Gillmore et al., 2012).  226Ra was used in a wide range of 

military, confectionary and pharmaceutical products (Tyler et al., 2013).  Perhaps the 

most beneficial application of 226Ra was when it was mixed with ZnS to produce a 

seemingly unbroken light source, otherwise known as “Undark” (Stebbings, 2001).  

This composite famously led to high morbidity and mortality rates among the New 

Jersey radium workers of the mid 1920s, bringing about what would form the 

foundation of contemporary radiological protection countermeasures (Stannard & 

Baalman Jr, 1988).   

Although the worldwide production of 226Ra decreased considerably after World War 

II, vast inventories of waste has given rise to a large number of localised contaminated 
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sites across the world that still pose a significant health risk today, for example Olen 

in Belgium and the Denver radium site in the the United States (Adams, 1993, Landa, 

1993, Adsley et al., 2004).   In the UK, it is thought that many radium contaminated 

legacy sites either lay undiscovered or remain overlooked.  What is more, when 

considering 226Ra has a half-life of 1600 years, these sites represent a serious issue for 

future generations and not just our own (DECC, 2012).  

The bombings of Hiroshima and Nagasaki in 1945 abruptly brought us into the 

modern nuclear age.  Since then, a wide diversity of fission and activation products 

have consistently been introduced into the environment from further nuclear weapons 

detonations and accidental and authorised releases from nuclear facilities (Maučec et 

al., 2004).  Perhaps the most important long-term contributor to the environmental 

radiation dose is 137Cs (Miller, 2007).  Its radiological prominence is partly due to its 

chemical properties and its relatively long half-life of 32 years which has allowed it 

to readily disperse over the globe presenting a complex spatial and temporal 

distribution (Povinec et al., 2003).  In certain regions, particularly close to a major 

source of 137Cs, highly contaminated areas can be encountered.  

In the UK, the Sellafield nuclear reprocessing plant on the west coast of Cumbria 

provides a textbook example.  It has legitimately released 137Cs into the Irish Sea since 

the early 1950s.  An unexpected outcome of these releases is that a significant 

proportion of the total inventory has been remobilised from the Irish Sea leading to 

accumulation in coastal sediments presenting a potential exposure pathway for the 

general population (Cook et al., 1997).    
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Taken on a worldwide scale, average human exposure to natural radiation still dwarfs 

that of anthropogenic radiation by an order of magnitude (Dauer, 2002).  However, 

sites that are highly contaminated with 226Ra or 137Cs have the potential to cause 

significant radiological harm to sections of the general public.  What is more, public 

perception studies reveal that the radioactive waste associated with these types of site 

is still considered as high risk by society (Slovak, 2012).   

Radioactively contaminated land is particularly hazardous when hot particles are 

encountered (Dale et al., 2008).  Hot particles are by definition small highly 

radioactive heterogeneous fragments of contamination that could be handled or 

ingested by a member of the public (Tyler et al., 2013).  However, significant 

difficulties are encountered when trying resolve hot particles from less hazardous 

homogeneous contamination using conventional detection approaches (Dale et al., 

2013).  This scenario presents a significant challenge to overcome to provide public 

safety and reassurance (ICRU, 2006). 

1.2 Environmental monitoring 

There are a number of sampling procedures that can make up an environmental 

radioactivity monitoring approach.  The implementation of these methods is very 

much dependent on the monitoring objectives, which are designed to assess potential 

exposure pathways.  Sampling methods can range from human habits surveys to water 

and food sampling.  Activity of contamination contained in the soil potentially 

presents a number of exposure pathways (ICRU, 2006).  As a result, source 

characteristics must be accurately estimated for a contaminated soil, for example 
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information regarding the radio-contaminant’s activity and depth and whether it is 

likely to be heterogonous or homogeneous in form. 

This task can be achieved using soil sampling, which can provide a suite of 

information describing different types of radionuclides and respective activities.  

Nonetheless, it is labour intensive, very expensive, and subsequently, can result in 

poor spatial representation due to a lack of sample points (Tyler, 2008).  Conversely, 

air kerma measurements will acquire an instant dose rate, thereby allowing large areas 

to be rapidly mapped with a high spatial density.  However, this method offers no 

distinction between radionuclides, making the important step of soil activity 

estimation almost impossible. 

It has become evident that neither of these sampling methods can practically 

characterise changes in depth and activity that occur on a local scale: a capability that 

is of particular importance when searching for hot particles or highly active localised 

homogeneous contamination (Tyler et al., 2010). 

1.3 Environmental gamma-ray spectroscopy 

Environmental gamma-ray spectroscopy is a powerful monitoring tool, which utilises 

the penetrative qualities of gamma radiation to detect, and crucially differentiate the 

energy of photons, that exit the soil and interact with the detector.  The resulting pulse 

height spectrum can then be unfolded using features such as full energy peaks, to 

isolate different radionuclides, and regions that accumulate scattered photons, to infer 

the amount of shielding (depth) between a source and the detector.  

Traditionally, a large number of short measurements are taken during an 

environmental gamma-ray spectroscopy survey in order to maximise the spatial 
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density of sampling points and thus allow for the coverage of large areas.  Ultimately, 

reliable interrogation of spectral data can provide a means of characterising extensive 

areas of contamination.  Due to this capability, gamma-ray spectroscopy has become 

the mainstay of large-scale radio-contaminant mapping (Hovgaard, 1997, Aage et al., 

1999, IAEA, 1998, Allyson & Sanderson, 2001, Dickson, 2004) and has been 

instrumental in hot particle detection (Davies et al., 2007, Long & Martin, 2007, Kock 

et al., 2010).  As a result, it has been expanded onto numerous platforms, such as 

handheld (Plamboeck et al., 2006), carborne (Dowdall et al., 2012), aerial (Aage et 

al., 1999), unmanned aerial vehicles (Martin et al., 2015), borehole (Bugai et al., 2005) 

and sub-aqua (Dennis et al., 2007).  

1.4 Challenges facing environmental gamma-ray spectroscopy 

Despite gamma-ray spectroscopy being a powerful environmental monitoring tool, 

there still remain a number of challenges associated with the characterisation of 

radioactive contaminated land.  This is especially the case when using practical 

smaller volume detectors that can be routinely deployed.   

The first issue encountered is that no single detector can fulfil all of the specifications 

needed for the practical demands of routine deployment.  For instance, High Purity 

Germanium (HPGe), although it provides the highest energy resolution accessible, its 

practical application in rugged terrain is limited due to its need to be constantly cooled 

making detection units heavy and immobile (Davies et al., 2007).  A more robust 

alternative is sodium iodide (NaI:Tl) (Adsley et al., 2004).  Nonetheless, it lacks the 

required energy resolution to confidently separate common environmental 

radionuclides (Tyler, 1999). 
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The second issue is how to reliably process the spectral output of a detector to obtain 

the most representative characterisation information: solving this problem is however 

innately difficult as a number of confounding factors must be addressed.   

Firstly, the signal received by any detector will contain pronounced contributions from 

background sources, primarily the natural radioelements 40K and the 238U and 232Th 

series (Kluson, 2001).  Furthermore, this signal will not remain constant as changes 

in geology, density, moisture content, chemical composition and atmospheric pressure 

can bring about considerable changes in differential photon flux (Dickson, 2004).  

Accounting for these benign systematic changes presents a significant challenge.  A 

further problem is confronted with the burial of a source.  Not only will its total flux 

diminish according to the inverse square law, but also the overall shape of the 

spectrum will change non-linearly with increasing amounts of soil overburden (Wei 

et al., 2010).  This introduces a complex multivariate problem, and at the same time, 

represents a significant calibration challenge, which can be difficult to account for 

using conventional analytical calibration methods (Maučec et al., 2009).  A final issue, 

that affects smaller volume detectors in particular, is that large counting uncertainties 

can introduce a significant noise component within an environmental gamma-ray 

spectrum owing to the short count times used (Du et al., 2010).   

As a consequence of these complications, straightforward spectral processing 

algorithms are regularly adopted in the field, most of which are based on rigid 

assumptions about the source distribution, which may quickly become invalid as the 

detector moves away from any calibration area.   Here, we explore whether the 

additional information that can be recovered from spectra, acquired in real time or 

near real-time, can be used to improve our understanding of source distribution.  
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Through this, the problems that have hindered traditional rigid approaches could be 

overcome and an overall improvement to calibration accuracy for mobile gamma 

spectrometry surveys could be realised. 

1.5 Thesis aims and objectives 

The general aim of this work was to develop a multidisciplinary approach to improve 

the measurement accuracy of source estimates made on spectra, obtained using small 

volume detectors, over short count times.  The proposed method could then be 

operated alongside or instead of traditional long count time or large volume 

measurements, ultimately allowing for large areas to be surveyed and the 

maximisation of radio-contaminant information.   

The approach will be demonstrated on land impacted by historical 226Ra 

contamination and estuarine environments contaminated with 137Cs derived from the 

nuclear industry.  The general aim will be achieved through the following objectives:  

 Identify a potential alternative detector to sodium iodide with intention of 

comparing detectors directly at contaminated sites.   

 Develop Monte Carlo calibration spectra for individual detectors to relevant 

sources and geometries. 

 Investigate and implement Machine Learning algorithms trained with Monte 

Carlo calibration spectra to unfold field data obtained at contaminated sites. 

1.6 Thesis structure 

This thesis is divided into 9 chapters, 4 of which are published or in the process of 

being published.  The author had the lead in their production.  Prior to these four 
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research manuscripts, chapter 2 provides an appreciation of the fundamentals of 

environmental gamma-ray spectroscopy, the detectors employed and the current 

spectral processing methods used to interpret spectral output.  Chapter 3 goes on to 

outline in detail the generic methods used in the development of the science presented 

in the research manuscripts.   

The four original research manuscripts can be found in chapters 4-7.  The details of 

the environmental monitoring challenges being addressed along with the details of the 

contamination being monitored are also presented in each of these four papers. 

Chapter 4 investigates the application of Neural Networks to characterise deep 226Ra 

contamination using borehole measurements taken with a 51 x 51 mm NaI:Tl. 

I. Varley A., Tyler A., Smith L. and Dale P. (2015) Development of a neural 

network approach to characterise 226Ra contamination at legacy sites using gamma-

ray spectra taken from boreholes, Journal of Environmental Radioactivity, 140, 130-

140  

Chapter 5 also focuses on 226Ra contamination, but with respect to detecting near 

surface dwelling hot particles.  This paper compares two Machine Learning 

algorithms and two 71 x 71 mm handheld detectors (NaI:Tl and LaBr:Ce).  

II. Varley A., Tyler A., Smith L., Dale P. and Davies M. (2015) Remediating 

radium contaminated legacy sites: Advances made through machine learning in 

routine monitoring of “hot” particles, Science of the Total Environment, 521–522, 

270–279 



9 

 

Chapter 6 uses a similar setup to chapter 5, but emphasis turns towards characterising 

the depth and activity of homogeneous 226Ra.  

III. Varley A., Tyler A., Smith L., Dale P. and Davies M. Mapping the spatial 

distribution and activity of 226Ra at legacy sites through Machine Learning 

interrogation of gamma-ray spectroscopy data,  Science of the Total Environment, 

545-546,  654-661 

Chapter 7 applies a similar approach to characterise layered homogeneous 137Cs 

deposits.  

IV. Varley A., Tyler A., Smith L. and Davies M. Rapid high resolution mapping of 

activity and burial depth of 137Cs deposits using Machine Learning to unfold gamma-

ray spectra, unpublished manuscript 

Chapter 8 goes on to discuss the implications of the research as a whole and makes 

suggestions for future work and prospects for environmental gamma-ray spectroscopy  

and chapter 9 presents the key conclusions arising from the research. 
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2 Principles of environmental gamma-ray spectroscopy 

2.1 Outline 

The intention of this chapter is describe the fundamental principles underlying 

environmental gamma-ray spectroscopy, the detectors applied and the current spectral 

processing methods used to interpret a detector’s spectral output.  These descriptions 

encompasses brief descriptions of how radioactivity is formed, what are the principal 

types of radiation that can be encountered in the environment and what are main 

sources of the most common radioelements that contribute environmental 

radioactivity.   

A large section of this chapter is then dedicated to explaining the processes that lead 

to effective detection and the different types of detectors and their individual 

properties.  Following this, a systematic review of the latest detection technology is 

embarked on, with a summary and justifications of why a particular detector was 

purchased for this project.   

The final part of this chapter concentrates on the development of photon transport 

equations and the most common spectral analysis methods used in environmental 

gamma-ray spectroscopy. 

2.2 The occurrence of radiation 

If an element’s nucleus is unstable, after a certain amount of time depending on the 

isotope, it will decay by releasing matter or electromagnetic radiation, otherwise 

known as radiation  (Figure 2-1A).  The once excited parent nucleus is then either left 

as a stable daughter element or as an unstable nucleus, but at a lower energy level as 
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a result of the initial loss of energy (radiation emission), ultimately leading to further 

decay and the formation of decay chains (Figure 2-1B).  A unit of radioactivity, the 

Becquerel, is named after its discoverer Henry Becquerel and quantifies the number 

of disintegrations per second (Ford, 2004). 

 

Figure 2-1. A) Decay processes B) Decay chain starting with 226Ra 

and ending with stable 206Pb 

The radiations of primary concern from a radiological protection prospective released 

during this process are alpha and beta particles and gamma rays (L'Annunziata, 2012).  

Neutrons are also a noteworthy particle, although they are significantly less commonly 

within the environment in comparison to the abovementioned particles, therefore 

attributing considerably less dose. 

Alpha and beta particles have the greatest linear energy transfer as they are 

continuously affected by charge-related coulombic interactions with the matter they 

are travelling through.  Consequently they are attenuated relatively efficiently.  



12 

 

Gamma rays, on the other hand, do not possess electrostatic charge hence they are not 

affected by coulombic interactions (Evans & Noyau, 1955).  Instead, gamma rays 

require a direct interaction with either the nucleus or the electron clouds surrounding 

the nucleus.  As a result, a materials ability to attenuate gamma-rays is considerably 

less compared to charged particles, such as alpha and beta particles.  Subsequently, 

gamma-rays can travel significant distances through matter.  This phenomena means, 

depending of course on the initial energy of the gamma ray, that gamma rays are 

fundamental in the detection of a source at relatively large distances and behind large 

amounts of shielding (Beck et al., 1972).  

The manifestation of a gamma ray is associated with the de-excitation of the nucleus 

to a lower energy level emitting any excess energy from the nucleus, post alpha or 

beta decay.  This outcome means gamma radiation can be used as a proxy to detect 

more hazardous emissions.  A further importance of gamma radiation is that it can be 

found in the majority of naturally occurring and anthropogenic decay chains found 

within the environment.  Additionally, each de-excitation is monoenergetic, which 

indicates that it releases a quantum of energy each time it decays acting as fingerprint 

for the individual radionuclide emitting it.  From an environmental detection 

standpoint, gamma rays will often be utilised as the first line approach in the detection 

of a natural source or a radio-contaminant.  

2.3 Sources of gamma radiation in the environment 

2.3.1 Primordial radionuclides 

There are about 340 naturally occurring radionuclides that are present in measurable 

quantities contained within the Earth’s crust, water bodies and atmosphere (Eisenbud 
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& Gesell, 1997).  Within the Earth’s crust, the most notable primordial radionuclides 

are 40K and the three decay series: Uranium, Actinium and Thorium whose parents or 

starting members are 238U, 235U and 232Th respectively.  All of these natural 

radionuclides emit detectable gamma radiation at some stage in their decay chain.  It 

must be noted that contributions from the Actinium series are small, compared to those 

of 40K and the Uranium and Thorium series, owing to the very small quantities found 

within the environment (Ball et al., 1991). 

The presence of these primordial radionuclides can be attributed to the parent having 

a half-life close to or longer than the age of the Earth (4.7 × 109 years).  It is thought 

that heavier elements were once in existence, for example 236U and 240Pu, but they 

have since decayed leaving their daughters, which presently make the current decay 

series.    

Other radionuclides can also be found in very small quantities at isolated sites. 239Pu 

and 239Np can be formed within natural fission reactor sites, such as Oklo in Gabon, 

due to neutron bombardment of 238U (Eisenbud & Gesell, 1997). 

2.3.2 Cosmic radiation 

Radiation originating from outer space, known as cosmic radiation, can be measured  

Earth’s surface .  This radiation consists primarily of protons, neutrons and alpha 

particles.  Cosmic radiation is thought to be the product of supernovae, of which the  

vast majority of particles are prevented from reaching the Earth’s surface by 

interactions taking place with atoms contained within the atmosphere (Ackermann et 

al., 2013).  A direct consequence of atmospheric shielding can be realised when 
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considering that 80% of cosmic radiation at sea level is contributed by muons 

(Eisenbud & Gesell, 1997). 

2.3.3 Anthropogenic radionuclides 

There have been vast quantities of anthropogenic-derived radionuclides that have been 

released into the environment over the course of the 20th and 21st century (Stannard & 

Baalman Jr, 1988, Boubaker Askri et al., 2008).  There have been substantial 

contributions in the form of chemically concentrated Naturally Occurring Radioactive 

Materials (NORM) from industrial processes such mineral and petroleum processing 

and historic activities such as the radium industry (Read et al., 2013).  Examples of 

NORM include: 226Ra, 224Ra, 232Th, 238U and 235U.  Although on a lesser scale, there 

have been further contributions to the environment in the form of fission (137Cs, 134Cs, 

131I, 90Sr) and activation (60Co, 14C and 99Tc) products from the nuclear industry, 

weapons testing and hospital discharges to name a few sources (Dauer, 2002).   

Eisenbud and Gesell (1997) provide a detailed account of the various anthropogenic 

radionuclides, and the pathways they have taken to get into the environment. 

2.4 Physical interactions of gamma radiation with matter 

To gain an appreciation into environmental gamma-ray spectroscopy an 

understanding of the physical interactions of gamma-rays must first be acknowledged.  

There are a number of different ways gamma radiation can interact with matter, and 

the photoelectric cross-section, or more precisely, the probability of collision between 

it and the material it is passing through, is very important.  However, at the relatively 

low energy range (<5 MeV) relevant to environmental radiation detection, three 

interactions are of relevance: photoelectric absorption, Compton scattering and pair 
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production.  In addition to these inelastic processes, elastic processes principally 

coherent scattering, also take place. For a complete description refer to Evans and 

Noyau (1955). 

 

Figure 2-2. Z value plotted against photon energy (hv), displaying the 

likelihood of the three interaction processes (Evans & Noyau, 1955). 

 

2.4.1 Photoelectric absorption 

Out of the three interactions, photoelectric absorption is the desired energy deposition 

process in a detector as the incoming photon deposits all of its energy in a single event.  

For a gamma photon with sufficient energy, this normally occurs with one of the K 

orbital electrons given that they are the mostly tightly bound.  A desired characteristic 

of any gamma detector is to have as larger photoelectron cross-section as possible; 

this is why materials with higher Z number are preferred (Figure 2-2).  During the 

process of photoelectric absorption, an orbital electron that is ejected out of its orbit 
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then becomes a photoelectron, whose remaining kinetic energy reflects the orbital 

binding energy subtracted from the original energy of the incoming photon (Figure 

2-3B).  An electron in an outer shell or a free electron promptly fills the vacancy made 

by the photoelectron; this results in the emission of an X-ray which tends to be 

absorbed close to the site of emission (Allyson, 1994). 

2.4.2 Compton scattering 

Much like photoelectric absorption, Compton scattering involves one of the orbital 

electrons, preferentially one of the higher energy orbitals K, L or M.  This process 

becomes dominant for the energies emitted by most common gamma sources as 

electron orbital binding energies are exceeded (Figure 2-3).  The incoming photon 

transfers a portion of its energy to an orbital electron, such that the electron is ejected 

from the atom as a recoil electron.  As a result of the collision with considerations of 

energy and momentum being conserved, both the electron and the gamma photon, 

which has lost energy, are scattered in different directions (Figure 2-3C).  The angle 

of scatter of the incidence photon can be predicted by the Klein-Nishina formula 

(Knoll, 2010).  Noteworthy,  the probability of forward scattering becomes 

significantly greater with increasing energy above 100 keV (Onsager, 1938). 

It must be appreciated that a number of these events can occur for a single incident 

gamma ray, so its path can vary substantially when travelling through a thick material.  

A large proportion of Compton interactions eventually lose enough energy that they 

result in photoelectric absorption.  
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Figure 2-3. Schematic drawing of gamma ray interactions (Evans & 

Noyau, 1955). 

 

2.4.3 Pair production 

In the event a gamma photon exceeds twice the rest mass energy of an electron (1.02 

MeV), pair production becomes energetically possible.   However, the probability of 

this process is significantly improved with increasing photon energy above the 1.02 

MeV threshold (Figure 2-2).  The interaction must take place within the coulomb field 

of the nucleus, therefore a gamma ray of sufficient energy enters the nucleus and its 

energy is transferred to a positron-electron pair and any excess energy is transferred 

as kinetic energy shared by the charged particles (Figure 2-3D) (Evans & Noyau, 
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1955).  Within any gamma-ray spectrum exists two ever present features, the single 

and double escape peaks, which are brought about by the pair production process 

(Wainio & Knoll, 1966). 

2.4.4 Coherent (elastic) scattering 

Coherent scattering occurs as a result of an incident photon colliding with the orbital 

electrons, but unlike inelastic scattering events, virtually no energy deposition occurs 

although its direction is altered (Figure 2-3A). Consequently, when taking a modelling 

approach these events must be accounted for.  The probability of a coherent elastic 

scattering event taking place with the nucleus is about 0.1% of that of inelastic 

interactions (Knoll, 2010).   

2.5 Principals of gamma-ray spectroscopy  

The primary aim of gamma-ray spectroscopy is to convert as much of the incident 

gamma photon in as short a time as possible into electric charge; so individual events 

can be efficiently processed by the electronics of the detector (Figure 2-4).  At the 

present time, a differential pulse height spectrum can be built up from this electronic 

signal, which is directly proportional to the energy deposited by a gamma ray in a 

detector, and easily analysed using standard software on a laptop or tablet.  There are 

number of different types of detectors that are commercially available, most of which 

serve distinct purposes, for example the use of ion chambers to estimate dose (Knoll, 

2010).  However, for the purpose of identification of specific radionuclides using 

discrete gamma emissions, it has been inorganic scintillation detectors and solid-state 

semiconducting diodes that have met both commercial and research requirements.  It 

must be noted that large organic plastic scintillators, for example polyvinyl toluene 
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often used in homeland security, were ruled out early in this study due to their poor 

resolution and unmanageable size needed to gain sufficient energy efficiencies (Ely 

et al., 2006).  This section will briefly cover the properties of a detector that lead to 

effective detection.  Following this, a systematic review of semiconducting diodes, 

conventional inorganic scintillators and the promising cerium activation halides will 

be presented.  

 

Figure 2-4. Typical field setup for a detector 

 

2.5.1 The process of detection 

The initial stage of nuclear detection involves a physical interaction between the 

detector and the particle of interest.  In gamma-ray spectroscopy, this starts with an 
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interaction, as described in section 2.4, between an incident photon and the active 

volume of a detector. This essentially incurs a loss of energy, through the production 

of high-energy electrons creating vacancies within inner orbital shells of the detection 

material.  Subsequently, high energy electrons and internal formation of auger 

electrons, X-rays, positrons, bremsstrahlung and subsequent gamma rays 

corresponding to positron annihilation, will go on to further ionise other parts of the 

detector (Narayan et al., 2012).  Essentially as energy is lost, more secondary electrons 

are formed through ionisation, unless energy exits the detectors active volume where 

it will be effectively lost and not detected.  

 

Figure 2-5. Schematic diagram demonstrating band theory of a 

cerium doped scintillator. 

 

The main difference between scintillators and semiconducting diodes is the amount 

of energy required to elevate an electron into an excited state.  This can best be 

explained using band theory (Wallace, 1947).  An electron is elevated from a ground 

state (valence band) to an excited state (conduction band), depositing a specific 

amount of energy from the incident photon; creating an electron-hole pair (Figure 

2-5).  Throughout the path of the gamma ray a number of electron-hole pairs will be 
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formed.  The electron-hole pair will then migrate through the crystal lattice until the 

de-excitation process takes place, when the energy of the electron-hole pair is returned 

to ground state, resulting in the emission of energy.  In scintillators this manifests as 

light and in semiconducting diodes it forms an electric charge. 

 Scintillators 

For a scintillator, if a pure ionic lattice was used, for example pure sodium iodide, 

wavelengths emitted are too short to be efficiently converted to photoelectrons by the 

photocathode in the photomultiplier tube.  To get around this problem, crystals tend 

to be doped with an impurity, known as an activator, which modify the band structure 

of the crystal (Figure 2-5).  In the case of sodium iodide this is thallium.  The dopant 

acts as a lumniscence centre for migrating electron-hole pairs to de-excite through, 

allowing emission of visible wavelengths of light. A second benefit is that, due to the 

sparsity of the lumniscence centres, self-absorption near to the site of emission is 

dramatically reduced making the crystal effectively transparent.  A photomultiplier 

tube or photodiode is then used to collect light and amplify the signal. 

 Semi conducting diodes 

In reality, band theory describes a covalent-bonding orbital electron or free electron 

being excited and allowed to migrate through the crystal structure and for 

semiconducting diodes this creates charge that can be interpreted.  Interestingly, what 

sets semiconducting diodes apart from other crystalline structures is that they have a 

very small band gap of a few electron volts whereas a scintillator has a typical band 

gap in the order of 100 electron volts.  However as the gap is so small in 

semiconducting diodes, electrons can easily be thermally excited between energy 
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states, to counteract this some semiconducting diodes, such as High Purity 

Germanium, require the crystal to be sufficiently cooled to liquid nitrogen 

temperatures (77ºK).  An electric field is applied across the crystal with aim of 

encouraging the flow of electron-hole pairs to an electrode to gain a signal.  

Subsequently through this method, semi-conducting diodes tend to produce the 

highest quality signal. 

2.5.2 Detector properties 

Spectra produced by different detectors exposed to the same source will almost 

certainly be different owing to variations in composition, detector geometry, outer 

casing and electronics. The way in which a detector will respond to a source of 

radiation is known as its response function. There are a number of important properties 

that can influence a detector’s response function, which are described below. 

 Light output 

When a quantum of radiation enters the active volume of a scintillator, the aim is for 

all of the energy to be captured and converted into as many information carriers as 

possible, visible photons in the case of a scintillator, to successfully generate reliable 

photoelectron statistics. The amount of visible photons emitted is dependent on the 

crystal field splitting energy, generated by the interaction of the orbital electrons 

surrounding a non-metal cation and metal anion contained within a crystal 

(Ballhausen, 1962). A split in energy or degeneracy (ΔE) is formed between the shared 

orbital electrons enabling excitation from the lower lying energy set to the higher lying 

energy set (Birowosuto et al., 2006).  In principle, small values of ΔE should result in 
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a high light output.  Noteworthy, this property does not affect semi-conducting diodes 

as signal is processed electronic charge. 

 Energy resolution  

How a detector responds to a monoenergetic source of radiation is known as its 

resolution. The width of the peaks reflects the amount of statistical fluctuation 

occurring in information carriers within the detector: essentially the narrower the peak 

the better resolution.  This measurement is standardised by using the Full-Width at 

Half-Maximum (FWHM).  There are a number of reasons for resolution loss even 

when full energy deposition occurs such as statistical noise, electronic noise and shifts 

in gain.  Primarily, resolution loss occurs in scintillators as a result of statistical 

broadening or fluctuation in light reaching the photocathode that, in turn, leads to 

fluctuations in photoelectrons leaving the photocathode.  Therefore, high light output 

and reducing light loss are vital in maintaining good resolution. For the latter 

argument, efforts should be made during growth processes to ensure uniformity within 

the crystal’s structure to minimise self-absorption. Additionally, efforts should be 

made during the assembly of the instrument to maximise reflection of the outer casing 

to channel low energy light towards the photocathode.  Drifts in gain, the assembly of 

contact points and warming up of the crystal can bring about losses in energy 

resolution in semiconducting diodes. 

 Linearity 

The departure from absolute proportionality occurs as the response of the detector 

varies with changing energy. If statistical broadening was the sole contributor to 

resolution loss at lower energies then the following equation would apply (20).                                                                  
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 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝐾

√𝐸
 (1) 

Where K equals the constant of proportionality and E equals energy. Deviations from 

the above equation, represent additional inputs of variations, for example self-

absorption or damage to the crystal. 

 Efficiency  

The efficiency of a detector is the ability of its active volume to detect a specific 

activity of radiation at a particular energy.  This involves a photon being attenuated 

by the material it is travelling through. Hence, it is the density and Z number of 

elements contained within the crystal, with all the dimensions and geometry of the 

detector that determine this property.  Naturally, as energy of a photon is increased 

the efficiency of the material to stop that energy will decrease; consequently efficiency 

is measured as a function of energy.  This is dependent on the attenuation of the 

material making up the active volume of the detector.  

 𝐴 =  𝐴0𝑒
−µ𝑥 (2) 

Where A0 is the flux of the incident gamma beam and A is the flux after attenuation 

of the material, x (cm) is the distance through the material and µ (cm-1) is the 

attenuation coefficient (eq 2). 

In order to gain an appreciation of a detector’s efficiency, including shielding from 

the endcap and outer canning, integrated over a 4 geometry, it is best to perform 

empirical experiments.  Assessment of this characteristic can be performed by rotating 

a point source around the axial plane of the detector and recording the relative 

intensity of the peak as a function of incident angle (Helfer & Miller, 1988).  Once a 
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detector is properly characterised, this provides a framework for interpolation and 

extrapolation that would otherwise be limited through laboratory experiments alone 

(Santo et al., 2012).       

 Decay time 

The time it takes for the formation and migration of an electron into a lumniscence 

centre is much shorter than the time it takes for the electron to de-excite (decay).  The 

time taken for the energy to be emitted, in a scintillator, as light is heavily dependent 

on the decay process, which takes the form of an electron cascade (de Haas et al., 

2005).  Ideally, the fast element of decay is desired, known as fluorescence (Onsager, 

1938).  However, delayed radiative de-excitation processes known as 

phosphorescence can cause afterglow, this can, in high count rate situations, cause 

problems as pulses overlap leading to dead time. 

 Temperature stability  

The light output of a scintillator can be affected by temperature usually leading to 

unwanted decreases in light output, this usually happens for the majority of 

scintillators as temperature is increased, leading to a loss in resolution.  However, out 

in the field it is often not the active volume of the detector that causes loss in 

resolution, instead the electronics particularly the photomultiplier tube can be a lot 

more sensitive to temperature change (Moszyński et al., 2006). 
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Table 2-1. Properties of a number of commercially available detectors. 

 

 Property 

Detector 

Resolution 

(FWHM (%) at 

662 keV) 

Density 

(g cm-

2) 

Decay 

time 

(ns) 

Light output 

(photons 

MeV-1) 

Intrinsic 

activity 

(Bq cc-1) 

NaI:Tl ~7 3.67 230 38000 ~0 

LaBr:Ce ~3.5 5.29 28 63000 0.4 

LaCl:Ce ~4.6 3.79 26 46000 1.2 

CeBr ~4.1 5.1 17 68000 ~0 

BGO ~10 7.12 300 15000 ~0 

CsI:Tl ~8 4.51 20 2000 ~0 

BaF2 ~9.5 4.89 1 14000 ~0 

PVT ~180 1.3 ~2 

 

~10000 ~0 

HPGe ~0.2 5.32 NA NA ~0 

ZnCdTe 1.75 6 NA NA ~0 

 

 

2.5.3 Scintillation detectors  

At present, no single scintillation crystal fulfils all detection requirements and as a 

result most are used for very specific jobs.  For instance, BaF2 has been shown to be 

the material of choice in high count rate situations as it has an incredibly fast decay 

component of 1ns (Table 2-1).  Another example is the application of bismuth 

germanate (BGO) for high counting efficiency, owed to its remarkably high density 

(Knoll, 2010).  
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However, Sodium Iodide (NaI:Tl), which is one of the original crystal structures to be 

used in gamma-ray spectroscopy, still remains the most popular environmental 

scintillation detector, because of its robustness and commercial availability.  NaI:Tl 

can be grown relatively inexpensively into large ingots (>16 l), which enables very 

high efficiencies to be reached despite its comparatively low density (3.67 g cm-2).  

The material offers an acceptable light output (38000 photons/MeV), a deviation from 

linearity of ± 0.06 keV-1 and as it is a scintillator, its power requirements and weight 

are relatively low.  Its main drawback, however, is its relative low resolution (~7% at 

662 keV) (Table 2-1).  For the purpose of direct estimation of radionuclide 

concentration (Bq g-1) and aerial deposition (Bq m-2), from background counts, peaks 

often require sprectral stripping (Tyler, 1999).  Spectral stripping is described in more 

detail in section 2.6.3.1. 

2.5.4 Solid state semiconducting diodes 

The primary semiconducting diode used in gamma spectroscopy today, utilises High 

Purity Germanium (HPGe), because of its high density and its ability to be grown in 

comparatively large sizes, enabling it to stop highly penetrating gamma radiation.  

Before techniques were available to make germanium pure enough for gamma 

spectroscopy germanium lithium (GeLi) semiconducting diodes were used.  However, 

once a GeLi detector had been cooled it could not be warmed up to room temperatures 

again (Beck et al., 1972).  HPGe, first made commercially available in the mid 70’s, 

is the highest resolution detector available; this can be seen when observing its 

FWHM of 0.2 % at 662 keV (Table 2-1) (Knoll, 2010).  
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Unfortunately, there are a few drawbacks to this type of detector. They must be cooled 

to very low temperatures in order to gain the desired resolution, as the smallest size 

of band gap must be obtained.  This is achieved by either using liquid nitrogen (77ºK) 

or large electronic cooling devices, making power requirements high and considerably 

heavier than comparable scintillation detectors.  Consequently, they are certainly not 

as portable as scintillators. Furthermore, HPGe are considerably more expensive, at 

almost 30 times the cost of NaI:Tl detectors of a comparable size and efficiency; a key 

variable influencing detector choice, particularly if high efficiency is required (Table 

2-1).  Yet, in the case of a complex radiation field, consisting of contributions from 

many radionuclides, the use of HPGe is logical. 

ZnCdTe is another semiconductor of interest given that it can be operated at ambient 

temperatures (Table 2-1).  However, very low efficiencies can only be obtained, as 

crystals can only be grown in relatively small ingots (~2 cm3) at the present time 

(Knoll, 2010).  Therefore, the environmental application of these detectors is limited, 

but in high-count rate situations their application becomes more appealing (Martin et 

al., 2015). 

2.5.5 Cerium activated halides 

 Lanthanum halides 

In 2001, the combined effort of Delft and Bern universities produced some of the first 

commercially available, cerium-doped, lanthanum halide crystals (Menge et al., 

2007).  Two of these crystals LaBr:Ce and LaCl:Ce have demonstrated outstanding 

scintillator characteristics such as, high effective Z and density, very high light yield, 

emission wavelengths well matched to common photocathodes, fast decay times all 
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of these factors leading to outstanding resolution (~3.5% and ~4.6% respectively 

(FWHM) at 662 keV) (Knoll, 2010) (Table 2-1).  Consequently, they have potential 

to serve as intermediate resolution detectors between NaI:Tl and relatively bulky solid 

state detectors (HPGe) (Iltis et al., 2006). 

Over the last decade extensive research on both the Lanthanum halide crystals has 

been undertaken (Milbrath et al., 2007, Menge et al., 2007).  The majority of this work 

concentrates on their ability to outperform traditional crystals used as scintillators 

such as NaI:Tl, over a wide range of laboratory conditions: temperature, photon 

intensity and energy range (Menge et al., 2007, Pausch et al., 2007, Sullivan et al., 

2008).  However, as of yet, a limited amount of research has been performed in the 

environment using this group of scintillators.  

LaBr:Ce has been shown to outperform LaCl:Ce in the majority of cases.  Its energy 

resolution (<3.5%), decay time (26 ns) and light output (63000 photon MeV-1) are 

superior (Table 2-1).  These factors alone would seem to underline it as a more suitable 

scintillation material to be used in the environment.  More crucially, for the low count 

rate, short count time situations in which this detection material is going to be used in, 

the level of intrinsic activity contained within LaCl:Ce (1.2 Bq cc-1) is considerably 

more than LaBr:Ce (0.4 Bq cc-1).  

The main drawback of the Lanthanum halides is that they naturally contain 0.089% 

of 138La which has a half-life of 1.02 × 1011 years (Tsutsumi & Tanimura, 2006). 

66.4% of its decay results in electron capture producing an excited state of Ba, which 

decays causing a gamma ray corresponding to a 1436 keV gamma emission (Figure 
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2-6). As a result of outer electron reconfigurations, barium also sources x-rays in the 

35 keV region (Saint Gobain, 2009) (Figure 2-7). 

                

 

Figure 2-6. Decay of intrinsic lanthanum within the lanthanum halide 

detectors. 

 

Concurrently, 33.6% beta decays to 189Ce causing a beta continuum (< 255 keV), that 

then emits a gamma ray of 789 keV in coincidence with the beta continuum, thus 

producing another continuum at above 789 keV (Figure 2-6).  Resultantly, spectral 

measurements of low intensity, low energy gamma rays (< 100 keV) can be somewhat 

hindered by the occurrence of high energy x-rays and the beta continuum (Tsutsumi 

& Tanimura, 2006) (Figure 2-7). 
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Figure 2-7. Spectrum of intrinsic activity for 71 × 71 mm LaBr:Ce 

with significant contributions labelled. 

 

Up until recently, 227Ac provided additional background within the Lanthanum halide 

crystals(Milbrath et al., 2007), but through careful selection and purification of raw 

materials, α background has now been reduced to 0.02 Bq cc-1 (Iltis et al., 2006). 

Additionally, computational removal of intrinsic counts has been performed with 

varying degrees of success (Guss et al., 2010).  

Clearly LaCl:Ce (£12,000) is cheaper than LaBr:Ce (£20,000) for a 3 × 3 inch 

detector, but its performance is inferior (Table 2-1).  The fact that its intrinsic 

background activity is about 3 fold greater, in the intermediate energy regions of 

interest in environmental metrology (10-2700 keV), and its resolution is poorer (4.6 

%) makes LaBr:Ce the more suitable choice considering the conditions that it will be 

used in i.e. the requirement for sensitive low count application in these intermediate 

energy regions.  



32 

 

2.5.6 Cerium Bromide 

Cerium bromide possesses similar scintillation characteristics to that of the lanthanum 

halides but has the added advantage that it does not possess the same intrinsic activity, 

with only slight background counts identified, most likely attributed to minor alpha 

contamination (Guss et al., 2009).  It has a very short decay time of 16ns, better than 

both the lanthanum halides.  Its resolution (4.1% FWHM at 662 keV) is similar to that 

of LaCl:Ce, but there have been mixed reports of its resolution ranging between 3.6-

6.8% for varying sizes of detector (Table 2-1) (Guss et al., 2010).  The reason for the 

range of resolution could be initiated by self-absorption processes taking place within 

the crystal, thus with increasing crystal size resolution will degrade (Drozdowski et 

al., 2008).  This is of real concern, given that relatively large crystals will almost 

certainly be required in order to obtain enough signal in low count rate situations as 

encountered within the environment. 

At the present time, CeBr crystals are only available in 51 × 51 mm dimensions; 

regrettably this does not reach desired efficiencies compared to what LaBr:Ce offers.  

Furthermore, projected prices reveal that a 71 × 71 mm CeBr crystal would cost in the 

region of £25,000, more than both the lanthanum halides with no real advantage of 

resolution. 

2.5.7 Discussion of detector selection 

It becomes clear that no detector clearly stands out from the others as advantages and 

disadvantages are encountered for all detector types.  However, LaBr:Ce would 

appear to be the most promising at the present time (written July 2012).  The reason 

for this is that it has the highest resolution and can be commercially made in 71 x 71 
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mm sizes that will supply sufficient signal, owed to its increased energy efficiency, 

for the short count times required by handheld surveys.  Additionally, the 

radionuclides investigated during this thesis, such as 226Ra and 137Cs, have primary 

gamma emissions in relatively clean areas of the intrinsic contaminated spectrum 

(Figure 2-6).  

The main reasons against the selection of LaCl:Ce for this application is that the self-

activity is too high.  Regrettably, the decision against selecting CeBr is primarily 

based upon its size at this point.  That said, with the inevitability of further advances 

in crystal growth, this detector could be a genuine option for future applications due 

to superior energy compared to NaI:Tl and considerably less contamination than the 

lanthanum halides.  Initial laboratory testing of the purchased 71 x 71 mm LaBr:Ce 

detector is presented in Appendix I. 

2.6 Current spectral processing methods   

Prior to descriptions of spectral processing methods used to derive activity 

estimations; it seems appropriate to provide an explanation of the driving factors 

behind spectral response.  Interpretation of spectral response is not a straightforward 

process as numerous environmental factors can influence photon flux before 

interacting with the detector.  Such factors as topography (Laedermann et al., 1998), 

soil moisture and density (Beck et al., 1972), vegetation cover (Gering et al., 1998) 

and heterogeneities within the sediment column itself (Korun et al., 1994) can shield 

primary photons by absorption or scattering processes.  It must be noted that 

interception of radionuclides by vegetation during atmospheric fallout events can also 

elevate photon fluence rates in the air. Additionally, it was shown by Beck et al. (1972) 
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that the chemical composition of a soil can cause increases in attenuation, 

predominantly at low energies (<150 keV).  This issue is covered in section 3.3.3 since 

it has implications for environmental modelling.  

The importance of the aforementioned factors, in terms of the relative change they 

incur on surface fluence rates, may be overshadowed when considering changes in 

source depth distribution occur within the soil column.  This is where this method 

encounters considerable difficulty when trying to quantify activity distribution 

(Kastlander & Bargholtz, 2005). Confronting this problem has become the focus of 

numerous research efforts.  In the majority of cases, solutions involve initial 

assumptions about the activity of specific radionuclide in the air surrounding the 

detector and principally the distribution of both natural and the radio-contaminant of 

interest.  For the most part, depending on the distance from a respective point or 

extended source of interest, air activities are considered to be homogeneous 

(Thummerer & Jacob, 1998).  However, soil radionuclide distribution can vary 

substantially: hence a number of different models have been developed to account for 

this occurrence.  

2.6.1 Estimation of source depth and distribution using photofluence equations  

Before describing relevant depth distributions, it is crucial to regard the burial depth 

of the radionuclide not as its Cartesian coordinate depth with respect to the soil 

column, air and detector, but rather as its effective depth or mass per unit area (x) (g 

cm-2) (eq 3).  This term takes into account the density (ρ) or photoelectron cross-

section of the linear depth (z’) of the soil above the source (Tyler et al., 1996a). 
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 ∫ 𝜌(𝑧′)𝑑𝑧′
𝑧

0

  (3) 

For more complex source distributions varying depth and in turn density will also 

affect the activity of that layer as increasing overburden compresses lower layers. As 

a direct result of changes to activity and photoelectric cross section brought about by 

varying density, activity should be described as activity per unit area (Bq m-2) at depth 

x (g cm-2) (Tyler, 2008).  However, weights are routinely quoted in legislative text, 

for example Bq kg-1. 

 Angular response calibration  

Before any estimations of source distribution can be made from spectra obtained from 

the environment, a detector’s response to a specific energy source, integrated over an 

infinite half space, must first be predicted.  In the majority of work undertaken in the 

past, the most common way of doing this was deterministically.   

Initially, an assumption is made regarding the distribution of an individual 

radionuclide and then photon fluence equations are solved over the chosen geometry.  

For instance, if the source is assumed to be uniformly distributed throughout the soil, 

the fluence rate at the soil surface will not change along the surface plane of the soil, 

but the distance through soil and air to the detector will as changes in zenith angle 

(π/2) occur.  Therefore, calculations must take into account changes in photopeak 

count rate (s-1) brought about by the detectors angular dependence. This geometric 

relationship between source and detector has been described by a number of studies 

(Beck et al., 1972, Tyler, 2008) (eq 4).   
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The number of counts under a photopeak or the number of photons detected (N) is 

directly proportional to the activity per units per area (Bq m-2), volume (Bq m-3) or 

mass (Bq kg-1) (A).  This is known as the calibration coefficient at energy E; this 

relationship is shown in equation (4), where: 

-N/N0 is the angular correction factor for energy E normalised to the detector’s face 

(N0/ψ). This must be applied to extended sources or in the case of a moving detector 

in the search for hot particles.  This feature is dependent on the geometry of the 

materials and their densities making up the entire detection unit.  This parameter can 

be empirically or computationally established and is heavily influenced by the length 

to diameter ratio of the active volume (Helfer & Miller, 1988). 

-N0/ψ is measured experimentally using a plain beam of photons at energy E normal 

to the detector face (N0). This factor is solely dependent on detector characteristics, 

namely the efficiency of the detector as described in section 2.5.2.4. 

-ψ/A is the ratio of the gamma flux, at energy E, at the surface of the detector, with 

respect to the activity in the soil column, with contributions integrated over a 2π 

geometry.  This term takes into account the scattering of photons purely by the soil 

and air between the source and detector.  This term is primarily influenced by the 

energy and distribution of a source, soil and air density and height of detector.  

It must be appreciated as a direct effect of the significantly different attenuation 

coefficients of air and soil, the cross section being analysed, or where the photons are 

originating from, is relatively shallow in the z direction, but considerably larger in the 
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x and y directions. Comparisons to a dinner plate can be made where decreasing 

photon energy will cause a relative decrease in depth, but an increase in width.  

By combining integration the two functions N/N0 and ψ/A, what is known as a circle 

of influence (COI), for Energy E, can be obtained. A COI is simply where 90% of the 

gamma photons of energy E originate.   For example, a photon of 609 keV typically 

has a COI of 7 m for a detector at 1 m height for uniform depth distribution (Tyler 

2007).   

 Uniform distribution 

Modelling a uniformly distributed source, assumed for most natural occurring 

radionuclides, was described in the original studies performed by Beck et al. (1972). 

The following calculation for angular correction factor for a detector at height h (cm) 

from the ground, at energy E (keV) and integrated over the zenith (θ) and azimuthal 

angles (φ) is shown below in equation (5).  

          zφ =  ∫  ∫  ∫
𝐴𝛾100𝜎𝑑𝑒𝑡,𝜃,𝜑

4𝜋𝑋𝑡𝑜𝑡
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𝑐𝑜𝑠𝜃

𝜋
2

0

2𝜋

0

 𝑋𝑡𝑜𝑡
2  𝑠𝑖𝑛𝜃 𝑒−µ𝑎𝜌𝑎𝑋𝑎  𝑒−µ𝑠𝜌𝑠𝑋𝑠 𝑑𝑟 𝑑𝜃 𝑑𝜑  (5) 

 

The following terms apply for equation 4, 5, 7 and 8. 

A = Photon flux at the surface (photon second-1 cm-2) 

γ100 = Number of gamma photons emitted per 100 decays 
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σdet,θ,φ
 = Effective detector cross-section taking into account geometry, density and 

angular dependence. 

Xs= Path length in soil 

Xa = Path length in air 

Xtot = Total path length of gamma an incident gamma photon (Xs + Xa) (cm) 

µa = Mass attenuation coefficient in air (cm-1) 

µs = Mass attenuation coefficient in soil (cm-1) 

ρs = Density of soil (g cm-3) 

ρa = Density of air 

r = Radius of circular area 

 

Allyson (1994) modified Beck et al. (1972) original equation to obtain the COI where 

C equals φ(r,θ) and r is the radius of the circle of detection (eq 6).  

         𝐶𝑂𝐼𝑟 = 
𝐶𝑟
𝐶∞
   (6) 

 Exponential distribution 

An exponential distribution, where the highest activity is found at the surface with 

activity decreasing in an exponential manner with depth as a result of diffusion 

coefficients, is a common feature of relatively recent bomb fallout (Beck et al., 1972) 

(Figure 2-8).  By relatively recent, the author means the source in question has had 
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time to penetrate into the soil column, this is in contrast to fresh bomb fallout where 

the source would be planar along the soil-air interface.  In the case of an exponential 

distribution, when modelling its angular correction factor a new term (eq 7) has to be 

added to equation 5.  

This is because the equation has to factor in the relaxation of activity in the z direction 

into the angular correction factor (N/N0) and total fluence rate (ψ/A).  This exponential 

function, isolated in equation 7, includes the term known as the reciprocal of 

relaxation length α (cm-1).  Appreciably, with the source introduced on a planar 

surface on top of the soil column, diffusion processes take place spreading the source 

down the soil profile (Tyler et al., 1996b).   

 𝑒
[−(
𝛼
𝜌𝑠
)𝜌𝑠𝑧]

 (7) 

Where ρS is density of the soil and z (cm) is the linear depth. 
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Figure 2-8. Example coordinates of an in situ detector setup over an 

exponentially distributed source. 

Naturally, α will vary within the environment on spatial and temporal scales dictated 

by the chemical and physical behaviour of both soils and individual radionuclides 

(Tyler, 1994).  Observed α values tend to decrease with the age of deposition as the 

radionuclide penetrates deeper into the soil column (Beck et al., 1972).  
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 Subsurface maximum 

After a period of time, relatively non-radioactive overburden (compared to the original 

deposited activity) can develop over the top of an exponential distribution creating a 

subsurface maximum.  This can be modelled by a Lorentz function (Hillmann et al., 

1996) or by simply fitting a polynomial and integrating with respect to mass (Tyler, 

2008).  The latter method introduces a term called the mean mass depth β (cm).  This 

can be derived by integrating activity with respect to mass (x) (9).   

 𝛽 = 
∫ 𝑥𝐴(𝑥)𝑑𝑥
∞

0

∫ 𝐴(𝑥)𝑑𝑥
∞

0

  (9) 

For practical reasons, β is the section where the highest activity originates from within 

the soil column, or the peak activity of the distribution.  For this reason, instead of 

integrating, equal mass depth intervals can be used simplifying calculations (Tyler, 

1999).  

 Point source 

A point source geometry, which is often assumed for hot particles, can also be derive 

from photon fluence equations.  However, equations are somewhat simplified with 

integration only taking place, over the angle θ, if movement through the radiation field 

of a particle is required: effectively modelling a line source.  

 Limitations of photon fluence equations 

Photon fluence equations are innately deterministic, therefore if the analyst wants to 

derive full spectral properties, such an approach becomes mathematically unfeasible 

even for moderately complex geometries.  This is brought about by the stochastic 
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nature of radiation transport.  Therefore, for full spectral reconstruction the only 

practical options are in situ calibration or Monte Carlo simulations (described in 

section 3.3)   

 In situ calibration 

Due to the multifaceted relationship between the response of the detector with source 

activity and distribution, in situ measurements are normally calibrated in the field with 

soil samples (Tyler, 2008).  Tyler et al. (1996b) demonstrated a reliable approach of 

strategically sampling the area around a detector’s field of view (Figure 2-8).  A single 

core is taken directly underneath the detector and 5 hexagonal shells, at 2, 8, 32, 128 

and 258 m, are formed by taking 6 cores on the outside of individual shells.  The 

midpoint of individual shells should correspond to the COI (eq 6).  

This method takes into account lateral heterogeneity in source distribution and 

provides the opportunity to investigate variation in soil chemical composition on the 

lateral plane.  Another advantage of this method is that it provides error estimates for 

individual shells allowing uncertainty to be quantified.  Whereas, solving traditional 

photon fluence equations assumes uniform distribution in the x and y planes and thus 

no quantification of uncertainty can be made. Its ability to take into account lateral 

spatial heterogeneity allows for a more representative calibration.  Yet, it must be 

appreciated how time consuming this method can be in comparison to empirical 

solutions of Monte Carlo simulations   
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Figure 2-9. Hexagonal strategic sampling plan for the calibration of 

Airborne Gamma Spectroscopy Reproduced from (Tyler et al., 

1996b) with permission from Andrew Tyler. 

 

2.6.2 Spectral interpretation methods used for depth and activity estimation 

There are a number of common methods of depth quantification, which have been 

extensively used for estimating the depth and activity of a point source (Maučec et al., 

2004), activity and mean mass depth (β) of a subsurface maximum (Tyler et al., 

1996b), surface activity and the reciprocal of relaxation length (α) of exponentially 

distributed sources (Hillmann et al., 1996) or the depth of a slab source (Thummerer 

& Jacob, 1998).  

 The two line method 

The two line method requires a radionuclide, or inference from two separate 

radionuclides in equilibrium, producing two or more intense gamma energy lines 
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(Miller et al., 1994).  From this, a regression relationship can be estimated, built up 

from laboratory calibration experiments making use of the greater attenuation of the 

lower energy line (Figure 2-10).  Noteworthy, the larger difference in energy between 

lines will generate the most reliable estimation.  Additionally, caution must be applied 

when using energy lines below 150 keV as chemical composition of soil can cause 

varying degrees of attenuation (Feng et al., 2012).  

 

Figure 2-10. Schematic diagram demonstrating the principles behind 

the two line method.  

Importantly, to work out full energy counts for this type of problem net counts (peak) 

must be separated from gross counts (background continuum). This is typically 

performed by taking the average of a set number of channels either side of the full 

energy peak, then averaging these two values and multiplying by the number of 

channels under the full energy peak.  This is known as the “windows method” and by 

the nature of the calculation, obtaining enough counts within the window to satisfy 

certain statistical criteria, for example below 5% uncertainty, can take a long time 

particularly in low net count rate or high background situations.    
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 Peak to Valley method   

The peak to valley or the forward scattering method, unlike the two line method, 

requires only one intense gamma emission. Instead of relying purely on the 

attenuation properties of full energy photopeaks, it utilises the forward scattering 

region between the Compton edge and full energy photopeak. As a particle’s depth is 

increased, the amount of forward scatter, best described as a grazing angle 

experienced between a full energy photon and an electron at rest, increases 

proportionally with the amount of material between source and detector.  Therefore 

as depth is increased, the amount of counts in the forward scattering valley region 

increases, at the same time as, the full energy photopeak decreases.   
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Figure 2-11. Example environmental spectrum taken by a HPGe 

detector (i) highlighting the 137Cs region of interest at 662 keV, with 

contributing counts to the peak. (A) and the valley region (BT) 

identified (ii). (2) Schematic diagram illustrating the physical 

interactions contributing to spectral shape.  Reproduced from (Tyler, 

2008) with permission from Andrew Tyler. 
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The physical interactions leading to spectral features in a HPGe environmental 

spectrum are described in Figure 2-11.  For a single gamma-emitting source, the 

region between the full energy peak, where a photon deposits all its energy into the 

detector (A), and the Compton edge, formed as a result of full energy backscatter with 

the detector material (C), theoretically there are only two types of interactions 

contributing counts.  The first are escape peaks (b1), where a photon deposits nearly 

all of its energy within the detector but escapes out of its active volume near the end 

of its path.  There are a number of factors influencing this occurrence, many of which 

have been discussed in previous chapters, such as angular dependence and geometry 

of the detector.  This occurrence, however, can be characterised through physical 

characterisation or Monte Carlo simulations and counts can be subtracted from the 

valley region (BT).  The remaining contributions to the valley region are from forward 

scattering events (b2) taking place with material in between the detector and source. 

The amount of these events transpiring will be directly proportional to depth. Thus, 

an empirical approach can be taken (Tyler et al., 1996b).  

It must be stated that to attain acceptable uncertainty in individual regions, long count 

times are requisite and spectral stripping is often required clean out contributions from 

the natural radioelements in lower energy resolution detectors (Tyler, 2008).  

 Full spectral analysis 

Sometimes if a detector has been calibrated very carefully to a well-known source 

geometry, assuming factors such as density and distribution do not change for the in 

situ measurement, then full spectral analysis (FSA) can be performed (Hendriks et al., 
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2001).  The advantage of FSA is that counts from the whole spectrum can be used 

reaching desired statistical uncertainty faster; particularly utilising robust 

contemporary algorithms such as non-negative least squares regression (Caciolli et 

al., 2012).  To avoid complications, counts below approximately 250 keV are more 

often than not excluded to eliminate low energy Compton scatter, backscattering 

contributions and electronic effects.  However, this method relies on a large number 

of counts spread across the entire spectrum in order to produce a reliable fit: a scenario 

that is not always obtainable using smaller volume detectors. 

 Lead collimators  

The use of lead collimators or lead shielding has been used to predict depth 

distribution (Feng et al., 2008, Feng et al., 2012). The method entails using different 

geometries of lead collimators in front of the detector to shield incident photons, thus 

allowing for the estimation of depth directly from angular response and change in field 

of view (Whetstone et al., 2011).     

This method does have the potential to estimate considerably complicated source 

geometries, but in order for the method to work, numerous measurements must be 

taken with variation of shielding arrangements making application challenging and 

often time constraints, involved in surveying, have meant other methods have been 

preferred. 

2.6.3 Background suppression techniques 

For a low resolution detection system, such as many scintillators, full energy peaks 

often overlap and counts from one peak can be impractical to differentiate from the 

its neighbouring peak as separation can introduce significant amount of uncertainty.  
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This is of significant importance with regards to the large number of energy peaks 

accompanying the natural decay series (i.e. Uranium and Thorium), whose 

contributions tend to make up the majority of the observed “background”.  With 

energy peaks overlapping each other, regions of interests can become increasingly 

hard to identify leading to poor quantification of individual radionuclide activity.   

To combat this problem, low resolution systems often have a background suppression 

procedure performed on them in order to give a better representation of the source 

being analysed, especially when it is weak and could become easily concealed by 

background counts. There are a number of background suppression methods that are 

common place in the field of gamma spectroscopy, most of which can be performed 

in real time. 

 Spectral stripping  

The method of spectral stripping involves the use of concrete calibration pads, which 

are doped with known activities of 40K and the Uranium and Thorium series (Grasty 

et al., 1991).  By analysing the detectors response, ratios of all of the natural peaks 

and their scattering routines can be established.  Relatively “cleaner” higher energy 

windows, for example 2016 keV (232Th), 1764 keV (238U) and 1462 keV (40K) can be 

monitored and used to subtract proportional contributions from lower energy 

windows.  This method can effectively be used on most anthropogenic radionuclides 

of interest i.e. 137Cs or 131I.  Although, for 226Ra this becomes fairly complex given 

that it appears as part of the 238U series. 

It must be noted that the spectral stripping method can lead to over stripping, in some 

cases where negative counts can be produced within certain low count windows. 
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Additionally, the mere nature of subtracting counts from the spectrum introduces a 

large amount of uncertainty, to counteract this longer counting times or larger 

detection volumes are required.  As a general rule, spectral stripping tends to only be 

implemented on large volume detectors mounted on aircraft or carborne platforms, as 

uncertainties on smaller detectors can be unworkable.  

 Noise Adjusted Singular Value Decomposition 

Noise Adjusted Singular Value Decomposition is best used with large data sets.  The 

data are processed by taking the covariance of individual spectral regions and 

producing a set of uncorrelated eigenvectors, of which the first 8 or so are thought to 

contain the majority of signal (Hovgaard, 1997).  These spectral components are then 

ordered, in order of magnitude and the least important components producing the 

smallest values from the mean spectra, which should correspond to statistical noise.  

A number of these components are then dropped; leaving an essentially statistically 

stripped data set (Aage et al., 1999).  This technique is described in detail in section 

3.5.1.3. 

 Maximum Noise Fraction 

Maximum Noise Fraction adopts a similar approach to Noise Adjusted Singular Value 

Decomposition, by means of decomposition of the spectral dataset using eigen 

analysis (Green et al., 1988).  However, the methods differ through the way in which 

they attempt to normalise the dataset.  Maximum Noise Fraction, used routinely in 

hyperspectral and image analysis, normalises the data by the noise estimated from 

shift differences in the data, instead of normalising by the variance as with Noise 

Adjusted Singular Value Decomposition (Dickson, 2004).  Similar results have been 
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noted for individual the methods, although methods tend to be implemented on large 

volume detectors mounted on vehicles (Aage & Korsbech, 2003) or aircraft 

(Hovgaard & Grasty, 1997).  Additionally, as the whole dataset is required for spectral 

processing these techniques are strictly post-processing. 

 Digital filters 

The use of digital filters utilising algorithms to strip airborne gamma spectra real time 

has been employed. Although the method shows little improvement over traditional 

spectral stripping techniques for natural radionuclides, the identification of peaks of 

low energy emitting radionuclides such as 241Am has shown progression (Guillot, 

2001).  Numerous filtering methods can also be found through the literature (Gutierrez 

et al., 2002, Cresswell & Sanderson, 2009).  Again, filters can be unreliable when 

applied to the noise of data from short dwell time, small volume, detectors 

(Alamaniotis et al., 2013a) 

2.7 Summary 

The fundamentals of gamma-ray transport in the environment have been described 

including their origin, the most prolific sources gamma radiation in the environment 

and their detection using modern techniques 

Additionally, a thorough detection review has been performed, the conclusion of 

which deemed a 71 × 71 mm lanthanum bromide detector to be the most promising 

for this application at the present time.   

Furthermore, a comprehensive development of photon fluence equations for specific 

geometries was presented, alongside brief accounts of current methods used to: 
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estimate depth and activity, calibrate instruments and reduce noise within a spectral 

dataset.  From this latter section it becomes clear that conventional spectral processing 

methods do not provide a suitable means to cope with the noise presented in data 

obtained using smaller volume detectors over short dwell times as presented in many 

surveys and in the research manuscripts in this thesis.  
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3 General Materials and Methods 

3.1 Outline 

This section outlines the general methods used to support the research manuscripts in 

this thesis.  It first introduces the manner in which data were collected.  Following 

this, an in-depth description of modelling approach used to develop artificial 

calibration datasets is outlines encompassing Monte Carlo simulations and the process 

of developing training and cross validation datasets. 

Finally, the algorithms implemented in the research chapters and fitting procedures 

followed are described in full.    

3.2 Data collection  

All spectral data were collected over the course of this thesis using Ortec’s Maestro 

software (ORTEC, 2005).  Spectral data was presented as 1024 channel ASCII files 

and for chapter 5, 6, 7, in which handheld detectors were used, 1 second counts 

were obtained using the .JOB file system implemented in Maestro.  ASCII files 

were then read using an in-house piece of software written in JAVA code called 

Stirling Mobile Gamma Spectroscopy System (SMoGSS).  At the same time as 

reading spectra, GPS coordinates were obtained and matched by SMoGSS to the 

relevant spectrum using an SSX blue differential GPS device.  This device recorded 

to an accuracy of 0.6 m.  SMoGSS also has real-time readout and alarm capabilities.  

To eliminate bias in the acquisition of randomly sampled spectra alarms were turned 

off during surveys.  
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Figure 3-1. Screen grab taken from operational SMoGSS 

 

3.3 Monte Carlo modelling 

Monte Carlo Simulations (MCS) were undertaken to acquire adequate spectral 

responses to serve as calibration spectra; this approach was taken to replicate field 

spectra as best as possible, and eventually permit environmental variables to be 

extrapolated.  The software package Monte Carlo N Particle (MCNP) code was used 

in this thesis, which is distributed by the Radiation Safety Information Computation 

Centre, Oak Ridge National Laboratories in the United States.  The software enables 

the user access to the vast physical data libraries built up over the course of six 

decades.  The required geometry must be coded in MCNP’s in-house code.  The code 

treats an arbitrary three-dimensional configuration of materials in geometric cells 

bounded by specified surfaces (Briesmeister, 1993).   

For photons, the code accounts for incoherent and coherent scattering, the possibility 

of fluorescent emission after photoelectric absorption, and absorption in electron- 
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positron pair production (Briesmeister, 1993).  Electron and positron transport 

processes account for angular deflection through multiple Coulomb scattering, 

collisional energy loss with optional straggling, and the production of secondary 

particles including K x-rays, knock-on and Auger electrons, bremsstrahlung, and 

annihilation gamma rays from positron annihilation at rest. The transportation process 

is generated using random numbers to simulate the path of a photon through system 

until a point is reached where it has lost all of its energy or exits the region of interest.  

This procedure is executed in efficient Fortran code. 

Tallies are then used to collect useful information about the modelled physical system.  

In this project, differential energy photon tallies (F8) were applied inside the active 

volume of the modelled detector (Fehrenbacher et al., 1996).  This allowed for full 

spectral reconstruction whereby results in each individual bin represent the average 

tally flux per starting particle.  Therefore, overall spectral shape and intensity (pulse 

height distribution) could then be related to the specific activity and source geometry 

modelled. 

Final tally values embody the mean flux of photons and since Monte Carlo is innately 

a stochastic process, the uncertainty associated with the mean value will be governed 

by Poisson statistics (Crawley, 2012).  Thus, the standard deviation forms the square 

root of the total count (mean).  Essentially, to reduce relative uncertainty associated 

with each tally, the greater the number of particles is needed at the start of the problem 

(Likar et al., 2000).  This presents a trade-off between the computer time and statistical 

uncertainty.  A variance reduction technique is described and implemented in section 

4.4.2.1 to optimise this process.  Generally, simulations were divided to run in parallel 

on a 16 core computer processor.  
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3.3.1 Benchmark experiments 

The first step in obtaining reliable spectral responses involves accurately defining the 

geometry of the detectors used in this study to ensure that the vast majority of spectral 

counts match up to that of controlled source geometry.  A scenario like this is difficult 

to perform in the laboratory as the complex geometries posed by the walls and floors 

introduce large uncertainties.  Arguably this could be performed in a lead castle 

together with a point source, although it is more effective to gauge the angular 

dependence of the detector to a 2 geometry as found in the environment (Allyson & 

Sanderson, 2001).  Subsequently, flat calibration pads at the British Geological 

Survey, Keyworth, Nottinghamshire, England were employed as experimental 

benchmarks (Figure 3-2).  

 

Figure 3-2. Lanthanum bromide detector in its case placed on a 232Th 

calibration pad alongside an MCNP visualisation. 

Three detectors were used in this project: a 51 x 51 mm NaI:Tl employed in chapter 

4 and the two 71 x 71 mm (LaBr:Ce and NaI:Tl) handheld detectors featured in 

chapters 5, 6 and 7.  All benchmark spectra are included in Appendix 1 
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For all detectors a reasonable fit between Monte Carlo and experimental results was 

found, for instance all chi squared values were highly significant (<0.005).  Accurately 

modelled spectra are observed for the NaI:Tl detectors Appendix II.  In contrast, 

deviations can be visually seen in LaBr:Ce results.  There are a number of reasons 

behind these findings.  Firstly, the lower energy resolution possessed by the NaI:Tl 

detectors permits minor discrepancies between the modelled and experimental to be 

smoothed over.  In the instance of the higher energy resolution LaBr:Ce examples of 

inconsistencies are more visible, for example in the 232Th pad.   

Further inaccuracies are magnified for LaBr:Ce brought about by small amounts of 

spectral drift between individual pad measurements and the background pad.  Owed 

to its large intrinsic component full spectral stripping led to over stripping in some 

areas of the spectrum notably in the 1468 keV region.  Since NaI:Tl does not have 

significant intrinsic counts, over stripping was not as noticeable.   

Finally, the positions of the pads at the calibration facility brought about additional 

disparities as there was incomplete removal of background components.  This is 

especially noticeable in spectra taken using the LaBr:Ce detector from the 40K pad 

where contributions from the 238U series (609 and 1764 keV peaks) are clearly visible 

Appendix II.  This represents a key limitation in the measurement technique used.  

Placing the pads in identical positions could have negated this effect.  Interestingly, 

this cannot be observed using the NaI:Tl detectors, providing further evidence for the 

favoured use of LaBr:Ce instead of NaI:Tl due to its higher energy resolution.   
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3.3.2 Geometric modelling of contamination 

The contaminated sites that where the focus of this thesis posed a wide range of 

contamination geometries.  So as to obtain representative spectral responses to all 

possible source geometries and therefore provide an accurate means to estimate 

activity, modelling assumptions had to be made.  This was especially the case in 

chapters 4, 5 and 6 whereby 226Ra contamination was known to be highly 

heterogeneous at those sites.  In some areas what could be classified as point source 

geometries could be positively identified, for example the in situ dial and oil gauge 

(Figure 3-3).  However, in other areas no such items could be found instead finely 

distributed contamination was responsible for the elevated signal (Figure 3-3c).  

Individual chapters provide details into exact modelling assumptions and fitting 

routines, therefore brief description is given here for summary. 
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Figure 3-3. a) In situ 226Ra dial b) Homogenous 226Ra contamination 

c) 226Ra containing oil gauge d) Core being extracted 137Cs from 

homogeneous contaminated site.    

Due to the unpredictable nature of contamination at individual sites, model geometries 

were simplified conditional to the circumstances and objectives of the specific piece 

of work.  For instance, the most challenging piece of work from a modelling point of 

view was chapter 4, since the detector (51 x 51 mm) had relatively low efficiency and 

the aim was to separate extended sources from point sources and provide activity and 

depth estimate.  Therefore, in this chapter both extended contamination (with varying 

extension) and point source were modelled in MCNP (Figure 4-1).  

Chapters 5 and 6, similarly involved modelling 226Ra contamination using 71 x71 mm 

detectors (NaI:Tl and LaBr:Ce) over a short acquisition time (1 second), but the 

objectives were different.  In chapter 5, hot particle detection was the objective, 
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resultant in only point sources being modelled.  Instead, chapter 6 focussed on 

characterising large areas of homogenous 226Ra contamination, therefore minor 

heterogeneities, for example many point sources, are smoothed over under the 

assumption of a homogenous model.  Chapter 7 takes advantage of core profiles to fit 

a custom 137Cs depth profile model to semi-infinite plane (Figure 3-3d).  To recreate 

a full spectrum the detector’s field of view had to be estimated.  

3.3.3 Energy considerations 

At the vast majority of sites large changes in chemical composition of the geological 

matrix can take place (Tyler, 2008).  A common example is the presence masonry or 

the exposure of bedrock.  This can introduce a large amount of uncertainty with 

regards to Monte Carlo spectral reconstruction at energies below 150 keV (Figure 

3-4).  This is due to photoelectric absorption becoming the dominant photon 

interaction process, which is highly dependent on the Z number of the absorbing 

material (section 2.4.1).  Hence, large changes in chemical composition bring about 

significant changes in photon flux received by the detector.  Therefore, in chapter 5 

where hot particles were modelled, energies below 150 keV were disregarded from 

analysis.    
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Figure 3-4. (A) Photon cross sections for Beck’s soil composition 

(Beck et al., 1972) from 30 to 6000 keV.   (B) Comparison of µm for a 

range of soil compositions relative to Beck’s soil composition.  After 

Tyler (1999), Allyson (1994) and Tyler (1994).  Taken from Tyler, 

2008 with permission from Andrew Tyler. 

 

A further energy consideration was made in chapters 4, 6 and 7, in which 

contamination was assumed to be homogeneous distributed (for example simulated 

background) or as an extended contamination source.  Through the Monte Carlo 

simulation of these sources, it was appreciated that backscattering contributions, in 

the energy region approximately below 300 keV, from photons originated from close 

to the surface could introduce a large amount of uncertainty (Caciolli et al., 2012).   

Therefore, for this type of analysis energy below 300 keV was disregarded. 
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3.4 Dataset construction 

For the purposes of training and cross validating different algorithms, which were then 

used on real data, an approach was developed and employed throughout the data 

chapters of this thesis.  Although, short definitions are provided in individual studies 

this section provides a more detailed account of the development process.  A flow 

diagram is provided to illustrate the steps (Figure 3-5). 

 

 

Figure 3-5. Flow diagram illustrating the development method for 

training and cross validation dataset.   

 

The production of each dataset had one commonality in that source spectral response 

for a particualar detector, obtained by randomly changing response variables (i.e. 

depth, activity or distribution), were produced using MCNP (Figure 3-5).  Each 
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spectrum was run long enough so as to attain the least amount of uncertainty 

associated with individual tally bins (Moreira et al., 2010).  This typically meant 

running individual problems for the maximum number of random starting particles in 

MCNP (2 x 109).   

Background spectra were obtained in a number of different ways (Figure 3-5).  In 

chapters 4 and 7, no analogue site was available to obtain background spectra.  In 

these cases background spectra were simulated using MCNP, which attempted to 

encompass real changes in the natural background elements and density.  This 

involved assumptions regarding the concentration of natural radioelements that are 

detailed in individual chapters.   

Where an analogue site could be identified, spectra were collected rather than 

attempting to simulate background conditions.  Spectral dataset were then spiked with 

simulated source spectra as demonstrated in chapters 5 and 6 (Figure 3-5).  Figure 3-6 

graphically illustrates the random spiking routine of a background time-series with 

MCNP source spectra operated in chapter 5.  
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Figure 3-6. Spiking MCNP source spectra into the time series of a 

background dataset. Y axis indicates gross counts. 

 

Combining background and source spectra produced an artificial spectral dataset 

containing statistically defined spectra (Figure 3-5).  At this point spectra were binned 

to alleviate some counting noise and to reduce the dimensionality from 1024 channels 

to approximately 13-30 bins (see chapter methodologies for details).  This dataset was 

then randomly sampled producing two subsamples: training and cross validation 

datasets.  The training dataset remained as it was after binning.  Crucially, this was 

the dataset used to fit deterministic algorithms and train and test Machine Learning 

algorithms.   

In order to generate a dataset that was representative of noisy environmental spectra, 

that field results could be compared to, a validate dataset was produced.  The cross 

validation dataset was used to assess the performance of different algorithms (see 

individual chapters for assessment criteria).  Final algorithms, which produced the 
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best results on the cross validation dataset, were then used to process field spectra, 

yielding source characteristic information. 

3.5 Algorithms 

There are a number of different algorithms used in this study and brief accounts of 

each can be found in respective chapters.  However, in this section detailed 

descriptions are provided of the methods used.  In this work algorithms are separated 

into two groups: deterministic and Machine Learning algorithms. 

3.5.1   Deterministic algorithms  

Deterministic algorithms are constructed through equation bases models, and once 

fitted, will produce the same answer given identical input.  This makes the 

deterministic algorithms, based on conventional statistical assumptions, reasonably 

straightforward to apply and interpret (Kock et al., 2012).  In this thesis three 

deterministic algorithms are featured.   

 Gross counting alarm 

Gross counting (GC) algorithms are used extensively in the field of gamma-ray 

spectroscopy and are featured in chapters 5 and 6 (Ely et al., 2004, Jarman et al., 

2008).  The technique treats the entire spectrum as a single bin and can be used, in its 

most basic form, to map extensive areas in an attempt to identify hotspots as 

demonstrated in Chapter 6 and in other works (Adsley et al., 2004).   

In chapter 5 a rolling mean filter of the previous few measurements is employed in 

order to estimate the background of a site (N) (eq 10).  The principal aim of this 

procedure is to capture anomalous changes in signal at a site that could manifest as a 
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result of hot particles.  There are a number of mathematically derived rolling mean 

filters that can be used in an attempt to adapt to natural background variation taking 

place at a site (Shumway & Stoffer, 2013).  Such algorithms attempt to model the 

autocorrelation presented in the gross signal, brought about by changes in the 

concentration in the natural radioelements and soil density and composition (Kock et 

al., 2012).  A critical threshold (T) can then be established for the purpose of 

identifying anomalous signal.  Alternatives to conventional lag-based algorithms can 

be employed including the data fusion algorithm the Kalman filter (Jarman et al., 

2008).  

 𝑇 = 𝑁 + 𝐾√𝑁 (10) 

In chapter 5, equation 3 was used as the deterministic benchmark to compare Machine 

Learning algorithms to.  In this form K (sigma multiplier) defines the number of 

standard deviations (√N) above N the alarm threshold should be set.  In theory, if a 

substantial increase in signal is received, the alarm should sound as T is breached.  

Section 5.4.1 details the optimisation of the parameters K and the number of lags used 

on the moving mean.   

 Spectral comparison ratios 

Spectral comparison ratios were utilised in chapter 5 as a real-time noise reduction 

step prior to the application of Machine Learning algorithms.  This procedure required 

a spectrum to be divided into non-overlapping energy bins (Du et al., 2010).  Detailed 

descriptions of the binning process can be found in section 5.3.4.2.   

 
𝑆𝐶𝑅𝑖 = 𝑁1

𝑐 −
𝑁1
𝐵

𝑁𝑖
𝐵 𝑁𝑖
𝑐 (11) 
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Each spectral bin was then transformed into the time series according to equation 11.  

Where Ni
c is bin i, and N1

c is the first bin, of the current measured spectrum. Ni
B and 

N1
B are a respective moving means of bin i and the first bin of the previous spectra 

(Trost & Iwatschenko, 2002).  Similar moving mean algorithms, as described in 

section 3.5.1.1, can be used to characterise the autocorrelation of individual bins 

(Jarman et al., 2008).  This produces a transformed spectrum where the first channel 

is 0 and all channels contained within a background spectrum should be close to zero 

as small temporal variations are expected to occur (Du et al., 2010).   

 Principal Component Analysis 

Principal component analysis (PCA) can be implemented in order to reduce the noise 

of a dataset.  Another useful outcome is that the dimensionality of useful signal can 

be significantly reduced.  Essentially the method transforms raw spectra into 

orthogonal components (named principal components or PCs), which are ordered in 

accordance to the overall variance they contribute to the dataset.  PCs contributing the 

largest variance are thus considered to contain “real” signal elements.  Higher order 

PCs are assumed to contain mainly correlated noise (Du et al., 2010).  The following 

description of PCA follows closely that of Mauring and Smethhurst (2005). 

The mechanics of PCA and eigen analysis can be found in the literature, of which 

Hotelling (1933) provides a particularly thorough review.  Mathematically, PCA is 

performed using eigen-decomposition of the covariance matrix ATA, where A is an 

input spectral dataset made up of m observations with n energy bins (equation 12).    

 A𝑇A (12) 
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 𝐴 = 𝐶𝑆 (13) 

m = number of observations 

n = number of energy bins 

A = spectral matrix (m × n) 

C = loadings (m × n) 

S = principal components (n × n) 

 

The input spectrum Am can then be represented by linear combinations of loadings (C) 

of PCs (S).  The essence of PCA is to describe the dataset through a set of orthogonal 

latent variables related to the variance.  The first variable or PC is fitted to maximise 

the variance between all of the input channels (Aage et al., 1999).  A simpler way of 

viewing this is that PC 1 will take the form of the mean spectrum of the entire dataset 

(Figure 3-7).  The second PC would be the mean shape of the resulting differences 

after the PC 1 is subtracted from the dataset (Figure 3-7). 
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Figure 3-7. Principal Components of a 71 × 71 mm NaI:Tl dataset.  

Note prominent peaks have been identified. 

 

Figure 3-7 presents a plot of the first 8 PCs taken from a 226Ra contaminated site 

acquired using a Na:Tl detector.  Immediately structure can be identified within first 

few PCs.  The dominant peaks attributed to 214Bi (daughter of 226Ra) and the natural 

radioelements 40K and 208Th (daughter of 232Th) can easily be acknowledged.  

Importantly some peaks occur in antiphase with each other, notably 214Bi and 40K in 

PC2, indicating greater negative loading values of PC 2 will increase the amount of 
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226Ra signal present in the spectrum compared to 40K.  Such patterns within loadings 

formed the basis for Machine Learning algorithms to interpret source characteristic 

from, such as depth and activity.  This is the reason PCA was used extensively in 

chapters 4, 6 and 7.  A disadvantage of PCA type analysis is that it cannot be employed 

in real-time and therefore is strictly a post-processing tool (Cresswell & Sanderson, 

2009). 

Utilising PCA in spectral analysis however presents two constraints.  Firstly, data 

must be centred on the origin instead of around the sample mean, which conventional 

PCA adheres to.  This can be overcome by using Singular Value Decomposition.  A 

second constraint is that Singular Value Decomposition then requires the variance in 

individual channels to be the same.  Due to the stochastic nature of photon detection, 

which is collected as counts, it is known that this is not the case since lower count 

rates, typically at higher energies, will have relatively more uncertainty associated 

with them (Dickson, 2004).  Hovgaard (1997) suggested a simple solution to this 

problem.  The best fit of the mean spectrum to the individual spectrum will provide a 

good estimate of the mean count rate to the individual spectrum.  Therefore, A (eq 6) 

can be transformed into Anew through matrix equations 14-17. 

 

 

 

 
𝑆𝑢𝑚(𝑖) =∑𝐴(𝑖, 𝑗)

𝑚

𝑗=1

 (14) 
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𝑆(𝑗) =

∑ 𝐴(𝑖, 𝑘)𝑚
𝑘=1

𝑆𝑢𝑚(𝑖)
  (15) 

 
𝑆𝑁(𝑗) =

𝑆(𝑗)

∑ 𝑆(𝑘)𝑚
𝑘=1

 
(16) 

 
𝐴𝑛𝑎(𝑖, 𝑗) =

𝐴(𝑖, 𝑗)

√𝑆𝑁(𝑗) ∗ 𝑆𝑢𝑚(𝑖)
  

(17) 

 

Where individual channels s(i) (eq 15) are divided by the sum of each spectrum Sum(i) 

(eq 14).  This process normalises the channel to the sum of the spectrum.  After which, 

all channels are normalised by the sum of the normalised channel producing the 

weighted matrix SN(j) (eq 16).  The original spectral matrix A is weighted by square 

root of this weighted matrix SN(j) multiplied by the sum of each spectrum Sum(i) (eq 

17).  This produces an equivalent noise-adjusted spectral matrix Ana. 

At this point, Singular Value Decomposition (eq 18) can be performed on the noise-

adjusted spectral matrix Ana. 

𝐴𝑛𝑎 = 𝑈𝑊𝑉
𝑇  (18) 

Where V are the eigenvectors (or PCs) of covariance matrix Ana
TAna and the 

eigenvalues are the square of the elements W.  The PCs are rescaled by the multiplying 

them by SN(j) (eq 16) and the loadings (C) are rescaled by multiplying them by Sum(i) 

(eq 14). 

 Mahalanobis distance  

Mahalanobis distance allows for the rescaling of multivariate data by taking into 

account correlation between input variables (Mahalanobis, 1936).  The transformed 
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data can then be considered in Euclidean scales allowing for conventional statistical 

assumptions (such as Gaussian distributions) to be applied.  Chapters 4 and 6 briefly 

cover Mahalanobis distance where it is employed to separate source signals from 

benign background signal within PCA transformed data.  Here a more comprehensive 

discussion of Mahalanobis distance is given.    

 𝑀𝐷 = √(𝑥 − 𝜇)𝑇. 𝑆−1. (𝑥 −  𝜇) (19) 

Where (x) is a vector of data with mean (µ), and the covariance matrix between 

observations is S (eq 19).  The Mahalanobis distance is the mean-centred Euclidean 

distance weighted by the variance of, and the covariance between, each vector element 

(x1, x2, x3 …).  In assuming a parent multivariate Gaussian distribution, Mahalanobis 

distance can be statistically modelled using the chi-squared distribution (Runkle, 

2006).  A visual example of Mahalanobis distance is provided in Figure 3-8, seen as 

a slightly angled ellipse enabling correlations between Principal Components to be 

taken into account.  This example demonstrates deeper particles (red dots) are harder 

to separate from the background (blue dots) than particles closer to the surface (yellow 

dots). 
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Figure 3-8. Visual example of Mahalanobis distance (95 percentile 

elliptical ring) for background and a 226Ra source with different 

burial depths.  

3.5.2   Machine Learning algorithms  

Machine learning (ML) algorithms are essentially pattern recognition techniques that 

are driven by a set of training data (Ao et al., 2010).  They are particularly useful when 

input parameters are of high dimensionality and present nonlinearities that are difficult 

to map to response variables using conventional formulaic means (Fagan et al., 2012).  

Due to these qualities the use of ML to interpret gamma-ray spectroscopy data is 

justified owed to the high dimensionality of spectral data, nonlinearities occurring 

across the spectrum posed by source burial and complex noise distributions (Du et al., 
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2010).   As of yet however, ML has not become commonplace in environmental 

gammaspectroscopy.   

In this study two ML algorithms were implemented: Neural Networks (NN) and 

Support Vector Machines (SVM). 

 Neural Networks 

A NN is composed of a number of processing units known as nodes that are separated 

into three distinct layers: the input, hidden and output (Figure 3-9).  The input layer is 

a collection of the nodes defining the explanatory variables of the problem.  The 

hidden layer can in fact be made up of one or more layers and the output layer, contains 

the desired response variables.  Each hidden neuron contains an activation function, 

for example hyperbolic tangent or sigmoidal.  Critically, it is a combination of 

multiple nonlinear activation functions possessing different weights that provides NN 

with the capability to learn complex nonlinear relationships.  Interestingly, neural 

networks without a hidden layer can be directly compared to generalised linear models 

(Yoshida et al., 2002).  

Each node has its own weight set, with the weights defining the strength of the 

connections between neurons in adjacent layers (Pilato et al., 1999).  The weights are 

varied and optimised during a training phase where the error between predicted 

outputs and desired output of the specified training set is minimised in an iterative 

fashion (Medhat, 2012).  In this work, this process was achieved by using the resilient 

backpropogation algorithm (Riedmiller & Braun, 1993).  The R package RSNNS was 

used to construct and train all NNs (Bergmeir & Benítez, 2012a).  NNs were adapted 

to solve both classification and regression problems. 
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Figure 3-9 provides a visualisation of the architecture one of a NN used to estimate 

the 137Cs depth distribution in chapter 7.  It can be seen that 8 inputs (the first 9 PCs) 

and 15 hidden neurons could be used to adequately describe the relationship between 

spectral response (after being transformed into PC space) and source distribution.  See 

chapter 7 for full details. 

 

 

Figure 3-9. Schematic diagram of a neural network showing input, 

hidden and output layers with weighted connections between neurons 

and biases on individual neurons. 
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However, decisions had to be made throughout the research manuscripts of this thesis, 

regarding the architecture of individual NNs.  This included the number of neurons in 

the hidden layer, the number of inputs (for PCA transformed data) and the number of 

learning epochs.   

All decisions on optimised architectures were made by minimising the root mean 

square error on the cross-validation dataset, which was considered as close as possible 

to actual environmental spectra (section 3.4).  To optimise this process, an extensive 

grid search was coded into the software package R. Since there were only two or three 

parameters that needed to be optimise in individual problems the time spent searching 

the grid space was achievable (i.e. 24-48 hours).  In the event of further parameters, 

or even to make the process more streamlined, more complex optimisation algorithms 

could be implemented such as the simplex algorithm (Dragović et al., 2006) or particle 

swarm optimisation (Wei et al., 2010).   

An example of optimising the number of input PCs in the NNs featured in chapter 4 

is illustrated (Figure 3-10).  Global minima were found by using between 3 and 5 PCs 

as inputs.  Decisively, using larger amounts of PCs did not improve results as the root 

mean square error increases.  
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Figure 3-10. The root mean square error (normalised) associated with 

changing the number of Principal Components as input neurons for 

the Neural Networks: Classification, Point and Extended.  For details 

see section 4.5.  

  

 Support Vector Machines 

Support Vector Machines (SVM) were used in chapters 4 and 5, purely for 

classification purposes.  SVM can be implemented for regression problems, but in this 

work NN were preferred as multiple response variables could be built into a single 

model.  
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SVM approach the solution of a nonlinear classification problem differently to NN.  

Instead of implementing a complex network of nodes with variable weights and 

nonlinear activation functions, SVM introduce maximal-separating hyperplanes into 

the feature space (Cortes & Vapnik, 1995).  The procedure of fitting a linear maximal-

separating hyperplane mathematically is convoluted; therefore it will not be repeated 

here.  For an extensive description refer to James et al. (2013).  However, from a 

conceptual angle, the description of the processes that lead to accurate class separation 

is reasonably intuitive.   

First consider two populations that do not overlap in space.  In this case a geometric 

hyperplane can be introduced into the feature space, with the aim of maximising the 

distance between itself and training observations (James et al., 2013).  The new margin 

can now be reliably used to make class predictions on unseen data.   

Complications, nonetheless, arise in the event that two populations are overlapping 

and cannot be separated using a linear hyperplane without including training points in 

the wrong category (Figure 3-11).  In this instance, a so-called soft margin classifier 

is established, which allows some of the training observations to violate the class 

boundary.  The use of correctly structured soft margin can allow for a very accurate 

optimised surface boundary to be constructed that takes into account noisy classes 

(Sharma et al., 2012).  Importantly, points within the soft margin (dotted lines) are 

often referred to as support vectors (Figure 3-11).  A real strength of soft margin 

classifier is that large weights are put onto these support vectors, so much so, that if 

these points move slightly so does the geometry of the hyperplane, even with no 

movement from other points in the training dataset.   
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Figure 3-11. The insertion of a maximum-separating hyperplane (full 

line) into a noisy classification problem through the implementation 

of a Soft margin classifier (dotted lines). Support vectors are 

identified by squares.  

 

Nonlinear class boundaries pose a new problem.  No longer can a straight-line divide 

the two classes reliably and introduction of nonlinear surfaces becomes incredibly 

mathematically cumbersome.  Boser et al. (1992) introduced an ingenious technique 

of overcoming this obstacle by introducing  kernel functions to enlarge the feature 

space ensuring dot products of the support vectors could be easily computed.  This 

allowed the introduction of soft margin classifiers providing a means of separating 
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complex populations without using vast quantities of computer memory (James et al., 

2013).  This technique is referred to as the “kernel trick” (Smola et al., 1998).  There 

are a number of commonly applied kernels to perform this task including: polynomial, 

sigmoid, radial basis function and spline (Sangeetha & Kalpana, 2010).   The Radial 

Basis Function kernel was used throughout this thesis as produced the best 

classification results. The R package “e1071” was used in chapter 5 and 6 

(Dimitriadou et al., 2008). 

On a Radial Basis Function kernel there were two parameters that have to be 

optimised.  The first tuning parameter, “C”, indicates the bias-variance trade-off or 

fuzziness of the hyperplane.  Generally, greater values of C will enable the fitting 

algorithm more support vectors to utilise making the soft margin wider (Figure 3-11).  

However, greater values of “C” can cause overgeneralisation.  
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Figure 3-12. Radial basis function kernel applied to nonlinear space.  

Variation of the gamma parameter on the kernel provides an adaptable 

fit into the feature space.  

 

The second parameter is gamma, specifying the shaping function used on the Radial 

Basis Function, which defines the flexibility of boundary separating classes.  Figure 

3-12 demonstrates the outcome on the separating boundary by varying the gamma 

parameter for an arbitrary nonlinear problem.  For this example, a greater gamma 

parameter produced a more reliable fit.  However, for other problems the greater 

gamma parameters could cause over-fitting to the training data.  
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Individual problems, particularly in high dimensions, as found within this thesis, both 

the parameters “C” and gamma had to be varied with caution to avoid over-fitting.  

This was performed using a grid search.   

3.5.3 Summary 

A detailed account of the methods used in this thesis has been described in support of 

brief accounts provided in individual research manuscripts due to the demands of 

scientific publishing style.  This chapter has included detailed descriptions of the 

Monte Carlo regimes taken, the procedure used to build training and cross validation 

datasets and the deterministic and Machine Learning algorithms employed.   
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4.1 Abstract 

There are a large number of sites across the UK and the rest of the world that are 

known to be contaminated with 226Ra owing to historical industrial and military 

activities.  At some sites, where there is a realistic risk of contact with the general 

public there is a demand for proficient risk assessments to be undertaken.  One of the 

governing factors that influence such assessments is the geometric nature of 

contamination particularly if hazardous high activity point sources are present.  Often 

this type of radioactive particle is encountered at depths beyond the capabilities of 

surface gamma-ray techniques and so intrusive borehole methods provide a more 

suitable approach.  However, reliable spectral processing methods to investigate the 

properties of the waste for this type of measurement have yet to be developed since a 

number of issues must first be confronted including: representative calibration spectra, 

variations in background activity and counting uncertainty.  Here a novel method is 

proposed to tackle this issue based upon the interrogation of characteristic Monte 

Carlo calibration spectra using a combination of Principal Component Analysis and 

Artificial Neural Networks.  The technique demonstrated that it could reliably 

distinguish spectra that contained contributions from point sources from those of 

background or dissociated contamination (homogenously distributed).  The potential 

of the method was demonstrated by interpretation of borehole spectra collected at the 

Dalgety Bay headland, Fife, Scotland.  Predictions concurred with intrusive surveys 

despite the realisation of relatively large uncertainties on activity and depth estimates.  

To reduce this uncertainty, a larger background sample and better spatial coverage of 

cores were required, alongside a higher volume better resolution detector.  
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4.2 Introduction 

4.2.1    Origin and regulation of radium contaminated land 

At the start of 20th century, radium was being used for a multitude of purposes, 

including medicines, confectionaries and what would prove to its most beneficial use: 

a seemingly unbroken light source known as “Undark” (Kathren, 1998).  Since these 

early explorations, not only has our understanding improved into the radioactive 

emissions released by radium and its decay series but also the detrimental mechanisms 

with which they interact with living tissue (Rundo, 1993, Paschoa, 1998).  In the 

United Kingdom (UK), many redundant radium artefacts are now classified and 

controlled as low or intermediate level radioactive waste (HMSO, 1996).  

Although the majority of radium production ended in the UK by the 1930’s, radium 

salts were still imported for medical, industrial and military purposes into the 1960’s 

(Tyler et al., 2013).  In the absence of contemporary legislation, considerable 

quantities of highly radioactive radium waste were discarded by means of burial 

(Harvie, 1999).  Only in 1960 was the use, keeping and disposal of radioactive sources 

controlled by statute through the Radioactive Substances Act 1960 and later the 

Radioactive Substances Act 1993 (HMSO, 1996).  Examples of these legacy burial 

sites have also been identified in other parts of Europe and North America (Adams, 

1993, Landa, 1993, Adsley et al., 2004). 

It has been conservatively estimated that in the UK alone there are between 150 and 

250 Radium Contaminated Legacy Sites (RCLS), but the number could be closer to 

1000 (DECC, 2012).  Considering the possible extent of contamination and the risk 

to society they pose, legislation has now been passed in UK allowing environmental 
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regulatory agencies to identify, assess and, if needs be, designate radioactively 

contaminated land (Tyler et al., 2013).  

4.2.2    Characterisation of radium contamination 

Following the potential identification of any land as being contaminated with radium, 

the land has to be accurately characterised providing a foundation for subsequent dose 

calculations and risk assessments.  This will determine whether actions are required 

in terms of remediation.  Estimates of the source’s activity, burial depth and lateral 

extent must be provided.  Furthermore, knowledge of the localised extent of the source 

can be instrumental in proposed remediation strategies.  Localised extent can be 

defined by source geometries where the contamination can be considered more of a 

point source (in extreme cases referred to as a “hot” particle) or dissociated (or more 

appropriately an extended homogenous source).  This will have implications on 

exposure pathways, transport processes, received dose and ultimately risk.  In general, 

a point source (PS) is considered to be more hazardous, since human contact may 

result in a much higher dose than extended homogenous source (EHS) of similar 

activity.  In the scenario where the risk a PS poses is considered too high, it should 

either be removed and disposed of or isolated to prevent human exposure (Dale et al., 

2008).  However, areas of contamination cannot always be categorised as singular PS 

or EHS.  Often, many PS of similar activity (usually low activity) can be identified, 

either attributed to a number of small radioactive items or larger items mechanically 

broken up (Patton et al., 2013).  This eventuality can be thought of as a Heterogeneous 

Source (HS), but separating HS from EHS via non-invasive methods can be very 

challenging.  The aim of this work is to characterise highly radioactive PS. 
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4.2.3   Detection of radium contamination 

For the most part, in situ, mobile and airborne gamma-spectrometry are the 

workhorses for large scale radioactive contamination land characterisation as 

alternative empirical methods tend to be :expensive and time consuming, and can 

often be unrepresentative (Aage et al., 1999, IAEA, 2003, Tyler, 2008, Kock et al., 

2012).  The majority of this research has been focussed on 137Cs detection for extended 

sources (Boson et al., 2009a, Carrazana González et al., 2012) and “hot” particle 

detection (Maučec et al., 2004, Davies et al., 2007, Tyler et al., 2010).  Up to now, 

however, very few researchers have focussed their efforts on characterising RCLS 

(Thummerer & Jacob, 1998, Adsley et al., 2004, Haddad et al., 2014).  Yet, with an 

increasing awareness of the potential number of contaminated sites in existence, it is 

essential that efficient methods be developed for their rapid and accurate 

characterisation. 

At any RCLS, the principal contaminant tends to be 226Ra and its progeny which is a 

reflection of the long half-life of 226Ra and its persistence in the environment.  Direct 

gamma-spectrometry of 226Ra in the environment is challenging as it only has one 

relatively weak low energy gamma ray from which to infer its activity (186 keV).  

Subsequently its daughter products (214Bi and 214Pb) are conventionally used as a 

proxy measure.  However, this can be inherently problematic as secular equilibrium 

is not always encountered as a result of 222Rn emanation (Crossley & Reid, 1982, Ball 

et al., 1991, Dickson, 1995).  To address this issue, many studies assume the fulfilment 

of equilibrium introducing systematic uncertainty to any 226Ra activity estimations 

(Thummerer & Jacob, 1998, Hendriks et al., 2001).  Before reliable approximations 
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of depth, activity and localised distribution of 226Ra can be made, four inherent 

confounding factors must first be respected:  

 If the photon flux at the detector is low, gaining acceptable uncertainty on the 

measurement can be impractical as Poisson statistics concede the error is the square 

root of the total count.   

 226Ra and daughter products form part of the 238U decay series that can be observed 

in varying amounts in any background environmental gamma spectrum where 

variations can occur over a scale of meters. 

 As a source is buried an exponential decrease in unscattered photons is observed 

with the vast majority of photons that reach the detector being scattered. 

 At energies below 150 keV, photons, although numerous, tend to undergo 

photoelectric absorption making the composition of the geological matrix an 

important control on photon flux (Tyler, 1999, Tyler, 2008).  Backscattered photons 

(<250 keV) can also be challenging to interpret.  

These factors, acting in combination, influence the confidence with which a source in 

the presence of a typically heterogeneous background radiation field can be resolved.  

Moreover, once a source has been identified, considerable uncertainties relating to its 

localised extent and activity can remain.  It is for these reasons in situ and mobile 

gamma-spectroscopy of 226Ra PS, below observed activity thresholds (<70 MBq), is 

considered impractical below depths of about 70 cm. This is because the majority of 

the source signal, particularly the intense low energy peaks below 609 keV, is 

enveloped by background noise with increasing source depth.  Measurements beyond 

this depth must therefore be addressed with borehole measurements (Wilson & 

Conaway, 1991, Meisner et al., 1995, Adsley et al., 2004, Bugai et al., 2005). 
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4.2.4   The borehole measurement 

Borehole measurements are customarily taken as a depth series, when the detector is 

lowered into the borehole.  Ensuing spectra can then provide knowledge into layers 

of contamination if sufficient spatial coverage is performed to validate extrapolation 

(Bugai et al., 2005, Adsley et al., 2004).  Otherwise, the shape and magnitude of 

standalone spectra offer insight into localised source arrangements (Giles & Dooley, 

1998).  Subtle changes occurring within the spectrum’s overall shape, suggestive of 

alterations in source geometry and activity, could potentially correspond to the 

presence of contamination. Identifying such changes is invaluable in the search for 

hazardous “hot” particles in close proximity of the borehole (Wilson et al., 1997).  For 

a detailed review of borehole measurements refer to Kobr et al. (2005). 
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Figure 4-1. Cross-section of the detector in the borehole including the 

source geometries of interest: extended homogeneous source, point 

source and heterogeneous source 

The source geometries, extended homogeneous source (EHS), point source (PS) and 

for completeness heterogeneous source (HS) are illustrated alongside the detector in 

a borehole geometry (Figure 4-1).  First consider a PS, where D is the mass thickness 

of shielding (g cm-2) and θ is its angle perpendicular to the axis of detector.  The 

measure mass thickness was preferred over Euclidean distance, since it takes into 

account the amount of shielding, related to the density of soil, which can significantly 

vary with depth and lateral position (Tyler, 2008).  Secondly, an EHS can be described 

by Ed indicating its vertical depth with its midpoint at the centre of the detector’s 

active volume.  For completeness the final geometry HS, is a differing number of PS 

at variable D from the detector; this eventuality will be considered by this study as 

EHS. 
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Exploring the parameters, Ed and D, as spectral shape drivers is the fundamental aim 

of this study. Nevertheless, other parameters known to influence spectral shape, 

although not the primary focus in this study, such as soil density and the constituent 

that make up background must be added by way of assessing the uncertainties that 

will be introduced to any conclusions of activity and geometry. 

4.3    Spectral processing 

Without contamination present, changes in the shape and magnitude of borehole 

spectra will almost exclusively be due to deviations in background activity (40K, 238U 

series and 232Th series) and shielding influences brought about by changes in soil 

density and composition.  If a site is contaminated, it is the fundamental goal of a 

surveyor to differentiate between these benign background fluctuations in spectral 

shape and those initiated by the presence of 226Ra contamination.  However, 

establishing information from spectra that have relatively sparse counts contributed 

from contamination can be very difficult.  Additionally, in most cases there is likely 

to be a continuum of activities, shielding arrangements and source geometries within 

contaminated sites resulting in a similar continuum of detector response (Wei et al., 

2010).  Therefore, characterisation methods applied for 226Ra contamination must be 

robust enough to cope with fluctuations in background but at the same time be 

sensitive enough to provide reliable estimates of activity and depth. 

The important spectral unfolding process, providing insight into relative spectral 

contributions, is not an instructive one and firstly requires extensive knowledge of the 

individual detectors response to known source geometries which must be provided by 

a robust calibration procedure (ICRU, 1994).  Complications often arise when trying 
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to account for, by empirical calibration methods, the extensive environmental 

scenarios that can lead to spectral changes particularly for extended sources.  Monte 

Carlo simulations (MCS) present a more suitable way to account for environmental 

variables such as density, soil composition and source geometry (Forster et al., 1990, 

Hendriks et al., 2002). 

Once a dynamic calibration dataset has been collected, relating it to field observations 

can be problematic.  A commonly applied method of interpreting the signal from a 

detector is gross counting.  This approach provides only a relative measure of the total 

flux of photons (or dose rate) and little information of source distribution since energy 

discrimination is not performed (Adsley et al., 2004).  A more adequate method that 

relies on the differential attenuation of two or more of the numerous intense full 

energy peaks, 214Bi (609, 1020, 1764 and 2240 keV) and to a lesser extent 214Pb (295, 

351 keV), can be used to establish the amount of shielding between the source and 

detector (Miller et al., 1994, Haddad et al., 2014).  However, the method can be 

severely hindered by the need to strip out background counts and poor counting 

statistics, often peaks in low-resolution detectors cannot be formed.  Alternatively, a 

more sophisticated approach, coined “Full Spectral Analysis”, can be applied.  This 

method attempts to add linear combinations of calibration data to the vast majority of 

the channels of a field spectrum by a Poisson weighted least squares fitting procedure 

(Hendriks et al., 2001, Maučec et al., 2004) or non-negative least squares algorithm 

(Caciolli et al., 2012, Guastaldi et al., 2013) followed by a χ2 goodness of fit test.  

Unfortunately, this method requires sufficiently low counting uncertainty across the 

spectrum to reliably fit individual spectral contributions: a scenario that is not always 

obtainable in the field. Moreover, fitting calibration spectra for this application may 
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become complicated by the fact there is a continuum of contamination and multiple 

source distribution under investigation. 

It is well understood that gamma-spectrometry data taken from the environment will 

contain similarities in spectral shape, or, more precisely, channels will regularly 

exhibit correlation from one measurement to next.  This will be predominantly due to 

background contributions to each individual spectrum.  Difficulties can arise when 

trying to apply conventional statistical approaches to a dataset when this redundant 

cross-channel correlation has not been taken into consideration (Fagan et al., 2012).  

Principal Component Analysis (PCA) is a method commonly used to explore the 

underlying structure of a multivariate dataset and was employed in this study to 

contend with variation in background.   

The mathematical derivation (Hotelling, 1933, Chatfield & Collins, 1980) and in 

depth discussions regarding the different implementations of PCA (Hovgaard, 1997, 

Runkle, 2006) can be found in the literature.  Essentially, PCA multiplies the spectral 

matrix by its, mean-centred, Singular Value Decomposed matrix producing a set of 

uncorrelated variables.  Generally the first few sets of loadings associated with their 

corresponding Principal components (PCs) of the decomposed matrix can then be 

considered as representative of the source signal and can be set aside for further 

statistical analysis (Im et al., 2007).  Another convenient outcome of the PCA process 

is that the number of dimensions is significantly reduced as lower order elements are 

generally discounted as noise contributions.  

The second step utilised the pattern recognition capabilities of an Artificial Neural 

Network (NN) to classify source geometry and approximate activity, mass depth (D) 
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and vertical depth (Ed) from higher order PCs.  The basic design framework of neural 

networks (NNs) is analogous to the human brain and they have been used to solve 

many complex non-linear problems across a variety of fields including gamma-ray 

spectroscopy (Dragovic et al., 2005, Dragović et al., 2006).  They have even been used 

to map counts directly to activity and source burial depth (Wei et al., 2010) .  

A NN is composed of a number of processing units known as nodes that are, by 

convention, separated into three distinct layers: the input, hidden and output.  The 

input layer is a collection of the nodes defining the explanatory variables of the 

problem.  The hidden layer can in fact be made up of one or more layers and the output 

layer, contains the desired response variables.  The hidden layer provides the NN the 

ability to learn non-linear transformations.  Each node has its own weight set, with the 

weights defining the strength of the connections between neurons in adjacent layers 

(Pilato et al., 1999).  The weights are established during a training phase where the 

error between predicted outputs and desired output of the specified training set is 

minimised in an iterative fashion (Medhat, 2012).  For a detailed review of the 

workings of NNs refer to Gurney (2003).  

The aims of this study were 

 Investigate whether PS and EHS can be distinguished from each other in the 

borehole geometry. 

 Apply optimised method to a RCLS providing estimates of activity and source 

distribution. 
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4.4 Materials and methods 

4.4.1    Field Site: Headland dataset 

Dalgety bay, Fife, Scotland, is a former military site where wartime and post-wartime 

activities have led to specific areas of the site becoming associated with 226Ra 

contamination (Tyler et al., 2013).  Following the sites decommissioning a new town 

was built on the area (also called Dalgety Bay) with a sailing club located on the on 

the west coast where much of the radium contamination was believed to be deposited 

(Figure 4-2).   Public access along the coast provides the opportunity for the general 

public to come into contact with potentially harmful sources via either direct contact, 

ingestion or inhalation (Dale et al., 2008, Tyler et al., 2013) 

An intrusive survey was undertaken and borehole measurements were obtained from 

an area on the headland around the sailing club previously suspected of having 

contamination at depths beyond the capabilities of conventional surface 

measurements (Tyler et al., 2011).  Cores were not necessarily concentrated around 

the highest surface signal as indicated by the in situ survey (Figure 4-2), as surface 

sources and contaminated material were recovered from many of these locations.  

Another feature is a large proportion of the cores were situated either on the edge of 

the headland and around the main sailing clubhouse (middle top) as re-deposition of 

contamination by sea erosion and contact with the general public were the primary 

concerns of the original survey.  

Due to the heterogeneous composition of the soil matrix, a relatively small diameter 

auger (60 mm diameter) was used since penetration into the contaminated site with an 

auger with a larger diameter was likely to have been unviable.  A total 30 of augered 
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holes with varying depths (0.2-1.6 m) were taken over identified hotspots and a 51 x 

51 mm Sodium iodide (NaI:Tl) detector, encased in plastic tubing, was lowered into 

each hole.  Spectra with 1024 channels representing an energy range of 20-3000 keV 

were recorded using Ortec’s Maestro software, at 0.1 m depth intervals for at least 

600 seconds to attain reasonable counting statistics.  This dataset is referred to as the 

“Headland dataset” (HD) for the remaining discussions.  

 

Figure 4-2. Map of the headland with gross counts using a 76 x 76 

mm handheld Lanthanum bromide detector overlaid.  The surface 

was interpolated using ordinary Kriging.  Locations and numbers of 

boreholes have been included.   

  

4.4.2     Monte Carlo 

Monte Carlo codes offer a robust alternative to either labour intensive and expensive 

experimental calibration or mathematically cumbersome deterministic approaches 

(Stromswold, 1995).  For example, acquiring representative laboratory spectra can be 
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hindered by the need to strip out the laboratory background, which can vary slightly 

over long acquisition times due to problems of radon exhalation.  This can, for 

example, introduce significant error when using relatively weak calibration sources at 

large distances.  Field calibration although more characteristic of the background at 

the HD site presents practical problems of burying the source and being confident of 

its distance from the detector and the exact amount of shielding (i.e. density of soil) 

between the source and the detector.  Numerous studies, facing similar challenging 

calibration situations, have opted for and successfully applied Monte Carlo 

Simulations (MCS) to a variety of environmental measurements (Maučec et al., 2004, 

Allyson & Sanderson, 1998).  The code used in this study was Monte Carlo N-Particle 

eXtented (MCNPX) (Briesmeister, 1993). 

 MCNPX optimisation 

The simulations used in this study only retained key features of the NaI:Tl detector, 

such as the active volume, aluminium outer canning and protective plastic piping, 

since this was found to accurately account for scattering within the real detector.  

Beck’s “standard” soil composition was used for all simulations since the actual soil 

composition was not known (Beck et al., 1972).  Decay data were obtained from the 

National Nuclear Data Centre (2013) and only emissions with relative abundance of 

1% were used in the simulations for all radionuclides. 

Although MCS possess clear advantages over conventional calibration procedures, 

there is a major drawback in that the time it can take to obtain acceptable uncertainty 

on average particle fluxes can be unfeasible (Likar et al., 2004).  This is because each 

particle must be tracked from birth until death where during its lifetime a large number 
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of irrelevant interactions take place consuming computer time.  Although there are a 

number of accessible variance reduction techniques available to use in MCNPX, for 

example population control methods, if the modeller does not exercise considerable 

precaution, bias can be introduced to the final tally results (Allyson, 1994, Serov et 

al., 1998).  

This study used a more straightforward procedure.  Firstly multigroup/adjoint 

calculations were utilised, to estimate the vertical and lateral extent needed to 

accurately reconstruct an entire environmental spectrum from extended sources; 

commonly described as the detector’s Field Of View (De Groot et al., 2009).  In short, 

this special treatment of photons sees the problem effectively reversed, with photons 

starting in the detector and gaining energy until a cut off of 2614 keV (the highest 

environmental photon energy) was reached (Maučec et al., 2004).  Covering the 

density range that was likely to be present at the site (1.1-1.8 g cm-3), it was found that 

the soil thickness needed to accurately recreate a borehole spectrum was 0.5 m above 

and below the detector and 0.55 m parallel to the borehole.  After this, a method 

outlined by Hendriks et al. (2002) was used involving only electrons in close 

proximity to the detector being tracked and sampling bremsstrahlung energies for 

those that were terminated outside this proximity.  This was accomplished by the use 

of surface source write/surface source read cards within MCNPX. 

 Benchmark experiments 

To validate the code defining the geometry, materials and response of the detector a 

benchmark investigation to a known source geometry and activity was undertaken.  

At the time of measurement, no borehole calibration facility was available.  A set of 
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flat concrete pads doped with 40K, 238U and 232Th geared more towards in situ and 

airborne calibration were used instead.  The MCNPX Gaussian Energy Broadening 

(GEB) feature was used to reconstruct the broadened peaks generated by the detector. 

 

 

Figure 4-3. Benchmark experiment results showing MCNPX fitting 

data (lines) to calibration pad (potassium, thorium and uranium) 

data (dots). 

Spectra from the concrete calibration pads and MCS are in good agreement (Figure 

4-3).  The 232Th and 238U pads were reproduced well using MCS.  Minor discrepancies 
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were found in the simulated Compton continuum of the 40K pad where it was 

overestimated compared to the pad, this was noted by another study (Hendriks et al., 

2002).  This is likely to be caused by the different positions of pads at the calibration 

facility resulting in incomplete removal of background contribution by the 

background pad.  

4.4.3     Spectral compilation 

Before any spectral interpretation of the HD could be performed, enough data 

spanning the range of environmental variables thought to be present at the site had to 

be generated so as to embody the relevant spectral shapes.  Additionally, establishing 

the overall spread of the spectral population obtained by sensibly varying model 

parameters provides uncertainty estimates for any conclusions made about the parent 

source distribution.  This step is also essential prior to training a neural network as 

extrapolations outside of datasets are known to be very unreliable (Moreira et al., 

2010). 

This procedure could not be performed purely in MCNPX because of time constraints, 

because on average it took approximately 4 hours for each simulation to attain 

acceptable statistical uncertainty even with optimisation.  Instead a resampling 

procedure of a discrete range of MCNPX generated spectra, encompassing only 

changes in source geometry and density variation, was undertaken.  This permitted 

more straightforward parameters, such as spectral drift and relative spectral 

contribution (or activity) to be sampled and adjusted afterwards allowing a larger and 

more robust spectral dataset to be produced.  The rest of this section details this 

methodology. 
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All source and background spectra were simulated within MCNPX covering 

representative densities from 1.1 to 1.8 g cm-3 with intervals of 0.1 g cm-3, typical of 

the densities range found within the cores taken at the site.  Energies below 300 keV 

were disregarded to avoid systematic uncertainties associated with variations in 

geological matrix (Hendriks et al., 2002, Caciolli et al., 2012). Figure 4-4A 

demonstrates good agreement in count rate below 300keV between MCS and field 

spectra “28 90cm” although this was not the case for spectra obtained.  Good 

agreement in spectral shape was nonetheless maintained across the remaining energy 

range for the remaining measurements. 

A base count rate of ~24 counts per second (for the energy range above 300 keV) was 

used as the mode count rate of a lognormal distribution established from a background 

core with minimum and maximum count rates of 13 and 65 counts s-1 respectively.  

Whilst, the probability of reaching background count rates of 65 counts s-1 was 

considered extremely unlikely at Dalgety bay headland, it was thought best to take a 

conservative approach with the little spatial coverage of background data that were 

available.  Although, this would raise the limit of detection and uncertainty on final 

activity and depth predictions the spectral shape recognition capabilities of the 

proposed method was anticipated to negate such fluctuations.  Relative contributions 

from each of the natural decay series were found to be reasonable well correlated 

within background cores demonstrated by Pearson’s linear correlation coefficient 

above 0.8.  This deviation was accounted for within the model. 

The background dataset was then spiked using selected simulated source spectra of 

corresponding density and a randomly sampled activity.  Spectral drift was introduced 

into each spectrum by sampling a Gaussian distribution with a standard deviation of 
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3 keV (at 1461 keV) typically found within the temperature and magnetic field 

variations within the environment for the detector in question.  The MCS were 

recorded to a much higher statistical accuracy, typically >95%, to form the “Training 

dataset (Figure 4-4). Field results were known to have a greater noise element due to 

the limited counting time and detector volume (Minty & Hovgaard, 2002).   

Accordingly, Poisson noise was introduced into individual bins depending on a 

sampled count rate (>600 seconds).  The addition of noise established the “Validation 

dataset” and was considered to be more representative of the error structure of the HD 

(Figure 4-4A).  
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Figure 4-4. A) Example of a simulated background alongside a field 

measurement taken from core 28 at 90 cm. Note that the “Training 

spectrum” is far more statistically defined than either the Poisson 

noise induced “Validation spectrum” and “s28 90cm”.  The energy 

cut off used is also displayed. B) Demonstrates the binning intervals 

used on all spectra prior to further analysis. Notice the width bin size 

increases with energy and Full Width at Half Maximum. 

 

Clearly using over 1000 energy bins presents a large relative variation within 

individual bins from one spectrum to the next, particularly as counts become sparse 

at higher energies.  To reduce this surplus noise without too much loss of energy 

distinction, the energy range 300-2918 keV was irregularly binned according to the 

estimated Full Width at Half Maximum established using the same Gaussian Energy 
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Broadening model fit implemented in MCNPX (Briesmeister, 1993). Higher energy 

spectral features can be observed more easily as the sparse nature of counts is 

diminished, for instance the 208Th (2614 keV) and 214Bi (1764 keV) peaks (Figure 

4-4B).  Conversely, at low energy where the FWHM is lower spectral structure is not 

lost, observe the low energy 214Bi (609 keV) can still be observed. 

All relevant sample data: source Activity (A), PS depth (D) and vertical depth (Ed) 

was recorded for individual spectra.  PCA was then carried out on the combined 

simulated dataset and HD to allow comparison.  All steps mentioned were carried out 

using the base features in the software package R (R Development Core Team, 2012).  

4.4.4 Neural network: Training procedure 

To optimise the performance of the NN and ensure that the trained network was 

learning general patterns within the problem rather than adapting to the training data 

itself, three separate data sets were produced: the training set, a test set and cross 

validation set (Dragovic et al., 2005).  All datasets were mean centred and scaled 

relative to the variance.  Initially, each NN was trained and tested with statistically 

defined MCNP spectra (spectral drift was added to ensure SCs remained similar).  The 

essential stage of cross validation was performed using data with Poisson noise 

introduced “Validation dataset” which was known to be more characteristic of the 

noisy HD (Figure 4-4).  The transformation used in the hidden layer was a sigmoidal 

function and the algorithm used to train the network was resilient backpropogation 

(Riedmiller & Braun, 1993).  The R package RSNNS was used to construct and train 

all NNs (Bergmeir & Benítez, 2012a). 
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The architecture of a NN may be different from one problem to the next depending on 

the problem’s level of complexity.  It was discovered early on to reach the optimised 

level of performance for this problem it was better to divide the procedure into three 

separate networks since this eliminated crosstalk effects between the output neurons 

specifying the activity and depth parameters of an EHS and a PS.  The first NN 

purpose was to classify spectra into one of the three classes: background, EHS or PS.  

The final networks were then used to make estimates regarding activity (kBq or Bq 

kg-1), burial depth (g cm-1) and lateral extent (cm).  Crucially, they were only trained 

and tested with spectra that were identified by the classification network.  To ensure 

that the correct architecture for each network was selected an exhaustive search was 

conducted to: establish the number of PCs to use in the input layer, the number of 

hidden nodes and hidden layers, and the number of learning epochs.  Decisions made 

regarding the design of the network were based around minimising the error within 

the validation dataset.  This was checked again using confusion matrices for 

classification results (Zell et al., 1993) and R2 values for any regression results 

produced by the EHS and PS networks (Moreira et al., 2010).  Between 1000 and 

2000 training data were found to adequately train all the networks. Test and validation 

sets were 30% of the training set.  

Uncertainty on regression results was estimated by resampling the predicted output 

values 50 times using the original background parameters.  These values were then 

fed back into the original network alongside the training data and the standard 

deviation of the injected values was used as the uncertainty.  Caution was taken not to 

bias the latent variables used by PCA with introduction of new values, since this would 
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have influenced final NN outputs.  To avoid this eventuality the procedure was looped 

where error spectra values were introduced into the original dataset one at a time. 

4.5 Results and discussion 

4.5.1 Analysis of principal component 

90% of the total variance within the dataset was explained by the first 5 principal 

components, which suggests the latter PCs possess largely noise elements.  Visual 

analysis of the PC 1 and PC 2 loadings demonstrates the merit of the PCA transform: 

at this early stage of analysis point source effective depth is being separated within 

PC space with shielding thickness variation (Figure 4-5).  This is confirmed by the 

shallow point source depth (larger lighter points towards the bottom of the plot), in 

contrast to deeper sources (smaller darker points) towards the top left of the plot.  

Interestingly, distance from the background pack (Crosses) would appear to infer 

activity.  
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Figure 4-5. Plot of Principal components 1 and 2 loadings. 

Background spectra (Black crosses) are tightly clustered in the top 

right of the plot.  Progressively smaller and darker points indicate 

increase shielding between point source and detector and greater 

distance from the background pack inferring greater activity. The 

extended population are bound by the black dotted lines.  The 

headland dataset are represented by black triangles. 

 

Arguably conventional separation techniques, such as a Mahalanobis distance metric 

could be used to delineate a boundary between source and background (Runkle, 2006).  
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Moreover, a linear regression between PC1 and PC2 could be performed to establish 

a relationship with depth and activity (Adams et al., 2012).  However, a number of 

problems may be encountered using these approaches. Firstly, separation via 

parametric methods (i.e. Mahalanobis distance) invariably contains a distribution-

based assumption, normally a multivariate Gaussian distribution, to define separation 

limits from the background dataset.  This assumption is often not correct leading to 

misclassification.  Secondly and most crucially, separation of the extended source 

population, encompassed by the black lines in Figure 4-5, from point sources in the 

intermediate range (2-20 g cm-2) is not possible through a linear regression technique, 

and this is of particular importance since a large proportion of the HD lie within this 

region.  Furthermore analyses of lower order PCs, using a similar approach, becomes 

increasingly challenging.  This suggests that to reliably separate extended sources 

from point sources more information from lower order PCs is needed but the 

relationship is likely to be non-linear.  To confront these issues three separate NN 

were used to establish structure within the PC loadings. 

4.5.2 Classification network 

The first NN was used to classify spectra into one of the three classes.  It was 

established by using the first 5 PCs, a hidden layer with 16 neurons and 1500 learning 

epochs gave the smallest relative mean squared error (RMSE) on the cross validation 

dataset (~15%) in the case of the classification network.  It must be noted at this early 

stage, throughout this work comparatively large errors were encountered on output 

neurons for the cross validation sets due to the noise introduced during spectral 

compilation (Section 2.3).  Another outcome was that networks were trained using 
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relatively few iterations compared to other studies (Moreira et al., 2010, Dragović et 

al., 2006) 

The final output of the classification NN (CNN) was decided by the “Winner takes 

all” approach and the overall performance assessed by calculating the 

misclassification rate (Zell et al., 1993).  The highest misclassification was witnessed 

on the background results (10.2%) due to the low activities used at large depths for 

both PS and EHS within the cross validation set.  It was decided to include these levels 

in order to attain detection limits.  Generally PS’s were classified well above a certain 

threshold, dependent on the activity and depth, representing the minimum detectable 

activity (MDA) where source becomes misclassified as background as source count 

contributions became negligible (Figure 4-6A).  EHS were also characterised well, 

however misclassified shallow depth PS (5-20 g cm-2) can be seen distributed along 

on the MDA boundary (< 10 Bq kg-1) (Figure 4-6B).  As expected as the extent depth 

(Ed) becomes less and the overall volume of the contaminated layer is reduced, leading 

to less source contributions, the MDA increases to about 30 Bq kg-1. The most 

significant case of misclassification can be seen subtended within PS results between 

5 and 20 g cm-2 and below 10 kBq in which a 37% classification rate was found 

(Figure 4-6A).  This implies the two populations must still significantly overlap within 

PC space and the NN struggles to separate as too few source counts were contributed 

to the already noisy background spectra.  The second reason is that the spectral shape, 

regardless of noise, in these specific geometries is too similar, using only energies 

above 300 keV, for the NN to separate.  It is likely a combination of the two has led 

to this misclassification uncertainty.  If energies below 300 keV could be sufficiently 
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characterised these populations could be more effectively resolved.  This however 

presents a real challenge. 

 

Figure 4-6. Classification Neural Network output for A) Point source 

and B) Extended source.  Discrete points, caused by the discrete 

sampling of depth, have been jittered slightly to give a better sense of 

population density.  The legend in plot A conceals largely 

background-misclassified points. 

This method presents a real improvement in comparison to a traditional parametric 

approach where this degree of separation would not be possible (Figure 4-5).  

Consideration must also be drawn to the areas of significant misclassification, for 

example, PS’s under 10 kBq at depths below 20 g cm-1.  This circumstance does not 
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pose a great risk compared to more active PS which are more than likely be classified 

correctly (Figure 4-6A). 

4.5.3  Point and Extended Neural Networks  

Quantification of activity and depth (both D and Ed) was performed using two final 

NNs: Point (PNN) and Extended (ENN).  Interestingly both required only 3 PCs as 

inputs to accurately estimate depth, but it was soon recognised that to stabilise activity 

estimates a fourth input neuron specifying total counts should be included.  The 

number of hidden neurons and the size of training set needed to accurately map the 

problem in both NN cases were roughly similar to the CNN (Table 4-1).  Again, a 

relatively small number of iterations were required to attain RMSE minima on the 

cross validation datasets (<25000) and it was documented during training that both 

networks were found to diverge rapidly after convergence: indicative of sudden 

overtraining (Medhat, 2012) 

Table 4-1 Input parameters and R2 values (and accompanying p-values 

in brackets) produced for the cross validation dataset for Point Neural 

 

Neural 

Network 

 

Iteration 

number 

 
Hidden 

layer 

neurons 

 
Size of 

training 

set 

 R2 value 

    
Depth Activity 

Point 
 

25000 
 

16 
 

1000 
 0.942 

(<0.001) 

0.910 

(<0.001) 

Extended 
 

8000 
 

10 
 

2000 
 0.670 

(<0.001) 

0.965 

(<0.001) 
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4.5.4 Network and Extended Neural Network 

During the training of preliminary networks it was established by limiting the 

maximum activity of training and test sets to realistic environmental constraints, for 

example PS and EHS less than 5 MBq and 5MBq kg-1 respectively, uncertainties on 

more probable lower activity sources could be reduced.  Such activity constraints are 

well within activities found during intrusive surveys of Dalgety bay headland (Patton 

et al., 2013).  

Drawing attention to accuracy of the models, the overall ability of both NN’s to 

generalise a relationship was good for activity estimates.  This is supported by high 

R2 values (PNN = 0.955 (<0.001) and ENN = 0.937 (<0.001)) for both NN’s.  PS 

depth prediction was additionally very good (R2 value of 0.942 (<0.001)).  Predictions 

made by the ENN for vertical depth (Ed) were not as reliable (R2 value of 

0.670(<0.001)).  This suggests that very subtle changes in spectral shape occur as the 

thickness of the layer contamination is varied, and these cannot be identified as easily 

as the change in spectral shape of PS with variable depth.  This is understandable since 

the majority of photons that reach the detector will have originated from areas close 

to the detector.  Thus with increasing thickness of contamination relatively less signal 

is received due to the inverse square law.  Consequentially, accurate measurements of 

Ed are unlikely and predictions made by the ENN for this parameter should be treated 

with caution 

4.5.5 Analysis of the Headland Dataset 

To demonstrate the capacity of the method, analysis of two cores from the HD is 

included (Figure 4-7).  Firstly, confidence within the ENN predictions is provided by 
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comparing the similarity in shape of the total count rate (Figure 4-7A plot 1 and Figure 

4-7B plot 1) and activity estimates (Bq kg-1) (Figure 4-7A plot 2 and Figure 4-7B plot 

2) with core depth for both the cores.  Interestingly, the majority of the HD 

measurements (~70%) that were identified as having contamination were predicted to 

be EHS.  This outcome supports general intrusive findings at the headland where the 

majority of contaminated material is well distributed ash and clinker from the burning 

of radioactive artefacts (Patton et al., 2013). 

An important finding was the identification of a relatively thick (~90 cm) elevated 

activity extended layer (357 ± 69 Bq kg-1) at 130 cm within “s21” (Figure 4-7B plot 

2).  This coincides with a large spike in total count rate (Figure 4-7B plot 1).  In the 

original survey this was disputed to be a point source due to the Gaussian nature of 

the total count rate increase within the depth series.  Even with further analysis using 

the differential peak method the source signal could not be classified.  This scenario 

clearly demonstrates the value of the current approach. 



 

 

1
1

4
 

 

Figure 4-7. Neural network results for cores “s7” (A) and “s21” (B) taken from the Headland dataset.  Individual core 

results have been separated into three individual plots 1, 2 and 3.  Plot 1 provides total count rate (20 – 3000 keV) as a 

function of depth (error bars are very small and hidden behind points). Plot 2 gives the Extended Neural Network 

predictions for activity (Bq kg-1) on the x axis and vertical depth (cm) estimates are accompanying text values.  Plot 3 offers 

a visual representation of the core with darker shading indicating higher activity heterogeneous contamination (similar to 

plot B) and whether a point source is present and at what depth (x axis) and activity (accompanying text values) it occurs. 
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The highest predicted extended activities (600-700 Bq kg-1) were found in a relatively 

thin contaminated section of core “s7” at 160-180 cm (Figure 4-7A plot 2).  This area 

did not contribute the highest total count rate (>1000 counts per second) though as 

seen in core “s21” (Figure 4-7B plot 1).   This highest count rate was caused by a 

thicker (95 ± 11 cm) less active (520 ± 85 Bq kg-1) layer.  This shows that using this 

technique can provide insight into the thickness of a layer meaning that more accurate 

estimations of activity can be made instead of assuming a completely distributed 

source.  Another key feature that the CNN identified at core depths between 90-130 

cm was the presence of PS’s in between two extended layers (Figure 4-7A plot 3).  

The PNN provided clarification that these sources were a relatively short distances 

away from the detector (~35 g cm-1) and at low activities (~30 kBq).  Although PS 

were identified by the network, the consistency of the activities and depth would 

suggest the detector is in a pocket of low contaminated soil with larger activities at 

greater distances from the detector.  Algorithmic identification of this situation would 

be very challenging.  This emphasises the importance of human interpretation.  To 

verify this notion, further cores would have to be taken.  This scenario highlights a 

real limitation of the borehole measurement without substantial spatial coverage.  

Similar geometries that are beyond the scope of the technique to differentiate, and that 

would require further spatial coverage would be for example, localised areas of 

homogeneous contamination that are not distributed symmetrically around the 

borehole and measurements above or below an extended layer.   
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Figure 4-8. Estimated uncertainties associated with Headland dataset 

source measurements A) point source and B) extended homogeneous 

source. 

Attention must be drawn to the errors associated with predictions of activity and depth 

from the NN’s (Figure 4-8).  Standard deviations from both networks showed similar 

patterns, generally with increasing burial depth and decreasing activity the relative 

standard deviation increased.  This is particularly prevalent with the point source 

estimations at effective depths of 30-40 g cm-1 and less than 20 kBq (Figure 4-8A), 

and low activity (<100 Bq kg-1) sections (<40 cm) of contamination (Figure 4-8B), 

and this practically renders these readings unusable.  This is understandable as source 
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shape would have become increasingly difficult to differentiate from background as 

source counts became too few.   

Interestingly, the deepest and highest activity predictions for PS occurred at the base 

of two cores that were positioned close together, suggestive of high activity at depth. 

Without further boreholes to confirm this, the actual activities are challenging to 

deduce as they are so far away from the detector.  

There are practical ways to alleviate some of the uncertainty associated with field 

results, indicated by the large error bars (Figure 4-8).  Firstly reduction in counting 

uncertainty across the energy range could be attained by using another detector.  

NaI(Tl) detectors have relatively low energy resolution and the size used in this survey 

was particularly small (51 x 51 mm).  If a larger, higher resolution detector was used, 

such as a larger volume Lanthanum bromide, uncertainties could be reduced 

(Yongpeng & Bin, 2012).   

Another way to reduce uncertainty would be to collect more background results to 

provide a better understanding of the background population.  This study was limited 

by this fact resulting in a conservative estimate of background population being made.  

This would have would have invariably raised the limit of detection and introduced 

more uncertainty on final activity and depth predictions.  Other than collecting further 

background cores at the site, cores could have also been drilled deeper beyond 

contamination (providing little stratification of background constituents was present), 

giving more reliable background estimates for individual cores. However, this was not 

possible at much of the site as hard rock restricted further augering. 



118 

 

4.6 Conclusions 

226Ra contamination at depths typically below 50cm cannot be reliably measured using 

conventional surface gamma-ray measurements.  Borehole gamma-ray spectroscopy 

is used for the purpose of characterisation, where details of the geometric nature of 

contamination and activity estimates are vital if formal risk assessments are to be 

developed in order to protect the general public.  Current methods of spectral 

processing, however, either do not have the ability to perform the task or prove 

unreliable.  

An approach has been described based upon feature extraction using PCA, followed 

by NN’s to relate key features of representative MCS to obtained field results.  This 

method provided a reliable means to characterise the geometric nature of 

contamination, offer activity and depth estimates of point sources, and give insight 

into potential layers of homogeneous contamination. The potential of the technique 

was demonstrated by analysis of core data taken from Dalgety Bay Headland where 

prediction from the majority of cores suggested that contamination was mostly 

dissociated, supporting intrusive surveys.  

Nevertheless, limitations associated with the nature of the borehole measurement still 

remain and cannot realistically be solved unless adequate spatial coverage is 

performed, making some predictions very uncertain, particularly of PS at distance. 

The use of improved detector technology and better understanding of the background 

could, however, alleviate some of the estimated uncertainty associated with 

predictions from the method. 
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5.1 Abstract 

The extensive use of radium during the 20th century for industrial, military and 

pharmaceutical purposes has led to a large number of contaminated legacy sites across 

Europe and North America.   Sites that pose a high risk to the general public can 

present expensive and long-term remediation projects.  Often the most pragmatic 

remediation approach is through routine monitoring operating gamma-ray detectors 

to identify, in real-time, the signal from the most hazardous heterogeneous 

contamination (hot particles); thus facilitating their removal and safe disposal.  

However, current detection systems do not fully utilise all spectral information 

resulting in low detection rates and ultimately an increased risk to the human health.  

The aim of this study was to establish an optimised detector-algorithm combination.  

To achieve this, field data were collected using two handheld detectors (Sodium 

Iodide and Lanthanum Bromide) and a number of Monte Carlo simulated hot particles 

were randomly injected into the field data.  This allowed for the detection rate of 

conventional deterministic (gross counts) and Machine Learning (Neural Networks 

and Support Vector Machines) algorithms to be assessed.  The results demonstrated 

that a Neural Network operated on a Sodium Iodide detector provided the best 

detection capability.  Compared to deterministic approaches, this optimised detection 

system could detect a hot particle on average 10 cm deeper into the soil column or 

with half of the activity at the same depth.  It was also found that noise presented by 

internal contamination restricted Lanthanum Bromide for this application. 
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5.2 Introduction 

5.2.1 Radium contamination 

Radium (226Ra) was used extensively during the 20th century predominantly in the 

form of luminescent paint.  Waste generated from military, industrial and 

pharmaceutical products was regularly buried with little record of its location and 

inventory (Harvie, 1999).  With a half-life of 1600 years, 226Ra contamination is a 

multigenerational issue.  In the UK, a recent government report conservatively 

estimated there to be 150 to 250 contaminated legacy sites, whilst acknowledging 

there could be as many as a 1000 (DECC, 2012).  Similar extents of 226Ra 

contamination have been found across Europe and North America (Harvie, 1999).  

Ultimately, the risk of human exposure at these sites is dependent on a number of 

potential pathways and the form of contamination and not exclusively on external dose 

(Dale et al., 2008). 

One such pathway, that has the potential to cause significant radiological harm, is 

ingestion of small highly radioactive items often referred to as hot particles (Baker & 

Toque, 2005).  One study explored the committed dose that could be received by a 

member of the public through simulated stomach acid digestions of a range of radium 

hot particles found in Scotland (Tyler et al., 2013).  It was concluded that ingestion of 

a hot particle with an activity higher than 20 kBq could result in a committed dose to 

an infant exceeding the 100 mSv threshold deemed to cause significant radiological 

harm (ICRP, 2007).  At particular sites in Scotland, it has been recognised by the 

Scottish Environment Protection Agency (SEPA) that there is the possibility of a 

member of the public coming into contact with such a hot particle.  To safeguard 
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against this at Dalgety Bay, Fife, Scotland, routine monitoring is undertaken to detect 

and retrieve any significant radioactive items (Dale et al., 2013).  To confirm 

monitoring is undertaken with sufficient accuracy, SEPA have outlined the following 

criterion: 

 A 20 kBq hot particle at a burial depth of 0.1 m must be detected 95 % of the 

time. 

This paper aims to develop an optimised detection system that provides better 

detection capability than systems currently available.  This will allow more effective 

identification of hot particles at radium legacy sites, ultimately reducing the risk posed 

to the general public in both the short and long term.  

5.2.2 Challenges of “hot” particle detection 

The most effective method of detecting hot particles in real-time is through a series 

of mobile measurements using either handheld or vehicle mounted gamma-ray sensors 

(Tyler, 2008).  At many sites where vehicular access is limited handheld detectors are 

often the only option. Handheld detectors produce gamma-ray spectra, the shape and 

magnitude of which will provide information of the localised radiation field that the 

detector has passed through during acquisition.  To ensure an area is adequately 

covered by a survey in a reasonable time frame, typically a spectrum is acquired every 

second and a walking speed of 0.5 m s-1 is maintained.  This maximises the spatial 

density of measurements and ultimately the probability of detecting any hot particles.  

To initiate the immediate identification of a hot particle real-time analysis of the 

spectral time series is critical (Kock et al., 2012).    
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The spectral response or signal quality of a detector will largely be governed by the 

composition of the detector’s active volume.  Lightweight scintillators tend to be used 

for handheld detectors, of these Sodium Iodide (NaI:Tl) is the standard as it is 

relatively cheap and robust (Knoll, 2010).  Nevertheless alternatives are available. 

One such detector, Lanthanum Bromide (LaBr:Ce), has recently received much 

attention (Guss et al., 2010).  It has better energy resolution (~2.5% at 662 keV) than 

the NaI:Tl (~7% at 662 keV) (Figure 5-1), greater photon efficiencies and better 

temperature stability.  However, a relatively large intrinsic background signal 

attributed to internal isotopes (138La and 227Ac) can be found distributed throughout 

the spectrum (Iltis et al., 2006).  Considerable contamination can be observed at 1468 

keV (gamma and x-ray summation peak), between 786 and 1100 keV (beta 

continuum) and over 1700 keV (alpha) (Menge et al., 2007). This raises concerns 

about its potential in low source signal situations as these are frequently encountered 

in the environment. 
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Figure 5-1. Detector responses to a 226Ra hot particle: NaI:Tl (Blue), 

LaBr:Ce background subtracted (Red) and LaBr:Ce unprocessed 

(broken black). 

The second element of a detection system is the algorithm used to process the 

detector’s signal in real-time to determine whether there are signal contributions from 

a hot particle (Figure 5-1).  If the algorithm is tripped, an alarm is sounded, allowing 

the operator to locate and retrieve any potential radioactive items (Jarman et al., 2008).  

Yet processing environmental gamma-ray spectra is not straightforward.  

First of all the vast majority of spectral changes are benign and can occur over the 

scale of a few metres (Fagan et al., 2012).  This spatial variation is brought about by 

changes in the natural radioelements (40K, and the 238U and 232Th series) contained 

within the local geology. Changes can also occur temporally due to variations in the 

density and chemical composition of the geological matrix and radon exhalation 

(IAEA, 2003). Temporal fluctuations can be very challenging to account for 
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particularly as they can occur on varying time scales, for example deviations in density 

over a tidal cycle and radon exhalation caused by atmospheric pressure changes (Ball 

et al., 1991, De Groot et al., 2009).  Furthermore, weak source signals can appear very 

similar to background signals given that 226Ra forms part of the 238U series.  

Consequently, in an attempt to isolate source signal from benign signal, it is often 

appropriate to use the most recent observations in the time series as estimates of 

background (Ely et al., 2004).  

Another issue is that source signal will not remain constant.  Firstly, the signal will 

decrease significantly with increasing distance between the detector and source.  

Secondly, non-linear changes will occur across the spectrum as the amount of 

shielding (depth in soil) is increased and often the majority of photons that reach the 

detector are scattered to low energy (Wei et al., 2010).  These occurrences can easily 

lead to weak source signals, for instance a source at depth or a low activity surface 

source, not being identified.  

Finally, the short acquisition times (typically 1 second) demanded by the high density 

of measurements during a survey, which when combined with the low energy 

efficiency of handheld detectors, results in spectra containing a large stochastic noise 

element (Du et al., 2010).  This renders conventional spectral analysis methods 

founded on determination of peak area unworkable (Alamaniotis et al., 2013b). 

These complications mean source-background separation is never going to be 

seamless and a trade-off between detection rate and false alarm rate is encountered 

(Ely et al., 2006).  To safeguard against the operator losing confidence in the detection 

system, a typical false alarm rate of 1 in 200 (α = 0.005) should be attained (Kock et 
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al., 2012).  Subsequently to attain this false alarm rate, straightforward deterministic 

algorithms such as the gross counting algorithm are still heavily relied upon and can 

produce poor detection rates (Runkle, 2006). 

5.2.3 Machine Learning 

Here we hypothesise whether it is more appropriate to track general changes in 

spectral shape by dividing raw spectra into more appropriate energy bins (Fagan et 

al., 2012).  However, this procedure is complicated by the fact source and background 

populations may overlap considerably within the new high dimensional feature space 

(depending on the number of energy bins used) and possibly exhibit non-linear class 

boundaries.  This scenario can be unfeasible to separate using conventional Newtonian 

mathematics (Smola et al., 1998).  Instead, supervised Machine Leaning (ML) 

algorithms can be employed to map the underlying relationship between explanatory 

and response variables (Galushkin, 2007).  For this reason, ML has been employed 

previously to develop alarm thresholds for gamma-ray data (Sharma et al., 2012, Wei 

et al., 2010, Kangas et al., 2008, Varley et al., 2015b).   

Customarily ML attempts to address a statistical problem by learning the underlying 

structure of a sample of data provided to it during a training phase.  Once training is 

complete, the performance of the model fit can be assessed using independent cross-

validation dataset (Dragović et al., 2006).  There are a number of possible ML methods 

available (Ao et al., 2010).  However, preliminary investigations demonstrated Neural 

Networks (NN) and Support Vector Machines (SVM) to be the most encouraging for 

this application.  
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5.2.4 Neural Networks 

The structure of an NN is analogous of the brain in that it is made up of processing 

units called neurons connected by synaptic weights (Olmos et al., 1992).  Neurons are 

separated into three individual layers: input, hidden and output.  Spectral data can be 

fed into the input layer, where it is passed through weighted synapses to the hidden 

layer where a non-linear function is used to map the problem to the output layer.  

Global convergence of the problem is attempted by minimising the error between 

training outputs and actual outputs through an iterative procedure of updating the 

weights between neurons (Gurney, 2003).  To avoid getting trapped in local minima 

during this process training algorithms such as “resilient backpropogation” are used 

(Riedmiller & Braun, 1993). 

5.2.5 Support Vector Machines 

SVM approach the problem differently to NN, instead making use of kernel functions 

to enlarge the feature space ensuring dot products of the support vectors can be easily 

computed (Smola et al., 1998).  This allows the introduction of maximal-separating 

hyperplanes providing a means of separating complex populations without using vast 

quantities of computer memory (James et al., 2013).  This technique is referred to as 

the “kernel trick”.  There are a number of commonly applied kernels to perform this 

task including: polynomial, sigmoid, radial basis function and spline (Sangeetha & 

Kalpana, 2010).   

The aim of this study was to assess the performance of a number of different detector-

algorithm combinations (henceforth referred to as detector configurations) by spiking 
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background spectra with representative Monte Carlo source spectra providing a means 

of establishing detection rate and false alarm rate. 

5.3 Materials and Methods 

5.3.1 Field site 

In the early 1990s 226Ra was discovered at Dalgety Bay, Fife, Scotland (-3.3505 ºE, 

56.0349 ºN) (Figure 5-2) attributed to actions once carried out at its historical airfield, 

notably during wartime periods (Patton et al., 2013).  A housing estate, sailing club 

and public footpath now exist in close proximity to known contaminated areas and 

erosion events have redistributed large quantities of contaminated material onto the 

public beach.  As a result of the dynamic nature of the beach, hot particles are 

regularly brought to the surface or relocated laterally (Dale et al., 2013).  This has 

prompted initially intense and subsequently large-scale routine monitoring efforts to 

reduce the risk to the public.  The beach however presents a challenging environment 

in which to monitor, since there are considerable variations in background and density 

gradients, alongside large sections that contain relatively benign homogeneously 

distributed contamination (Figure 5-2).  Tyler et al. (2013) present an interesting study 

into the physical and chemical formation and the resultant risks associated with a 

number of hot particles found at Dalgety Bay.   
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Figure 5-2. Location of Dalgety Bay and a heat map demonstrating 

the variation in total count rate (counts s-1) taken using a 71 x 71 mm 

NaI:Tl detector. 

5.3.2 Background data acquisition 

Background spectra can change considerably from one site to next and over time.  

Therefore, background data were acquired from Dalgety beach using a NaI:Tl and 

LaBr:Ce (both 71 x 71 mm) attached to a wheeled mounted frame, one behind the 

other, to ensure the same ground was being covered by each detector.  The detectors 

were mounted at a height of 0.1 m.  1024 channel spectra were acquired every second 

using Ortec’s Maestro software alongside GPS coordinates and integrated for real time 

mapping and assessment using software developed at the University of Stirling.  A 

walking speed of 0.5 m s-1 and transect spacing of 0.5 m was maintained during the 

survey.  A 1 second lag was introduced to ensure comparable background spectra were 
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used to test algorithms.  A total of 35,000 “background” spectra were recorded for 

each detector over the course of 3 days. 

5.3.3 Simulating the radiation field of a “hot” particle 

Monte Carlo calibration spectra were preferred over empirically-derived calibration 

spectra given that laboratory calibration can introduce large systematic uncertainties 

(Hendriks et al., 2002).  The software package Monte Carlo N-Particle 5 (MCNP5) 

was used to produce full-spectral responses (Briesmeister, 1993).  To validate the 

modelling method, Monte Carlo spectral responses were compared to experimental 

spectra taken from concrete calibration pads (Minty et al., 1997).  Above 150 keV, 

good agreement was found between calibration pad and Monte Carlo spectra, 

therefore only energies above 150 keV were used.  The background dataset was 

known to exhibit a large range of shielding conditions brought about by changes in 

geological matrix composition and density.  Attempting to model and then correlate 

this variation would have been unfeasible, therefore a standard geological matrix (Wet 

sand; 17% water) and density (1.5 g cm-3) was used (Table 5-1).  

Table 5-1. MCNP5 model parameters inputs 

Parameter Inputs 

Geological matrix Wet sand 17% water 

Soil density 1.5 g cm-3 

Detector height 0.1 m 
ax offset 

(direction of travel) 

0 – 0.25 m 

ay offset 

(perpendicular to travel) 

0 – 0.5 m 

aDepth 0 – 0.9 m 
bActivity 1 – 100,000 kBq 
a 50 mm discrete increments were applied between 

geometric constraints 
b Systematic sampling used between activity constraints 
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To recreate realistic monitoring conditions a transect spacing of 0.5 m and walking 

speed of 0.5 m s-1 was assumed.  In MCNP5 geometry, this involved integrating the 

detector’s response 0.5 m through the radiation field of a point source.  Table 1 

describes the geometric range for the integration.  A random sample was taken from 

the four dimensional array, possessing the dimensions x, y, depth and activity.  To 

ensure an unbiased routine the random number seed in MCNP5 was changed between 

individual runs (Moreira et al., 2010).  To reproduce the characteristic resolution of 

each detector statistical broadening was introduced after individual runs.  Secular 

equilibrium was assumed and physical data were obtained from the National Nuclear 

Data Centre (2013).  Source spectra were then injected into the different detector 

“background” datasets at the same point to ensure consistency.  A total of 20,000 

spikes (with varying depth, activity and offset) were introduced and the spike rate was 

kept below 1% of the background dataset to prevent substantial overlap.  To accurately 

assess SEPA mandate detection rate, a separate dataset was generated spiked with 

6000 20 kBq sources at 0.1 m burial depth.  

5.3.4 Pre-processing and algorithm execution 

 Gross counting algorithm 

Gross counting (GC) algorithms are used extensively on handheld detectors, as they 

are relatively easy to setup (Ely et al., 2004, Jarman et al., 2008).  GC is currently the 

only algorithm to be employed at Dalgety Bay (Dale et al., 2013).  The method treats 

the entire spectrum as a single bin, using a rolling mean filter of the previous few 

measurements to estimate the background (N) (eq 20).  
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 𝑇 = 𝑁 +𝐾√𝑁 (20) 

K (sigma multiplier) defines the number of standard deviations (√N) above N the alarm 

threshold should be set (Figure 5-3).  If a substantial increase in signal is received the 

alarm should sound as T is breached.  The parameters K and the number of lags used 

on the moving mean were optimised on part dataset.   

 

Figure 5-3 Gross counting obstacles: a 40K dominated spectrum (42) 

triggers the alarm as the threshold is broken, but the 226Ra spike 

possessing characteristic 214Bi peaks (68) is missed as it does not reach 

the threshold. 
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 Spectral comparison ratios 

Dividing the raw spectrum into broad energy bins, instead of using raw data, alleviates 

some counting noise and reduces input dimensionality, although some loss of energy 

distinction is inevitable (Pfund et al., 2010) (Figure 5-4).  Selecting optimal energy 

bins is a contentious subject and novel algorithms have been implemented to optimise 

their number, placement and size (Wei et al., 2011).  In this study though, two 

systematic binning systems were applied as input for ML.  The first, Resolution Bins 

(RB), focused on the deterioration of resolution with increasing energy (Runkle, 2006) 

(Figure 5-4).  This produced 30 energy bins for LaBr:Ce and 18 for NaI:Tl.  Whilst 

systematic, this approach cannot account for the fact that many of the bins, particularly 

at higher energy, may contain zero counts for a single measurement.  A second 

method, Regions Of Interest Bins (ROIB), focussed around full energy peaks and 

scattering regions was implemented producing 13 energy bins for each detector.  Note, 

energy bins are narrower for LaBr:Ce given its superior energy resolution, although 

significantly more background counts were encountered in each bin caused by 

intrinsic contamination. 
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Figure 5-4 Binning systems for NaI:Tl and LaBr:Ce detectors. Note 

the magnitude of bins has been altered for visual clarity. 

Spectral Comparison Ratios (SCR) outlined by Trost and Iwaschenko (2002), were 

used to transform energy bins into the time series to measure how closely the observed 

spectrum matched that of the previous background measurement (eq 21). 

 
𝑆𝐶𝑅𝑖 = 𝑁1

𝑐 −
𝑁1
𝐵

𝑁𝑖
𝐵 𝑁𝑖
𝑐 (21) 

Where Ni
c is bin i, and N1

c is the first bin, of the current measured spectrum. Ni
B and 

N1
B are a respective moving means of bin i and the first bin of the previous spectra.  

This produces a transformed spectrum where the first channel is 0 and all channels 
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contained within a background spectrum should be close to zero as small temporal 

variations are expected to occur (Du et al., 2010).  Source contributions are anticipated 

to introduce larger deviations in spectral comparison ratios, though these are expected 

to occur across the spectral energy range, be non-linear in nature and contain a large 

counting noise element.  Therefore, the effectiveness of conventional source-

background separation approaches often relying on Gaussian distribution statistics 

tends to be too simplistic (Runkle, 2006).  

 Machine Learning implementation 

To train and assess the performance of detector configurations two datasets were 

formed: a training dataset and a cross-validation dataset.  Typically 3000-5000 

samples were used to train ML.  For NN, 30% of the training set was set aside as a 

test set to track the progress of training.  The remaining data (~30,000) were used as 

the cross-validation dataset.  Data were mean centred and scaled to the variance prior 

to training.  Importantly, to produce the desired False Alarm Rate (FAR), 

approximately 5-7 times more background samples were included during training.  It 

was discovered that by adding two more inputs (alongside spectral comparison ratios), 

one containing a moving mean of gross counts and the other the total counts, an overall 

improvement in detection for both detectors could be realised.  In my previous work 

this has also been found to be a benefit (Varley et al., 2015b).  This is not surprising 

given areas of high background and homogeneous contamination will exhibit larger 

systematic variation, which ML could take into account by considering the total count 

rate and its localised variation. One other study employed a similar approach only 

alongside a deterministic gross alarm instead of providing it as an input for ML 

(Kangas et al., 2008). 
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 Neural Network optimisation 

To optimise the number of hidden neurons for NNs an extensive grid search was 

conducted (Medhat, 2012).  As anticipated, NNs implemented on RB needed more 

hidden neurons compared to ROIB due to the greater number of inputs (Dragovic et 

al., 2005).  That said, 15-20 hidden neurons provided the lowest Root Mean Squared 

Error (RMSE) for all NNs.  RMSE on training and test sets for all NNs tended to 

converge after a few hundred learning epochs.  The R package “RSNNS” was used 

for the development of NNs (Bergmeir & Benítez, 2012b). 

 Support Vector Machine optimisation 

A radial basis function was found to provide the best degree of separation for this 

application.  Each radial basis function had two parameters that were optimised by an 

extensive grid search for each individual problem.  The so-called cost parameter (C) 

providing the tolerance of the number of support vectors to include either side of the 

hyperplane presented no clear pattern between detector systems (600-2000) (Hornik 

et al., 2006).  However, the gamma parameter specifying the width of the radial basis 

function varied between the binning systems, RB (< 3) and ROIB (~300).  The R 

package “e1071” was used (Dimitriadou et al., 2008). 

 Quality assessment 

Quality assessment of individual detector configurations was based on the Overall 

Detection Rate (ODR) (eq 22), SEPA’s 20 kBq Mandate Detection Rate (MDR) (eq 

23) and the False Alarm Rate (FAR) (eq 24) of an independent cross-validation 

dataset. Once ML architectures were obtained, 10 resamples (section 5.3.4.3) were 
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taken to obtain a mean and standard deviation to ensure final values were not a chance 

representation.  

 
𝑂𝐷𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (22) 

 

𝑀𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑛𝑑𝑎𝑡𝑒 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑛𝑑𝑎𝑡𝑒 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 
 

(23) 

 

𝐹𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑎𝑙𝑎𝑟𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

(24) 

ODR is a general measure of detectability and does not provide information into the 

Minimum Detectable Activity (MDA) as a function of depth.  For example, certain 

detection systems might be better at identifying sources at the surface but less 

effectively at depth or vice versa.  Subsequently, MDA (α = 0.95) was fitted through 

maximum likelihood using a binary logistic regression (Crawley, 2012). 

5.4 Results and discussion 

5.4.1 Optimisation of Gross Count algorithm 

Initially, K values and the number of lags used in the moving mean were required to 

generate a GC baseline to compare ML to.  Exponential moving mean formulations, 

2/(n+1) and (1/n) for LaBr:Ce and NaI:Tl respectively, were found to yield the highest 

ODR and MDR for the require FAR (α > 0.005).  ODR and MDR behaved very 

similarly with varying lag and K values for both detectors, subsequently only MDR is 

discussed at this stage (Figure 5-5).  Final ODR for the optimised alarms can be found 

in (Table 5-2).  
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Figure 5-5 Mandate detection rates (top plot) and K values (bottom plot) as 

a function lag for NaI:Tl (empty circles and broken line) and LaBr:Ce (full 

circles and unbroken line) detectors. NaI:Tl is on the primary axis and 

LaBr:Ce on the secondary. 

NaI:Tl produced the highest MDR (0.8112), at a lag of 3, either side of this lag a 

decrease in detectability was witnessed. K values appeared to mirror MDR for both 

detectors suggestive that, as more noise was added through a change in lag, K 

attempted to negate its influence. The best detectability was witnessed with the 

smallest K values (NaI:Tl = 3.9 and LaBr:Ce = 6.3).  The higher K value for LaBr:Ce 

and the greater lag (lag = 5), infers that the algorithm struggled to cope with the 

additional noise introduced by internal contamination (Figure 5-1).  This significantly 
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lowered its MDR (0.5352).  Overall, the GC method could not reach the MDR set by 

SEPA for either detector.  

5.4.2 Performance of Machine Learning algorithms  

The performance of all algorithms is summarised for different binning and detector 

configurations (Table 5-2).  The combination of a NaI:Tl, an NN and ROIB provided 

the best ODR of 0.6927 ± 0.008.  What is more, it was the only detector configuration 

able to confidently attain SEPA’s contractual mandate (MDR = 0.9531 ± 0.0072).  

However, ML produced a varying degree of performance depending on the detection 

configuration it was employed on.  This can only be explained through the influence 

of individual detector constituents. 

Table 5-2. Statistics for all detector configurations 

 NaI:Tl LaBr:Ce 

Algorithm ODR MDR FAR ODR MDR FAR 

GC 0.6357 0.8112 0.004 0.5055 0.5352 0.0046 

NN-RB 
0.5982 ± 

0.0069 

0.7044 ± 

0.0867 

0.0024 ± 

0.0008 

0.5427 ± 

0.0082 

0.5277 ± 

0.079 

0.0034 ± 

0.0017 

NN-ROIB 
0.6927 ± 

0.0080 

0.9531 ± 

0.0072 

0.00439 

± 0.001 

0.5479 ± 

0.0040 

0.3642 ± 

0.0504 

0.0048 ± 

0.0015 

SVM-RB 
0.5759 ± 

0.015 

0.6092 ± 

0.0224 

0.0049 ± 

0.0020 

0.4873 ± 

0.0153 

0.2028 ± 

0.0505 

0.0041 ± 

0.0023 

SVM-

ROIB 

0.6693 ± 

0.0011 

0.8855 ± 

0.012 

0.0039 ± 

0.0017 

0.5058 ± 

0.0194 

0.3858 ± 

0.0653 

0.0086 ± 

0.0056 
 

 

5.4.3 Detector influence 

 Between the two detectors, NaI:Tl consistently proved to be the most reliable for all 

ML (Table 5-2).  For instance, the range of MDR for NaI:Tl (0.6092 ± 0.0224 - 0.9531 

± 0.0072) was consistently higher than LaBr:Ce (0.2028 ± 0.0505 - 0.5352).  Notice, 

ML did not show any improvement over GC in MDR for LaBr:Ce (although some 
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improvement is demonstrated in ODR).  This indicates LaBr:Ce, although it has 

higher energy resolution and efficiency, is not suitable for this application.  Poor 

results were almost certainly attributed to the noise introduced, across the entire 

spectrum, by intrinsic counts over the short acquisition time.  This noise would have 

disguised weaker source signals and made it more difficult for any algorithm to 

identify the occurrence of source signal.  Even after certain bins corresponding to the 

most contaminated regions were removed no improvement in detection was found.  

Conversely, NaI:Tl does not suffer from significant internal contamination permitting 

algorithms to isolate source signal with more confidence.  From an economic 

perspective this finding is beneficial since NaI:Tl is approximately a fifth of the price 

of LaBr:Ce.  That said, LaBr:Ce’s superior energy resolution could play a more 

significant role in accurate depth and activity estimates useful for mapping purposes.  

What is more, post processing noise reduction techniques could be applied in this 

scenario (Green et al., 1988, Aage et al., 1999).  However, given the difference in 

performance between the detectors, further discussion will focus on NaI:Tl due to its 

superior hot particle detection performance. 

5.4.4 Binning system influence 

ROIB provided a consistent increase in detectability (MDR and ODR) over RB (Table 

5-2).  In fact RB provided no or little improvement over GC.  This implies by operating 

fewer bins and tracking changes in sensitive areas known to be associated with source 

contributions, rather than employing more of a formulated approach, source 

identification can be improved.  The reason for this disparity could be down to the fact 

that many of the relatively narrow bins generated by the RB, for a single measurement, 
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contained very few counts or even zeros, which introduces excessive noise.  To add 

to this complication, some spectral regions of importance were divided between two 

bins for instance the bin break at 2220 keV for NaI:Tl (Figure 5-4).  Some regions 

may also have been unnecessarily separated into multiple bins (i.e. below 200 keV) 

exhibiting unnecessary correlation. A combination of these elements resulted in the 

ML over-fitting to both the noise structure and benign changes, making it less 

sensitive to more subtle source contribution.  The reduction in bins (through ROIB) 

has alleviated some counting noise and simplified the fitting process.  This allowed 

ML to be more robust to changes in overall spectral shape and ultimately leading to 

better source discrimination.  As highlighted earlier, optimisation algorithms could 

aid in the decision of bins (Wei et al., 2011). 

5.4.5 Machine Learning algorithm comparison 

 In the majority of cases NN provided better results than SVM (Table 5-2), implying 

that the NN were more efficient at dividing background-source populations.  A 

possible reason for this difference may be that NN were slightly better at defining non-

linear boundaries within the feature space.  However, finding support from the 

literature is difficult since this is the only study (to the best of the authors’ knowledge) 

to compare the methods in a gamma spectroscopy setting. Studies in other scientific 

areas have found their performance to be similar (Byvatov et al., 2003, Zhang et al., 

2008). 

5.4.6 Advantages of Machine Learning 

 The advantage of using ML to interrogate spectral shape as opposed to total signal 

(GC) can be better understood by reviewing the MDR with total mean count rate 
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(Figure 5-6).  At low total mean count rate, MDR was relatively high for all algorithms 

(>0.85).  However, as total mean count rate increased, GC’s MDR decreased to below 

0.7 at the highest total mean count rates.  Concurrently, ML tended to be significantly 

more stable across the total mean count range.  At the limits of each population a large 

amount of uncertainty is observed due to the low sampling size.  

 

Figure 5-6 General trends in mandate detection rate as a function of 

total mean count rate for optimised neural network, support vector 

machine and gross counts algorithms for NaI:Tl. Machine learning 

algorithms used the region of interest bins. Sample density and 

confidence intervals (α = 0.95) are included. 

 

 

One fundamental reason behind this is GC attempts to separate source and background 

by assuming them to be two independent univariate Gaussian distributions where the 
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standard deviation (α = 0.68) is the square root of the mean (Knoll, 2010).  To explain 

this, consider two background count rates of 100 ± 20 and 250 ± 32 and the 

introduction of a fixed source contribution of 35 ± 12 (α = 0.95).  For the first scenario, 

source and background distributions will not significantly overlap allowing the alarm 

to be triggered seeing as T is confidently breached (eq 20).  Yet in the second case, 

populations will significantly overlap ending up in the source being missed. 

Subsequently by using one bin, the signal to noise ratio is reduced relatively 

consistently with increasing count rate.  

By dividing the spectrum into ROIB, more subtle spectral changes occurring across 

the entire spectrum are captured within spectral comparison ratios.  Although the 

amount of counts has not increased an overall increase in signal to noise ratio is 

witnessed (Ely et al., 2006).  This leads to source information being preserved more 

efficiently with increasing background count rate.  

Another factor is that larger benign systematic fluctuations tend to occur with higher 

total count rate as some areas will be cluttered with discrete background sources (i.e. 

masonry or rocks).  GC tends to false alarms more regularly in such areas (Figure 5-3).  

To circumvent this occurrence a larger value of K has to be set, thus lowering the 

MDR in higher count rate areas (eq 1).  A dynamic function fitted to K allowing it to 

take into account general systematic changes with varying mean count rate could 

arguably be employed.  This could decrease FAR slightly.  ML methods (NN and 

SVM), because they take into account changes in shape as well as overall magnitude, 

they are better able to cope with benign fluctuations and ultimately be more sensitive 

to source contributions.    
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Figure 5-7 Minimum detectable activity (α = 0.95) functions fitted for 

selected detector configurations. 95% confidence intervals and 

SEPA’s mandate are included. Region of interest bins were applied to 

all. 

 

The improvement ML offers in comparison to GC is demonstrated by observing the 

MDA with depth (Figure 5-7).  NN permitted the NaI:Tl to detect all activities on 

average 0.1 m deeper into the soil column compared to GC, for example 1 MBq could 

be detected down to a depth of 0.46 m using GC whilst NN could distinguish down to 

a depth of 0.55 m.  SVM demonstrated less of an improvement over GC although still 

noticeable.  SVM could detect on average 60 mm further into the soil column. 
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The influence of detector is apparent.  The optimised LaBr:Ce, operating an NN, could 

only just detect SEPA’s mandate at the surface, whereas the optimised NaI:Tl could 

detect it down to a depth of 0.16 m.  Notice at greater depths this disparity diverges 

slightly, for instance LaBr:Ce could identify a 20 MBq hot particle to a depth of 0.7 

m, however NaI:Tl (0.9 m) could detect the same activity 0.2 m deeper.  This may 

have been caused by the majority of source photon being scattered to low energy into 

a region of substantial contamination for LaBr:Ce (< 400 keV) (Figure 5-1).  

5.5 Future prospects for Machine Learning in routine monitoring 

It has been shown that through the use of ML a marked improvement in detection rate 

could be obtained by a simple change in software as opposed to expensive hardware 

changes.  However, there are considerations that must be taken into account before 

employing the technique. 

NN, and to some extent SVM, are powerful when making predictions within the 

confines of the training dataset as demonstrated through this work.  Yet when 

presented with data outside of this convex hull they are very poor extrapolators (Haley 

& Soloway, 1992, Dragović et al., 2006).  One of the main concerns in this application 

is the ability of NN to manage changes in background populations brought about by 

variations on spatial and temporal scales.  The spectral comparison ratios 

transformation to some extent negates this influence (eq 21).  

However, it was found by using two subsets of my data from different parts of the 

time series and geographical positions, one to train and test and one to cross validate, 

the detection systems performance was significantly reduced.  This infers that 

background variations at Dalgety Bay are complex and cannot be taken fully into 
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account by using spectral comparison ratios.  Hence for optimum performance, the 

background population must be well characterised for all individual areas.  This 

eventually is very much attainable in routine monitoring given that large amounts of 

data, typically hundreds of thousands of spectra, can be generated over a relatively 

short period of time.  This should allow ML to work within the limits of the known 

population and ultimately be more sensitive to radiation fields from hot particles.  

Nonetheless, the inter-site capability of the approach may be limited for real-time 

detection. 

Another important issue to be addressed is the representativeness of source calibration 

data.  This study adopted a simplified model on the grounds that correlating materials 

between the Monte Carlo model and background data is unfeasible.  However, 

acquiring data from routine monitoring may provide a means of supplying additional 

source data to update the model.  

5.6 Conclusions 

The identification of 226Ra hot particles through real-time analysis of gamma-ray 

spectroscopy data can be problematical particularly in the case of a weak source signal 

and variable background.  It has been demonstrated that ML can significantly improve 

detection limits in this situation by focussing on changes in spectral shape compared 

to conventional total count rate algorithms.  In this context, the intrinsic contamination 

of LaBr:Ce resulted in poor detection rates compared to NaI:Tl for the detection of 

226Ra hot particles.  These findings represent a relatively inexpensive development in 

routine monitoring.  The approach outlined in this study could arguably be applied to 

other sites and other radioisotopes; notably 137Cs.   
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6.1 Abstract 

Radium (226Ra) contamination derived from military, industrial and pharmaceutical 

products can be found at a number of historical sites across the world posing a risk to 

human health.  As a consequence of the irregular and sometimes unrecorded disposal 

patterns, some sites present challenging environments in which to accurately 

characterise the activity, depth and lateral distribution of contamination.  Handheld 

gamma-ray spectrometry offers a tool to gain an understanding into localised radiation 

field through the analysis of each spectrum and using a large number of spectral 

measurements can provide a robust means of characterising an extensive area.  

However, local heterogeneity of the natural background, statistical counting 

uncertainty and non-linear source response are confounding problems associated with 

spectral analysis when attempting to deal with enhanced concentrations of a naturally 

occurring radionuclide such as 226Ra.  As a result, conventional surveys tend to 

attribute the highest activities to the largest total signal received by a detector (gross 

counts): an assumption that tends to neglect higher activities at depth.  To overcome 

these limitations, a new approach employing Machine Learning methods is used in 

the analysis of gamma-ray spectra and a comparison is made to assess the advantage 

of the superior spectral resolution of Lanthananum Bromide is explored compared 

with a standard Sodium Iodide.  Here representative Monte Carlo simulations were 

directly compared to field spectra through feature extraction using Principal 

Component Analysis and the pattern recognition capabilities of Machine Learning 

methods (Neural Networks and Support Vector Machines).  Two handheld 

scintillators (Sodium Iodide and Lanthanum Bromide) were implemented.  It was 

demonstrated that through a combination of Neural Networks and Lanthanum 
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Bromide the most accurate depth and activity estimates could be estimated. The 

optimised approach was demonstrated on a case study site, which revealed areas of 

significantly higher activity than initially explored surface contamination 

corresponding to gross counting hotspots. 
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6.2 Introduction 

6.2.1 Radium contaminated legacy sites 

Radium (226Ra) was used extensively during the 20th century in military, industrial and 

pharmaceutical products (Tyler et al., 2013).  226Ra has a half-life of over 1600 years 

and is the parent of an additional eight radioactive elements that together produce a 

complex array of alpha, beta and gamma emissions (Pratt, 1993).   Follow-up studies 

into the health implications of radium dial workers in the US typify the risks associated 

with long-term radium exposure (Stebbings, 2001).  Within the UK, radium was used 

extensively as a composite in luminescent paint principally by the military during 

wartime periods.  Prior to the Radioactive Substances Act 1960 (HMSO, 1996) vast 

inventories of waste were routinely burned and buried with little record presenting 

complex remediation challenges (Wilson et al., 2013).   

A report published in 2012 by the UK government, conservatively estimated there to 

be 150-250 Radium Contaminated Legacy Sites (RCLS) linked to Ministry of Defence 

activities within the UK (DECC, 2012).  Moreover, it was recognised that there could 

be as many as 1000 contaminated sites in the UK alone.  Similar RCLS can be found 

across other parts of Europe and North America (IAEA, 1998).   

UK legislation has now provided the Scottish Environmental Protection Agency 

(SEPA) with a framework to classify radioactively contaminated land and set 

guidelines to describe the amount of contamination that may give rise to significant 

harm to humans (The Radioactive Substances Act 1993 Amendment (Scotland) 

Regulations, 2011).  Subsequently, homogeneous contamination at RCLS in Scotland 

is controlled by the following criterion: 
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a) An effective dose must not exceed 3 mSv per annum (Statutory Guidance to 

support the Radioactive Contaminated Land (Scotland) Regulations, 2008).   

Surface flux measurements using dosimetry can be used to rapidly assess the effective 

dose (IAEA, 1998).  Yet, this measurement is somewhat limited in thoroughly 

assessing the activity and burial depth of homogeneous contamination, which tend to 

change significantly across a RCLS (Varley et al., 2015b).  These factors are critical 

pieces of information for long-term remediation purposes, particularly at sites that are 

exposed to the public, where changes in site use or erosion events may occur 

increasing the risk of contact (Dale et al., 2013). 

Currently, no single Scottish legislation can be used to specifically outline an activity 

limit that must not be exceeded for suspected homogeneous contamination at a RCLS.  

Therefore, in this study I accept that 226Ra should be treated under the exemption for 

Naturally Occurring Radioactive Materials declaring: 

b) An activity must not exceed 10 Bq g-1(Statutory Guidance to support the 

Radioactive Contaminated Land (Scotland) Regulations, 2008). 

The discrete nature of the items that were initially disposed of can also lead to the 

formation of hot particles.  At one RCLS at Dalgety Bay, Fife, Scotland, a diverse 

range of hot particles and historic artefacts (< 70 MBq) has been found (Dale et al., 

2013).  If such items were to be picked up by a member of the public this may result 

in a significant committed dose (Tyler et al., 2013).  A method for the real-time 

identification of 226Ra containing hot particles at RCLS has been outlined in my 

previous work (Varley et al., 2015a). 
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In light of the uncertainties behind site formation and the lack of disposal records, 

once a RCLS has been identified the contamination should be systematically 

characterised to ascertain the risk it poses to long-term human health; thus going 

beyond limited surface dosimetry estimates (IAEA, 1998).  In this paper I propose a 

method that can be rapidly and inexpensively deployed at a RCLS to provide accurate 

estimates of near surface homogenous 226Ra contamination depth, activity and spatial 

distribution.   

6.2.2 Environmental gamma-ray spectroscopy 

Handheld gamma-ray spectroscopy (HGS) or mobile gamma-ray spectroscopy, 

generally performed using inorganic scintillators, is often the cheapest and most 

robust technique of characterising RCLS (IAEA, 1998, IAEA, 2003, Knoll, 2010, 

Dale et al., 2013, Read et al., 2013, Haddad et al., 2014).  Using this method the spatial 

extent and activity of gamma-emitting radionuclides can be estimated using remote 

surface measurements without the need for time-consuming invasive methods (Tyler, 

2008).   Individual energy spectra produced during a survey are representative of the 

localised radiation field a detector has passed through (Beck et al., 1972).   

For mapping purposes each spectrum can be post-processed using an algorithm to 

unfold spectral information (Kock et al., 2012).  The first objective of this unfolding 

process is to identify whether there are characteristic signals from radium 

contamination (source), which typically differ in shape from background spectra 

(Figure 6-1A).  However, source-background separation is often complicated by 

spatial fluctuations in background (40K, and the 238U and 232Th series) and benign (137C 

in the case of RCLS) radioelements, alongside variations in soil density and 
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composition, which together introduce nuisance spectral changes (Runkle, 2006).  

Fagan (2012) presents an informative review of the challenges associated with, and 

the techniques employed in, spectral classification. 

 

Figure 6-1. A) Nonlinear spectral response as a function of 

homogeneous source burial depth and a typical background taken 

using 71 x71 mm NaI:Tl detector. B) Spectra taken over 1 second 

demonstrating stochastic noise of background and 25 cm extended 

source. 

 

Once a contaminated spectrum has been identified, the second aim is to identify 

elements that are symptomatic of source burial depth and activity (Figure 6-1A).  
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Notice non-linear changes take place across the spectrum as the burial depth of a 

source varies: for example lower energy peaks are attenuated more relative to higher 

energy peaks with increasing burial depth.   

The multiple photopeak method aims to capture this occurrence by calculating the 

area under two background-subtracted full energy peaks with the purpose of 

comparing the observed ratio to that of a calibrated one to estimate source burial depth 

and activity (Miller et al., 1994, Haddad et al., 2014).  Another method that utilises 

more spectral information is termed Full Spectral Analysis (FSA).  FSA compares the 

spectral similarity of an obtained spectrum to a calibration library by a weighted least-

squares fitting procedure using the majority of spectral channels (Maučec et al., 2004, 

Caciolli et al., 2012, Guastaldi et al., 2013).   

The practical application of to these methods is however somewhat limited by 

stochastic noise presented within individual spectra introduced as a consequence of 

the short count times required to map a RCLS in high resolution within a limited time 

period (IAEA, 1998, Alamaniotis et al., 2013a) (Figure 6-1B).  Subsequently, many 

HGS surveys fall back on unsophisticated spatial interpretation methods such as the 

total signal (gross counting) where the highest activities are attributed to the highest 

count rates (Adsley et al., 2004).  At the majority of RCLS, this assumption is known 

to break down and higher activities at greater depths fail to be acknowledged (Figure 

6-2).  For example, a 0.1 Bq g-1 homogenous source at the surface will produce an 

identical signal to a 1 Bq g-1 homogenous source (radius 1 m) buried at approximately 

40 cm. Furthermore, weaker source signal can easily be mistaken for background.   
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Figure 6-2. Total signal from background, 0.1 and 1 Bq g-1 

homogeneous sources as a function of burial depth. 

This paper investigates i) whether improvements can be made into the identification 

and estimation of depth and activity of homogeneous 226Ra contamination through 

consideration of the distribution of counts across the spectrum and ii) whether the 

superior energy resolution of LaBr:Ce can demonstrate improvement compared to 

conventional NaI:Tl.  This was achieved through a novel multivariate approach that 

develops the noise suppression and dimensionality reduction properties of the 

Principal Component Analysis (PCA) transform alongside the pattern recognition 

capabilities of Machine Learning (ML).   
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6.3 Material and methods 

6.3.1 Field site and data collection 

The case study site is found in Scotland, although its exact location cannot be 

disclosed and thus coordinates have been made anonymous and background maps are 

not included.  The site has known to be associated with 226Ra contamination for some 

time due to the historic disposal of military products.  Large sections of the site 

suspected of being contaminated could not be accessed due to undergrowth.  All 

measurements were taken under the supervision of SEPA.   

Site access also provided a good opportunity to perform a supplementary HGS 

detector comparison alongside novel spectral processing techniques.  The first 

detector, Sodium Iodide (NaI:Tl), was chosen as it is the workhorse of environmental 

gamma-ray spectroscopy and in my previous work has proved effective at determining 

the depth and activity of 226Ra (Varley et al., 2015b) (Figure 4A).  The second detector, 

Lanthanum Bromide (LaBr:Ce), has over the past decade received much interest since 

it provides better energy resolution (~2.5% at 662 keV) than the NaI:Tl (~7% at 662 

keV) at the same time as offering similar robustness (Guss et al., 2010) (Figure 4B).  

However, each LaBr:Ce spectrum presents a large number of background counts 

distributed throughout the spectrum owing to internal isotopes (138La and 227Ac) (Iltis 

et al., 2006).  Although laboratory comparisons have been performed between these 

two detectors, limited field comparisons have been performed (Menge et al., 2007, 

Milbrath et al., 2007).  

Over the course of four days, in excess of 25,000 spectra were collected using the two 

detectors (both 71 x 71 mm).  To ensure that spectra acquired by each detector were 
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comparable the detectors were attached to a wheel barrow system, offset 

longitudinally by 0.5 m and attached at a height of 0.1 m from the floor, to ensure the 

same ground was covered. 1024 channel spectra were acquired using Ortec’s Maestro 

software every second together with GPS coordinates provided by an SX Blue II 

differential GPS with a 0.6 m positional accuracy.  A walking speed of 0.5 m s-1 was 

maintained during the survey.  Data were logged and displayed in real-time with 

Stirling Mobile Gamma Spectrometry System (SMoGSS), software developed in-

house, which also provided alarms when anomalous spectra are acquired. 

It was acknowledged to adequately characterise the contaminated areas of the site the 

background spectral population would have to also be accurately characterised to use 

as a baseline in later modelling. Therefore, 10,000 spectra (approximately 30 % of the 

entire dataset) were taken within an area of background radiation next to the site. 

6.3.2 Monte Carlo Simulations 

To obtain a representative detector spectral response for a given detector to 

homogeneous source geometry can be problematic if attempted through laboratory 

based calibrations (Maučec et al., 2009).  This is due to complications associated with 

distributing a radioactive source and also obtaining one active enough to provide 

acceptable counting uncertainties at greater depths after subtraction of the background 

(Hendriks et al., 2002).  Consequently Monte Carlo Simulations (MCS) were used in 

this study (Allyson & Sanderson, 2001).   
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Figure 6-3. Schematic diagram of the two-layer Monte Carlo model 

used to acquire source spectral responses. 

 

Source spectra were generated using the software package Monte Carlo N-Particle 5 

(MCNP5) (Briesmeister, 1993).  It was acknowledged that a wide-range of source 

geometries may be present at the site; thus posing an intricate source population to 

model.  Therefore, for simplicity the majority of contamination was assumed to be 

heterogeneously distributed and underneath an unknown depth of overburden.  This 

permitted a simple two-layer cylinder model to be developed within MCNP5 (Figure 

6-3). The bottom layer was assumed to homogenously contaminated down to a depth 

of 0.8 m, and the thickness of the upper layer was altered to simulate increasing non-

contaminated overburden (Thummerer & Jacob, 1998).  

Only the key features of each detector were retained within MCNP5, such as the active 

volume, aluminium canning, photomultiplier tube, protective outer casing and Ortec’s 

digiBASE unit.  Importantly, spectra obtained from coded detector geometries closely 
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matched that of spectra derived from calibration pads (Varley et al., 2015b).  The 

geological matrix was composed of Beck’s “standard” soil composition at a density 

of 1.3 g cm-3 (Beck et al., 1972).  Radium decay data was sourced from the National 

Nuclear Data Centre (2013) and only emissions above 1% were used.  The detector’s 

field of view was considered to be small as the detector was positioned at 0.1 m height 

and the majority of contamination was thought to be buried and localised: resultantly 

a 1 m radius was used in the model (De Groot et al., 2009).  What is more, 

contamination at RCLS has been found to be intermittently spaced often not extended 

beyond a 1 m radius.  To reduce statistical uncertainty in individual energy bins the 

maximum number of starting particles within MCNP5 (2 × 109) was sourced for each 

run (Moreira et al., 2010).  

6.3.3 Dataset generation  

A synthetic spectral calibration dataset was produced by spiking spectra taken from 

the background area with MCS derived 226Ra spectra (Kangas et al., 2008).  The 

calibration dataset was then compared to spectra obtained from the contaminated area.  

To confirm model optimisation was being achieved, three different datasets were 

developed: training, test and cross-validation (Dragović et al., 2006).  The training 

dataset was comprised of background spectra that had been accumulated over a 60 

second period and spiked with statistically defined MCS (2 × 109 starting particles).  

This provided a clear spectrum with well-defined shape to produce an optimised 

model fit.  To confirm the modelling approach fitted to general patterns within the 

data verification was sought against the test and cross-validated datasets that 

possessed realistic stochastic noise elements (Moreira et al., 2010). These datasets 

were formed from 1 second background spectra combined with a noisy MCS 226Ra 
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spectrum, whereby a limited number of starting particles were sourced.  This scenario 

is characteristic of a real activity over a 1 second acquisition i.e. 2,184,000 would be 

equivalent to 1,000,000 Bq after MCNP5 normalisation where Radium has a decay 

probability of releasing 2.184 photons Bq-1.  Normalised MCNP output was converted 

to counts second-1 Bq-1 g-1 according to Hendriks et al. (2002) and to reproduce the 

characteristic resolution of each detector statistical broadening was introduced after 

individual runs.  To improve activity estimates of later fitting processes to within a 

relevant environmental range, a maximum activity of 20 Bq g-1 was used (Varley et 

al., 2015b). 

6.3.4 Spectral binning 

HGS spectra obtained over 1 second tend to exhibit large counting uncertainty 

(Alamaniotis et al., 2013b) (Figure 6-1B).  In my previous work (Varley et al., 2015a) 

using NaI:Tl and LaBr:Ce I have found it more suitable to observe general changes in 

spectral shape by transforming each spectrum into a smaller number of non-

overlapping energy bins (typically 10-25 bins depending on the detector).  This 

negates some counting noise without significant loss of energy differentiation (Jarman 

et al., 2008).  Two binning methods were implemented.  The first placed bins around 

Regions of Interest (ROIB) based on characteristic 226Ra emissions and scattering 

regions (Figure 6-4).  The second more systematic approach, coined Resolution 

Binning (RB), developed bins based upon the deterioration of energy resolution with 

increasing energy (Runkle, 2006).    
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Figure 6-4. Binning methods for NaI:Tl and LaBr:Ce detectors. 

ROIB used on a NaI:Tl was shown to be the most effective detector setup in the routine 

monitoring of 226Ra “hot” particles.  However, this work is inherently different given 

that it is not practical to transform bins into the time series in order to negate local 

background changes as large areas were known to be homogeneously contaminated.   

Therefore, the employment of Principal Component Analysis to directly compare 

background and source could favour more bins (RB) and the superior energy 

resolution and energy efficiency of LaBr:Ce, since counts from internal contamination 

may be supressed more efficiently.  

Importantly, energies below 250 keV were discarded from analysis given that large 

systematic variations take place on a spatial scale that can be very challenging to 
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predict (Caciolli et al., 2012).  This can be attributed to the photoelectric effect 

becoming the dominant form of photon interaction, which is controlled by the 

composition of the soil matrix (Tyler, 2008). 

6.3.5 Principal Component Analysis  

Principal Component Analysis (PCA) was employed to produce a set of noise reduced 

uncorrelated spectral shapes known as Principal Components (PCs) (Du et al., 2010).  

Importantly, before the dataset was spectrally decomposed it was noise adjusted to in 

attempt to yield equal variance in all channels (Hovgaard, 1997).  Subsequently, PCs 

were ordered according to the total variance contributed to the dataset under the 

assumption the majority of variance corresponds to signal in the lower order PCs and 

uncorrelated noise in the higher order PCs (Hotelling, 1933).  All but the first few PCs 

were then discarded substantially reducing the dimensionality of the dataset and 

alleviating uncorrelated elements associated with counting noise (Runkle, 2006).  

Furthermore, spectral drift components were also separated out into higher order PCs.  

Patterns within the first few PC loadings, corresponding to signal, were then used to 

infer whether there were contributions from 226Ra and at what depth and activity it 

was occurring (Adams et al., 2012) (Figure 6-5).   
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Figure 6-5. Patterns within loadings from the PCs 1,2 and 3 for 

NaI:Tl between Monte Carlo derived cross-validation set (circles) and 

field results (triangles). Notably, burial depth is separated within 

Principal Component space (yellow indicates surface and red buried) 

and increasing distance from the background pack (Cyan ellipse) 

infer increases in activity. 
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PCA was performed on the entire dataset (training, test, cross-validation and field 

spectra) to enable field spectra to be encompassed into the same PCs structure as 

known synthetic data providing a direct means of spectral comparison (Varley et al., 

2015b) (Figure 6-5).  Notice that depth (angle from background population) and 

activity (distance from the background population) could be inferred from the first 

few PCs.  However, non-linearities were presented within the PCA transformed data 

that were problematic to encapsulate using convention regression and classification 

algorithms, such as non-linear regression (Adams et al., 2012) and Mahalanobis 

distance (Runkle, 2006). 

6.3.6 Machine Learning 

A solution to extracting significant patterns within PC loadings is offered by data-

driven Machine Learning (ML) algorithms (Sharma et al., 2012).  Providing there is 

sufficient data available to robustly train and test models, ML is able to fit to high 

dimensional, complex feature spaces where noise structure may differ from Gaussian 

(Figure 6-5).   Recent developments in software have provided user-friendly 

development environments tailored towards practical application (Ao et al., 2010).  

For these reasons, ML has been used to interpret gamma spectroscopy data previously 

(Yoshida et al., 2002, Dragovic et al., 2005, Kangas et al., 2008, Wei et al., 2010, 

Sharma et al., 2012).  Early exploration and previous experiences offered two 

promising ML methods: Neural Networks (NN) and Support Vector Machines (SVM) 

(Varley et al., 2015a). 

It was found early on to generate optimum performance for ML it was more suitable 

to divide the modelling task into two:    
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i) To classify PC loadings into source or background.   

ii) Apply a regression to provide depth and activity estimates. 

 

Binary classification presents a trade-off between false positive and true positive rates, 

and as there was no predefined false positive rate, Receiver Operator Characteristics 

(ROC) was chosen as a robust measure of detection rate (T.J. Stocki et al., 2008).  To 

quantify classification, the Area Under the Curve (AUC) of an ROC plot was 

calculated where values closer to one were considered better classifiers.  To robustly 

test the classifiers, a uniform random sample of activities (0.1 - 2 Bq g-1) and depth (0 

- 0.8 m) was drawn to derive AUC from the cross validation set.   

Regression performance was assessed by calculated the R2 value between model 

prediction and actual values on the cross validation set which was formed by a uniform 

random sample of activities (0.1 - 20 Bq g-1) and depths (0 - 0.8 m) (Moreira et al., 

2010).  To ensure uncertainties on final estimates could be assess for the final 

optimised model, it was fitted and cross-validated to 10 randomly drawn spiked 

dataset (section 6.3.3) providing a standard error and mean for each field 

measurement.  PCs were normalised to their mean and variance. Approximately 4000 

data points were used to train (70%) and test (30%) ML (Dragovic et al., 2005). 

 Neural Networks 

The topology of an NN can be compared to the structure of a brain in that it is made 

of separate processes units or nodes that are connected by synaptic weights (Yoshida 

et al., 2002).  In this study, a Multi-Layered Perceptron was used from the R package 

“RSNNS”, in which nodes were separated into three individual layers(Bergmeir & 
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Benítez, 2012a).  PC loadings were feed into the first input layer, which was then 

passed onto the hidden layer where a non-linear sigmoidal transformation was 

performed to map transformed explanatory variables onto the output nodes or 

response variable(s) (Olmos et al., 1992).  Backpropogation was used to train NN and 

global convergence was attempted through minimising the Relative Mean Square 

Error (RMSE) between the training and test sets (Riedmiller & Braun, 1993).  The 

architecture of a NN often reflect the complexity of the problem it is attempting to 

solve; consequently the number of hidden neurons and learning epochs had to be 

optimised via an extensive grid search (Dragović et al., 2006).  Only a single layer of 

hidden neurons was explored as it was found a second layer did not significantly 

enhance performance.   

 Support Vector Machines 

SVM address a problem in a different manner to NN, through the introduction of 

maximal-margin separating hyperplanes into the non-linear feature space utilising the 

so called “kernel” trick (Cortes & Vapnik, 1995).  As a result, SVM are particularly 

powerful binary classifiers however multiple response regression is difficult, thus 

SVM were only considered for classification.  A radial basis function was found to be 

the most appropriate kernel for this case (Sangeetha & Kalpana, 2010).  Therefore, 

the cost (C) and gamma parameters on the kernel had to be optimised, which was also 

accomplished using a grid search (Hornik et al., 2006). The R package “e1079” was 

employed. 
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6.3.7 Spatial interpolation 

Estimations of activity and depth of contamination were found to vary considerably 

on a sub-metre scale predominantly due to localised spatial variability of 

contamination, but also as noise introduced through the modelling process. This 

makes geostatistical methods such as Kriging, which attempt to model spatial 

autocorrelation, difficult for this application.  In addition, spatial extrapolation and 

significant interpolation would be unfeasible. Therefore, deterministic Inverse 

Distance Interpolation was preferred as it fits through all sample points and is based 

upon the assumption the weight of a sample is inversely proportional to its distance; 

a phenomenon that closely follows the inverse square law of a radiation field 

(Shepard, 1968). 

6.4 Results and discussion 

6.4.1 Spectral classification 

The best classification results, independent of algorithm, detector or binning method, 

were found by using the first 3 PCs, consistent with source signal being captured 

within these first few PCs and lower order PCs containing principally noise (Dickson, 

2004).  This result significantly reduced dimensionality and simplified detection. This 

could explain the reason why the number of hidden neurons was consistently below 

10 and learning tended to converge around 4000 epochs for all optimal classification 

NNs.  SVM gamma (300-1000) and cost (100-800) were relatively large implying the 

classification boundary required a close-fitting boundary that was highly dependent 

on individual training points (Meyer & Wien, 2014) 
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Table 6-1. Area Under the Curve values for different detector, binning 

system and algorithm combinations. 

 NaI:Tl LaBr:Ce 

Algorithm 
Binning system Binning system 

RB ROIB RB ROIB 

Mahalanobis 0.788 ± 0.004 0.786 ± 0.006 0.785 ± 0.007 0.792 ± 0.005 

NN 0.831 ± 0.005 0.830 ± 0.003 0.836 ± 0.004 0.840 ± 0.006 

SVM-ROI 0.815 ± 0.003 0.793 ± 0.005 0.796 ± 0.006 0.824 ± 0.005 
 

 

ML methods showed a significant improvement in AUC (0.793 – 0.840) over 

traditional Mahalanobis distance (0.786 – 0.792) (Table 6-1).  This suggests the 

classification boundary was non-linear and so, a Gaussian assumption was too 

simplistic to accurately model the boundary, whereas the ML algorithms were capable 

to define these accurately.  Of the two ML methods, NN (0.831 – 0.84) consistently 

outperformed SVM (0.793 – 0.824) for all detector configurations.  However, patterns 

within the two binning systems are harder to explain since RB produced better results 

for NaI:Tl whereas ROIB suited LaBr:Ce better. For LaBr:Ce this may be due to the 

alleviation in counting noise through fewer, logically placed, bins aiding in the de-

noising process particularly in contaminated areas (Figure 6-4b).  NaI:Tl with almost 

no internal contamination, more bins may have providing more information in which 

to draw more representative PCs from.  

In previous work where a real-time application was needed the internal contamination 

posed by LaBr:Ce was found to hinder its detection capabilities (Varley et al., 2015a).   

However, the ability to post-processing and thus negate the influence of intrinsic 

counts using a technique such as PCA demonstrates that the superior energy resolution 

and efficiency of LaBr:Ce can still be utilised to provide improved detection rates over 

a s short count time.  Another reason could be that in a real-time application a 
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relatively large number of input dimensions are required (13 bins) to capture spectral 

shape changes.  The smaller number of noise-reduced PCs (3 loadings) provided a 

clearer signal for ML to distinguish between.  

6.4.2 Depth and activity estimates 

As with the classification results it was found that using the first 3 PCs as inputs 

produced the lowest R2 values for all NNs.  10,000-15,000 learning epochs was found 

to be adequate to train all NN before convergence between training and test sets was 

met.  More neurons were needed for RB (18 – 20), in comparison to ROIB (10-15), 

suggesting the structure of data in the feature space was slightly more complex for 

RB.  

Table 6-2. R2 values for depth and activity estimates for different 

detector and binning system combinations.   

 NaI:Tl LaBr:Ce 

Response 

variable 

Binning system Binning system 

RB ROIB RB ROIB 

Activity 
0.693± 

0.004 

0.691± 

0.003 
0.738 ± 0.002 0.752± 0.003 

Depth 
0.527± 

0.006 

0.544± 

0.003 
0.590 ± 0.004 0.608 ± 0.005 

 

 

Consistently higher R2 values, for activity and depth, using either binning system, 

were found for LaBr:Ce (0.729-0.752 and 0.584-0.608, respectively) when compared 

to NaI:Tl (0.691-0.696 and 0.508-0.544, respectively) (Table 6-2).  This further 

supports the argument that the superior energy resolution and efficiency of LaBr:Ce 

could be utilised for environment monitoring on condition that there is enough training 

data to implement a post processing algorithm (such as PCA) to lessen the effect of 
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nuisance signals from internal contamination .  For HGS monitoring where real-time 

output is required, NaI:Tl is probably still the most reliable detector.  Again using 

fewer, more systematically placed energy bins (ROIB), provided higher performance.  

6.4.3 Analysis of case study site 

Spectral classification and regression of field data was performed using two NN on 

ROIB-LaBr:Ce spectra.  Activity and depth estimates of source spectra demonstrate 

the advantages the approach (Figure 6-6. Activity and depth estimates alongside 

standard error for source spectra from field site. Colour ramp indicates gross count 

rate.).  The majority of highest activity contamination (> 1 Bq g-1) was estimated to 

be buried beyond 0.2 m with the highest activities occurring at greater depths (0.3-0.5 

m).  Hotspots identified during the survey using straightforward gross counting 

(yellow and red colours), although they represent the highest surface dose rates they 

were relatively low activity (<1 Bq g-1) positioned at the surface (< 0.05 m).   
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Figure 6-6. Activity and depth estimates alongside standard error for 

source spectra from field site. Colour ramp indicates gross count rate. 

 

Another feature is the exponentially increasing manner of the activity of detected 

source spectra with greater depth.  This represents the limit of detection, beyond these 

depths 226Ra could not be confidently separated from background by the classification 

NN.  Notice that the standard error for measurements generally increases with greater 

depth.  This can be attributed to fewer source counts across the spectrum producing a 

lower signal to noise ratio making the fitting procedure more difficult for the 

regression NN.    
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Contamination at this site could not be identified beyond 0.6 m, because at these 

depths much higher activities would have been beyond the limit of detection (Figure 

6-6).  This reflects the ultimate limitation of in situ and mobile gamma-ray 

spectroscopy.  To gain a better assessment of deeper contamination borehole 

measurements should be taken and a similar spectral processing approach could be 

applied (Varley et al., 2015b). Alternatively, longer counting times using a higher 

resolution detector, for instance a High Purity Germanium detector, could be 

implemented.  However critically, the current investigation provides evidence that the 

critical value for the exemption of Naturally Occurring Radioactive Material (above 

10 Bq g-1) is not exceed at the site at less than 0.6 m. 
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Figure 6-7. 3 dimensional plot demonstrating activity (colours) and 

vertical depth (z plane) of a section of contamination at the site taken 

using a LaBr:Ce detector and processed using a Neural Network.  

The spatial distribution of gross count is provided for comparison. 

An interesting section of the site, consisting of an area of ground approximately 600 

m2 in size, has been characterised (Figure 6-7).  This area displays a large variation in 

activity, depth and lateral distribution of contamination. Notice how the highest 

intensity gross counting hotspots (red sections on upper plot) correspond to relatively 

low activity (>0.01 Bq g-1 or green areas) that are close to the surface (>0.05 cm).  

However, there tends to be much higher contamination at greater depths in the close 

vicinity of these areas (pink areas in the foreground).  An explanation for this is that 

hotspots may represent the latest (less contaminated) spoil, laid down at the end of the 

formation of the tip (ash and clinker can been seen at surface on some of the hotspots).  

Much higher concentrations of 226Ra would appear to have been laid down earlier in 
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the sites history, perhaps during and immediately after the Second World War when 

large 226Ra inventories were being disposed of.  This contamination occurs at greater 

depths under a relatively non-contaminated overburden, which is likely to have been 

used to cover contamination at a later date.    

6.5 Conclusions 

A novel method, employing Principal Component Analysis and Neural Networks, has 

been proposed permitting the rapid estimation of the depth and activity of 

homogeneous 226Ra contamination from surface measurements taken using handheld 

gamma-ray detectors.  This enables the accurate characterisation of an area 

contaminated with 226Ra and interpolated maps of the processed data ultimately allow 

for the risk to human health, in both long and short term, to be robustly assessed. The 

superior energy resolution of LaBr:Ce resulted in better depth and activity resolving 

capability suggesting that it was more suitable than the standard NaI:Tl  for this type 

of contaminated land application and could easily be applied to other gamma emitting 

radionuclides such as 137Cs. 

 

 

 

 

 

 



176 

 

7 Rapid high resolution mapping of activity and burial depth of 

137Cs deposits using Machine Learning to unfold gamma-ray spectra 

Adam Varley1, Andrew Tyler1 , Christopher Sneddon1, Leslie Smith2, Mike Davies4  

 

1Department of Biological and Environmental Sciences, University of Stirling, 

Stirling, FK9 4LA  

2Department of Computing Science and Mathematics, University of Stirling, Stirling, 

FK9 4LA  

4 Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire, 

OX11 0RL, United Kingdom. 

 

Varley A., Tyler A., Smith L. and Davies M. Rapid high resolution mapping of 

activity and burial depth of 137Cs deposits using Machine Learning to unfold gamma-

ray spectra, Manuscript 

 

 

 

 

 



177 

 

7.1 Abstract 

137Cs, a fission product, is commonly found in the environment owing to significant 

contributions from fallout, introduced by accidental nuclear reactor meltdowns and 

weapon detonations, and legitimate marine and riparian discharges made under license 

from nuclear establishments.  A number of applications, such as dose reconstruction, 

sediment dating and climate change models have become reliant on estimating the 

activity and burial depth of 137Cs.  Conventional means of estimating these parameters, 

through soil coring or tripod mounted in situ gamma-ray spectroscopy, are labour-

intensive and often not spatially representative.  Here, a different approach is proposed 

by utilising a large number of short counts mapped across a site using handheld 

scintillator based detectors.  Through a spectral transformation process that makes use 

of Monte Carlo simulations, Principal Component Analysis and Neural Networks, 

issues associated with counting noise, nonlinearity source response and variable 

background are taken into account. The technique is employed on comparable (71 × 

71 mm), sodium iodide and lanthanum bromide, detectors at Ravenglass saltmarsh, 

Cumbria in the UK.  The results demonstrated that the method could be used to map 

extensive 137Cs distribution.  However, it was speculated that mean mass per unit area 

of the vertical activity distribution, at the chosen test site, either exhibited too little 

variation to validate the approach or was beyond the detection limits of the system.  

Similar performance was realised for both detectors; although sodium iodide produced 

marginally better results compared to measured core data.   
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7.2 Introduction 

7.2.1 137Cs in the environment 

137Cs is a fission by-product that has entered the environment through a number of 

different pathways.  Large quantities have been dispersed as fallout from accidental 

nuclear reactor meltdowns, such as the Chernobyl and Fukishima Daiichi power plants 

(Steinhauser et al., 2014) and from numerous nuclear weapon detonations (Wright et 

al., 1999).  Substantial inventories are also formed and legitimately discharged from 

nuclear installations (Povinec et al., 2003).   

Sellafield, Cumbria, UK is one of the world’s largest nuclear reprocessing plants and 

has been releasing radioactive liquid effluent discharges since 1952 through pipelines 

into the Irish Sea (Gray et al., 1995).  This has led to approximately 10% of the total 

137Cs discharged from the installation becoming associated with an extensive area of 

silt and mud on the seabed of the Irish Sea (Cook et al., 1997).  This contamination 

together with somewhat dwarfed modern discharges is recognised to be a significant 

source of 137Cs (Morris et al., 2000).  Widespread remobilisation from the Irish Sea, 

through physical and chemical processes, has led to coastal environments in England 

(Brown et al., 1999, Jones et al., 2007), Scotland (McKay & Baxter, 1985, Tyler et 

al., 1996b), Ireland (Watson et al., 1999, Charlesworth et al., 2006) and further afield 

(Povinec et al., 2003) becoming sinks for 137Cs and other radionuclides derived from 

Sellafield.  However, the complex interactions between a number of biogeochemical 

processes, varying discharge rates (Figure 7-1) and tidal currents have left a 

convoluted spatial distribution of 137Cs activity (Jones et al., 1999) that can vary with 
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depth, and on a temporal scale, with localised surface remobilisation (Wakefield et 

al., 2011).   

 

Figure 7-1. The 137Cs activity in a core taken from Ravenglass estuary 

(primary axis) compared to recorded historical discharges of 137Cs 

from Sellafield (secondary axis). 

 

7.2.2 Scientific applications 

The ability to accurately characterise the depth and activity of 137Cs deposits is 

important for a number of scientific applications.  A key function is to estimate the 

dose attributed to 137Cs within a particular environment.  This is paramount in the 

protection of human health and non-human biota (OSPAR, 2010).  Dating sediments 



180 

 

using 137Cs is another useful application extensively employed within saltmarsh 

environments, whereby known discharges are matched to subsurface maxima 

observed within the depth profile (Oh et al., 2009) (Figure 7-1).  It has also been 

demonstrated that proxy relationships can be established between other radionuclides, 

notably 214Am (Miller, 2007), and relevant environmental variables such as grain size 

(Clifton et al., 1999), clay content (Wakefield et al., 2011) and sedimentation rate 

(Tyler, 1999).   

The possibility of increased storm events and sea level rise, brought about by climate 

change, has forced large-scale coastal erosion events to be considered.  This presents 

another motive for characterising 137Cs since large inventories could be remobilised 

and come into contact with humans and non-human biota.  Therefore, to better predict 

the behaviour and ultimately the fate of 137Cs, accurately determined spatial 

inventories should be integrated into topographical and climate models.  

7.2.3 Depth and activity determination of 137Cs 

The presence of 137Cs activity can be measured relatively straightforwardly using its 

abundant (0.8499) gamma emission at 662 keV produced by its daughter product 137Ba 

(Kluson, 2001).  Using this gamma emission, depth and activity from cores taken from 

a site can be precisely measured on laboratory gamma-ray spectrometers (Figure 7-1).  

However, the collection, preparation and counting process tend to be time-consuming 

and labour intensive, which often results in a limited number of cores being taken 

leading to poor spatial characterisation (Tyler, 1999).   

A more practical option is to employ in situ gamma-ray spectroscopy thus permitting 

large areas to be surveyed relatively quickly and smoothing over small-scale 
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heterogeneities (Tyler, 2008).  This involves taking a number of static measurements, 

typically 1 metre above the ground, and using changes in the spectrum to infer the 

mass depth and activity of 137Cs (Figure 7-1).  Hyper Pure Germanium (HPGe) 

(Kastlander & Bargholtz, 2005), Sodium Iodide (NaI:Tl) (Tyler, 2004), Bismuth 

Germanate (BGO) (Maučec et al., 2004) and Caesium Iodide (Potapov et al., 2001) 

are just some of the detectors that have been employed in in situ measurements of 

137Cs.  However, this method is not without its limitations.    

Firstly, the height at which the detector tends to be positioned (1 m) leads to a 

relatively large Field Of View (FOV); typically over 10 m.  This reduces its sensitivity 

to localised variations (on a metre scale) particularly for changes occurring at depth 

since lateral contributions dominate (Dewey et al., 2011).  Whetstone et al. (2011) 

used lateral and frontal lead collimators to focus the detectors FOV and improve 

distribution estimates, although counting times were longer and the system weighed 

considerably more (Dewey et al., 2011, Whetstone et al., 2011). 

A second issue is that a substantial calibration effort, generally through a soil coring 

plan, is often required to encompass a representative number of spectral shapes to 

statistically define the relationship between spectral response and the mean mass depth 

and area (Tyler et al., 1996b).  Alternatively Monte Carlo calibration can be applied, 

providing a detector’s response by probabilistically sampling the physical interactions 

of a large number of computer simulated photons with a modelled geometry (Gering 

et al., 1998, Likar et al., 2004).  However, the influence of factors such as the human 

operator (Plamboeck et al., 2006), ground curvature and roughness (Boson et al., 

2008), detector shape (Boson et al., 2009b) and shielding effects and additional 
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contributions from superterranean features for example trees and grass (Sowa et al., 

1989, Gering et al., 2002) can be difficult to account for. 

Finally, a technique must be employed to relate the pulse height spectrum of field 

observations to those derived through calibration.  One method, coined the Peak to 

Valley ratio (Zombori et al., 1992), has been successfully demonstrated to map large 

areas using both NaI:Tl (Tyler, 1999) and HPGe (Kastlander & Bargholtz, 2005).  

Nevertheless, the resultant regression routine, employed to link calibration and field 

observations, requires relatively long counting times to attain acceptable uncertainty 

in the fairly sparse peak and valley regions.   Additionally, the necessity to strip counts 

out of the two regions in lower energy resolution detectors (typically scintillators) 

introduces uncertainty (Tyler, 2008).   

Perhaps a more statistically robust method in this case is Full Spectral Analysis 

(Hendriks et al., 2002, Caciolli et al., 2012).  This method utilises a weighted least-

squares fitting scheme to compare the vast majority of spectral counts obtained in the 

field to a library collected during calibration procedure (Guastaldi et al., 2013).  

Nevertheless, in the case of very low count rates (for example obtained by low volume 

detectors over short count times) fitting may become problematic and produce results 

that are not physically plausible (Caciolli et al., 2012). 

7.2.4 Handheld approach 

Ideally, to map a large area providing high spatial resolution depth and activity 

estimates of 137Cs, it is necessary to maximise the spatial density of measurement 

points (Bivand et al., 2013).  Moreover, it is desirable to increase the detector’s 

sensitivity to deeper sources by reducing its FOV (Schaub et al., 2010).  To address 
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these issues without making significant changes to the measurement routine a large 

number of short measurements can be taken close to the ground rather than fewer 

longer counts at an increased height (i.e. in situ method).  For this to be pragmatically 

accomplished, a detection system needs to be lightweight, mobile and robust in order 

to be operated in rugged environments such as saltmarshes.   

Handheld Gamma-ray Spectrometers (HGS) notably scintillators, for example 71 x 

71 mm NaI:Tl and Lanthanum Bromide (LaBr:Ce) detectors, adequately satisfy these 

requirements (Figure 7-2).  NaI:Tl detectors have been the mainstay of environmental 

gamma-ray spectroscopy from its advent given that they are particularly robust (Beck 

et al., 1972, Davies et al., 2007).  However, NaI:Tl possesses reasonably low 

resolution (~7% at 662 keV).  A promising alternative is LaBr:Ce with a better energy 

resolution (~2.5% at 662 keV) and higher energy efficiency (Guss et al., 2010).  This 

comes at a cost with LaBr:Ce suffering from a large number of intrinsic background 

counts distributed throughout the spectrum owed to internal isotopes (138La and 227Ac) 

(Iltis et al., 2006).  It was discovered that for real-time detection of 226Ra hot particles 

intrinsic activity limits its application compared to NaI:Tl (Varley et al., 2015a).  

Conversely for mapping 226Ra, thus allowing for the deployment of post processing 

noise suppression techniques on large LaBr:Ce spectral datasets it was found the 

statistical influence of intrinsic counts could be negated ultimately making it a more 

appealing detector choice (Varley et al., 2016b).  A comparison has not yet been 

performed for mapping extended distributions of 137Cs. 
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Figure 7-2. Spectra taken using Sodium Iodide and Lanthanum 

Bromide detectors exposed to a 137Cs source.  A section of intrinsic 

contamination is highlighted. 

 

Regardless of the detector used in HGS, the combination of low detector efficiency 

(since they ought to be lightweight) and the short counting times enforced by the 

requirement to cover large areas in high spatial resolution tend to leave individual 

spectra with large counting uncertainties (Du et al., 2010).  In this scenario 

conventional spectral processing techniques can be difficult to implement (Fagan et 

al., 2012).   

7.2.5 Principal Component Analysis 

Instead this study explores using Principle Component Analysis (PCA) to transform 

and extract key source information from a spectral dataset whilst alleviating nuisance 

background changes and counting noise (Runkle, 2006).  PCA has been implemented 

on gamma-ray spectroscopy data before, but generally acquired by large volume 

detectors such as those employed on aircraft (Hovgaard & Grasty, 1997) and radiation 
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portal monitors (Runkle, 2006).  PCA performs an orthogonal transformation in an 

attempt to reduce cross-talk between spectral channels and produce a more useful set 

of uncorrelated signals.  Mathematically, this is undertaken by singular value 

decomposition of the, mean-centred, correlation matrix (Hotelling, 1933).  This 

produces a matrix of Principal Components (PCs) or uncorrelated signals that are 

placed in ascending order of variance contributed to the total dataset.  Accompanying 

PCs, is a separate matrix of loadings, which indicate the relative intensities for each 

PC taken by an individual spectrum.  Thus it is within the loadings changes in source 

characteristics can be inferred (Runkle, 2006). 

Generally the first few PCs and their respective loadings (typically 1-5) can be 

considered as representative of the source signal and can be set aside for further 

statistical analysis (Im et al., 2007).  A convenient outcome of PCA is that the number 

of dimensions is significantly reduced as lower order elements are generally 

discounted as correlated noise contributions.  

7.2.6 Neural Networks 

Patterns within calibration loadings can then be learned using innovative Machine 

Learning regression methods and related to field observations to predict activity and 

depth of 137Cs (Wei et al., 2010, Varley et al., 2015b).  Neural Networks (NN) were 

preferred by this study due to my previous experience and the fact they can 

proficiently capture multiple response variables within the same model.   

NN are data-driven algorithms that have been applied to gamma-ray spectroscopy data 

previously (Pilato et al., 1999, Yoshida et al., 2002, Kangas et al., 2008, Wei et al., 

2011).  The topology of an NN can be compared to the structure of a brain in that it is 
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made of separate processes units or nodes that are connected by synaptic weights 

(Yoshida et al., 2002).  The first layer, referred to as input layer receives input signal, 

this signal is then passed onto the hidden layer where a non-linear transformation is 

performed to map transformed explanatory variables onto the output nodes or 

response variable(s) (Olmos et al., 1992).  This provides the NN the ability to define 

highly complex problems since it learns patterns from the data itself rather than the 

user having to define complex mathematically relationships between explanatory and 

response variables.   

Robust training algorithms such as resilient backpropagation are used to update 

weights between neurons after each learning epoch, in an attempt to achieve global 

convergence through the minimisation of the Relative Mean Square Error (RMSE) 

between a training and test set (Riedmiller & Braun, 1993).  Importantly the 

architecture of a NN and the number of learning epochs often reflect the complexity 

of the problem it is attempting to solve (Dragović et al., 2006).  Therefore, a 

concentrated effort is needed to acquire a suitable architecture. 
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7.3 Methods 

7.3.1 Field site 

 

Figure 7-3. 137Cs window counts obtained over 1 second count time 

using a 71 x 71 mm LaBr:Ce detector at Ravenglass saltmarsh. 

 

Ravenglass estuary is located approximately 16 km to the south of Sellafield in the 

mouth of the Esk estuary in Cumbria, UK (Figure 7-3).  On its north bank (-3.403 ºE, 

54.34 ºN) exists perhaps one the most contaminated (Sellafield-derived) and 

resultantly well-characterised sections of saltmarsh in the UK (Horrill, 1983, Morris 

et al., 2000, Oh et al., 2009).  The distribution of 137Cs activity has been documented 
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to exhibit significant spatial variation and this can be crudely acknowledged by 

observing Cs window taken using a LaBr:Ce detector, although this provides no real 

clarification of depth and activity.  

7.3.2 Field data acquisition 

Two 71 x 71 mm detectors (NaI:Tl and LaBr:Ce) were mounted to a wheeled system 

at 0.1 m height and one behind the other to ensure that similar radiation fields were 

being considered by each detection system.   A walking speed of 0.5 m s-1 was 

maintained and a measurement was taken by each detector every 1 s using Ortec’s 

Maestro software.  A GPS coordinate was recorded for each spectrum by a differential 

GPS unit the Stirling University Mobile Gamma Spectrometry System (SMoGSS.  For 

the most part, a 0.5 m transect spacing was maintained, but inevitable deviations 

around eroded creeks were unavoidable (Figure 7-3).  Approximately 10,000 spectra 

were collected by each detector.   

In addition, a number of soil cores, down to a depth of 0.5 m, were collected using a 

golf-hole corer (diameter of 100 mm) and sectioned into 50 mm increments at the site 

and then counted on laboratory HPGe detectors.  At the time of coring, moisture 

content tended to be greater on the surface (60%) compared to increasing depths 

(35%) and the mean wet density was 2 g cm-3.  

7.3.3 Monte Carlo simulations 

To successfully include enough spectral shapes, brought about by the burial of 137Cs 

within the saltmarsh sediments, Monte Carlo Simulations (MCS) were carried out.  

MCS were undertaken using Monte Carlo N-Particle 5 (MCNP5) software 

(Briesmeister, 1993).  Coded detector geometries for both detectors were first 
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validated against those derived from calibration pads (Varley et al., 2015a).  All 

relevant (> 1% abundance) gamma-ray energies were sourced from the National 

Nuclear Data centre (2013) and secular equilibrium was assumed.  For simplicity in 

all simulations a density of 2 g cm-3 and water content of 60% on the surface and 

linearly decreasing to 35% at 0.55 m was assumed. 

Contrasting to my previous work (Varley et al. 2016b) by which representative 

background were collected from an uncontaminated analogue site, no site was deemed 

to be suitable nearby for this study given the widespread nature of contamination 

within the estuary.  Subsequently, background spectra containing the naturals (40K and 

the 238U and 232Th series) were also generated using MCS.   

For MCS to be both accurate and feasible, the detectors FOV to a homogeneous source 

should be ascertained for individual radionuclides to avoid the geometry being under 

or over sampled.  This can be achieved using adjoint calculations (Maučec et al., 2004, 

De Groot et al., 2009).  This involves photons being essentially reversed within the 

coded geometry, starting from the detector at an energy of zero and eventually being 

terminated in the soil column once a maximum energy is reached (for example for 

137Cs the termination energy would be 662 keV).  This produces fundamentally a 3-

dimensional photon density map.  The geometric limits required to produce a full 

spectral response are typically considered to extend to 99.3% of the overall intensity 

(Maučec et al., 2004).  It can be shown for homogenous distributions, with a detector 

placed at 0.1 m above the soil column, a maximum offset of 10 m is required to fully 

incorporate a spectral response (Figure 7-4).  Observe higher energy emitting 

radionuclides, for example the 232Th (2614 keV) and 238U (2447 keV) series, the FOV 

was deeper and less extended laterally compared to lower energies (i.e. 40K and 137Cs).  
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Figure 7-4. Field of view for homogenous 137Cs, 40K, 238U and 232Th 

distributions and 137Cs heterogeneous depth profile. 

 

Given that 137Cs was known not to be homogenously distributed in z plane since it 

was likely to be formed in layers (Figure 7-1), the FOV was determined for each 

individual depth layer simulated in MCNP5.  This made the extent limits much wider 

for layered 137Cs (Figure 4).  Non-conformities were found between in situ spectra 

obtained over core sites (300 s count time) and ones predicted by MCS.  This was 

attributed to the slight curve of the saltmarsh and vegetation cover (Sowa et al., 1989, 

Boson et al., 2008).  It was concluded by reducing the extent of top few sections (>3 

cm) to approximately 6 meters, rather than the theoretical 15 m, non-conformities 

could be resolved (Figure 7-4).  For all MCS, geometries were cut on the z plane into 
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0.05 m sections and the maximum number of starting particles in MCNP (2 × 109) 

was run for individual sections.  This was done in attempt to minimise tally 

uncertainty.  As layers above 0.1 m (vertical depth) grew increasingly larger in 

volume, to ensure sampling efficiency of tallies was not too low, layers were cut into 

0.01 m vertical sections (Figure 7-4).   

Good agreement between field spectra derived from long in situ counts (300 s) and 

core profiles coded into the model derived from MCS were observed for the majority 

of cores.  Energies below 250 keV were considered too complex to model, owing to 

the dominance of the photoelectric effect, which is heavily influenced by chemical 

composition (Tyler, 2008), and the complex nature of backscattered photons (Caciolli 

et al., 2012).  Resultantly analysis was only performed on energies above 250 keV.  

Figure 5 illustrates the agreement between a modelled spectrum (black line) and one 

derived above core K5 (red circles).  Interestingly, 300 s spectra were fitted using a 

non-negative least squared fitting procedure (Guastaldi et al., 2013), but the same 

method applied to the 1 s count spectrum (blue points and lines) produced erroneous 

results.  This demonstrates the methods limitation to very noisy spectra.   
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Figure 7-5.  K5 core profile alongside Monte Carlo simulated spectrum and 

in situ spectra taken using a 71 × 71 mm Sodium Iodide detector above the 

ground where K5 was taken. 

7.3.4 Spectral model development 

Originally straightforward Cauchy and Gaussian distributions were experimented 

with, yet contributions from the deeper tail, formed from a non-symmetrical discharge 

history (Gray et al., 1995), produced a significant scattering component (Figure 7-1).  

Therefore, a modified Cauchy distribution, in which the deeper tail was broader and 

forced to lower activities (~10 Bq kg-1) was used to model the depth profile (Figure 
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7-5).  It was also appreciated that cores with low sedimentation rates particularly 

towards the back of the saltmarsh would have a more compact profile.  This was 

accounted for by narrowing the Cauchy distribution for profiles with subsurface-

maxima closer to the surface.  From this point, the model was somewhat simplified 

by only changing the surface activity (Bq kg-1), and the mean mass depth (g cm-2) and 

activity of the subsurface peak (Bq kg-1) as thought to be the driving factors behind 

spectral change.  Random sampling of these parameters was used to embody the 

spectral population with the knowledge the distribution could be ultimately 

transformed into inventory or Bq m-2 (Tyler, 1999).  Sampling took place between 

realistic environmental ranges: surface activity (30-5000 Bq kg-1), mean mass depth 

(3.5 - 60 g cm-2) and activity of the subsurface peak (500 – 20000 Bq kg-1). 

Relative spectral contributions from each of the natural decay series (40K and the 238U 

and 232Th series) were found to be reasonable well correlated from the core data 

collected at the marsh demonstrated by Pearson’s linear correlation coefficients above 

0.55.  However, estimating the background spectral population from the small sample 

of cores (n=12) would be naive.  Therefore, the deviation in the background spectral 

population was accounted for within the model using wet weight ranges for 40K (100-

1000 Bq/kg), 238U (0.5-40 Bq/kg) and 232Th (0.5-40 Bq/kg).  Lognormal distributions 

were used to shape the variation in background population. A mean bias was stated so 

that lower concentrations would be dominant: a scenario often found in the 

environment (Caciolli et al., 2012). Additionally small activities of 60Co (0.2 – 5 

Bq/kg) were introduced into to final models (Figure 7-5).  Using such a conservative 

could possibly introduce a large amount uncertainty in final results as 137Cs could 

potentially be masked, particularly for lower concentrations.    
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Three datasets (a training set, test set and cross validation set) were produced in order 

to robustly fit a Neural Network (Dragović et al., 2006).  The training dataset, 

composed of model spectra with low statistical uncertainty were is used to fit the NN.  

The test set, which was 30% of the training set, was devoted to tracking whether the 

model was over or under fitted.  The training and test sets were MCNP results, in 

which tallies had been recorded to high level of statistical accuracy (i.e. 2 × 109 

particles run in each section).  The cross-validation dataset was used to test the 

regression capabilities of the final model to spectra, as similar as possible, to those 

collected out in the field.  To recreate this noisy dataset, spectral drift and Poisson 

noise was added to individual spectra (Varley et al., 2015b).  

7.3.5 Pre-processing 

To alleviate some counting noise prior to PCA, particularly for higher energy 

background areas, a spectral binning regime implemented in my previous work was 

used (Varley et al., 2015a).  Early investigations demonstrated 5 bins below the full 

energy peak to accurately captured relevant changes in spectral shape (above 

250keV).  One bin was dedicated to the forward scattering region (Zombori et al., 

1992).   This left 1 bin covering the full energy peak and 6 bins above the full energy 

peak tracking changes in the natural radioelements. 

PCA was performed on all the data combined (i.e. field spectra, training, test and cross 

validation) to ensure comparability.  All bins were normalised according to Mauring 

and Smethhurst (2005) prior to singular value decomposition.  The response variables 

were normalised between 0 and 1. 
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7.3.6 Neural Networks optimisation  

A single Multi-Layered Perceptron from the R package “RSNNS” was used in this 

study (Bergmeir & Benítez, 2012a).   Each NN was trained, tested and cross-validated 

using normalised PC loadings and response variables. The transformation used in the 

hidden layer was a sigmoidal function and the algorithm used to train the network was 

resilient backpropogation (Riedmiller & Braun, 1993).   

In an attempt to optimise the number of hidden neurons, number of input PCs  and 

learning epochs for each NN a grid search was performed whereby the final 

performance was based upon the Root Mean Square Error (RMSE) for the predictor 

variables on the cross-validation dataset (Hornik et al., 2006).  4000 training data were 

found to adequately train each network, leaving 30% to test the network.  2000 

independent cross-validation samples were used to establish RMSE.  Each NN 

architecture was fitted 10 times (reinitialising random numbers between runs) to 

provide a mean and standard error on final field predicts.   

7.4 Results and discussion 

7.4.1 Neural Network performance 

Using more than one layer of hidden neurons was found not to enhance performance 

of NN; hence all NNs contained one hidden layer.  The NNs used on LaBr:Ce and 

NaI:Tl data required 6 and 9 PC loadings, respectively, to provide the lowest RMSE 

on the cross validation datasets.  Perhaps LaBr:Ce spectral data presented a clearer 

signal for the NN to interpret, therefore the number of PCs required to successfully 

map the relationship was relatively less.  
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Table 7-1. Root mean square error for Surface activity, Peak activity 

and Peak depth for lanthanum bromide and sodium iodide detectors. 

 Root Mean Square Error 

Detector 

Surface activity 

(Bq kg-1) 

Peak activity 

(Bq kg-1) 

Peak Depth 

(g cm-2) 

NaI:Tl 0.1397 0.9422 0.1720 

LaBr:Ce 0.1231 0.9543 0.1849 
 

 

It was found using 15 and 18 neurons, for NaI:Tl and LaBr:Ce respectively, in the 

hidden layer gave optimal performance.  A comparatively small number of learning 

epochs were required to fit NNs, 200 and 150 respectively.  This general outcome 

suggests that spectral patterns in the dataset were reasonably straightforward owing to 

the limited number of hidden neurons, compared to input neurons, required to 

accurately map inputs to outputs.  However, the presence of noise in the dataset 

quickly resulted in the over-fitting of NNs as demonstrated by the relatively small 

number of learning epochs.  A similar finding was concluded in my previous work 

(Varley et al. 2015, submitted) 

RMSE values indicate that for purposes of characterising subsurface 137Cs 

contamination detectors produced a similar performance (Table 7-1).  For instance, 

LaBr:Ce (0.1231) marginally outperforms NaI:Tl (0.1397) with respect to identifying 

surface activities.  Conversely, the depth of the peak can more reliably estimated using 

NaI:Tl (0.1720) compared to LaBr:Ce (0.1849).  Similar performance was 

encountered for characterising the activity of the maximum of the peak (LaBr:Ce = 

0.9543; NaI:Tl = 0.9543).   

Results can be explained by focussing on individual detector properties.  LaBr:Ce, for 

example, has a better energy resolution and efficiency, consequently counts in the full 
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energy peak may present a stronger signal for the NN to identify (Figure 7-2).  This is 

a scenario presented by surface contamination where there will be large number of 

non-scattered photons reaching the detector.  In contrast, as contamination is buried, 

a much greater proportion of photons are scattered to lower energies.  Perhaps in these 

much broader energy regions, the increased energy resolution of LaBr:Ce becomes 

less important compared to the noise posed by intrinsic counts within this area.  This 

influencing factor is especially relevant with increasing burial depth of source as the 

ratio of scattered to non-scattered photons becomes much more sensitive to changes 

in depth.  Therefore, intrinsic counts at lower energies could limit the NN’s ability to 

identify changes.  

7.4.2  Core and time-series analysis 

NN results for NaI:Tl and LaBr:Ce taken at the same coordinates suggest that real 

change in activity distribution could be observed through the method at the saltmarsh 

(Figure 7-6).  However, using single measurements to demonstrate this is difficult; 

hence a loess smoothing function has been applied (R Development Core Team, 

2012).  For the most part, smoothed data for individual detectors adhered to each other 

through the time series.  Interestingly, for surface activity results it would appear that 

slightly more detail is captured by LaBr:Ce, implied by more episodic variation in the 

time series.  This outcome is supported by the slightly lower RMSE value for surface 

activity for LaBr:Ce (Table 7-1).  Another notable feature, given that it partially 

refutes RMSE results produced on the cross validation dataset, is the increased 

uncertainty (suggested by the wider prediction intervals) for peak activity estimates 

made by LaBr:Ce compared to NaI:Tl (Figure 7-6).  Interestingly, this can also be 

seen in the core predictions discussed later (Figure 7-7).  
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Figure 7-6. Depth, peak activity and surface activity neural network 

predictions for identical coordinates taken by 71 × 71 mm sodium 

iodide (red) and lanthanum bromide (blue).  Smoothed data are 

represented by thick lines and 95 prediction intervals by dashed thin 

lines and shaded regions. 

 

The manner in which data has been prepared in Figure 7-6, for instance a loess 

smoothing function with 95 prediction interval, was a reflection of the noise presented 

at a single measurement level.  For instance, correlation coefficients (surface activity 
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= 0.07; peak activity = 0.07; depth = 0.04) between comparable readings taken by the 

two detectors were very low.  There are two possible explanations for this outcome.  

Firstly, no significant change, particularly in depth, was taking place across the site 

and thus noise was the dominant source of variation.   

However, through analysis of core results it can be seen that this is probably not the 

case as some of the cores were recorded to have mean mass depth over 50 g cm-2, 

which was considerably deeper than any estimated depth by either NN.  An example 

is found in core C5 (71 g cm-2), which was close to the front of the marsh, this would 

in turn theoretically invalidate peak activity estimates (Figure 7-7).  Hence, a more 

plausible justification could be due to a significant proportion of the contamination 

being below the detection limits of the method, especially with the relatively high 

surface contamination activities that may have drowned out signal originating from 

greater depths.  Preliminary investigations into the predictions made on the cross 

validation dataset suggest that data, within the environmental range found at 

Ravenglass can only reliably predict down to a depth 30 g cm-2 before significant 

uncertainty is encountered.  In this scenario the NN would attempt to fit individual 

spectra with the little signal it had, potentially leading to the data being skewed.  This 

is understandable given the infinitesimal small spectral changes that occur in the 

feature space at this burial depth.   

This presents a challenging physical boundary that would be exceptionally difficult to 

overcome.  A practical means to negate this occurrence, and avoid erroneous data 

beyond detection limits, would be to define a classification network prior to a 

regression step.  This could act as a filter to screen potentially homogeneous signals, 
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or similarly, contamination too deep to reliably detect.  A similar approach was taken 

in my previous work (Varley et al., 2015b).   

Ultimately, to lower detection limits, longer count times would have to be used, or a 

more sensitive detector, such as conventional HPGe (Tyler et al., 1996a).  

Alternatively, spectra could be summed over square metres to minimise counting 

uncertainty, although this would lower spatial resolution.  It is worth mentioning that 

this study is part of a larger field campaign, utilising longer measurements and cores, 

to characterise the inventory at the site.  
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Figure 7-7.  NN depth, peak and surface activity estimates of 1 second 

spectra taken over cores alongside core values measured in the 

laboratory (black bars).  

Overlooking the uncertainties associated with estimating the depth of contamination 

at this site, predictions made by the network regarding activity were still within an 

acceptable range of the core results (Figure 7-7).  Furthermore, acceptable estimates 

were acquired despite the large initial activity ranges used to build the training and 

cross validation datasets: surface activity (30-5000 Bq kg-1) and subsurface peak (500 
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– 20000 Bq kg-1).  This reveals that although single measurements are noisy, large 

scale estimates could be spatially smoothed to reveal interesting radiological features 

such as hotspots or surface depth changes. 

Although both detectors technically demonstrated similar performance through 

RMSE, NaI:Tl was able to predict the core results with slightly more precision (Figure 

7-7).  Subsequently, NaI:Tl results have been used to map the inventory and mean 

mass depth of the site (Figure 7-8).  It must be noted that the R package “automap” 

was employed to fit a spherical semivariogram model to the spatial correlation of the 

NN estimates permitting interpolation via kriging (Pebesma et al., 2013).  To smooth 

data a relatively large number of neighbouring points (n=50) were utilised.  
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Figure 7-8. Spatially interpolated 137Cs inventory and relative mean 

mass depth (vertical axis) for Sodium Iodide Neural Network results.  

7.4.3 Site analysis 

Ravenglass saltmarsh has for some time been considered a source of contamination 

rather than a sink for contaminants being remobilised from the Irish Sea (Morris et al., 

2000).  Interpretation of mapped NN estimates would appear to provide evidence in 

support of this theory (Figure 7-8).  Discernible features, such as the ridge following 

the course of the creek, in the middle of the marsh, capture this erosion process.  

Notice the mean mass depth is shallower at the edge of the creek edge compared to 

surrounding areas since the top layers may have been removed by erosion processes.  

Suggestions of this development could also be evident in the episodic nature of 

LaBr:Ce surface contamination estimates (Figure 7-6).  Additionally, higher activities 



204 

 

are estimated to be in more stable areas away from creeks in the middle of the 

saltmarsh.  Plausibly in these areas less erosion has taken place.   

Regrettably, the front of the marsh was not surveyed due to the incoming tide and time 

restraints.  However, measurements over the top of core C5 were taken within this 

area.  Notice C5 had the lowest total activities out of all the cores (peak activity = 

5010 Bq kg-1, surface activity = 85 Bq kg-1).  Although the mean mass depth would 

likely have been too high to be confidently identified, it would have been interesting 

to see whether the technique could identify lower activities on the surface.  

Nonetheless, lower activity shallow areas at the back of the saltmarsh and in a small 

area surveyed at the front of saltmarsh indicate regions that have rarely been inundated 

(Figure 7-8).  These areas can also be identified as the sharp inverted peaks in mean 

mass depth and peak activity within the time series data (Figure 7-6).   

7.5 Conclusions  

From this relatively small survey, Ravenglass saltmarsh would appear to deviate from 

the simple hydrological model assuming the highest activities, at the least burial depth, 

are found at the back of the marsh.  Instead, the site exhibits a complex activity 

distribution of 137Cs, probably as a result of a number of years of erosion events, which 

conventional techniques such as soil coring or long in situ measurements, may 

struggle to identify in high resolution.  This exemplifies the merit of the described 

approach.  Nonetheless, uncertainty regarding the reliability of depth estimates still 

remains as the mean mass depth of much of the saltmarsh did not appear to change 

significantly, which did not allow rigorous environmental assessment.  Moreover, 

much deeper sections that did deviate were concluded to be below the limit of 
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detection of this approach.  To robustly test the approach, another site with lower 

sedimentation rates would have to be assessed or fresh fallout would have to be 

utilised.  Identifying a relevant site will be the aim of future work. 

With that said, the approach could be used to support existing approaches and in 

environments with fresh fallout or close to surface activity, such as emergency 

response scenarios.  Another application that will be the subject of further work, and 

utilising larger detection volumes, is the identification of soil disturbance that has 

taken place at archaeological sites. 
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8 General summary and further suggestions 

8.1 Outline  

This final chapter of the thesis attempts to place the research into the context of the 

wider field of environmental gamma-ray spectroscopy.  To achieve this, implications 

of the general research findings are summarised, alongside suggestions for further 

work.   

8.2 The context of environmental gamma-ray spectroscopy research 

It has become widely accepted that environmental gamma-ray spectroscopy offers a 

rapid means to estimate source characteristics compared to traditional sampling 

methodologies combined with laboratory-based analysis (Tyler, 2008).  This 

realisation has only been made possible through pioneering research developments in: 

instrument calibrations (Grasty et al., 1991, Allyson & Sanderson, 1998, Maučec et 

al., 2004); computational processing (Guillot, 2001); noise reduction techniques 

(Hovgaard, 1997, Dickson, 2004); spectral fitting regimes (Hendriks et al., 2001, 

Caciolli et al., 2012) and understanding into the relationship between source geometry 

and spectral response (Beck et al., 1964, Beck et al., 1972, Helfer & Miller, 1988, 

Zombori et al., 1992, Tyler et al., 1996b).  

Subsequently, through years of development of the method, considerable 

improvements have been made in the spatial representativeness and reliability of 

source estimates, which has enabled it to become increasingly useful to a growing 

number of radiological applications.  In the case of this thesis, it has become the 

mainstay of the applications featured, such as routine monitoring for hot particles and 
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contaminant characterisation using borehole measurements and terrestrial handheld 

instruments. 

However, as with many established detection methodologies, reliance on conventional 

detection setups, particularly over the past decade or so in the case of environmental 

gamma-ray spectroscopy, has left the field lacking in significant developments.  This 

lack of progress is perhaps in part due to an over-reliance on existing detector 

technology and reluctance to move away from the usage of well understood physically 

founded models to interpret spectral data.  This potentially means large amounts of 

data collected during a survey are either not being collected using the most suitable 

instrument for that application or large amounts of useful information is not being 

utilised.   

Therefore, this thesis has attempted to address these fundamental issues by adopting 

a two-pronged approach.  Firstly, time was invested into researching novel detector 

technology, in which a lanthanum bromide detector was purchased then deployed in 

the field as handheld detector.  This was performed alongside an equivalent sodium 

iodide detector to allow for direct comparisons in the field to be made.  Secondly, it 

identified and utilised Machine Learning algorithms to intelligently process spectral 

output to estimate source characteristics.  Such algorithms have rarely been 

implemented in environmental gamma-ray spectroscopy.  To draw attention to 

potential advances this work has contributed to the field, a brief summary of the thesis, 

discussing the merits of individual work and overall implications of the work, will 

now be given. 
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8.3 Thesis summary 

The first research manuscript (chapter 4) aimed to develop a method to characterise 

226Ra contamination at depth using borehole measurements with particular interest in 

identifying significantly radioactive hot particles (Figure 8-1B).  This work took place 

at the headland at Dalgety Bay, Fife, Scotland. 

As a consequence of the irregular disposal patterns used at the site, characterising 

contamination presented a significant challenge, as intrusive investigations had 

demonstrated much of the contamination was dissipated heterogeneous material to 

such a level much of it could be considered homogenous.  Note the black deposits of 

ash and clinker containing 226Ra (Figure 8-1A).  Consequently, interpretation of 

borehole spectra was fundamentally difficult and ultimately required a technique to 

be developed to separate out detector signals that could be considered homogeneous 

(ash and clinker) from ones that could contain contributions from hot particles: thus 

allowing for a more accurate activity estimation to be made at the site.  To the author’s 

knowledge this type of analysis had rarely been performed for any radio-contaminant 

within a borehole geometry, let alone for a site as potentially complex as a radium 

contaminated legacy site such as Dalgety Bay.   
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Figure 8-1. A) Ash and clinker deposits containing 226Ra next to 

relatively uncontaminated soil B) Example of the detector setup. 

Therefore, a method had to be developed that was sensitive enough to cope with both 

the statistical noise presented within individual spectra together with the noise 

associated with natural background variation.  Deterministic approaches, such as gross 

counting or the multiple peaks method, were considered not sensitive enough for this 

type of analysis.  Therefore, the study took inspiration from data driven methods, 

specifically Neural Networks, which were used to analyse general changes in spectral 

shape to derive source characterisation information.   

The overall technique utilised a large number of robustly Monte Carlo simulated target 

geometries to train numerous Neural Networks with, to first determine whether the 

field spectra were derived from homogeneous, heterogeneous or simply from 

background geometries.  Then, appropriately estimate the depth, in case of a hot 

particle, or extent for a heterogeneous source and finally an activity for respective 

geometries.  
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Although, large uncertainties were associated with final results, notably at lower 

activities and greater depths, and considerable human interpretation was still needed 

to qualify final estimates (Figure 4-7), the method demonstrated a significant 

breakthrough in characterisation of deep 226Ra that previous methods have failed to 

capture.  Foreseeably, this type of technique could be routinely deployed at further 

radium contaminated legacy sites and potentially for different radionuclides.   

Perhaps the most distinguished piece of work in this thesis is present in chapter 5, 

which describes the optimisation of a detection system for the identification of 226Ra 

containing hot particles for routine monitoring purposes.  The manifestation of these 

radioactive items is of genuine public concern, especially in certain parts of Scotland, 

such as on the beach at Dalgety Bay, Fife, Scotland, where many particles have been 

located and removed (Dale et al., 2013).   

Nonetheless, difficulties have been documented at the site when trying to reliably 

locate particles that are concealed by overburden using conventional detector systems.  

It is thought that the failure to detect smaller hot particles close to the surface (~20 

kBq), could significantly endanger the public (Wilson et al., 2013).   

The study concluded that using conventional systems it was difficult to detect the 

subtle changes in signal presented by such particles, at an acceptable depth (10 cm), 

due to the algorithms incapacity to manage large variations in background and 

statistical noise, which tended to lead to a high false alarm rate.  It was concluded that 

the use of a neural network, coupled to a 71 × 71 mm sodium iodide detector, working 

on the bases of spectral shape change, could potentially detect particles at twice the 
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depth when compared to the same detector operating a deterministic gross counting 

alarm.  

Therefore, it was confirmed through results that instead of investing large amounts of 

money in potentially novel detector technology (i.e. lanthanum bromide), reasonably 

straightforward changes to spectral processing procedures, through the 

implementation of Machine Learning algorithms, could generate much higher 

detection rates of 226Ra hot particles.   

There were a number of novelties to this research.  Firstly, this was the first 

documented field comparison between sodium iodide and lanthanum bromide.  

Secondly, this is one of the first implementations of Machine Learning to enhance 

detection rates for handheld gamma spectrometry instruments in an environmental 

setting (Alamaniotis et al., 2013b, Alamaniotis et al., 2013a).   

The most encouraging realisation is that this type of work could realistically provide 

better safety for those that live in and around radium contaminated legacy sites.  At 

Dalgety Bay for instance, the beach is deemed to be such a hazard it has had to be 

cordoned off and regularly monitored.  This has a knock-on effect to the surrounding 

community that used the beach routinely in the past, in terms of potential dose, but 

more importantly psychologically.  Flatteringly, the Scottish Sunday Times 

newspaper reviewed this research in an article entitled “Scots formula could clean up 

toxic beaches”.  This media attention highlights the general public’s concern towards 

radiological hazards of this nature. 
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Figure 8-2. A homogeneous hotspot being measured with a 51 × 51 

mm sodium iodide detector 

Chapter 6 follows on from chapter 5 as it used the same detector setup, but with a new 

objective: to characterise homogeneous 226Ra contamination at a different site.   

This site perhaps posed the most difficult contamination to characterise, since it was 

a relatively small ex-military tip, where large contamination gradients existed.  

Notably, this work was carried out alongside the Scottish Environmental Protection 

Agency (SEPA), who used gross counts from a 51 × 51 mm sodium iodide detector 

to identify hotspots and possibly hot particles (Figure 8-2).  
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The original aim was to use evenly spaced spectral data (i.e. taken in 0.5 m transects), 

post survey, to identify the presence of highly active hot particles, more than likely at 

depth, amongst well-dissipated heterogeneous contamination that potentially might 

have been missed by SEPA gross counting method.  However, it became apparent 

early on in investigations that using a post processing approach to identify anomalous 

signal, possibly caused by the presence of hot particles, introduced a significant 

challenge.  Such a technique would have to involve real-time feedback to the operator 

to allow for further investigation.  This subject will be discussed later in this chapter.  

Instead, a different tact was taken, simplifying the objective somewhat, by rather 

providing a high-resolution map of assumed homogeneous 226Ra contamination 

estimated as activity per gram (Bq g-1), which could then be compared to legislative 

limits.  Although, this did not satisfy original aims, this type of work, for example 

including depth as a variable, had not been performed before in the literature for 226Ra 

using small handheld detectors. 

Neural Network results from chapter 6 concluded that much of the contamination 

associated with the investigated hotspots (identified by gross counting) was more than 

likely associated with surface contamination, which was backed up by intrusive 

investigations undertaken by SEPA at the time.  Although the gross counting method 

perhaps failed at identifying the most radioactive parts of the sites, it did identify areas 

with the highest dose rates that are of immediate threat to the general public.  

However, as highlighted in this work, to characterise much more radioactive 

contamination at depth, which could potentially be more harmful in the long term, a 

more intelligent algorithm is needed such as the Neural Network.  This type of 

research could potentially aid in the remediation and redevelopment of sites, 
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identifying areas of the worst contamination alleviating the potential for dose during 

construction and inhabitation.   

The method used in chapter 6 took on a similar structure to chapter 4, whereby a 

Neural Network was first used to filter background spectra and then another Neural 

Network was employed to derive activity and depth estimations.  By this stage in the 

thesis, it becomes clear that the use of multiple models, first classification and finally 

for regression, potentially provided the most appropriate way of characterising 226Ra 

contamination.  Additionally, this was a very effective way of reducing significant 

error reported by the Neural Network, particularly for results on the edge or out of its 

prediction range.  Resultantly, this reduced the potential for erroneous results. 

Another interesting finding was that Neural Networks trained on raw spectral data 

produced much more uncertainty on the cross validation dataset when compared to 

Principal Component Analysis transformed data: hence the reason for results not being 

reported in chapters 4 and 6.  This overall finding suggests that real-time activity and 

depth estimates, for example estimates that could be displayed on computer screen in 

real-time, would be significantly nosier than post-processed results.  Although not 

stated, results produced using raw data on average produced approximately twice the 

uncertainty of post-processed noise reduced results.   

Nevertheless, a combination of the two could easily be realised given that 

conventional surveying methods often take a similar real-time/post-processing route 

to identify anomalies.  The development of a system, which could provide depth and 

activity estimates in real-time, would have been a desirable outcome from this 
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research, and remains the next research priority.  Operated by a human, perhaps the 

real-time feedback could be invaluable in the search for hot particles.  

Chapter 7, once again aimed to test the two handheld detectors against one another 

alongside the implementation of a Machine Learning method.  Only this time the 

objective was to characterise the depth distribution of 137Cs on a saltmarsh; hence 

estimating an inventory for the assessed area.  There are countless works that have 

focussed their efforts on characterising 137Cs in this type of environment (Brown et 

al., 1999, Charlesworth et al., 2006).  Yet, the vast majority have used soil cores or 

surface scrapes, which may not efficiently sample the environment, noticeably if there 

are large spatial deviations occurring in depth and activity.  This work attempted to 

develop a similar method to chapter 6, whereby a large number of 1 second spectra 

were collected to potentially capture any heterogeneity in high resolution.   

From results, it was clear that there was considerable heterogeneity on the saltmarsh 

that almost certainly would not have been captured using conventional sampling 

means.  Nonetheless, a significant conclusion was drawn that the reliability of mean 

mass depth estimates was difficult to assess on the saltmarsh for two reasons.  Firstly, 

there did not appear to be significant change in mean mass depth on the area of 

saltmarsh investigated, which was supported by core evidence.  Secondly, in the event 

of any real mean mass depth change it would likely have been far below the limits of 

detection of the method (> 30 g cm-2).  Similar limits of detection were concluded by 

Tyler et al. (1999) using a 35 % HPGe detector and 600s count time.  In any case, 

activity estimates were deemed acceptable, but it was further concluded another site 

would have to be identified to robustly assess the approach.   
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At present, I am intending on applying the method to data collected from various sites.  

Firstly, data collected from the Chernobyl exclusion zone, as part of a wider study 

called the TREE project, which will be backed up using soil cores.  Data are also being 

collected from Poleskie national park in Belarus as part of an international inter-

comparison exercise.  At these two specific sites count rates will be significantly 

higher than Ravenglass estuary, possibly providing much clearer shape and therefore 

more method sensitivity. 

Another interesting site, where unusual erosion and deposition patterns could have 

potentially occurred is that of an area of re-established saltmarsh at Hesketh in the 

Ribble estuary, Lancashire, England.  This site also has core data in support of 

handheld data, yet, this area might prove even harder to characterise than Ravenglass 

as lower activities will be encountered although probably at less effective depth.  
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9 General conclusions and future prospects 

9.1 General detector conclusions 

This thesis has produced mixed results on whether or not lanthanum bromide could 

be used as an alternative or even replace sodium iodide environmental detector.  From 

chapter 6, lanthanum bromide clearly outperformed sodium iodide as it was shown 

that Principal Component Analysis could negate the influence of intrinsic counts, 

harnessing its better energy resolution and efficiency.  This allowed for better mapping 

of the distribution 226Ra contamination at the site.  However, in chapter 5, where real-

time detection of 226Ra was involved, and intrinsic counts could not be resolved using 

post-processing noise suppression techniques, sodium iodide by far outperformed its 

counterpart using both the deterministic and Machine Learning algorithms.  This 

general result suggests that for short dwell time applications the superior energy 

resolution and efficiency of lanthanum bromide can only be utilised if the intrinsic can 

be suppressed.  This is particularly the case for the higher energy peaks (i.e. 1120, 

1764 and 2204 keV) where significantly more signal can be detected (Appendix I.B), 

as it is more energy efficient, thus allowing for deeper detection of 226Ra sources as 

demonstrated in chapter 6.  

Another fact that draws this conclusion is that in chapter 7, wherein source signal was 

produced at energies below 662 keV, despite the implementation of Principal 

Component Analysis, no real advantage was found.  Probably this was again as a result 

of the intrinsic counts, acting in combination with short dwell time, superseding its 

general capability to produce stronger signal.  In support of this argument relatively 
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less advantage in efficiency is gained at these energies using much longer counts 

(Appendix I.B). 

In summary, taking into account the evidence gained during this thesis, advice would 

be suggested that if short count times are being employed, the operator should really 

consider carefully what type of spectral analysis they will be implementing and what 

are the energies of interest to their study.  Importantly these suggestions only consider 

71 × 71 mm detectors.  For example, if a straightforward deterministic algorithm is to 

be used, such as the gross counting algorithms or energy windows, then consider 

sodium iodide or another equivalent detector (i.e. bismuth germanate).  If low energies 

are of importance, regardless of the algorithm implemented, sodium iodide will 

provide better detection.  In the case of post-processing and if higher energies can be 

utilised, there is an argument for the use of lanthanum bromide.  Another consideration 

is that a 71 × 71 mm lanthanum bromide detector is over an order of magnitude more 

expensive than an equivalent sodium iodide detector.  For all of the above reasons 

lanthanum bromide will probably not be displacing sodium iodide as the workhorse 

of surveys operating a large number of short count time measurements. 

9.2 General algorithm conclusions 

It was concluded early on Neural Networks, pitted against Support Vector Machines 

and Gaussian Processes (not mentioned, but investigated behind the scenes), produced 

the most appropriate regression and classification tool to capture variations taking 

place for the investigated contaminants.  The nonlinear fitting capabilities and noise 

suppression abilities of Neural Networks were in general attributed to producing this 

final outcome. 
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Nevertheless, considerations must also be given to the relative development of 

individual methods, notably with regards to the accessibility of computer packages 

and their overall user friendliness.  For instance, throughout this work I coded 

everything in the software package R (R Development Core Team, 2012).  At the 

present time, there are a number of different packages available in R that implement 

Machine Learning methods, to name a few: RSNNS (Bergmeir & Benítez, 2012b), 

e1071 (Dimitriadou et al., 2008), Kernlab (Karatzoglou et al., 2004), tgp (Gramacy, 

2007), RWeka (Hornik et al., 2009) and Neuralnet (Günther & Fritsch, 2010).  

Therefore, inevitably some bias will be introduced as some packages are more user 

friendly than others, of note in this research RSNNS (Bergmeir & Benítez, 2012b) and 

e1071 (Dimitriadou et al., 2008).   

Inevitably as algorithms become more accessible to scientists, who do not necessarily 

have a background into their development, and as general advancements are made into 

the optimisation of specific algorithms perhaps the less accessible methods might 

become more common in a wide variety of applied topics, such as environmental 

gamma-ray spectroscopy.   

Furthermore, uncertainty still remains regarding the infamous lack of ability of Neural 

Networks to predict in an area outside the data used to train it (Haley & Soloway, 

1992, Dragović et al., 2006).  In this study, it must be appreciated that relatively well 

controlled data was used to train and cross-validate data i.e. Monte Carlo simulations 

alongside collected background.  However, exactly how representative of the potential 

range of real environmental spectral data these datasets were is not exactly known.  

One example is some contamination would have invariably been evident in some of 
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the acquired background spectral dataset, particularly for 226Ra, as it is part of the 

natural decay series and is very challenging to separate. 

Therefore, to robustly assess the reliability of algorithms, thorough testing would have 

to be undertaken.  This could involve a robust field trial with a number of known 

buried sources to demonstrate its practical limit of detection.  After which, the 

algorithm could be implemented at a site, either instead of, or alongside a conventional 

algorithm, to statistically identify whether any real change in detection rate was 

occurring (Tyler et al., 2010).    

9.1 Future prospects of environmental gamma-ray  

We are currently in an encouraging time of development.  Firstly, advancements are 

constantly being made in detection technology, for example the refinement of Ce3+, 

Pr3+ and Eu2+ as doping agents into a range of host inorganic crystals (Nikl & 

Yoshikawa, 2015).  Potentially this could deliver the next generation of faster, 

lightweight, higher energy resolution and efficiency detectors.  The promise of further 

crystal growth developments regarding cerium bromide (a detector that was initially 

considered by this study, but was deemed too small) could also provide better 

detection technology that could displace sodium iodide.     

There are also large possibilities in the area of spectral processing.  This could 

potentially be driven by “big data” algorithms that could be used to trawl large data 

libraries; whereby many establishments begin to share spectral data instead of 

producing independent models.  Even at a site level, routine monitoring produces 

enormous amounts of potentially useful data that could be harnessed to improve 

models, for example temperature data and GPS coordinates could be built into models 
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providing them with far greater prediction powers.  Also, there is the distinct 

possibility of data integration with other data derived from remote sensing, geological 

maps or ground penetrating radar.  Integration on such a level would almost certainly 

require something similar to the Machine Learning algorithms to interpret complex 

multivariate patterns from a number of disciplines.  An amalgamation of these 

principles could potentially allow the lower end of the energy spectrum to be tamed 

permitting for far greater predictions to be made regarding source characteristics.    
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Appendix I : PRELIMINARY LABORATORY TESTING   

Appendix I.A Energy resolution 

To ensure the LaBr:Ce detector purchased from Saint Gobain matched up to the 

manufacturer’s specification laboratory investigations were undertaken.  This also 

provided an opportunity to compare to the two 71 x 71 mm handheld detectors (NaI:Tl 

and LaBr:Ce) in a controlled environment before testing out in the field.   

Saint Gobain specified energy resolution of below 3.1% at 662 keV (actually 2.9%) 

was obtained by my tests.  LaBr:Ce can clearly be seen as the intermediate 

resolution detector sitting between the lower energy resolution NaI:Tl and higher 

energy resolution HPGe detectors (Figure 9-1).  Interestingly, LaBr:Ce losses its 

energy resolution advantage at lower energies (< 100 keV) due to self-absorption 

(Giaz et al., 2012).  Therefore, for the detection of low energy gamma emitting 

sources, such as 241Am, its application holds little, if any, advantage in comparison 

to NaI:Tl.  In the case of project energies at this energy are of little significance. 
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Figure 9-1 Spectral responses of NaI:Tl, LaBr:Ce and HPGe to 226Ra. 

Spectra have been rescaled for visual purposes. 

 

Appendix I.B Minimum detectable activity 

Within the laboratory environment, longer count times were used to assess the 

Minimum Detectable Activity (MDA) as a function of burial depth using the areas 

under the full energy peaks 609 and 1764 keV produced by a 226Ra source.  This 

was conducted for 71 x 71 mm NaI:Tl and LaBr:Ce, under background conditions 

and with the source present at different burial depths of perspex.  This allowed, 

under the assumption of Poisson statistics, the depth and activity with which the 

number of source counts under a peak (ND) can be confidently identified above the 

critical level (LC) calculated from the lab background (α = 0.05) (eq 25). 

   

 𝑁𝐷 = 𝐿𝐶 + 1.64𝜎𝑁𝐷 (25) 
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It can be seen that the higher energy resolution and greater efficiency of LaBr:Ce 

permit a source to be detected with greater confidence (α = 0.05) deeper into the 

Perspex column compared to NaI:Tl using both the 609 and 1764 keV peaks (Figure 

9-2).  With respects to environmental handheld detection, these results are of little 

significant as the short count times employed in the field mean that peaks can rarely 

be confidently identified in this manner.  However, in terms of laboratory use or for 

radioisotope identification, LaBr:Ce could be a promising alternative to NaI:Tl 

(Milbrath et al., 2007, Knoll, 2010). 

 

 

Figure 9-2 Minimum detectable activity (α= 0.05) as a function of 

burial depth for the 609 and 1764 keV 226Ra peaks, for 71 x 71 mm 

NaI:Tl and LaBr:Ce detectors. 
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Appendix I.C Temperature stability 

To assess drifts in gain that can take place in the environment to temperature variations 

a climate control study was undertaken.  The two detectors connected to a digiBase 

(with their respective cases) were placed in a climate control cabinet, alongside a 226Ra 

source and the ambient temperature was varied over the course of 12 hours.  To 

recreate realistic field conditions, Maestro’s (Ortec) gain stabilisation software was 

centred around the 40K peak (1462 keV) for the NaI:Tl detector (ORTEC, 2005).  In 

the case of LaBr:Ce this was centred around the intrinsic peak (1468 keV).  1-minute 

spectra were taken hourly.  Monitoring the central position of the 609 keV peak 

allowed for the assessment of drifts in gain.   

LaBr:Ce performed better under these conditions as less spectral drift was 

encountered, in fact less than 1 keV over the environmentally relevant temperature 

range of -10 to 40 °C Figure 9-3.  The NaI:Tl detector tended to drift more over this 

range (3 keV).  The reason for this may be due to clarity of peak presented by 

LaBr:Ce (Figure 2-7), enabling the gain stabilisation software to accurately track its 

central position.  On the other hand, the comparatively smaller in intensity peak, 

presented by 40K in the case of NaI:Tl, resulted in more spectral drift as the gain 

stabilisation software could not track it as efficiently.  Nilsson (2010) demonstrates 

that without gain stabilisation the photomultiplier tube contained within a DigiBase 

can drift up to 50 keV over a similar ambient temperature range. 
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Figure 9-3 Gain drifts for the 609 keV peak, for NaI:Tl and LaBr:Ce 

detectors, taken over the temperature range -10 to 40 °C. 
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Appendix II : CONCRETE CALIBRATION PADS   
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