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The effect of memory size on the evolutionary
stability of strategies in iterated prisoner’s dilemma

Jiawei Li, Member, IEEE, and Graham Kendall, Senior Member, IEEE

Abstract—The iterated prisoner’s dilemma is an ideal model
for the evolution of cooperation among the payoff-maximizing in-
dividuals. It has attracted wide interest to develop novel strategies
since the success of tit-for-tat in Axelrod’s iterated prisoner’s
dilemma competitions. Every strategy for iterated prisoner’s
dilemma utilizes a certain length of historical interactions with
the opponent, which is regarded as the size of the memory,
in making its choices. Intuitively, longer memory strategies
must have an advantage over shorter memory strategies. In
practice, however, most of the well-known strategies are short
memory strategies that utilize only the recent history of previous
interactions. In this paper, the effect of the memory size of
strategies on their evolutionary stability in both infinite length
and indefinite length n-person iterated prisoner’s dilemma is
studied. Based on the concept of a counter strategy, we develop a
theoretical methodology to evaluate the evolutionary stability of
strategies and prove that longer memory strategies outperform
shorter memory strategies statistically in the sense of evolutionary
stability. We also give an example of a memory-two strategy to
show how the theoretical study of evolutionary stability assists
in developing novel strategies.

Index Terms—Evolutionary stability, strategies, iterated pris-
oner’s dilemma, game theory.

I. Introduction

THE prisoner’s dilemma is a non-zero-sum game in which
two players try to maximize their payoff by cooperating

with, or betraying the other player [34], [35]. The payoff
matrix of the game is shown in Figure 1.

Fig. 1. Payoff matrix of the Prisoner’s Dilemma.

In the payoff matrix, R, S , T , and P denote Reward for
mutual cooperation, Sucker’s payoff, Temptation to defect, and
Punishment for mutual defection respectively, and T > R >
P > S . The constraint motivates each player to play non-
cooperatively.
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When both players are rational and they make their choice
independently, the theoretical outcome of the game is a Nash
equilibrium, in which both players choose to defect and each
receives a ’Punishment for mutual defection’. It is worse for
each player than the outcome they would have received if they
had cooperated.

In the Iterated Prisoner’s Dilemma (IPD) game, two players
have to choose their mutual strategy repeatedly, and they also
have memory of their previous behaviors and the behaviors of
the opponents. R > 1

2 (S + T ) is set to prevent any incentive to
alternate between cooperation and defection. IPD is considered
to be an ideal test bed for the evolution of cooperation among
selfish individuals and it has attracted wide interest since
Robert Axelrod’s IPD tournaments and ‘The Evolution of
Cooperation’ [4], [5], [11], [21], [27], [28].

The winner of Axelrod’s tournaments was the ‘tit-for-tat’
(TFT) strategy. TFT starts with cooperation, and then copies
the opponent’s previous move. Axelrod attributes the success
of TFT to its properties of ‘nice’, ‘forgiving’, ‘retaliating’ and
‘simple’. However, later research has shown some weaknesses
of TFT such as vulnerability to noise and being unable
to exploit unconditional cooperators [28], [39]. Since then,
researchers have attempted to develop novel strategies that
can outperform TFT in either round-robin IPD competitions
or evolutionary dynamics and some IPD strategies have been
developed, for example, ‘win-stay lose shift’ [29], ‘generous-
TFT’ [33], ‘gradual’ [6], and very recently ‘group strategies’
[22], [36], [24], and ‘zero-determinant’ [31], [37]. Also, evo-
lution of strategies in replicator dynamics with infinite or finite
population, spatial, and noisy environments has been studied
in [1], [2], [8], [9], [15], [16], [17], [19], [20], [32], [26].

Different IPD strategies may use different lengths of historic
interactions. TFT, for example, is a memory-one strategy,
only making use of information from the previous stage of
interaction in making its next decision. ‘Tit-for-two-tats’ is
a memory-two strategy. Most well known IPD strategies are
memory-one and memory-two strategies and only a limited
number of strategies use a memory size greater than three.

Intuitively, the players with longer memories can perform
at least as well as those with shorter memories. However, it
is still not clear whether longer memory strategies outperform
shorter memory strategies. Few IPD strategies developed in
either experiments or tournaments uses a very long memory. A
non-trivial question is whether or not a longer memory grants
a strategy advantage in IPD?

Experiments have revealed that memory helps learning and
cooperation in evolution [41], [14], [13]. Posch [30] studied
win-stay, lose-shift with diverse memory size and showed that
win-stay, lose-shift with longer memory performed better than
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those with shorter memory in computer simulations. Ashlock
and Roger [3] showed that several strategies utilizing long
term memory outperformed control strategies in evolutionary
IPD. Press and Dyson [31] proves that the shortest memory
strategy sets the rule of 2-player IPD games. That is, longer
memory strategies do not have an advantage over shorter
memory strategies in 2-player IPD. However, this result cannot
be extended to n-player (n > 2) IPD cases and the memory-
one zero-determinant strategies are not evolutionarily stronger
than those known IPD strategies [37], [42].

In this study, we investigate the effect of memory size on
the evolutionary stability of IPD strategies. In order to evaluate
the evolutionary stability of IPD strategies, we develop the
concept of a counter strategy. A strategy is a counter strategy
against another strategy if it receives no less payoff than
any strategy in interacting with the opponent. Based on this
concept, a number of theorems which show the relationship
between the length of the history a strategy uses and its
evolutionary stability are proven. The contributions of this
paper include:

a. We propose a theoretical methodology to evaluate the
evolutionary stability of IPD strategies. Based on the concept
of a counter strategy, the evolutionary stability of a strategy is
evaluated by whether the strategy is a counter strategy against
itself and the probability that the strategy is a counter strategy
against an arbitrary strategy.

b. The effect of the memory size of IPD strategies on
their evolutionary stability is analyzed. We prove that longer
memory strategies have an advantage over shorter memory
strategies in both infinite length and indefinite length n-IPD.
A longer memory strategy has a higher probability of winning
against an arbitrary strategy than a shorter memory strategy.

The rest of paper is structured as follows. Section 2 intro-
duces the concept of counter strategy and how the evolutionary
stability of IPD strategies can be evaluated by means of a
counter strategy. Section 3 presents three theorems and their
proofs. The theorems show the effect of memory size of
strategies on their evolutionary stability. Finally, section 4 has
concluding remarks.

II. Evolutionary stability of IPD strategies

An indefinite length IPD has a discount rate ω (1 ≥ ω > 0).
The game continues with probability ω and the expected num-
ber of iterations of the game are 1/(1−ω). If ω = 1, the game
is infinite. In this paper, we focus on n-player infinite length
and indefinite length IPDs and ignore the finite length IPD.
Let S i (i = 1, . . . n) denote the strategy of the ith player and
E(S i, S j) the payoff of S i playing against strategy S j. Then the
payoff of S i playing against all n strategies (including playing
against itself) can be expressed as E(S i) =

∑n
j=1 E(S i, S j).

A. Counter strategy

Let HL denote a history of L moves of interactions between
two players before the current move. A strategy that makes
use of HL is called a memory-L strategy. A player should
have at least L length of memory in order to adopt a memory-
L strategy.

The strategies in IPD can be categorized according to the
length of memory they use. Some well known IPD strategies
are shown in Table I. Descriptions of all strategies used in
this paper can be found in [23]. For those strategies that have
variable memory length, the memory length is the longest
memory that they use. Let f (HL) denote a memory-L strategy.
The strategy space of a length-L IPD is determined by { f ,HL}
and the strategy space of an infinite or indefinite length IPD
is determined by { f ,H∞}.

TABLE I
Some well known IPD strategies with different size of memories.

Memory-zero Memory-one
Always-cooperate Tit-for-tat, GRIM triger

Always-defect Generous TFT, Contrite TFT
Random Win-stay-lose-shift, Gradual

Zero-determinant

Memory-two Memory-L(L > 2)
Tit-for-two-tats Fortress
Two-tits-for-tat Prober

Group strategies

In order to evaluate the evolutionary stability of IPD strate-
gies, we introduce the concept of a counter strategy. A strategy
S is a counter strategy (CS) against another strategy S 1 if, for
any strategy S ′

E(S , S 1) ≥ E(S ′, S 1) (1)

A CS receives the highest payoff in playing 2-IPD against
another strategy. In an indefinite length 2-IPD, for example,
Always-defect (AllD) is a CS against always-cooperate; TFT
is a CS against TFT. For an arbitrary strategy, there must be
at least one CS against it.

Specially, strategy S is a CS against itself (CSI) if, for any
strategy S ′

E(S , S ) ≥ E(S ′, S ) (2)

A strategy S is a CS against a population of strategies {S i}
(i = 1, . . . , n) if, for any S ′ and S i, there is

E(S , S i) ≥ E(S ′, S i) (3)

If a strategy is a CS against a population, it is a CS against
any member of the population and thus it receives the highest
payoff in playing n-IPD against the population.

There is an equivalence between a CS against a mixed
strategy and a CS against a population. Assume that S is a CS
against a population of n strategies {S i}. Consider the mixed
strategy S̄ that assigns probabilities pi = 1/n to S i,

S̄ =


S 1, p1
S 2, p2
· · ·
S n, pn

The expected payoff for S playing against S̄ is,

E(S , S̄ ) = p1E(S , S 1) + p2E(S , S 2) + · · · + pnE(S , S n)

=
1
n

n∑
i=1

E(S , S i)
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According to the definition of a CS, we have for any S ′,

E(S , S̄ ) ≥ 1
n

n∑
i=1

E(S ′, S i) = E(S ′, S̄ )

Thus, S is also a CS against S̄ . On the other hand, if a
strategy is a CS against a mixed strategy, it must be a CS
against a population that contains all pure strategies of the
mixed strategy. As shown in the following subsection, the
concepts of CSs can be used to evaluate the evolutionary
stability of IPD strategies.

B. Evolutionary stability

An evolutionarily stable stategy (ESS) is a strategy such
that, if all the members of a population adopt it, then no
mutant strategy can invade the population under the influence
of natural selection. According to [25] the condition for a
strategy S to be ESS is that for any S ′,

E(S , S ) ≥ E(S ′, S ) (4)

This condition is actually equivalent to a Nash equilibrium
in a two-player IPD. In order for a homogeneous population to
resist invasion of mutant strategies, a more restrictive condition
is defined. According to [38], the condition for a strategy S
to be ESS is that for any S ′,

E(S , S ) ≥ E(S ′, S )
E(S , S ′) > E(S ′, S ′) (5)

This condition guarantees that an ESS always outperforms
mutant strategies so that a homogeneous population can be
maintained in evolutionary dynamics. However, most evolu-
tionary algorithms for IPD do not satisfy the hypothesis of
ESS and it has been proven that no strategy is ESS in infinite
length or indefinite length n-player IPD [7], [40]. Except in
specific situations, the condition of ESS cannot be used to
analyze the evolutionary stability of IPD strategies.

There is a relationship between CS and ESS. A strategy is
ESS if it is the only CS against all IPD strategies. Assume
that S is a CS against all strategies. For any strategy S ′, we
have

E(S , S ) ≥ E(S ′, S )

and
E(S , S ′) ≥ E(S ′, S ′)

Comparing the inequalities with (5), we know that S is ESS
if it is the unique CS against all strategies. Since the condition
of ESS is too strict, we need another criterion to measure the
evolutionary stability of IPD strategies.

It is easy to verify that any CSI is Maynard Smith’s
definition of ESS. If strategy S is a CSI, (4) always holds
for any strategy S ′. There is an infinite set of CSIs in n-IPD.
Some well known strategies, for example, AllD, TFT, and two-
tits-for–tat (TTFT) are such strategies. A CSI is an equilibrium
choice for a player and thus it is superior to any non-CSI in
maintaining a homogeneous population.

In order to evaluate the evolutionary stability of CSIs, we
need another criterion. Given a strategy S , let p(S ) denote the

probability that S is a CS against an arbitrary IPD strategy. A
strategy with a high value of p(S ) is more likely to win in an
n-IPD competition or evolution. We call p(S ) the evolutionary
stability value of S . For any strategy, there is 1 ≥ p(S ) ≥ 0. A
strategy is ESS if it is the only strategy satisfying p(S ) = 1.

Here we give an example of computing the evolutionary
stability value of a random strategy. Let S denote a random
strategy that chooses between C and D in every move, and
S ′ an arbitrary strategy. In an indefinite length n-IPD with
discount rate ω, the expected length of interaction between S
and S ′ is 1/(1 − ω). It needs to make the ‘correct’ choice in
every move in order for S to be a CS against S ′. Because S is
a random strategy, the probability that it makes the ‘correct’
choice in each move is 0.5. Therefore, the probability that S
is a CS against S ′ is 0.5

1
1−ω .

Different IPD strategies can be compared according to
whether or not they are CSI and their evolutionary stability
values. A CSI outperforms any non-CSI and a CSI with a
higher evolutionary stability value outperforms another CSI
with a lower evolutionary stability value. In the following sec-
tion, several theorems are given to show that longer memory
strategies outperform shorter memory strategies.

III. The effect of memory length on evolutionary stability

Different IPD strategies use different history lengths of
interactions among players to determine their choices. In a
finite length IPD that iterates exactly L rounds, the history
length a strategy can access is at most L. In an infinite length
IPD, however, the history length is infinite. A non-trivial
question is whether the full history length is useful for an
individual player to interact with others optimally?

It has been proven that every finite history length is possible
to occur in an infinite length n-IPD. This is expressed as the
following theorem [40].

Theorem 1: In the infinite length n-IPD where the probability
of further interaction is sufficiently high, every finite history
of interactions among the n players occurs with positive
probability in any evolutionarily stable mixture of pure
strategies.

It is easy to verify that Theorem 1 also holds in an indefinite
length n-IPD. In an indefinite length IPD, the probability that
the game continues to any limited number of stages is positive.
Thus, every finite history occurs with positive probability.

A direct conclusion from Theorem 1 is that every finite
history may be useful in order for a strategy to interact with
an arbitrary strategy optimally. As to the relationship between
the history length a strategy uses and its evolutionary stability,
we have the following theorems.

Theorem 2: For any strategy that uses a limited history
length, there always exist some strategies with longer memory
against which the strategy cannot be a counter strategy.

Proof: Consider a memory-L strategy S . Let HL denote a
specific L length history of interactions between S and an
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arbitrary strategy S 1.
a. If S is a pure strategy, without loss of generality, assume
that S responds D (or C) to HL. Let H′L+1 denote a L+1 length
history in which the first L moves are the same as HL and the
opponent plays D (or C) at the last move. Another strategy S 2
is defined as below,

S 2 =


S 1 in the first L moves

always − de f ect if H′L+1
cooperate otherwise

(6)

S 2 is a memory-(L + 1) strategy. We now prove that S is
not a CS against S 2. Consider a strategy S ′ defined as below,

S ′ =


S in the first L moves
C if HL

S otherwise
(7)

In the 2-IPD between S ′ and S 2, S 2 plays cooperate after
L + 1 moves, while in the 2-IPD between S and S 2, S 2 plays
always-defect after L + 1 moves. It is easy to verify that
E(S , S 2) < E(S ′, S 2).
b. If S is a mixed strategy, without loss of generality, assume
that S responds D to HL with probability p > 0 (responds C
with probability 1−p). Let H′L+1 denote a L+1 length history in
which the first L moves are the same as HL and the opponent
plays D at the last move. Consider two strategies S 2 and S ′

as defined in (6) and (7). There is E(S , S 2) < E(S ′, S 2).
Thus, S is not a CS against S 2. �

Theorem 3: Any strategy that uses a limited history length
cannot be an ESS in an infinite length or indefinite length
n-IPD.

Proof: It is a direct conclusion from theorem 2 that any
limited memory strategy cannot be ESS in an infinite length
n-IPD. Consider a memory-L strategy S in an indefinite
length n-IPD with discount rate ω > 0. Since the probability
that the game continues more than L stages is positive, there
is always a positive probability that S meets a memory-(L+1)
strategy against which S is not a CS. Thus, S cannot be an
ESS. �

Lemma 1: If a strategy is a CS against a memory-L strategy,
this strategy will eventually play a periodic sequence in the 2-
IPD against the memory-L strategy and the period will be ≤ L.

Proof: Consider an arbitrary memory-L strategy S 1. S 2 is a CS
against S 1. If L = 0, S 2 must be always-defect and Lemma 1
holds. We only need to consider the case of L > 0.
a. Assume that S 1 is a pure strategy. Let h1 and h2 denote two
continuous length-L history of interactions between S 1 and S 2,
s1 and s2 denote two sequences of moves played by S 1 in h1
and h2 respectively, and l1 and l2 denote two sequences of
moves played by S 2 in h1 and h2 respectively, as shown in
Fig.2.

Because S 1 is a memory-L pure strategy, the first move of
s2 is determined by s1 and l1. Since S 2 is CS against S 1, l1
must be the optimal sequence of moves such that S 2 receives
the highest payoff in playing against both s1 and the first

Fig. 2. Two continuous length-L sequences of moves in the interaction
between S 1 and S 2.

move of s2. Given s1, l1 and the first move of s2, the second
move of s2 is determined, ... and etc. Given s1 and l1, each
move of s2 is determined and thus l2 is determined. Since l1
is the payoff-maximizing sequence, there must be l2 = l1.

b. If S 1 is a mixed strategy, without loss of generality, assume
that S 1 assigns probabilities over m pure strategies S ′i , each
of which is memory-L or less.

S 1 =


S ′1, q1
S ′2, q2
· · ·

S ′m, qm

S 2 is a CS against any pure strategy S ′i (i = 1, . . .m).
According to the proof in section a, S 2 will eventually play a
periodic sequence against any S ′i and the period will be ≤ L. �

Theorem 4: There are always longer memory strategies that
have a higher probability of being a CS against an arbitrary
strategy than a shorter memory strategy in an infinite length
or indefinite length n-IPD.

Proof: We first consider the case of infinite length n-IPD. Let
S ′ be an arbitrary strategy. If S ′ is a memory-L strategy, a
CS against S ′ must play a periodic sequence with period ≤ L
according to Lemma 1. Without loss of generality, let qi (i =
1, . . . L) denote the probability that the CS plays a sequence
whose period is equivalent to i. There is qi ≥ 0 and

∑L
i=1 qi = 1.

Let pL(S ) denote the probability of S being a CS against an
arbitrary memory-L strategy. For a memory-zero strategy S 0,
there is pL(S 0) = 1

2 q1 if S 0 plays a sequence of pure C (or D).
If S 0 plays a periodic sequence whose period is equivalent to
2, we have pL(S 0) = 1

4 q2, and so on.

pL(S 0) =


1
2 q1, if S 0 plays a period-1 sequence
1
4 q2, if S 0 plays a period-2 sequence
· · ·

1
2L qL, if S 0 plays a period-L sequence

Thus, the highest value of pL() for a memory-zero strategy
is,

pL(S 0) = max(
1
2

q1,
1
4

q2, . . . ,
1
2L qL)

A memory-one strategy can shift between a determined
sequence and a period-2 sequence. The highest value of pL()
for a memory-one strategy is,

pL(S 1) = max(
1
2

q1 +
1
4

q2,
1
8

q3 +
1
4

q2, . . . ,
1
2L qL +

1
4

q2)
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Similarly, there are pL(S L) = 1
2 q1 +

1
4 q2 + . . . +

1
2L qL, where

S L is the memory-L strategy that has the highest value of pL().
For any memory-K (K ≥ L) strategy, the highest value of

pL(S K) is,

pL(S K) =
1
2

q1 +
1
4

q2 + . . . +
1
2L qL

Thus, we have,{
pL(S L) > pL(S L−1) > . . . > pL(S 1) > pL(S 0)
pL(S K) = pL(S L) (for any K ≥ L) (8)

Because S ′ is an arbitrary strategy, without loss of general-
ity, assume that the probability that S ′ is a memory-i strategy
is q′i . There is q′i ≥ 0 and

∑∞
i=0 q′i = 1.

p(S ) =
∞∑

i=0

q′i pi(S )

Let S L be the memory-L strategy that has the highest value
of p() in the set of all memory-L strategies, S L+1 be the
memory-(L+1) strategy that has the highest value of p() in
the set of all memory-(L+1) strategies. There is,

p(S L) =
∞∑

i=0

q′i pi(S L)

p(S L+1) =
∞∑

i=0

q′i pi(S L+1)

According to (8), we have,{
pi(S L) < pi(S L+1) (if i > L)
pi(S L) = pi(S L+1) (if i ≤ L)

Thus, there must be p(S L+1) > p(S L) for any limited number
L in an infinite length n-IPD.

In an indefinite length n-IPD, the probability that the game
continues more than any limited number of stages is positive.
There is always a positive probability that the game continues
i stages such that pi(S L) < pi(S L+1) and thus p(S L+1) > p(S L)
holds in indefinite length n-IPD. �

IV. Example of a memory-2 strategy

In this section, we use a memory-2 (MEM2) strategy to
show how the theoretical analysis in the previous section
assists in developing IPD strategies. MEM2 behaves like TFT
in the first two moves and then it shifts among three strategies,
AllD, TFT and TFTT, according to the interactions with the
opponent in the last two moves. The logic for MEM2 to choose
which strategy to play based on the following rules.

A. If the payoff in two moves is 2R (two mutual coopera-
tions), then play TFT in the following two moves.

B. If the payoff is T+S, then play TFTT in the following
two moves.

C. In all other cases, play AllD in the following two moves.
D. If AllD has been chosen twice, always play AllD.
MEM2 will cooperate with cooperative strategies according

to Rule A, and it can restore cooperation from an occasional
defection because of Rule B. Rule D makes sure that MEM2

defects against those periodic or random strategies. It is easy
to verify that MEM2 is a CSI strategy.

We run a round-robin IPD competition with 19 strategies,
which include MEM2, AllD, TFT, TFTT, and some strategies
that have appeared in research papers. The strategies play an
IPD with each other and the discount rate of IPD is 0.98,
which means that the average length of the IPD is 50 moves.
The scores (average payoff per move) are listed in Table 2.
MEM2 receives the highest payoff, significantly higher than
other CSI strategies.

TABLE II
Result of a round-robin IPD competition with 19 strategies.

Strategy Score Strategy Score
MEM2 3.045 PAVLOV 2.362
GRIM 2.799 HM 2.314

GRADUAL 2.749 AllC 2.283
TFT 2.668 STFT 2.246
FBF 2.608 PCD 2.243

GTFT 2.598 AllD 2.221
CTFT 2.587 RAND 2.149
TFTT 2.529 RTFT 2.132

RP 2.399 NEG 2.081
NP 2.364

We also run a series of evolutionary IPD simulations. The
initial population contains x= 5, 6...10 strategies randomly
chosen from the 19 strategies in Table II. Each strategy has 20
identical copies. Stochastic universal sampling is used to select
parents for the next generation. The parents simply copy their
strategies to produce offspring and no mutation is carried out.
An evolutionary IPD is run for 100 generations. As the out-
come of any single evolutionary IPD is affected by chance, we
repeat each evolutionary IPD with the same x value for 50,000
times, and gather statistics on the outcomes. Two measures,
average fitness and average frequency in the population, are
used to measure the performance of the strategies. They are
average values over the results of 50,000 evolutionary IPDs.

The results of simulations are shown in Figs. 3-6. The
average fitness and frequencies of all 19 strategies in the
population after 100 generations are shown in Fig. 3 and Fig.
4. MEM2 outperforms other strategies in all settings of x. The
average fitness and frequency of four strategies, MEM2, AllD,
TFT, and TFTT as functions of generation are given in Fig. 5
and Fig. 6. It shows that the fitness of MEM2 is significantly
higher than other strategies at the beginning of simulations,
which leads to its higher frequency in the population. In
most of the simulations, defective strategies became extinct
after 50 generations and only cooperative strategies remained
in the population. This was the reason why the fitness of
some cooperative strategies tended to be equal at the end of
evolution.

MEM2 shows an example of integrating several different
strategies to form a new CSI strategy. Each strategy has
its advantages and disadvantages. AllD is a CS against all
memory-zero strategies and it receives low payoffs in inter-
acting with most of the memory-nonzero strategies. TFT is a
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Fig. 3. Average fitness of strategies at generation 100.

Fig. 4. Average frequencies of strategies at generation 100.

CS against those strategies that cooperates with the opponent
conditionally. A situation that TFT cannot handle well is a
long series of mutual retaliations evoked by a single defection.
TFTT performs well in this situation by playing one more
cooperation. However, it can be exploited by the strategies that
alternatively play C and D. MEM2 inherits the advantages of
the three strategies and thus outperforms them in evolutionary
IPD. The idea of combining different strategies can be used
to develop longer memory CSI strategies.

V. Concluding remarks

The condition of ESS is so strict that no strategy can be ESS
in infinite length and indefinite length n-IPD. With the absence
of an ESS, a criterion is needed to evaluate the evolutionary
stability of IPD strategies. Based on the concept of a counter
strategy, we have proposed a theoretical methodology in which
the evolutionary stability of a strategy is evaluated by whether
it is CSI and the probability it is a CS against an arbitrary
strategy. Different strategies can be compared with each other.
The effect of memory size on evolutionary stability is studied
by means of this methodology.

The memory length used by a strategy has a significant in-
fluence on its evolutionary stability in n-IPD. We have proved

Fig. 5. Fitness of strategies MEM2, AllD, TFT, TFTT (x = 10).

Fig. 6. Frequency of strategies MEM2, AllD, TFT, TFTT (x = 10).

that longer memory strategies outperform shorter memory s-
trategies in the sense of evolutionary stability. A well-designed
strategy that uses a longer memory statistically receives higher
payoffs than shorter memory strategies in interacting with an
arbitrary opponent and thus it is more likely to be dominant
in evolution.

It may be difficult to theoretically check whether a s-
trategy is a CS against another strategy, especially when
both strategies use a long memory, which makes it difficult
to compute the evolutionary stability value of an arbitrary
strategy. In practice, it is possible to compute approximate
evolutionary stability values of IPD strategies by means of
statistical methodologies. For example, the performance of
strategies in evolution can be measured by running a series of
‘races’ [18]. The idea is further developed to generalization,
a measure for learning performance in co-evolution by using
a set of randomly chosen test strategies. It has been proven
that an estimated value will approach to the true value as the
size of the set of unbiased test strategies increases [10], [12].
As the application of generalization, a statistical methodol-
ogy that takes into account outcomes across varying n-IPD
competitions has been used to evaluate the performance of
IPD strategies [23]. With this methodology, a series of n-IPD
competitions are run and the strategies in each competition are
randomly chosen from a set of representative strategies. The
performance of a strategy is evaluated according to its win
rate which is the frequency of achieving the highest payoff in
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a single competition. The win rate of a strategy is considered
as an approximation of its evolutionary stability value. In this
way, the evolutionary stability value can be computed with
greatly reduced computational complexity.

Theorems 2-4 do not necessarily hold in an IPD with noise
where the players are assumed to make mistakes occasionally.
The effect of noise on the performance of IPD strategies
varies although noise generally has a negative effect on the
persistence of cooperation. Some strategies are more robust
than others in a noisy environment. The effect of memory
size in IPDs with noise will be one topic of our future research.

Acknowledgment

This work was supported by the Engineering and Physi-
cal Sciences Research Council UK (EPSRC) grant reference
EP/H000968/1.

References

[1] W. Ashlock and D. Ashlock, Changes in prisoner’s dilemma strategies
over evolutionary time with different population sizes, In Proceedings of
IEEE Congress on Evolutionary Computation (CEC 2006), pp. 297-304,
2006.

[2] D. Ashlock and E-Y. Kim, Fingerprinting: Visualization and Automatic
Analysis of Prisoner’s Dilemma Strategies, IEEE Transactions on Evolu-
tionary Computation, 12(5): 647-659, 2008.

[3] D. Ashlock and N. Roger, The Impact of Long-term Memory in the
Iterated Prisoner’s Dilemma, in H. Cihan and et al. (eds.) Intelligent
Engineering Systems through Artificial Neural Networks, chapter 31,
ISBN 9780791802953, 2009.

[4] R. Axelrod, More effective choice in the prisoner’s dilemma, Journal of
Conflict Resolution, 24(3): 379-403, 1980.

[5] R. Axelrod, The Evolution of Cooperation, New York: Basic Books, 1984.
[6] B. Beaufils, J. Delahaye and P. Mathieu, Our meeting with gradual: a good

strategy for the iterated prisoner’s dilemma, Artificial Life V, chapter 26,
202-212, 2009.

[7] R. Boyd and J. Lorberbaum, No pure strategy is evolutionarily stable in
the repeated Prisoner’s Dilemma game, Nature, 327: 58-59, 1987.

[8] R. Chiong and M. Kirley, Effects of Iterated Interactions in Multiplayer
Spatial Evolutionary Games, IEEE Transactions on Evolutionary Com-
putation, 16(4): 537-555, 2012.

[9] S. Chong and X. Yao, Behavioral Diversity, Choices and Noise in
the Iterated Prisoner’s Dilemma, IEEE Transactions on Evolutionary
Computation, 9(6): 540-551, 2005.

[10] S. Chong, P. Tino, X. Yao, Measuring Generalization Performance in
Coevolutionary Learning, IEEE Transactions on Evolutionary Computa-
tion, 12(4): 479-505, 2008.

[11] S. Chong, J. Humble, G. Kendall, J. Li and X. Yao, Iterated Prisoner’s
Dilemma and Evolutionary Game Theory. In: G. Kendall, X. Yao and
S. Chong, eds., The Iterated Prisoners’ Dilemma: 20 Years On World
Scientific Press, Singapore. 23-62, 2007.

[12] S. Chong, P. Tino, D. Ku and X. Yao, Improving Generalization Perfor-
mance in Co-evolutionary Learning, IEEE Transactions on Evolutionary
Computation, 16(1): 70-85, 2012.

[13] P. Darwen, Co-evolutionary Learning by Automatic Modularisation with
Speciation, Ph.D. thesis, University of New South Wales, 1996.

[14] P. Darwen and X. Yao, On evolving robust strategies for iterated
prisoner’s dilemma, in Lecture Notes in Artificial Intelligence, Progress in
Evolutionary Computation, volume 956, Springer, 1995. Pages 276-292.

[15] D. Fogel, The Evolution of Intelligent Decision-Making in Gaming,
Cybernetics and Systems, 22(2): 223-236, 1991.

[16] D. Fogel, Evolving Behaviors in the Iterated Prisoner’s Dilemma,
Evolutionary Computation, 1(1): 77-97, 1993.

[17] D. Fogel, On the Relationship between the Duration of an Encounter
and the Evolution of Cooperation in the Iterated Prisoner’s Dilemma,
Evolutionary Computation, 3(3): 349-363, 1995.

[18] D. Fogel and A. Fraser, Running races with Fraser’s recombination,
Proceedings of the Congress on Evolutionary Computation, pp. 1217-
1222, 2000.

[19] H. Ishibuchi, K. Hoshino, and Y. Nojima, Evolution of strategies in
a spatial IPD game with a number of different representation schemes,
In Proceedings of IEEE Congress on Evolutionary Computation (CEC
2012), pp. 1-8, 2012.

[20] H. Ishibuchi and N. Namikawa, Evolution of Iterated Prisoner’s Dilem-
ma Game Strategies in Structured Demes Under Random Pairing in Game
Playing, IEEE Transactions on Evolutionary Computation, 9(6):, 552-561,
2005.

[21] G. Kendall, X. Yao and S. Chong, The Iterated Prisoners’ Dilemma 20
Years On. World Scientific, Singapore, Advances in Natural Computation
4, 2007.

[22] J. Li, How to design a strategy to win an IPD tournament, in G. Kendall,
X. Yao and S. Chong (eds). The Iterated Prisoners Dilemma: 20 Years
On. World Scientific, chapter 4, 2007.

[23] J. Li, P. Hingston and G. Kendall, Engineering Design of Strategies for
Winning Iterated Prisoner’s Dilemma Competitions. IEEE Transactions
on Computational Intelligence and AI in Games, 3(4): 348-360, 2011.

[24] J. Li and G. Kendall, A strategy with novel evolutionary features for
iterated prisoner’s dilemma. Evolutionary Computation, 17(2): 257-274,
2009.

[25] J. Maynard Smith, Evolution and the Theory of Games, Cambridge
University Press, Cambridge, 1982.

[26] S. Mittal and K. Deb, Optimal Strategies of the Iterated Prisoner’s
Dilemma Problem for Multiple Conflicting Objectives, IEEE TRANSAC-
TIONS ON EVOLUTIONARY COMPUTATION, 13(3): 554-565, 2009.

[27] M. Nowak, Five rules for the evolution of cooperation, Science,
314:1560-1563, 2006.

[28] M. Nowak, A. Sasaki, C. Taylor and D. Fudenberg, Emergence of
cooperation and evolutionary stability in finite populations, Nature, 428:
646-650, 2004.

[29] M. Nowak and K. Sigmund, A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the prisoner’s dilemma game, Nature, 364: 56-
58, 1993.

[30] M. Posch, Win-stay, Lose-shift Strategies for Repeated Games - Memory
Length, Aspiration Levels and Noise, Journal of Theoretical Biology,
198(2): 183-195, 1999.

[31] W. Press and F. Dyson, Iterated prisoner’s dilemma contains strategies
that dominate any evolutionary opponent, PNAS, 109(26): 10409-10413,
2012.

[32] H. Quek, K. Tan, C. Goh, and H. Abbass, Evolution and Incremental
Learning in the Iterated Prisoner’s Dilemma, IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, 13(2): 303-320, 2009.

[33] D. Rand, H. Ohtsuki and M. Nowak, Direct reciprocity with costly
punishment: generous tit-for-tat prevails, Journal of Theoretical Biology,
256(1): 45-57, 2009.

[34] A. Rapoport, Optimal policies for the prisoner’s dilemma, Technical
Report No.50 Psychometric Laboratory, University of North California,
MH-10006, 1966.

[35] A. Rapoport, Two-person Game Theory. Dover Publications, New York,
1999.

[36] A. Rogers , R.K. Dash , S.D. Ramchurn, P. Vytelingum and N.R.
Jenning, Error-Correcting Codes for Team Coordination within a Noisy
Iterated Prisoner’s Dilemma Tournament, in G. Kendall, X. Yao and
S. Chong (eds). The Iterated Prisoners Dilemma: 20 Years On. World
Scientific, chapter 9, 2007.

[37] A. Stewart and J. Plotkin, Extortion and cooperation in the prisoner’s
dilemma, PNAS, 109(26): 10134-10135, 2012.

[38] B. Thomas, On evolutionarily stable sets, Journal of Mathematical
Biology, 22:105-115, 1985.

[39] J. Wu and R. Axelrod, How to Cope with Noise in the Iterated Prisoner’s
Dilemma, Journal of Conflict Resolution, 39(1): 183-189, 1995.

[40] X. Yao, Evolutionary stability in the n-person iterated prisoner’s dilem-
ma, Biosystems, 37: 189-197, 1996.

[41] X. Yao and P. Darwen, An experimental study of N-person iterated
prisoner’s dilemma games, Informatica, 18(4): 435-450, 1994.

[42] C. Hilbe, M.A. Nowak and K. Sigmund, The evolution of extortion in
iterated Prisoners Dilemma games, Proceedings of the National Academy
of Sciences, 110(17): 6913-6918, 2013.



EVOLUTIONARY COMPUTATION, IEEE TRANSACTIONS ON VOL. X, NO. X, DECEMBER XXXX 8

Jiawei Li (M12) received the
B.Sc. degree in ship engineering
and Ph.D. degree in fluid mechanics
from the Harbin Engineering Uni-
versity, Harbin, China in 1992 and
1998 respectively. Dr. Li is currently
a research fellow at the School of
Computer Science of the University
of Nottingham, Nottingham, U.K.
His research interests include hyper-
heuristic, adaptive learning and evo-

lutionary game theory.
Graham Kendall (M03-SM10) re-

ceived the B.S. degree in compu-
tation (first class, honors) from the
Institute of Science and Technology,
University of Manchester, Manch-
ester, U.K., in 1997 and the Ph.D.
degree in computer science from the
University of Nottingham, Notting-
ham, U.K., in 2001. His previous
experience includes almost 20 years
in the information technology indus-

try where he held both technical and managerial positions.
He is a Professor of Computer Science at the University of
Nottingham and is currently based at their Malaysia Campus
where he holds the position of Vice-Provost (Research and
Knowledge Transfer). He is a Director of two companies
(EventMAP Ltd., Nottingham, U.K.; Aptia Solutions Ltd.,
Nottingham, U.K.) and CEO of two companies (MyRIAD
Solutions Sdn Bhd, Malaysia and MyResearch Sdn Bhd,
Malaysia).

He is a Fellow of the Operational Research Society. He is
an Associate Editor of nine international journals, including
two IEEE journals: the IEEE TRANSACTIONS ON EVO-
LUTIONARY COMPUTATION and the IEEE TRANSAC-
TIONS ON COMPUTATIONAL INTELLIGENCE AND AI
IN GAMES. He chaired the Multidisciplinary International
Conference on Scheduling: Theory and Applications in 2003,
2005, 2007, 2009, and 2011, and has chaired several other
international conferences, which has included establishing the
IEEE Symposium on Computational Intelligence and Games.
He has been awarded externally funded grants worth over £6
million from a variety of sources including Engineering and
Physical Sciences Research Council (EPSRC) and commercial
organizations.


