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Abstract 

The genetic diversity and genetic structure of populations, and the processes shaping 

gene flow within and between populations, are influenced by the landscapes they occur 

within. Within terrestrial landscapes, rivers and their riparian habitat are among the most 

dynamic, diverse and complex of landscapes and their linear structure appears as an 

interlinking feature across large landscapes.  

 

This thesis took a landscape genetics approach to examine the influence of river 

landscape features on Alnus glutinosa populations, a widespread keystone tree species of 

European riparian ecosystems. By accounting for the differing dispersal mechanisms of A. 

glutinosa (wind and water), landscape effects on seed- and pollen-mediated gene flow, 

genetic diversity, demographic and genetic structure were identified at different spatial 

scales of a large UK river catchment.  

 

Widespread gene flow within and between A. glutinosa populations was identified with 

no apparent limitation of wind-mediated pollen dispersal. Hydrochorous dispersal of seed 

between populations was evident, and found to increase genetic connectivity between 

riparian populations; however an isolation by distance effect was identified between 

populations located further apart from each other. No pattern of genetic diversity was 

found, with high levels of genetic diversity identified at all spatial and temporal scales. At 

the river-catchment scale no genetic clustering was observed, either within or between 

the six rivers studied. Demographic structuring within A. glutinosa populations was 

evident, and correlated with distance from the main river channel. Interactions between 
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seed dispersal, hydrological disturbance, colonisation, and historical influences are 

discussed in relation to fine-scale spatial genetic structure between A. glutinosa sapling 

and adult generations. 

 

Central to the landscape genetics approach taken in this thesis was the incorporation of 

key A. glutinosa life history attributes. By incorporating gene flow analyses, species 

ecology and landscape features, the research presented here furthers our understanding 

of riverine landscape influences on their riparian populations at different spatial scales 

and can be used to inform management principles.    
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1.1 Introduction 

Ecological heterogeneity exists everywhere within nature so that living beings, and the 

landscapes they occur in, are distributed neither uniformly nor randomly (Legendre 

1993). Furthermore, this ecological heterogeneity occurs over a range of spatial and 

temporal scales. Thus, the field of ecology is fundamentally concerned with issues of 

pattern and scale (Levin 1992). Crucially, the identification and description of ecological 

pattern, and the temporal and spatial scales it occurs at, whilst important in and of itself, 

also enables efforts to discover the processes generating and maintaining the pattern 

observed.  Elucidation of the processes underlying ecological patterns is essential to our 

understanding of how ecosystems function, interact, and respond to change, and also 

facilitates the development of management principles (Levin 1992). Over the last 20 years 

technological developments within ecological genetics, and the wider field of molecular 

ecology, have seen significant progress in connecting processes with pattern and scale 

(Chave 2013). 

 

1.2 Ecological genetics 

Ecological genetics integrates field ecology with the application of molecular genetic tools 

(Ford 1975), and seeks to investigate the origin and maintenance of genetic variation 

within and between populations whilst also accounting for population size and structure 

(Lowe et al. 2008). Molecular markers, fragments of heritable DNA at specific genome 

loci, can be used to identify differences in the DNA sequences of individuals. Processes 

that affect individuals ultimately accumulate into effects on populations, thus the 

application of genetic markers can be used to examine patterns of genetic variation at the 

individual level, between individuals in a subpopulation, and in subpopulations within 
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populations (Sunnucks 2000). Technological developments have seen rapid improvement 

in the power of molecular markers alongside a reduction in processing costs, enabling the 

use of large numbers of samples and the study of multiple loci, especially for 

microsatellite markers (Selkoe and Toonen 2006). Codominant in the nuclear genome and 

selectively neutral, microsatellites reveal length variation in alleles and can be used to 

identify and measure genetic variation and to subsequently test hypotheses related to 

processes such as migration, population size, and kinship (Selkoe and Toonen 2006).  

 

To understand the influence of different processes on population genetics, and to ensure 

the effective management of genetic resources, it is important to describe and quantify 

genetic diversity, recognised as one of the three forms of biodiversity alongside 

ecosystem and species diversity (Convention on Biological Diversity 2015). In plants, tree 

populations typically have higher levels of genetic diversity, and also show less genetic 

structure, than herbaceous plants and shrubs, in part due to high levels of gene flow 

(Petit and Hampe 2006). Genetic diversity and its spatial pattern are influenced by gene 

flow, selection and genetic drift (Loveless and Hamrick 1984).  

 

Spatial genetic structure, i.e. the non-random spatial distribution of genotypes, is often 

observed in plant populations as a result of restricted seed and pollen dispersal (from 

several metres to tens of kilometres). This isolation by distance effect (Wright 1943), 

where there is a decreasing probability of mating as the distance between parents 

increases, leads to offspring being more likely to occur close to their parent plant(s) as  a 

result of non-random mating. Patterns of isolation by distance, both within and between 

populations, provide an insight into historical rates of gene flow with ecological factors 



5 
 

affecting gene flow particularly important in determining genetic structure (Loveless and 

Hamrick 1984).  

 

In plants, gene flow occurs through the dispersal of pollen (which carries the genetic 

information of the father) and seed (which carries the genetic information of both the 

father and mother). Dispersal of pollen and seed can be mediated by gravity, wind 

(anemochory), water (hydrochory), and animals (zoochory), each of which shape the 

pattern of gene flow in different ways (Ashley 2010). Determining how ecological factors 

influence contemporary gene flow requires methods that directly estimate gene flow, 

such as parentage analysis (Sork et al. 1999). Parentage analyses, based on the use of 

statistical analysis models, allow the distance and direction of pollen dispersal to be 

identified, and how far offspring have travelled from their seed parent. Pollen and seed 

dispersal patterns and distances can result in different patterns of gene flow. The 

dispersal pattern and distance of pollen dictates the reproductive neighbourhood size of a 

plant and the connectivity of plant populations, with seed dispersal influencing not only 

gene flow, but also patterns of colonisation, recruitment, and demography of plant 

populations (Ashley 2010). Crucially, understanding intrinsic processes such as dispersal 

patterns also requires knowledge of how landscape features structure populations.  

 

1.3 Landscape genetics 

The term landscape genetics was first described in 2003 (Manel et al. 2003). Landscape 

genetics seeks to explain spatial genetic patterns by using landscape variables, such as 

forests or open fields, to understand how geographic and environmental landscape 

heterogeneity influence spatial genetic variation, population structure, and gene flow 
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(Manel et al. 2003). Landscape genetic studies incorporate, alongside the collection of 

genetic data, the exact geographic location of individuals, enabling tests of landscape 

heterogeneity on patterns of gene flow and genetic variation within and between 

populations (Storfer et al. 2007). Although a burgeoning field of study, landscape genetic 

studies of plants is under-explored (Holderegger et al. 2010), including the interaction of 

pollen and seed flow with the landscape (Sork and Smouse 2006). Current priorities for 

development in this field of research include the consideration of the temporal dimension 

of landscapes, the incorporation of species life history attributes, and the examination of 

genetic connectivity based on dispersal, all of which can inform management practice 

(Bolliger et al. 2014). 

 

1.4 Riverine landscapes and their riparian habitat 

Within a landscape, river corridors exist as linear features extending across large 

geographical areas from their headwaters to the sea. Rivers are not homogeneous 

features of the wider landscape however, rather they form their own landscape 

characterised by their diverse mosaic of landscape elements and ecological processes that 

occur across a range of spatial and temporal (seasonal to millennial) scales (Ward et al. 

2002; Wiens 2002). Landscape elements include the river corridor itself, situated within 

and upon a network of alluvial channels, areas of lotic (flowing water), semi-lotic (areas 

only connected to the main river channel at their downstream end e.g. abandoned 

channel segments) and lentic (standing water e.g. lakes) waterbodies, geomorphic 

features, and riparian habitat (Ward et al. 2002). As distinctive water-based landscapes, 

their hydrology is a key factor in the dynamic nature of rivers, continuously shaping patch 

shape and movement, and alternatively shifting floodplains through terrestrial and 
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aquatic phases (Wiens 2002). Importantly, connectivity provided by water is an important 

feature of river landscapes, linking the landscape through the exchange of matter, energy, 

and biota across different spatial scales (Ward et al. 2002).  

 

It is these distinctive riverine landscape features that contribute to riparian habitat being 

among the most diverse and dynamic of terrestrial ecosystems, adding disproportionately 

to both terrestrial and aquatic ecosystem function and diversity (Gregory et al. 1991; 

Naiman et al. 1993). The word riparian refers to the biotic communities on the shores of 

streams and lakes (Naiman and Décamps 1997) and can include, for example, areas of 

riparian forest, wetland and floodplain. At the interface between terrestrial and 

freshwater ecosystems, riparian vegetation forms a complex mosaic of habitats shaped by 

a range of allogenic (externally imposed environmental influences) and autogenic 

(vegetation-environment interactions that would not occur without vegetation, and 

which influence vegetation dynamics) processes (Francis 2006). Key allogenic processes 

influencing riparian vegetation include the formation of river bars enabling the 

establishment of pioneer riparian vegetation, the hydrochorous dispersal of plant 

propagules, and hydrological fluctuations leading to disturbance such as damage to, 

saturation, and burial of riparian plants (Francis 2006). In turn, autogenic processes can 

promote bank stability and sedimentation, as well as river island formation, thus 

influencing both plant and river dynamics from the earliest stages of plant establishment 

(Francis 2006).  

 

As linear features within a landscape, it is clear that riverine features affect the 

connectivity and genetic structure of riparian populations at a range of spatial and 
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temporal scales. Taking an ecological genetics approach enables the identification of gene 

flow within and between populations, thus providing an insight into connectivity between 

riparian populations. Examining genetic diversity and genetic structure provides further 

insight into the influence of riverine features on populations, particularly when 

undertaken at different spatial scales. By taking a landscape genetics approach to link 

landscape features to genetic patterns, gene flow, genetic diversity, and genetic structure 

can be analysed in light of the landscapes they occur in. Moreover, by incorporating 

species ecological life history traits, our understanding of the interactions between gene 

flow, ecology, and riverine landscapes, and how they structure plant populations is 

furthered.  

 

1.5 Thesis outline 

The aim of this thesis is to examine patterns of genetic diversity and genetic structure in 

riparian A. glutinosa populations, and to relate underlying processes to the genetic 

patterns observed at different spatial scales of the River Tay catchment. Three research-

based chapters are presented, each in manuscript format. 

 

Chapter 2: Effects of seed- and pollen-mediated dispersal on between-generation genetic 

diversity and genetic structure within riparian A. glutinosa woodlands 

The aim of this chapter is to investigate local-scale gene flow within and between four 

riparian A. glutinosa populations of the River Tummel. In particular, the influence of the 

different dispersal mechanisms is studied. A paternity analysis of A. glutinosa seed is used 

to identify patterns of wind-mediated pollen dispersal and a maternity analysis of A. 

glutinosa saplings identifies patterns of within-site, wind-mediated and between-site, 
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water-mediated seed dispersal. Dispersal directions, distances, and the dispersal curves 

of pollen and seed are compared and the influence of the dispersal processes on 

between-generation spatial genetic structure is examined.  

 

Chapter 3: Detection of demographic and genetic structure in the riparian A. glutinosa 

woodlands of a dynamic river system 

The aim of this chapter is to identify patterns of demographic and genetic structure in 

riparian A. glutinosa woodland of a downstream reach of the River Tummel, and to relate 

observed patterns to features of the riverine landscape. A dendrochronology approach is 

taken to create a size-age standard for A. glutinosa, and combined with field 

measurements, used to examine patterns of spatial and temporal riparian woodland 

structure. Patterns of demographic structure are compared to patterns of genetic 

structure and the influence of hydrogeomorphological processes discussed.  

 

Chapter 4: Landscape genetics of a key riparian tree species A. glutinosa at a river 

catchment scale 

The aim of this chapter is to examine landscape-scale effects on genetic connectivity 

between A. glutinosa populations. In particular, the unidirectional nature of flow in rivers 

is utilised to compare A. glutinosa populations connected only by wind-mediated pollen 

dispersal to populations connected by both wind-mediated pollen dispersal and water-

mediated seed dispersal.  Patterns of genetic diversity within populations along the 

course of the river are examined to investigate whether gradients of upstream – 

downstream genetic diversity occur. Genetic structure of riparian A. glutinosa 
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populations within and between rivers is compared. Long-distance dispersal of pollen and 

seed is also examined, looking at patterns of isolation by distance.  

 

1.6 Study system 

The River Tay catchment is the focus of study for the research presented in this thesis. 

The River Tay catchment, located in the eastern Highlands of Scotland, is the largest river 

catchment in Scotland, draining an area of approximately 5,000 km2. It has six major river 

tributaries: the Garry, Tummel, Lyon, Isla, Almond, and Earn and a number of large lochs 

including Lochs Ericht, Rannoch, and Tummel, with Loch Tay being the largest loch at 23 

km long. Records from the most downstream river flow gauging station at Ballathie, just 

south of the confluence of the Rivers Tay and Almond, where the River Tay is 90 m wide, 

give the mean annual flow to be 165 m3 s-1, the highest mean flow in the UK (Marsh and 

Lees 2003). The majority of rivers within the Tay catchment originate in the mountains of 

the Grampian Highlands and flow south-east across the Highland Boundary Fault to the 

East Central Lowlands, becoming tidal at Perth and entering the North Sea at Dundee 

(Forest Research 2013). To the north of the Highland Boundary Fault the upland geology 

is composed of resistant metamorphic rocks, and to the south it is comprised of softer 

sedimentary sandstones occurring over gentler gradients (Forest Research 2013). The 

River Tay catchment has numerous designations including Special Areas of Conservation 

(SACs), Special Protection Areas (SPAs), Natura 2000, and Sites of Special Scientific 

Interest (SSSIs). Montane habitat, heath and bog cover the higher areas of the catchment, 

and rough grazing dominates the uplands with improved grassland and intensive arable 

land in river valley bottoms (Forest Research 2013). Woodland and plantation forestry 

account for 15% of the catchments area (Forest Research 2013). The riparian woodland of 
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the River Tay catchment forms the focus of study in chapter four of this thesis, with 

chapters two and three focusing on riparian woodland of the River Tummel, one of the 

major tributaries of the River Tay.  

 

The River Tummel is a large and active wandering gravel-bed river. It has a catchment 

area of 1670 km2 and originates at Loch Rannoch in the west, flowing for 93 km before 

joining the River Tay at Logierait. Records from the river flow gauging station at Pitlochry, 

where the river is approximately 40 – 50 m wide (Parsons and Gilvear 2002) give the 

mean annual flow to be 73 m3 s-1 (Marsh and Lees 2003). The River Tummel is dynamic in 

nature with lateral movement evident from the analysis of old maps, aerial photography, 

and recent events (Gilvear and Winterbottom 1992; Winterbottom 2000; Parsons and 

Gilvear 2002). Early maps show the lower 10 km of the river, downstream of its 

confluence with the River Garry, to be multi-channelled and unstable, however 

embankments constructed during the 18th and 19th centuries led to channel change, 

principally the confinement of the channel to a single course (Gilvear and Winterbottom 

1992; Winterbottom 2000). Following a large flood event in 1903 the embankments were 

allowed to fall into disrepair and the river has since returned to a more natural state with 

further channel change and movement occurring, characteristic of a ‘mobile’ gravel-bed 

river (Figure 1.1) (Gilvear and Winterbottom 1992; Winterbottom 2000; Parsons and 

Gilvear 2002). Since abandonment of the flood embankments, fluvial landforms and 

mosaic patches of vegetation have evolved principally as a consequence of flood-induced 

planform change and fluvial disturbance (Parsons and Gilvear 2002). In particular, this has 

included the movement of river gravels, particles larger than sand (>2 mm diameter) but 

smaller than boulders (<256 mm in diameter), for which the Rivers Tay and Tummel have 
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the largest volumes of in the UK (Scottish Natural Heritage 2008). Accumulations of 

exposed gravel are important for establishing riparian vegetation and key gravel areas of 

the River Tummel are designated as the Shingle Islands Site of Special Scientific Interest 

and the Shingle Islands Special Area of Conservation for Annex  I feature ‘alluvial forests 

with Alnus glutinosa and Fraxinus excelsior’ (JNCC 2014). 

 

Figure 1.1  Features of the River Tummel. Top left: Abandoned former river channel, lined with mature 

Alnus  glutinosa trees. Top right: upstream-end of backwater of River Tummel; Middle left: downstream-

end backwater of River Tummel (visible in background); Middle right: gravel deposition at Moulinearn on 

the River Tummel, with alluvial forest visible in the background; Bottom left: gravel and woody-debris 

deposition at Moulinearn: Bottom right: gravel bar formation, with the main River Tummel channel visible 

to  the left and a narrow channel just visible to the right. All photographs taken along the River Tummel, 

within the designated Shingle Islands area. [Photographs by G Flint] 
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1.7 Study species – Alnus glutinosa 

Alnus glutinosa (L.) Gaertn., commonly known as black alder, is one of 29 – 35 Alnus 

species that form part of the Betulaceae family, with four – five Alnus species native to 

Europe, nine species native to the Americas, and 18 – 23 species native to Asia (Chen and 

Li 2004). Alnus glutinosa is distributed throughout most of Europe, from mid-Scandinavia 

to the Mediterranean, with rear edge populations occurring as far as the mountains of 

Turkey and North Africa (Figure 1.2). Although there is uncertainty over the arrival time of 

A. glutinosa in Britain, evidence shows a major expansion of A. glutinosa occurring across 

Britain from 7500 BP (Chambers 1989). Alnus glutinosa is considered the only native Alnus 

species in the UK although A. incana and A. cordata also occur, having been introduced 

for cultivation in 1780 and 1820 respectively, and subsequently recorded in the wild in 

1922 and 1935 respectively (Preston et al. 2002).  

 

 
Figure 1.2  Distribution map of Alnus glutinosa. Blue shaded areas show natural distribution of A. glutinosa. 

(EUFORGEN 2008).  
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Alnus glutinosa is an important tree species of European riparian ecosystems. It 

contributes to biodiversity by supporting a range of flora and fauna both on the tree itself 

and in the flooded root system. In waterlogged soils it contributes to water filtration and 

purification. The root system helps to control floods and reduce river bank erosion. In 

addition, it influences water temperature and nutrient cycling, and is able to fix 

atmospheric nitrogen in symbiotic root nodules with Frankia bacteria (Claessens et al. 

2010). It is an important species in alluvial and marshy ecosystem restoration projects, 

contributing to both nature conservation and watershed management (Claessens et al. 

2010). It is listed as a key species for conservation under the European Habitats Directive 

under the Annex I priority habitat 91E0* ‘alluvial forests with Alnus glutinosa and Fraxinus 

excelsior’ (Council of the European Communities 1992). It is also an important forestry 

species, and is grown for timber, paper, joinery purposes, and for use underwater where 

it is very long-lasting (Claessens et al. 2010). 

 

Alnus glutinosa is a monoecious, self-incompatible broad-leaved tree (McVean 1953; 

Steiner and Gregorius 1999). They are a relatively short-lived tree with a maximum 

lifespan between 100 -160 years old (Claessens et al. 2010). Alnus glutinosa mature 

between the ages of three to 30, with the male and female flowers forming as catkins 

during February / March (McVean 1955), producing seed every three to four years 

(Claessens et al. 2010). Following wind-pollination and fertilisation the female flower 

forms as a woody, cone-like fruit containing approximately 60 seeds (strictly achenes) 

that are dispersed in autumn (McVean 1953). A mature tree can produce approximately 

4,000 cones in one year (Claessens et al. 2010). The viability of A. glutinosa seed is 

generally low and highly variable (0 – 80%), whether between years, between 
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populations, or between trees, and appears to be a function of a high level of unfertilised 

seed (McVean 1955; Claessens et al. 2010). Alnus glutinosa seed is small (1 – 2 mm in 

diameter) and light and is dispersed by both wind and water. Water dispersal is the 

principal dispersal mechanism and the seeds possess adaptations particularly suitable for 

water dispersal including lateral cork-like float chambers, aiding buoyancy, and an oily 

outer coat (McVean 1955). The seed is able to float in still water for over 12 months and 

wind and wave action concentrates seed along shore lines (McVean 1955). Wind dispersal 

of the seed occurs over a distance of 30 m – 60 m, and most wind-dispersed saplings are 

20 m – 30 m from the parent tree (McVean 1955). Germination of the seed occurs on the 

surface of the vegetation or soil, due to its buoyancy (McVean 1953), from late 

September onwards (McVean 1955). Seed dispersal is influenced by abiotic events such as 

high winds and floods. Wind dispersed seed forms clusters of saplings adjacent to parent 

plants, or linear populations along the edge of woods where concentric lines of even-aged 

trees may develop. Water dispersed seed becomes concentrated in river meanders, and 

following floods forms lines of seed along high-water marks, establishing on river alluvium 

and mud (McVean 1956). The hydrophyte seedling requires a high water-table, or high 

rainfall, as well as high light intensity (McVean 1953; Claessens et al. 2010).  

 

Growth of A. glutinosa is rapid when young, with most diameter growth occurring in the 

first 15 years of life (Claessens et al. 2010). Growth habit is described as variable by 

McVean (1953), from low multiple-stemmed bush form to tall single-bole trees. Although 

most A. glutinosa reproduction is by seed, various types of vegetative reproduction also 

occur (McVean 1953). Root suckers, or sprouting, although not rare, are more frequent in 

grazed forests and dynamic systems; ageing trees produce trunk suckers that develop into 
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individual trees when the parent dies; and adventitious roots may form on uprooted trees 

or fallen branches (Koop 1987)(Figure 1.3).  

  
 

Figure 1.3  Alnus glutinosa growth. Top left: Single-bole A. glutinosa tree. Top middle: Multi-stemmed A. 

glutinosa with two stems; Top right: ageing A. glutinosa tree with suckers; Bottom left: A. glutinosa 

regeneration on shingle; Bottom right: uprooted and deposited A. glutinosa tree establishing on area of 

bare shingle. All photographs taken along the River Tummel, within the designated Shingle Islands area. 

[Photographs by G Flint] 

 

Alnus glutinosa occurs throughout the River Tay catchment and was sampled from a 

range of habitats including river bank trees, riparian woodland, and slopes with wet 

flushes next to rivers, lochs, and abandoned river channels. The history of most A. 

glutinosa sampling locations within the River Tay catchment is unknown, however all 

populations are considered natural although it is likely that some populations may have 

been managed in the past, as coppice woodlands for example (personal observation) 

(Figure 1.4).   
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Figure 1.4 Photographs of Alnus glutinosa woodlands sampled within the River Tay catchment. Clockwise, 

from top left: Edinchip wet-flush woodland, River Earn; Old A. glutinosa at Coille Criche, Loch Earn; riparian 

woodland at Drumlochlan, River Earn; A. glutinosa woodland adjacent to the Loch of Butterstone, part of 

the Lunan; wet A. glutinosa woodland located in disconnected River Tay channel at Bloody Inches; lochside 

A. glutinosa growth at Dalerb, Loch Tay; A. glutinosa coppice stool at Fiddlers Bay, Loch Tay; wet-flush 

slopes of Loch Tummel; A. glutinosa lined River Almond at Newton Bridge; meadow-like growth of A. 

glutinosa at Drumlochlan, River Earn. [Photographs by G Flint]  
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2 ** 

Chapter 2 

Effects of seed- and pollen-mediated dispersal on 

between-generation genetic diversity and genetic 

structure within riparian Alnus glutinosa woodlands 
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2.1 Abstract 

In plants, gene flow within and between populations is maintained through a combination 

of pollen and seed dispersal. The identification and characterisation of the distance and 

direction of gene flow is therefore key to informing many areas of plant science including 

population connectivity, recruitment, and demography of plant populations. In this study 

microsatellite markers were used to assess gene flow and spatial genetic structure of 

Alnus glutinosa located in four riparian populations of the River Tummel, Scotland. A 

maternity analysis of 167 saplings was undertaken, assessing levels of within-population 

wind dispersal of seed and between-population hydrochorous seed dispersal. A 

complementary paternity analysis of 398 seeds was undertaken, and spatial genetic 

structure, within the pollen donor, sapling, and adult (n = 653) generations was 

investigated. Within-population seed dispersal occurred over distances up to 98 m 

although between-population hydrochorous seed dispersal, covering distances up to 2.6 

km, accounted for most seed dispersal. Pollen dispersal was observed up to distances of 

4.3 km although most pollen dispersal was within-population. The extensive gene flow 

revealed was consistent with the lack of spatial genetic structure identified in the sapling 

generation. However, although weak, significant spatial genetic structure was observed in 

the adult generation. By revealing the extent of both seed and pollen dispersal in riparian 

populations of A. glutinosa this study highlights the importance of incorporating 

ecological processes in the measurement of gene flow. Differences in spatial genetic 

structure between generations indicates the response to ecological and evolutionary 

influences varies in the different life stages of A. glutinosa and the detection of spatial 

genetic structure in the adult generation is discussed.  
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2.2 Introduction 

The identification and characterisation of gene flow is key to understanding the processes 

underpinning gene flow, genetic diversity and spatial genetic structure within populations 

(Slatkin 1987). In plant populations gene flow is maintained by the dispersal of pollen and 

seed. If pollen and seed dispersal is unrestricted, little genetic differentiation between 

populations is expected. However, differences in the pattern and distance of pollen and 

seed dispersal lead to varying levels of within population genetic diversity and between 

population genetic differentiation (Ennos 1994; Petit et al. 2005).  

 

Although seed dispersal is often assumed to be more spatially restricted than pollen 

dispersal, a growing body of empirical evidence reports that seed-mediated dispersal may 

be as widespread as pollen dispersal (Ashley 2010). Although most seed dispersal occurs 

over short distances, long-distance seed dispersal events, although rare, are found to be 

disproportionately important (Nathan 2006). Species that occupy habitats prone to 

extreme flooding events, such as river banks, are more likely to experience long-distance 

seed dispersal (Nathan et al. 2008). Further to this, the seeds of many riparian species 

have adaptations enabling hydrochory, the passive dispersal of organisms by water 

(Nilsson et al. 2010).  

 

 

In plant populations, direct measures of inter-population gene flow can be based on bi-

parentally inherited nuclear and / or uni-parentally inherited organelle genomes (Ennos 

1994). DNA microsatellites can provide accurate markers to assign parentage and 

parentage analysis provides a practical method of estimating dispersal (Ashley 2010). 
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When using nuclear markers, parentage analysis, based on sampling all possible parents, 

or a proportion of possible parents within a prescribed area, enables the identification of 

both the maternal and paternal parent. Paternal analysis, undertaken to identify the 

pollen parent, is typically based on offspring from a known, genotyped seed parent, thus 

the maternal allele of the seed can be identified and excluded from the offspring 

genotype. Pollen parents are thus identified based on finding a matching paternal allele 

from the sampled pool of possible parents (Ashley 2010). Maternal analysis, to identify 

the maternal parent, poses further challenges, particularly when the origin and 

destination of seed has not been tracked (Ashley 2010). In this case, although parentage 

analysis can assign two potential parents it is not possible to confirm whether an assigned 

parent is the seed or pollen parent (Ashley 2010) although, where knowledge of the 

species ecology is available, assumptions can be made as to which assigned parent is the 

maternal parent (e.g. Bacles et al. 2006; Nakanishi et al. 2009; Vranckx et al. 2014). For 

example, in wind-pollinated, co-sexual plants, the geographically closest parent is 

assumed to be the maternal parent (Bacles et al. 2006; Nakanishi et al. 2009; Vranckx et 

al. 2014). Inevitably, any assumption made introduces bias into any insight gained 

although other methodological approaches, such as examination of spatial genetic 

structure, can be used to ascertain whether the parentage analysis results obtained are 

consistent with the results and insight gained from other analyses.   

 

As patterns in the dispersal distances of pollen and seed often occur, spatial genetic 

structure (SGS), the non-random spatial distribution of genotypes, is expected to occur 

frequently in plant populations (Vekemans and Hardy 2004). Typically, most gene flow 

between plant populations is expected to occur via the movement of pollen because 
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pollen may disperse over longer distances and in greater numbers than seed dispersal, 

especially where pollen is wind dispersed (Ennos 1994; Petit et al. 2005). In comparison, 

seed dispersal is often spatially limited therefore offspring tend to be more spatially 

aggregated. If seed dispersal is spatially restricted, as expected in plant populations, the 

spatial distribution of maternal half-sibling offspring will be more constrained than the 

spatial distribution of paternal half-sibling offspring (Vekemans and Hardy 2004; 

Nakanishi et al. 2009). Thus, the formation of kinship structures is considered the most 

prevalent cause of fine-scale spatial genetic structure in plant populations (Vekemans and 

Hardy 2004).  

 

Studies of SGS benefit by incorporating comparison between different age classes, 

enabling the detection of changes in SGS across life stages (Kalisz et al. 2001; Fuchs and 

Hamrick 2010). This information can provide some insight into the various ecological and 

evolutionary processes shaping SGS at different life stages. For example, the SGS of newly 

dispersed seeds may reflect the SGS of the parent cohort and / or the dispersal distances 

of pollen and seed (Kalisz et al. 2001). A subsequent loss of kinship structure in successive 

demographic stages is expected to reflect recruitment patterns, density-dependent 

mortality, or post-dispersal selection (Kalisz et al. 2001; Fuchs and Hamrick 2010).  

 

Although the level of, and change in, SGS gives some insight into the demography and 

evolution of populations it is clear that quantification of pollen and seed dispersal 

patterns would greatly improve our understanding of demographic processes. To better 

understand the processes shaping genetic diversity across generations, this study aimed 

to simultaneously assess contemporary patterns of gene flow alongside examining kinship 
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structure in four populations of Alnus glutinosa, a keystone tree species of riparian 

ecosystems. Parentage analyses were conducted to assess wind mediated pollen 

dispersal and hydrochorous seed dispersal within and between populations, and genetic 

diversity and kinship structure across the adult and sapling generations were examined. 

Specifically, the following hypotheses were tested: 

 
I. Greater genetic diversity will be observed in the sapling generation than the adult 

generation as a consequence of widespread pollen dispersal increasing initial 

genetic diversity, and recruitment and density-dependent mortality reducing 

genetic diversity in the adult generation. 

 
II. Extensive between-population gene flow will occur as a consequence of 

widespread, wind-dispersed pollen. 

 
III. Seed dispersal will be less extensive than pollen dispersal, as typically reported in 

tree species where widespread, wind-dispersed pollen occurs. 

 
IV. Greater spatial genetic structure will be observed in the sapling generation, 

compared to the adult generation, as a consequence of the spatially aggregated 

growth of A. glutinosa saplings  

 

2.3 Materials and methods 

2.3.1 Study species 

Alnus glutinosa (L.) Gaertn, commonly known as black alder, is an important temperate 

riparian tree species distributed across Europe. Growing alongside the edge of rivers and 

standing water, A. glutinosa can act as a pioneer species and forms a key element of 
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dynamic river systems (McVean 1953). It can grow on a wide range of soils and is able to 

fix atmospheric nitrogen in symbiotic root nodules with Frankia bacteria (Claessens et al. 

2010). A monoecious tree, the male and female flowers form as catkins during February / 

March and are wind-pollinated (McVean 1955). Following fertilisation the female flower 

forms as a woody cone-like fruit containing approximately 60 seeds (strictly achenes) that 

are dispersed in autumn (McVean 1953). The seeds, which have lateral cork-like float 

chambers and an oily outer coat, are principally dispersed by water, although seed 

dispersal by wind can occur up to a distance of 60m (McVean 1955). Trees mature 

between the ages of three and 30 years and produce seed every three to four years 

(Claessens et al. 2010).  Alnus glutinosa is considered self-incompatible (Steiner and 

Gregorius 1999). Growth of A. glutinosa is rapid when young, with most diameter growth 

occurring in the first 15 years of life (Claessens et al. 2010). Growth habit is described as 

variable by McVean (1953), from low multiple-stemmed bush form to tall single-bole 

trees. At the locations studied here some trees appeared as multi-stemmed trees, 

characterised by trunks growing individually but so close to one another at the base that 

is was not possible to distinguish whether they were the same tree or not. Future 

reference to multi-stemmed trees refers to this growth characteristic.  

 

2.3.2 Study area 

Sampling of A. glutinosa trees took place within four riparian populations adjacent to the 

River Tummel in the eastern Highlands of Scotland (Figure 2.1).  
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Figure 2.1  Map showing the location of the four study sites on the River Tummel. Inset map shows the 

location of the River Tummel in Scotland.  
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Each site encompasses areas of dynamic river shingle, where river action deposits and re-

arranges shingle, and a wide range of successional vegetation communities occur. Alnus 

glutinosa woodland occurs on shingle and other alluvial soils, alongside areas of bare 

shingle, neutral grassland, and open water, including abandoned river channels and 

backwaters. Here, the term ‘backwater’ refers to a former river channel that, through the 

deposition of alluvial or woody debris, has lost its upstream connection with the main 

river channel but maintains a downstream connection with the river channel. The four 

populations, referred to here, in upstream to downstream order, as Tomdachoille, 

Moulinearn, Ballinluig, and Richard’s Island, occur over an approximate 6 km stretch of 

the River Tummel with Richard’s Island located on the confluence of the River Tummel 

and the River Tay. Each population varies in size, ranging from 6.5 Ha to 19.3 Ha (Table 

2.1). These four populations are of national importance, designated as the Shingle Sands 

Site of Special Scientific Interest (SSSI), forming a series of extensive and dynamic river 

shingle areas in various stages of colonisation (Scottish Natural Heritage 2013). The study 

populations are also of European conservation importance forming part of the Shingle 

Islands Special Area of Conservation (SAC) for Annex I priority feature ‘alluvial forests with 

Alnus glutinosa and Fraxinus excelsior’ (JNCC 2014). All necessary permissions were 

gained from the landowners, land manager, and the statutory authority prior to fieldwork 

commencing.  

 

2.3.3 Sample collection 

In 2011, leaf material was collected from adult and sapling trees from each of the study 

populations. Within each population up to 277 trees were randomly sampled at a range 

of distances apart across each site (Table 2.1). Trees were identified as adults where ≥20 
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cm circumference at 30 cm height. Trees were identified as saplings based on their height 

(>30 cm high) and size (<20 cm circumference at 30 cm height). Occasionally, in the case 

of multi-stemmed trees, leaves were collected from more than one stem. In this situation 

each stem was recorded as an individual sample, but shared the same geographical 

location as the other sampled stems. The geographical location of each sampled tree was 

recorded using a Garmin GPSMAP 62s handheld navigator. Leaf samples were 

immediately placed in silica gel (Chase and Hill 1991) and subsequently stored at room 

temperature.  

 

Seed samples were collected from the Tomdachoille population only. To ensure certainty 

of maternal origin of progeny, seed samples were collected directly from the canopy of all 

fruiting trees sampled for leaf material, a subset of 42 individual trees (38 adults and four 

saplings). Up to ten seed cones were collected from each maternal tree, placed in 

individual paper bags and subsequently stored at room temperature.  

 

2.3.4 Seed germination 

Seeds were germinated on moist filter paper (Whatman 90 mm) following the protocol 

outlined in Gosling et al.  (2009). Principally, seed was soaked in water for 24 hours at 10 

oC with no light, followed by a pre-chill period of 21 days at 4 oC in the dark, followed by a 

growing period of up to 28 days, with each day consisting of 16 hours in darkness at 20 oC 

and eight hours in UV fluorescent light at 30 oC. Germinated seeds were harvested when 

the cotyledons emerged and stored in individual eppendorfs at -80 oC until DNA 

extraction. 
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2.3.5 DNA extraction and microsatellite analysis 

Genomic DNA from the germinated seed samples was obtained using the Isolate Plant 

DNA Mini Kit (Bioline) according to manufacturer instructions and eluted into a final 

volume of 30 μL. Genomic DNA from the leaf samples was obtained using the DNeasy 96 

Plant Kit (Qiagen) following manufacturer instructions. All extracted DNA was stored at -

20 oC until further use. DNA concentration was quantified using a NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific) and samples adjusted to 10 ng/ μL for PCR 

amplification. DNA was amplified using the multiplex of 12 nuclear microsatellite markers 

(Ag01, Ag05, Ag09, Ag10, Ag13, Ag14, Ag20, Ag23, Ag25, Ag27, Ag30, Ag35) of Lepais and 

Bacles (2011). Multiplex reactions were carried out in a total volume of 5 μL, using 1X 

Type-it Microsatellite PCR Kit (Qiagen) and 0.5 μL of template DNA, and performed in a 

Veriti thermocycler (Applied Biosystems). Each PCR amplification included negative 

controls to monitor contamination and reference samples were included to standardise 

scoring, as recommended by Bonin et al. (2004).  PCR conditions followed those described 

in Lepais and Bacles (2011): 5 min denaturation at 95 oC followed by 30 cycles of 95 oC for 

30 s, 58 oC for 180 s, and 72 oC for 30 s, finishing with a final elongation step of 60 oC for 

30 min. Following test amplicon success on 2% agarose gel 1 x TBE electrophoresis, 

samples were sent to DNA Sequencing and Services (Dundee, UK) for fragment analysis 

on a Biosystems 3730 capillary sequencer at a 1:50 dilution using GeneScan 500 LIZ size 

standard (Applied Biosystems). The resulting electropherograms were analysed using 

GeneMarker v.2.4.0 software (Softgenetics) and the correct assignment of allele size class 

checked in FlexiBin (Amos et al. 2007). 
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Genotypic linkage equilibrium between loci pairs within each population, across all four 

populations, and within the seed cohort was checked using FSTAT v.2.9.3.2 (Goudet 

1995). Significant associations between loci were identified by randomly associating 

genotypes at pairs of loci over 1100 and 8800 permutations respectively, based on the 5% 

nominal level after Bonferonni correction.  

 

Table 2.1  Details of the four study sites and the number of A. glutinosa adult and sapling trees sampled at 

each site.  

Site name Site code Latitude Longitude 
Size of site 
(Ha) 

No. adults 
sampled 

No. saplings 
sampled 

Tomdachoille Tom 3
o
 41’ 43’’ 56

o
 40’ 38’’ 19.3 190 38 

Moulinearn Mou 3
o
 41’ 20’’ 56

o
 40’ 35’’ 6.5 128 70 

Ballinluig Bal 3
o
 40’ 36’’ 56

o
 39’ 37’’ 18.5 232 45 

Richard's Island RIs 3
o
 39’ 52’’ 56

o
 38’ 26’’ 9.6 180 19 

 

 

2.3.6 Genotyping error 

Based on Bonin et al. (2004), repeat amplification (including some blind samples) and 

fragment analysis was undertaken to estimate allele and genotype mismatch errors 

within each population and across all populations, as well as within the seed cohort. 

Across all four populations a total of 160 leaf samples (20% of the total genotyped sample 

size) were repeated, and within the seed cohort, 74 seed samples (18% of the total) were 

repeated. Genotyping errors and null alleles were quantified using two methods, as 

advocated by Dąbrowski et al. (2014),  implemented in  Micro-Checker (Van Oosterhout 

et al. 2004) and Cervus v.3.0.7 (Kalinowski et al. 2007). In addition, mismatches between 

seed genotypes and maternal parent genotypes were identified, and genotyping error 

rates quantified by direct comparison of offspring-mother genotypes in Cervus v.3.0.7 

(Kalinowski et al. 2007). 
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2.3.7 Genetic diversity of adult and sapling generations 

Initial analysis sought to clarify whether leaves collected from more than one stem of the 

same multi-stemmed tree shared the same genotype. Implemented in GenClone v.2.0 

(Arnaud-Haond and Belkhir 2007), genotypes from all sampled trees were compared and, 

where identical genotypes were revealed, field records were consulted to determine 

whether they were sampled from the same multi-stemmed tree (i.e. shared the same 

geographical coordinates). Where clones were detected, only one individual was retained 

for subsequent analysis. Prior to assessing genetic diversity between the adult and sapling 

generations the potential for pseudo-replication within the sapling generation was 

excluded by undertaking parentage analysis. As described in Section 2.3.8, the parentage 

analysis sought to identify whether any saplings shared the same maternal allele (i.e. half 

sibs) so that saplings sharing the same maternal parent could be excluded from further 

analyses comparing the genetic diversity between generations. Similarly, to avoid pseudo-

replication, genetic diversity statistics of the seed cohort were not calculated as individual 

seeds shared the same maternal parent. Genetic diversity statistics for the adult and 

sapling generations in each population and across all four populations were then 

calculated. The mean number of alleles per locus (NA), allelic richness (AR) (Petit et al. 

1998), gene diversity (HE) corrected for sample size (Nei 1978) and the inbreeding 

coefficient (FIS) (Weir and Cockerham 1984) were calculated using SPAGeDi 1.4c (Hardy 

and Vekemans 2002). Rarefaction analysis of AR was based on 36 gene copies and 

significance of FIS values were obtained following 10,000 permutations of gene copies 

within individuals relative to each population. Significant differences between the adult 

and sapling generations were tested using the Wilcoxon signed rank test, implemented 
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using R (R Core Team 2014). Finally, the percentage of rare alleles in each generation 

within each population was calculated by dividing the number of alleles occurring with a 

<0.05 frequency by the number of alleles present within the relevant generation of each 

population. Significant differences between the adult and sapling generations were tested 

using the Wilcoxon signed rank test implemented using R (R Core Team 2014). 

 

2.3.8 Parentage analysis 

Two types of parentage analyses were undertaken. A maternity analysis was 

implemented to identify the presence of siblings within the sapling generation, and to 

enable investigation into seed dispersal. A paternity analysis was implemented to identify 

the pollen parents of the seed cohort, enabling assessment of contemporary pollen-

mediated gene flow.  

 

Maximum likelihood (ML) parentage analysis was implemented in Cervus v.3.0.7 

(Kalinowski et al. 2007).  For each putative candidate parent, Cervus calculates an overall 

log-likelihood (LOD) score, obtained by taking the natural log of the ratio between the 

likelihood that the candidate parent is the true parent and the likelihood that the 

candidate parent is not the true parent. Confidence in the LOD score is determined by 

running simulations, based on parent allele frequencies, to estimate critical LOD values 

above which candidate parents can be considered a true parent at a given confidence 

level.  

 

Here, 10,000 simulations were run to simulate parent allele frequencies, parent pair 

genotypes, offspring genotypes based on Mendelian sampling of the alleles from the two 
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parental individuals, and a series of random genotypes representing unrelated candidate 

parents. For each simulated offspring Cervus identified the most likely candidate parent 

which may or may not be the true parent. By comparing the distribution of the LOD 

scores for offspring where the most likely candidate parent was the true parent, with the 

distribution of the LOD scores for offspring where the most likely candidate was an 

unrelated individual, critical LOD scores were identified at the 80% and 95% confidence 

level. Parentage was assigned where the LOD score obtained from the parentage analysis 

exceeded the (simulated) critical LOD score. 

 

2.3.8.1 Maternity analysis  

Maternity analysis was undertaken to identify the maternal parent of the 167 saplings 

sampled across all four populations. Parent trees were considered to be any of the 653 

genotyped adult trees sampled across all four populations. The most-likely parent and 

parent pair analysis was implemented using the default error rate of 1%, higher than the 

allele mismatch error (reported in Section 2.4.2) thus providing some allowance for 

undetected error. Allele frequencies calculated across all four populations were used, and 

the proportion of loci typed set to 0.9966 (based on Cervus allele frequency output). To 

enable maximum assignment of maternal parents it was assumed that all possible 

maternal parents had been sampled. Subsequent analysis based on maternal parent 

assignment assumed that all maternal parents were located upstream of the sired sapling 

and / or within 60 m of the sired sapling. These assumptions are based on the findings 

that A. glutinosa seeds are predominantly dispersed by water, presumably in a 

downstream direction, but may also be dispersed by wind up to a distance of 60 m 

(McVean 1955; Chambers and Elliot 1989). Consequently, if a single parent was identified 
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it was excluded from further analysis as it was unknown whether it was the maternal or 

paternal parent. If a parent pair was identified the parent located upstream and / or 

within 60 m of the sapling was assigned as the maternal parent. If both parents were 

located upstream, or within 60 m, of the sapling the tree nearest to the sapling was 

assigned as the maternal parent. If both parents were located downstream and >60m 

from the sapling they were excluded from further analysis. Importantly, because the 

maternity analysis is based on established saplings, subsequent estimates of seed 

dispersal reflect both the movement (dispersal per se) and establishment of saplings. 

Hence, future reference to seed dispersal estimates obtained here refer to ‘effective seed 

dispersal’, incorporating both dispersal and establishment processes (Cain et al. 2000).  

   

Following assignment of maternal parents, the number of local (i.e. maternal parent and 

sapling located in the same population) seed dispersal events were counted and 

compared to the number of seed dispersal events from neighbouring populations (i.e. 

maternal parent and sapling located in different populations). Seed dispersal distances 

were calculated as the distance between each sapling and its maternal parent. The 

resultant distribution of seed dispersal distances was then compared to that expected 

under random mating, i.e. the distance between each sapling and each possible maternal 

parent sampled in the field.   

 

2.3.8.2 Paternity analysis 

Paternity analyses were undertaken to identify the pollen parent of the 398 seeds that 

shared a compatible multilocus genotype with their mother (excluding 18 seeds 

presenting at least one mismatching allele with their mother). Pollen parents were 
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considered to be any of the 820 genotyped adult and sapling trees sampled across all four 

populations, excluding the possibility for the mother tree to self. Allele frequencies 

calculated across all four populations were used, and the proportion of loci typed set to 

0.9978 (based on Cervus allele frequency output). 

 

Confidence in parentage assignment is influenced by two user-supplied variables, the 

genotyping error rate and the proportion of candidate parents sampled (Jones et al. 

2010). In Cervus, both of these variables are assumed to be known a priori and are user-

supplied in the simulation analysis stage. Here, an error rate of 1% was used, higher than 

the mismatch error rate between the known parent and their offspring (0.5%) and also 

higher than the repeat genotyping error rate per allele (0.1%), providing some allowance 

for undetected error.  

 

To accommodate uncertainty around the proportion of candidate parents sampled both 

ML and exclusion paternity analyses were undertaken. As the proportion of candidate 

parents sampled declines the critical LOD score increases, reducing the success rate of 

parentage analysis. In this study the proportion of candidate parents sampled was 

unknown, particularly given A. glutinosa is a wind-pollinated tree occurring more or less 

continuously in the wider landscape. As it was known that not all candidate parents were 

sampled, either within the seed sample population (Tomdachoille) or within neighbouring 

populations, paternity analysis was undertaken for varying proportions of parents 

sampled (N = 820 (100%), 1,093 (75%), 1,640 (50%), 3,280 (25%), 8,200 (10%), 16,400 

(5%)), enabling, as advocated by Koch et al. (2008), a sensitivity analysis to be carried out 

for this parameter. 
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In a strong data set, with few errors, an exclusion-based parentage analysis will be 

relatively insensitive to the proportion of parents sampled (Jones et al. 2010). Therefore, 

by applying an error rate of zero, exclusion-based paternity analyses where no mismatch 

between parent and offspring is allowed, was also implemented in Cervus. The results of 

the ML and the exclusion-based paternity analyses were compared to examine the effect 

the proportion of parents sampled had on confidence in paternity assignment.  

 

2.3.9 Contemporary pollen-mediated gene flow 

Pollen dispersal distances were calculated as the distance between each seed (based on 

the location of the maternal parent) and its pollen parent. The resultant distribution of 

pollen dispersal distances was then compared to that expected under random mating, i.e. 

the distance between each seed and each possible pollen parent sampled in the field.   

 

2.3.10 Spatial genetic structure  

Assessment of differences in spatial genetic structure (SGS) between the adult and sapling 

generations was undertaken in SPAGeDI v.1.4c (Hardy and Vekemans 2002). The extent of 

SGS was assessed in the adult generation occurring within each population and across all 

populations; in the sapling generation occurring across all populations as the low sample 

size within each population did not allow for analysis for each population; and between 

the adult and sapling generations across all four populations. Kinship coefficients (Fij) 

between individuals i and j were estimated using Nason’s kinship coefficient (Loiselle et 

al. 1995), as it is found to be statistically robust (Vekemans and Hardy 2004). Nason’s 

kinship coefficient is based on the probability that a random gene from i is identical to a 
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random gene from j, and defined as Fij = (Qij – Qm) / (1 - Qm), where Qij is the average 

probability of identity by state for random gene copies from individuals i and j, and Qm is 

the average probability of identity by state for gene copies coming from random 

individuals from the reference population (Vekemans and Hardy 2004). In each dataset, 

the association between all pairs of Fij and spatial distances (r) was characterised by 

averaging the pairwise statistics to a set of predefined distance intervals. Preliminary tests 

were undertaken to establish suitable distance classes that would enable comparison 

between the adult and sapling generations, and to ensure as close to >100 pairwise 

comparisons within each distance class, as advised by Hardy and Vekemans (2013). 

Subsequently, eighteen distance classes were defined, at 20m, 40m, 60m, 80m, 100m, 

200m, 300m, 400m, 500m, 600, 700m, 800m, 900m, 1,000m, 2,000m, 3,000m, 4,000m, 

and 5,100m. For further investigation, and due to the larger dataset, additional analysis 

for the adult generation was undertaken using smaller distance classes (smallest distance 

class 5 m). Over 100 pairwise comparisons occurred within each distance class except 

within the sapling generation where only 40 pairwise comparisons occurred in the 900m – 

1000m distance class. Analyses of the adult generation within each population were 

restricted to a maximum distance of 400m to ensure a minimum of 100 pairwise 

comparisons with distance class. Averaged Fij were then regressed to the natural 

logarithm of the distance ln(rij) to provide the regression slope (b). To test for SGS, and to 

obtain 95% confidence intervals, the regression slope was compared to that obtained 

following 10,000 random permutations of the spatial positions of individuals under the 

null hypothesis that Fij and rij are uncorrelated. Standard errors and mean multilocus Fij 

estimates within each distance class were obtained through jackknifing over loci following 

Sokal and Rohlf (1995).   
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To investigate the effect of pollen flow on the kinship structure of the seed cohort, SGS 

analysis was undertaken on the paternal allele of each seed, following Nakanishi et al. 

(2009) and Hampe et al. (2010). Briefly, the known maternal alleles were subtracted from 

the offspring genotypes and the paternal haplotype converted into a diploid homozygous 

genotype. Where both the parent and offspring were heterozygotes with the same 

alleles, the maternal and paternal haplotypes were converted into the corresponding 

heterozygote genotype. The SGS of the resultant paternal seed genotypes was analysed 

using the same parameters as described above, up to a maximum distance of 600m.  

 

To compare the extent of SGS among the adult and sapling generations the Sp statistic 

was used (Vekemans and Hardy 2004), as it accounts for differences in SGS due to 

variation in sampling schemes.  The Sp statistic was calculated as –b / (1 - F(1) ), where b is 

the  regression slope of Fij on the natural logarithm of the distance classes, and F(1) is the 

mean Fij between individuals belonging to the first distance interval. Thus Sp considers 

average kinship across individuals relative to the extent of the decrease in F across 

distance intervals. The standard error of b is given as an estimate of the variability of Sp, 

calculated by jackknifing over loci (Hardy et al. 2006).  

 

2.4 Results 

2.4.1 DNA extraction and microsatellite analysis 

A total of 714 adults and 173 sapling leaf samples were successfully genotyped at 12 

microsatellite loci (Table 2.2). Across all four populations missing data occurred in seven 

of the 12 loci, with most missing data occurring in locus Ag14 (7.5%) and loci Ag25 and 

Ag27 (1.2%) with all other loci showing <1% missing data. A total of 416 seeds were 
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genotyped, with an average of 10 seeds from each parent tree (range 2 – 14). As with the 

tree samples, most missing data in the seed cohort occurred at loci Ag14 (5.3%) and loci 

Ag27 (3.8%); all other loci contained zero or <1% missing data. All loci pairs, within each 

population, across all four populations, and within the seed cohort, were found to be in 

linkage equilibrium. 

 

Table 2.2  Number of adults and saplings within each study population successfully genotyped, and the 

number of individual adults and saplings retained for subsequent analysis following exclusion of repeat 

individuals identified as clones. 

Population # Genotyped adults 
# Genotyped 

saplings # Individual adults # Individual saplings 

Tom 187 39 165 37 

Mou 127 70 108 66 

Bal 226 45 222 45 

Ris 174 19 158 19 

All 4 sites 714 173 653 167 

 

 

2.4.2 Genotyping error 

Repeat genotyping of samples revealed low levels of allele and genotype mismatch 

errors. The mean mismatch error rate per allele varied within each population but was 

consistently <1% within each population and within the seed cohort (Table 2.3). The 

mean mismatch genotype error rate was higher and variable between populations, but 

low across all four populations at 2.50% and 4.05% in the seed cohort (Table 2.3). Null 

alleles were consistently revealed at locus Ag14 in every population as well as the seed 

cohort in both Micro-Checker and Cervus analyses. Other null alleles were identified in 

each population but with no consistency between populations or between analysis 

methods. Comparison of the parent and seed cohort data in Cervus identified 47 seeds 

that presented a mismatch with their mother at one or more loci (23 mismatches at locus 
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Ag14, 11 at locus Ag01, six at locus Ag27, five at locus Ag05, and one at loci Ag09 and 

Ag35). Comparing the parent and seed cohort data also revealed null alleles in loci Ag01, 

Ag05, Ag14 and Ag27and high error rates for loci Ag14 (7.1%) and Ag27 (12.0%), with all 

other loci presenting <5% error (range 0.0% - 3.2%).  

 

All subsequent analysis is based on accepting the error checking results which were 

consistently positive between different analysis methods, as recommended by Dąbrowski 

et al. (2014). Therefore, locus Ag14 was excluded from subsequent analysis (as previously 

reported in Lepais and Bacles 2011). Further to this, locus Ag27 was excluded from the 

parentage analysis following Cervus guidance regarding loci revealing >5% genotyping 

error (Kalinowski et al. 2007). Removal of locus Ag14 and locus Ag27, for parentage 

analysis, resulted in lower allele and genotype mismatch errors within each population 

data although not within the seed cohort (Table 2.3).  

 

Table 2.3  Mean mismatch error rates per allele and per genotype based on repeat amplification and 

genotyping of individuals within each population. Results are shown for all 12 amplified loci, and for 11 loci 

and 10 loci following exclusion of one locus  due to the presence of null alleles (loci Ag14) and another locus 

>5% error rate (Ag27). 

    12 loci 
11 loci  

(excluding Ag14) 
10 loci  

(excluding Ag14 & Ag27) 

Population 

Repeat 
samples     

(%) 

Allele        
error rate 

(%) 

Genotype 
error rate 

(%) 

Allele        
error rate 

(%) 

Genotype 
error rate 

(%) 

Allele        
error rate 

(%) 

Genotype 
error rate 

(%) 

Tom 38 0.18 2.63 0.20 2.63 0.00 0.00 

Mou 11 0.00 0.00 0.00 0.00 0.00 0.00 

Bal 18 0.00 0.00 0.00 0.00 0.00 0.00 

RIs 10 0.96 11.11 0.00 0.00 0.00 0.00 

All 4 sites 20 0.19 2.50 0.09 1.25 0.00 0.00 

Seed cohort 18 0.18 4.05 0.18 4.05 0.18 4.05 
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2.4.3 Genetic diversity of adult and sapling generations 

Across all four populations, 65 genotypes were found to be shared by two or more 

individual trees. Shared genotypes only occurred within study populations i.e. no 

genotypes were shared between populations. All subsequent analysis was therefore 

based on a total of 653 adults and 167 saplings (Table 2.2). Parentage analysis of the 

saplings confirmed that no sapling shared the same maternal parent.  

 

Across all four populations a total of 98 different alleles were revealed across the 11 loci, 

ranging from 3 to 15 alleles per locus. Genetic diversity measures were very similar 

between the sapling and adult generations with expected heterozygosity and the 

inbreeding coefficient being almost identical both between generation and between 

populations (Table 2.4). Although allelic richness varied between generations, and 

between sites, no significant differences between generations were detected (Table 2.4).  

The percentage of rare alleles, within and among each site, was consistently lower in the 

sapling generation compared to the adult generation. This difference was significant in 

the Richard’s Island population (V = 4, p value = 0.002) (Figure 2.2). 

 

Four seeds were found to have two alleles not sampled within the parent cohort: one 

allele at loci Ag10 occurred in one seed and one allele at loci Ag35 occurred in three 

seeds.  
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Table 2.4  Multilocus genetic diversity between the adult and sapling generations with each population, and 

across all four populations: N, number of samples; NA, mean number alleles per locus; AR, allelic richness; 

HE, gene diversity, corrected for sample size; and FIS, inbreeding coefficient with significance based on 

10,000 permutations as implemented in SGAGeDi.   

  Tomdachoille Moulinearn Ballinluig Richard's Is. All 4 sites 

 Adult Sapling Adult Sapling Adult Sapling Adult Sapling Adult Sapling 

N 165 37 108 66 222 45 158 19 653 167 

NA 8.27 6.91 8.18 7.64 8.55 7.09 8.09 5.73 8.82 8.27 

AR 5.85 5.96 6.07 5.87 5.87 5.81 5.88 5.65 8.24 8.21 

HE 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.62 0.64 0.64 

FIS 0.01 0.02 -0.01 -0.01 0.02 0.03 0.01 -0.01 0.01 0.01 

 

 

  
Figure 2.2  The percentage of rare alleles (<0.05 frequency) ± standard errors between the adult and sapling 

generations within each population, and across all four populations. 

 

2.4.4 Maternity analysis 

No saplings were found to share the same maternal parent, at either the 95% or the 80% 

confidence level. Of the 167 saplings, 42 (25%) had at least one potential parent sampled 

from across all four populations. Of these 42 saplings 16 were only assigned one parent 

and were therefore excluded from further analysis as it was unknown whether it was the 

maternal or paternal parent. Consequently, a total of 26 maternal parent assignments 

were made (16% of the total sapling generation), seven with 95% confidence and 19 with 

80% confidence. No mismatched alleles between sapling and maternal parent were 
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recorded. All subsequent analyses are based on the 26 maternal parent assignments 

assuming ≥80% confidence. 

 

Effective seed dispersal distances were recorded between 0 m – 2.5 km (mean 641 ±67 

m). The mean distance between the maternal parent and locally sired sapling (i.e. within 

the same population) was 42 ±9 m (range 0 m – 98 m). In comparison, seed dispersal 

originating from a maternal parent in a neighbouring population had a mean dispersal 

distance of 1,239 ±218 m (range 300 m – 2.5 km) (Figure 2.3).  

 

 

Figure 2.3  The percentage of local seed dispersal events compared to seed dispersal from a neighbouring 

(upstream) population. Based on the 26 saplings assigned a maternal parent with ≥80% confidence 

following parentage analysis of a total of 167 saplings in Cervus (Kalinowski et al. 2007).  

 

Across all four sites, 50% of maternal parents were local to their sired sapling and 50% of 

maternal parents were located in a neighbouring population to that of their respective 

sapling offspring. In the Tomdachoille population all seed dispersal was local as it was the 

most upstream location sampled in this study. However, in the three other study 

populations most (between 57% - 75%) seed dispersal was found to have originated in a 

neighbouring population (Figure 2.4).  
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Figure 2.4  Proportion of local seed dispersal versus seed dispersal from a neighbouring population for each 

study population. Based on the 42 saplings assigned a maternal parent with ≥80% confidence following 

parentage analysis of a total of 167 saplings in Cervus (Kalinowski et al. 2007). 

 

Across all four populations the analysis demonstrated a leptokurtic, fat tailed dispersal 

curve (Figure 2.5a). However, the pattern of seed dispersal originating from local and 

neighbouring populations was quite different. Locally, all seed dispersal events occurred 

within 100 m, with most (62%) occurring within 50 m of the maternal parent (Figure 

2.5b). In comparison, although seed dispersal originating from a neighbouring population 

did not span the full distance of the study area, no discernible pattern in dispersal 

distances was observed (Figure 2.5a).  
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Figure 2.5  Comparison of possible and observed seed dispersal distances with ±SE within and among riparian Alnus glutinosa populations of the River Tummel. Seed 

dispersal distances assumed under random mating (white) against actual (grey) mating events between a) the 653 possible parents and 167 saplings sampled and b) local 

pairwise adult-sapling distances only (i.e. within population adult-sapling pairs). Results based on 26 maternal assignments identified in parentage analysis implemented in 

Cervus (Kalinowski et al. 2007).   
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2.4.5 Paternity analysis 

Depending on the proportion of candidate parents sampled, the ML paternity analysis 

assigned between 3 and 65 fathers with 95% confidence and between 19 and 394 fathers 

with 80% confidence (Figure 2.6a). The proportion of assigned paternity was not consistent 

with the predictions of the simulations (Figure 2.6a). The number of observed paternity 

assignments was typically considerably less than expected although when assuming ≤10% 

of parents had been sampled this difference was relatively low (Figure 2.6a). With 95% 

confidence, as the proportion of candidate parents sampled decreased the number of 

assigned fathers steadily decreased (Figure 2.6a). With 80% confidence, the number of 

assigned fathers was initially almost identical to that expected from the simulation when all 

parents were assumed to have been sampled. However, a sharp decline was observed once 

it was assumed that not all candidate parents were sampled (Figure 2.6a).  

 

In comparison, the exclusion paternity analysis assigned between 3 and 83 fathers with 

95% confidence and between 23 and 110 fathers with 80% confidence, not dissimilar to the 

number of ML assignments identified (Figure 2.6b). As with the ML paternity analyses, 

assigned and expected paternity were not consistent with each other and both declined as 

the proportion of candidate parents sampled decreased (Figure 2.6b). At both 80% and 

95% levels of confidence, the number of assigned fathers steadily decreased as the 

proportion of candidate parents sampled decreased (Figure 2.6b). A similar number of 

paternal parent assignments were made by both the ML and exclusion paternity analysis 

when ≤25% of candidate parents were assumed to have been sampled (Figure 2.6). 
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Figure 2.6  Results obtained from (a) maximum likelihood paternity analysis, and (b) exclusion paternity 

analysis assuming different proportions of candidate parents sampled. The number of assigned (solid line) 

and expected (dashed line) fathers obtained with 80% confidence (triangle) and 95% (circle) is shown. The 

results are based on analyses implemented in Cervus (Kalinowski et al. 2007). 

 

Overall, it is clear that both the ML and exclusion paternity analyses were sensitive to the 

(unknown) proportion of parents sampled. Further to this, the disparity between the 

number of assignments observed and the number of assignments expected highlights the 

fact that not all potential parents were sampled. As a consequence the non-exhaustive 

sampling undertaken here has weakened the power of the paternity analyses. Importantly 

however, whilst the incorrect specification of the proportion of candidate parents sampled 
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will result in incorrect estimates of confidence in assignment, the rank order of compatible 

parents is not affected (Jones et al. 2010). On this basis, the paternity analysis results 

obtained were used to assess A. glutinosa pollen dispersal distances. 

 

2.4.6 Contemporary pollen-mediated gene flow 

Clearly, assessment of A. glutinosa pollen dispersal distances will vary depending on which 

paternity analysis data set assessment is based on. Here, assessment of pollen dispersal is 

based on the exclusion analysis obtained with 80% confidence and assuming 25% of 

candidate parents were sampled. Two steps were taken in selecting this data set to assess 

pollen dispersal distances. Firstly, the data set based on 25% of candidate parents was 

selected because the number of assignments made was closer to, but not greater than, the 

number of assignments expected (Figure 2.6b). Secondly, based on Oddou-Muratorio et al. 

(2003), the presence of type I and type II errors was considered, type I error being the 

incorrect identification of pollen immigration where actually the father has been sampled 

and, type II errors being the incorrect assignment of true pollen immigration to a sampled 

father. To assess gene flow Oddou-Muratorio et al. (2003) propose minimising type II error 

by using the 80% confidence level, and to assume no scoring error, as in the exclusion 

analysis implemented here. Finally, although the paternity analyses do not account for the 

majority of pollination events, and the selected data set undoubtedly contains type I and 

type II errors, the results from each analysis type produce consistently similar patterns of 

pollen dispersal distances (data not presented).  

 

Pollen parents were located in all four populations, with pollen dispersal occurring 

between 1 m – 4.31 km (mean 549 ±131 m) (Figure 2.7a). The mean pollen dispersal 
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distance between the maternal tree and pollen parents located in a neighbouring 

population was 1.85 ±0.37 km (range 205 m – 4.31 km). The pollen dispersal distance 

between the maternal tree and pollen parents located in the same population was 160 ±25 

m (range 1 m – 587 m, Figure 2.7b). Most pollen parents (77%) were from the same 

population as the seed maternal trees, a level higher than expected (25%) under random 

mating. Most (54%) pollen dispersal occurred within 200 m of the seed (37% within 100 m), 

with an additional 12% of pollen dispersal occurring with 200 m – 300 m of the maternal 

seed tree (Figure 2.7a). 
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Figure 2.7  Comparison of possible and actual pollen dispersal distances with ±SE within and among riparian Alnus glutinosa populations of the River Tummel. Pollen 

dispersal distances assumed under random mating (white) against actual (grey) mating  events between a) the 820 possible pollen parents and 399 seeds sampled and b) 

local pairwise maternal-paternal parent distances only (i.e. within population maternal-pateranl pairs). Results based on 52 paternal assignments identified in parentage 

analysis implemented in Cervus (Kalinowski et al. 2007).   
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2.4.7 Spatial genetic structure 

No SGS was observed in any of the study populations although positive SGS was observed 

in the first distance class (0 m – 20 m) in the Tomdachoille and Richard’s Island 

populations (Figure 2.8). Across all four populations significant positive SGS in the adult 

generation was observed in the smallest distance class of 20 m and at the 40 m, 80 m and 

500 m distance classes (Figure 2.9a). Additional analysis of the adult dataset, based on 

smaller distance classes, revealed significant SGS in the 0 – 5 m distance class (P = 0.0000) 

and in the 10 – 15 m distance class (P = 0.0145), but not in the 5 – 10 m distance class 

(data not shown). Although not significant, Fij values in the sapling generation were 

negative up to 60 m before generally levelling out around zero with the exception of Fij 

values peaking just outside the negative 95% confidence interval at 700 m and outside 

the positive 95% confidence interval at 900 m (Figure 2.9b). The between-generation SGS 

obtained by analysing pairs including one adult tree and one sapling revealed a similar 

pattern to that of the adult generation, with significant SGS identified at the 20 m and 80 

m distance classes (Figure 2.9c). The paternal seed allele revealed significant SGS at 0 – 20 

m, followed by a reasonably smooth decline with Fij values consistently below zero 

beyond 60 m (Figure 2.9d). Use of the Sp statistic as a measure of SGS intensity showed 

slightly more intense SGS occurring in the adult generation than that in the paired adult-

sapling analysis (Table 2.5). The most intense SGS was seen in the paternal allele of the 

seed cohort (Table 2.5).  
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Figure 2.8  Spatial genetic structure present in the four study populations a) Tomdachoille; b) Moulinearn; 

c) Ballinluig; and d) Richard’s Island. Relatedness between individuals is based on Nason’s Fij kinship 

coefficient, implemented in SPAGeDi. Broken lines represent the 95% upper and lower confidence intervals, 

based on 10,000 simulations.  
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Figure 2.9  Spatial genetic structure present in a) the adult generation; b) the sapling generation; c) the 

paired adult and sapling generations; and d) the paternal alleles of seed cohort. Relatedness between 

individuals is based on Nason’s Fij kinship coefficient, implemented in SPAGeDi. Broken lines represent the 

95% upper and lower confidence intervals, based on 10,000 simulations.  

 

Table 2.5  SGS parameters showing the kinship coefficient for the first distance class of 0 – 15 m (F(1)) and 

the rate of decrease of pairwise kinship with distance (Sp) ± standard error (SE). Significant p values are 

shown as **p < 0.01, ***p < 0.001, based on 1-sided values, as calculated in SPAGeDi. 

Dataset Generation F(1) Sp ± SE 

All 4 sites Adult 0.0068** 0.0006 ± 0.0002 
All 4 sites Adult & sapling 0.0132*** 0.0004 ± 0.0002 
Paternal allele Seed 0.0165*** 0.0022 ± 0.0007 
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2.5 Discussion 

Genetic diversity between generations 

Heterozygosity and the inbreeding coefficient between the sapling and adult generations 

were practically identical, both within and amongst study populations. However, 

compared to the adult generation, the sapling generation consistently held fewer rare 

alleles, with a significant difference occurring in the Richard’s Island population (V = 4, p 

value = 0.002). Fewer rare alleles in the younger generation may be attributable to 

genetic drift, as rare alleles are the first to be lost under drift (Lande 1988, Young et al. 

1996). Furthermore, in long-lived organisms such as trees, it can take several generations 

for the impacts of genetic drift to become apparent in measures of heterozygosity and 

inbreeding coefficient (Bacles and Jump 2011). Nevertheless, of the four study 

populations, only the Richard’s Island population showed significantly less rare alleles in 

the sapling generation. Furthermore, allelic richness, a suitable measure for assessing 

short-term diversity loss (Lowe et al. 2005), remained very similar between generations, 

both within and among populations. Taking these genetic measures together, the 

observed lack of difference between generations suggests that high outcrossing rates and 

high gene flow, typical of tree species (Petit and Hampe2006), is maintaining similar levels 

of genetic diversity between A. glutinosa generations. Further, it is feasible that the 

difference in rare alleles is a consequence of the greater variation in age of the adult 

generation compared to the sapling generation therefore the adult generation has 

acquired more rare alleles over a longer period of time. Finally, aside from revealing 

significantly positive inbreeding coefficient measures, reflecting pseudo replication 
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outlined in Section 2.3.7, measures of genetic diversity in the seed cohort revealed no 

significant differences with either the sapling or adult generations (data not shown).  

 

Maternity analysis of saplings 

Despite the low number (15%) of maternal assignments obtained through parent-pair 

analysis, an important initial insight into the effective dispersal of A. glutinosa seed was 

obtained. It is likely that the considerable number of maternal parents that could not be 

assigned is due to the fact that not all trees were sampled, whether from within each 

local population or from other, unsampled populations. Clearly, given the landscape-scale 

occurrence of A. glutinosa, it was not possible to sample all possible parents at the scale 

studied, thus the results presented here are based on sampling feasibility. The maternal 

parent assignments made indicated a high level of genetic exchange between 

populations. In fact, when upstream A. glutinosa populations were present, seeds were 

more likely to have originated from a neighbouring population than from the same 

population as the sapling (Figure 2.4). The high level of between-population seed 

dispersal is higher than that reported elsewhere, with most studies reporting seed 

immigration rates of less than 20% (reviewed in Ashley 2010). However, approximately 

50% seed immigration is reported between isolated fragments of Fraxinus excelsior forest 

(Bacles et al. 2006). Importantly, Bacles et al. (2006) highlights the potential of landscape 

features, including rivers, for enabling the observed (long-distance) high rate of seed 

dispersal between forest fragments. Indeed, studies using tracers to simulate plant 

dispersal along the River Tummel revealed that all tracers placed in backwaters and the 

main channel will move from their original position, under both base-flow and flood 

conditions (Keruzoré 2012). Keruzoré (2012) shows backwaters are an important river-
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landscape feature, both for within-site movement of plant material and for acting as a 

source habitat of plant material to the main channel. In this study, although most 

sampled trees were located away from the main river channel, backwater channels were 

present at all sites, maintaining a connection to the main river channel that would enable 

both within-population dispersal and downstream between-population dispersal of seed.  

 

At the local, within-population scale, both wind and hydrochorous seed dispersal may 

influence the movement of seed. In comparison to the between-population dispersal 

described, local within-population seed dispersal was not random with all local seed 

dispersal occurring within 100m of the maternal parent. Most local seed dispersal (62%) 

occurred within 50 m of the maternal parent, consistent with wind-dispersal distances of 

up to 60 m described by McVean (1955). Two reasons to explain local seed dispersal 

occurring over distances greater than 60 m are suggested. Firstly, McVean’s (1955) 

expected wind-dispersal distance of 60 m is based on field observations of saplings i.e. no 

genetic evidence was available to confirm kinship. Secondly, as previously discussed, 

100% of plant material occurring in backwaters is found to move (Keruzoré 2012), hence 

it seems feasible that within-population A. glutinosa seed movement may be facilitated 

by both wind and water dispersal. The mean local seed dispersal distance of 42 ±31 m is 

remarkably similar to the within-backwater dispersal distances recorded by Keruzoré 

(2012). Based in the same study system, and using independent methods based on 

tracers to simulate plant propagule dispersal, Keruzoré (2012) recorded mean within-

backwater dispersal distances of 45 m under mean base-flow conditions, although under 

flood-conditions the mean dispersal distance increased to 160m. Finally, it is 

acknowledged that assessment of seed dispersal distances was partly based on excluding 
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maternal parent assignments located more than 60 m away from the relevant sapling. 

Revisiting the parentage analysis shows four local, within population maternal 

assignments were excluded on this basis. Incorporating these additional four maternal 

parents does not influence the overall pattern of seed dispersal observed. However, it 

does indicate that local, within-population seed dispersal may occur over distances up to 

260 m although only two of the four maternal assignments indicate seed dispersal 

occurring over 100 m (data not shown).  

 

The overall mean dispersal distance of A. glutinosa seed was 641 ±67 m, 15 times greater 

than local dispersal distances. With seed dispersal occurring over a range of distances the 

empirical data observed here reflects previous findings where seed dispersal is frequently 

found to fit a leptokurtic, fat-tailed dispersal kernel, indicative of long-distance dispersal 

(Nathan 2001). Only one other comparable study investigating the hydrochorous seed 

dispersal of riparian tree species was found. In populations of Populus nigra L., a pioneer 

riparian tree with seed dispersal occurring via wind and water, located on the Morava 

River, Czech Republic, seed dispersal was found to occur over distances of up to 370 m, 

spanning the full length of the study site (Pospíškova and Šálková 2006). Again, the 

between-population seed dispersal distances (i.e. within the main river channel) 

identified in this study are similar to the within-main channel dispersal distances found in 

Keruzoré’s (2012) dispersal simulations. Keruzoré (2012) examined dispersal in the main 

river channel (River Tummel and, further downstream, the River Tay) by tracking dispersal 

originating from either the main channel, or from a backwater. Under base-flow 

conditions, and when tracer dispersal originated from a backwater, the mean dispersal 

distance was 1.4 km, increasing to 1.7 km when tracer dispersal originated in the main 
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channel (Keruzoré 2012). These simulated dispersal distances are very similar to the 

mean, between-population seed dispersal distance of 1.2 km observed here in A. 

glutinosa, particularly when considering the smaller span of river distance studied here (5 

km, compared to 33 km). Still, under flood flow conditions, simulated dispersal distances 

increased to 3.5 km when material originated from a backwater and 12.2 km for material 

originating in the main river channel itself (Keruzoré 2012).  

 

Although not hydrochorously dispersed, parentage analysis of two Northern Irish Fraxinus 

excelsior populations revealed a mean wind dispersal distance of seed to be 42 m (Beatty 

et al. 2015), identical to the mean local dispersal distance of A. glutinosa identified in this 

study. Beatty et al.’s (2015) use of both nuclear and (maternally inherited) chloroplast 

markers provides an unambiguous insight into seed dispersal distances, including the 

occurrence of dispersal over hundreds of metres. Of note, Beatty et al.’s (2015) plot of 

effective seed dispersal distances revealed a Janzen-Connell recruitment process which, 

alongside a lack of evidence for SGS, is considered indicative of density-dependent 

mortality close to the mother plant. The difference in the shape of A. glutinosa and 

Fraxinus excelsior seed dispersal curves may be a consequence of the differing dispersal 

mechanisms although further research would be required to ascertain this. 

 

Identifying seed parents is challenging, and seed dispersal is a complicated and 

multifaceted process (Ashley 2010). The assumptions made in this study regarding the 

proportion of parents sampled, and how maternal and paternal parents were 

distinguished, whilst enabling a maternity analysis to be undertaken, may also bias the 

results obtained. Although the approach taken may have caused an increase in Type I 
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error (where a seed matches a candidate parent by chance, when the true parent has not 

been sampled) (Ashley 2010), the insight gained into seed dispersal distances is consistent 

with the results of the SGS analysis, and remarkably similar to dispersal distances 

identified by Keruzoré (2010) using independent methods. In addition, as described 

earlier, seed dispersal patterns outlined here represent effective seed dispersal, reflecting 

both seed dispersal per se and establishment processes. Despite concerns around the low 

power of the maternal parentage, analysis undertaken corroborates the leptokurtic 

dispersal kernel expected for seed dispersal. Whilst long distance seed dispersal was not 

observed beyond 2.5 km, it is clear that hydrochorous seed dispersal is at least as 

important as wind mediated seed dispersal and that hydrochorous seed dispersal plays an 

important role in maintaining genetic connectivity between riparian A. glutinosa 

populations.  

 

Paternity analysis of seeds 

That paternity analyses may be sensitive to the proportion of parents sampled was clearly 

demonstrated here, in both the ML and exclusion analyses undertaken. Nevertheless, the 

pattern of pollen dispersal distances is consistent across each implemented analysis. The 

analyses revealed a fat-tailed, leptokurtic pollen dispersal curve, with most pollen 

dispersal occurring over relatively short distances (37% within 100 m), although 33% of 

pollen parents were located in neighbouring populations. Pollen dispersal occurred up to 

distances of 4.31 km, confirming riparian populations of A. glutinosa are genetically 

connected to downstream populations via pollen dispersal. Hence, despite concerns 

around genotyping error and uncertainty around partial sampling of the reproductive 
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population, the pattern of pollen dispersal distances is consistent with that reported in 

studies of other tree species.    

 

As reported elsewhere (Ashley 2010), A. glutinosa pollen dispersal was not random, 

displaying a highly skewed contribution of pollen sources with most pollen dispersal 

occurring over short distances. This finding concurs with previous studies showing, in 

wind-pollinated trees, most pollination events result from near-neighbour pollen donors 

(Ashley 2010). Although no comparable Alnus studies were found, examples in other 

wind-pollinated tree studies revealed over 80% of Fraxinus excelsior pollen dispersal 

occurring within 100 m of the maternal tree (Bacles and Ennos 2008); 54% of Quercus 

macrocarpa pollinations occurring within 70 m (Dow and Ashley 1998); and most 

pollination events of the riparian tree Cercidiphyllum japonicum were found to occur 

within 50 m of the maternal tree (Sato et al. 2005). Nevertheless, all of these studies also 

reported pollen dispersal occurring across the distance of the study area, as reported 

here, as well as significant pollen immigration.  

 

Whilst this study is thought to be the first to investigate A. glutinosa pollen dispersal, 

other studies clearly indicate the presence of pollen immigration over long wind-

dispersed distances (Ashley 2010). In F. excelsior pollen dispersal occurred up to distances 

of 2.9 km, with pollen immigration accounting for over 40% of effective pollination 

(Bacles and Ennos 2008) and in Populus trichocarpa a mean dispersal distance of 7.6 km 

was reported with approximately a third of observed pollinations resulting from pollen 

immigration travelling over 16 km (Slavov et al. 2009). In fact, extensive pollen dispersal is 
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expected in wind-pollinated species, such that populations of wind-pollinated trees are 

effectively panmictic across large spatial scales (Ashley 2010).  

 

Spatial genetic structure 

This study demonstrated that SGS did not remain constant over time, with different life 

stages of A. glutinosa revealing varying patterns of fine-scale SGS. Although the paternal 

alleles of the seed cohort revealed the most intense SGS, no evidence of SGS was 

observed within the sapling generation. However, although weak, significant SGS was 

observed in the adult generation. Consequently, the hypothesis that SGS in riparian A. 

glutinosa populations would decline over time, and therefore higher SGS would be 

observed in the sapling generation than the adult generation, was not supported here.  

 

The genetic structure of the paternal allele may represent correlated mating, the 

generation of full siblings in the aggregates of half siblings sampled from the same 

maternal tree. In Quercus salicina, significant SGS observed in the paternal alleles of seed 

is thought to be a consequence of correlated mating, mediated by limited pollen dispersal 

(Nakanishi et al. 2009). Here, the seed sample size obtained is not sufficient to investigate 

the level of correlated mating in A. glutinosa. However, the assessment of pollen 

dispersal distances clearly showed that pollen dispersal was not random, with 

significantly more pollen dispersal than expected occurring over relatively short distances 

(Figure 2.7). It is therefore likely that this non-random pollen dispersal contributes to the 

weak, but significant, spatial genetic structure observed in the paternal allele of the seed 

cohort. Clearly, non-dispersed A. glutinosa seed will maintain significant SGS due to the 

presence of half siblings and the results obtained here suggest that SGS within the 
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paternal allele will further contribute to levels of SGS within any seed cohort. 

Nevertheless, here, no evidence of SGS was observed in the sapling generation, indicating 

a loss of genetic structure in the transition from seed to sapling.  

 

A number of processes could explain the lack of SGS observed in the sapling generation. 

Few other empirical studies report a loss and / or absence of SGS in the juvenile stage 

when SGS is simultaneously observed in the seed and / or adult stage. However, in the 

perennial herb Trillium grandiflorum, a lack of SGS in the juvenile cohort has been 

assigned to a combination of random mating, high mortality of seedlings, and moderate 

seed dispersal distances (Kalisz et al. 2001). In the Neotropical tree Jacaranda copaia a 

loss of SGS between the seed and sapling generation was attributed to a combination of 

low recruitment, density-dependent seedling mortality, and spatial and temporal 

variation in seed production (Jones and Hubbell 2006). 

 

A combination of low seedling recruitment and high seedling mortality, as well as long-

distance dispersal of both seed and pollen are considered contributory factors to the loss 

of SGS between the seed and sapling generations observed here. Successful 

establishment of A. glutinosa seedlings requires at least 20% of the above canopy light 

and a high level of moisture,  and consequently no natural regeneration tends to occur 

within woodlands, except where there is a canopy opening >1,000 m2 (Claessens et al. 

2010). Indeed, riparian plant communities may frequently be recruitment limited (Nilsson 

et al. 2010). Field observations undertaken here confirm this. In addition to very few 

seedlings being observed, seedlings that did occur were located in very open, gravel areas 

close to the main river channel. Consequently, the habitat requirements necessary for the 
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successful recruitment of A. glutinosa seedlings may reduce relatedness in the sapling 

generation. In addition to this, Kalisz et al. (2001) demonstrated that thinning of post-

dispersed T. grandiflorum seeds to single juvenile individuals led to a decrease in SGS. In 

A. glutinosa, concentrations of seed occur as a consequence of wind and water action 

(McVean 1955). Given this clump-like stranding of dispersed seeds it seems likely that a 

high level of mortality-driven rarefaction of seedlings will occur, weakening any pattern of 

SGS. 

 

Most SGS forms as a result of limited gene dispersal (Vekemans and Hardy 2004), 

however when both pollen dispersal and seed dispersal are random, or when pollen 

dispersal is highly localised but seed dispersal is random, SGS will not develop (Kalisz et al. 

2001). Most (57 – 75%) A. glutinosa seed dispersal, at least where upstream populations 

occurred, was shown to have originated from a neighbouring population (Figure 2.45). 

Thus, despite local A. glutinosa seed dispersal appearing limited to within 100 m of the 

maternal tree (Figure 2.5b), the high level of between-population seed dispersal observed 

should have a homogenising effect on SGS. In addition to this, although most pollination 

events were local, pollen dispersal occurred across the whole span of the population and, 

between populations dispersal distances up to 4.3 km were observed. Thus, whilst 

hydrochorous seed dispersal is considered a major factor in reducing SGS between the 

seed and sapling generations of A. glutinosa, it is likely that long-distance pollen dispersal 

also contributes to the loss of SGS.  

 

It was expected, based on the lack of SGS in the sapling generation that no SGS would be 

apparent within the adult life stage of A. glutinosa. It was therefore with some surprise 
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that although weak, significant SGS was observed in the adult generation (Figure 2.9a). 

Possible explanations for an increase in genetic structure from the sapling to adult 

generation include overlapping generations, selection, historical influences, and non-

equilibrium dynamics (Jones and Hubbell 2006). A development of SGS, or an increase in 

SGS, from juveniles to adults has been attributed to a historical bottleneck or micro-

environmental selection in perennial herb T. grandiflorum (Kalisz et al. 2001); selection 

for mycorrhizal interactions and overlapping seed shadows in the orchid Orchis purpurea 

(Jacquemyn et al. 2006); life history attributes and low survival rates in early life stages in 

the Neotropical tree Jacaranda copaia (Jones and Hubbell 2006); and  micro-

environmental selection as well as overlapping seed shadows in Dalbergia nigra of the 

Atlantic Forest (Leite et al. 2014).  

 

Historical factors offer a potential explanation for the processes underlying the increase 

in genetic structure from the sapling to adult generation in the A. glutinosa study 

populations. The dynamic nature of the River Tummel results in a shifting mosaic of 

riparian zones (Gilvear and Willby 2006). As a consequence it is likely that the study 

populations have, over time, developed from initially small aggregations of A. glutinosa. 

For example, A. glutinosa is one of only a few species that are able to undergo vegetative 

regeneration following uprooting (Francis et al. 2009). Livewood from uprooted and later 

deposited trees grows faster than seeds, enabling establishment before any subsequent 

disturbance (Francis et al. 2009). Further to this, an increased availability of local habitat, 

suitable for seedling establishment, may have meant that wind-dispersal of seed enabled 

local expansion of A. glutinosa populations. These more limited wind-dispersal distances 

would result in an overlap of A. glutinosa ages including, for example, a parent or 
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grandparent and its offspring growing in close proximity. In this study, the adult 

generation encompassed individual trees of diverse ages, potentially reflecting the above 

scenario, and as a result revealing a weak but significant level of SGS. Under this historical 

hypothesis, as succession and the spread of A. glutinosa occurred, a loss of habitat 

suitable for A. glutinosa seedling establishment would follow, limiting suitable habitat for 

future recruitment to new open, gravel areas close to the main channel where 

contemporary, between-population hydrochorous seed dispersal may dominate, as 

revealed in the maternity analysis implemented here. Thus, SGS may be observed in the 

adult generation but not the contemporary sapling generation.  

 

Although not possible to investigate here, due to the use of neutral, microsatellite 

markers, selection for related individuals, adapted to local micro-habitat conditions may 

also contribute to the increase of SGS in the adult generation. Assuming gene flow is 

widespread, as observed here, strong micro-environmental selection could generate 

predictable local changes in gene frequencies as the stand matures (Epperson 1992). For 

example, A. glutinosa typically benefit from root symbiosis with Frankia however, A. 

glutinosa shows resistance to ineffective Frankia strains (Van Dijk and Sluimer-Stolk 1990) 

and, root nodule symbiont effectiveness has been shown to vary depending on the host 

genotype (Douglas 1998). The dynamic nature of the River Tummel may also lead to 

disturbance-mediated selection, as hypothesised by Banks et al. (2013). The process of 

selection assumes that, following the successful establishment of seedlings, subsequent 

selection would favour the survival of locally adapted saplings resulting in increasing 

levels of relatedness with increasing tree age. Future work, utilising non-neutral genetic 

markers, will be required to gain further insight into selection effects. 
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The processes underlying the increase in genetic structure from sapling to adult stages 

remain, however, unclear. In particular, the SGS observed between the sapling and adult 

generations suggest that saplings were more related to the individuals within the adult 

generation than they were to neighbours within the sapling generation (Figure 2.9c). This 

result conflicts with the key finding obtained from the maternity analysis that most seed 

dispersal occurs between populations, therefore genetically homogenising the seed and 

subsequent sapling cohort. One explanation for this apparent conflict in results is that the 

adult generation may be dominated by relatively young adult trees. If this were the case it 

is possible that the saplings and young adults are more related to each other than 

saplings may be to older adults, thus the relative abundance of young adults within the 

adult generation dataset may skew the SGS analysis. Further investigation, incorporating 

age cohorts within the adult generation, is described in the following chapter.  

 

2.6 Conclusion 

The lack of difference in measures of genetic diversity between the sapling and adult 

generations of A. glutinosa suggested that high outcrossing rates and high gene flow 

occur, typical of tree species. The high level of dispersal identified through parentage 

analyses confirmed that the movement of both pollen and seed contribute significantly to 

within and between population gene flow. Importantly, the evidence reported here 

suggests that most seed dispersal occurs between populations, highlighting the 

importance of hydrochory in maintaining between-population genetic connectivity and 

long-distance gene flow via seed dispersal. The parentage analyses undertaken here 

suggest that between-population seed dispersal is greater than between-population 
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pollen dispersal. However, as previously acknowledged, caution in comparing differences 

between pollen and seed dispersal is exercised due to the low power of both the 

maternity and paternity analyses. Nevertheless, although extensive local pollen and seed 

dispersal was observed, it is clear that between-populations pollen and seed dispersal are 

both widespread and occur over long distances. The lack of SGS observed in the sapling 

generation corroborated evidence of extensive pollen and seed dispersal. However, the 

processes underlying the observed increase in SGS between the sapling and adult 

generations remain unclear.  

  

This study is thought to be the first to investigate seed and pollen dispersal in A. 

glutinosa. Alongside the parentage analyses, the complementary assessment of fine scale 

spatial genetic structure illustrates the additional insight into the processes shaping 

genetic diversity and structure within A. glutinosa populations. In addition, by classifying 

individuals by life stage this study illustrates that the effects of ecological and 

evolutionary processes are likely to vary between different life stages of A. glutinosa.  
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Chapter 3 

Detection of demographic and genetic structure in 

the riparian Alnus glutinosa woodlands of a dynamic 

river system 
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3.1 Abstract 

Demographic and genetic structure within populations is influenced by the landscapes 

they occur in. The identification and description of species-environment interactions 

informs our understanding of ecosystem functioning and guides management and 

conservation. This study focuses on Alnus glutinosa, a key European riparian tree species, 

within four riparian populations of a dynamic river. Woodland inventory data was used to 

describe demographic structure, and dendrochronology methods implemented to 

develop a size-age standard for A. glutinosa in the study area. Genotyping of 820 

individual A. glutinosa trees, based on 11 SSR loci, was used to examine genetic diversity 

and structure. Comparison between mature and young woodland revealed significant 

differences, notably a paucity of A. glutinosa seedling regeneration in mature riparian 

woodland. Multi-stemmed ‘sprouting’ growth of A. glutinosa indicated the occurrence of 

site disturbance and generalised linear mixed models identified distance to the main river 

channel as an explanatory factor for the temporal woodland structure identified. Genetic 

analyses revealed no differences in genetic diversity between age cohorts although 

differences in the pattern of spatial genetic structure, but not temporal genetic structure, 

were revealed. These results indicate interaction between riverine features and riparian 

vegetation. This interaction results in demographic structure within riparian A. glutinosa 

populations however minimal between-generation genetic variation or differentiation 

was observed, indicative of widespread gene flow.  

 

3.2 Introduction 

The occurrence of species, and the variation within and between populations, is affected 

by the spatial and temporal heterogeneity of the landscape they occur in. The 
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identification and description of the variation and structure in species distributions across 

different spatial and temporal scales is, therefore, central to informing our understanding 

of species-environment interactions (Levin 1992; Legendre 1993). Examining the strength 

and significance of species-environment interactions is of key importance, informing our 

understanding of species ecology and ecosystem functioning, as well as enabling the 

development of management and conservation principles (Levin 1992; de Knegt et al. 

2010). Within terrestrial landscapes, riparian corridors are among the most dynamic and 

diverse of habitats (Gregory et al. 1991; Naiman et al. 1993), where riparian vegetation 

and hydrogeomorphic processes are intimately connected (Stoffel and Wilford 2012). 

 

Hydrogeomorphological influences include the formation of bar and floodplain habitat 

mosaics suitable for plant establishment; the hydrochorous dispersal of plant propagules; 

and hydrological disturbance events, resulting in, for example, plant breakage or damage, 

loss of suitable habitat, and burial by sediment and / or debris (Francis 2006). In turn, 

riparian vegetation influences hydrogeomorphological process. The development of root 

structures physically reinforces the riparian substrate, thus improving bank and bar 

stability, as well as resistance to fluvial erosion. Vegetation also provides resistance to 

water flow, reducing the capacity of the flow to carry sediment, thus resulting in 

deposition of fine sediment in the proximity of the vegetation (Francis 2006). In addition, 

erosion / deposition, and the lateral movement of the river channel, are important to 

understanding patterns in riparian vegetation, with spatial zonation of vegetation often 

occurring along a transverse gradient perpendicular to the river channel (Naiman and 

Décamps 1997).  
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Spatial zonation of vegetation may also be reflected in the non-random distribution of 

genotypes, resulting in genetic differentiation across both spatial and temporal scales. 

Gene dispersal is often identified as the principal agent leading to the non-random 

distribution of genotypes, with restricted pollen and seed movement resulting in spatial 

genetic structure (SGS). Although reproductive biology (life form, dispersal mode, 

outcrossing rate) often explains the SGS observed (Vekemans and Hardy 2004), local 

conditions can also influence SGS (Hoban et al. 2014) with any or all of the 

hydrogeomorphic-riparian vegetation interactions described above having the potential 

to influence SGS. For example, in the temperate butternut tree (Juglans cinerea L.) of 

North America, habitat, aggregation, and site history were found to result in different 

patterns of SGS between riparian and upland sites, with site demography (based on 

diameter at breast height(DBH)) also found to influence population SGS (Hoban et al. 

2014). 

 

Most previous SGS studies do not distinguish between age classes in populations 

(Hossaert-McKey et al. 1996; Qiu et al. 2013), yet the successional stage of individuals can 

influence levels of genetic differentiation (Hossaert-McKey et al. 1996). Whilst the genetic 

structure of young trees represents the processes of recent time periods, the pattern of 

SGS in the older adult generation will reflect the accumulation of past and present 

ecological and evolutionary effects (Hossaert-McKey et al. 1996; Kalisz et al. 2001; Qie et 

al. 2013). Comparisons of genetic diversity and SGS between different age cohorts is one 

way to detect changes in SGS over time (Kalisz et al. 2001; Fuchs and Hamrick 2010), 

especially when identifying the age of individuals is not feasible (Hossaert-McKey et al. 

1996). In temperate tree species tree age can be measured by counting the number of 
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annual rings revealed on an increment core. By cross-dating more than one core taken 

from the same tree, greater accuracy in tree age estimates are achieved, particularly 

when compared to diameter at breast height (DBH, measured at 1.3 m height) 

measurements which may be a poor predictor of age (Ogden 1981). 

 

In this study the demographic and genetic structure in riparian Alnus glutinosa (L.) Gaertn 

populations of the River Tummel in the eastern Highlands of Scotland were investigated. 

The River Tummel, a sizeable river by UK standards, has previously been the focus for a 

programme of research on riverine landscape diversity (e.g. Gilvear and Winterbottom 

1992; Winterbottom 2000; Parsons and Gilvear 2002; Gilvear and Willby 2006; Keruzoré 

et al. 2012) and A. glutinosa is a key tree species of the riparian habitat (e.g. Parsons and 

Gilvear 2002; Gilvear and Willby 2006). Although dynamic in nature, attempts to control 

flooding in the lower 10 km of the River Tummel resulted in channel confinement 

following the construction of embankments during the 18th and 19th centuries (Gilvear 

and Winterbottom 1992; Winterbottom 2000). However, subsequent abandonment of 

the flood embankments in 1903 has seen the river has return to a more natural state with 

further channel change and movement occurring. Historical maps and aerial photography 

show how vegetation succession has followed channel change (Winterbottom 2000) and 

that changes in fluvial landforms and patterns of vegetation are related to flooding events 

and fluvial disturbance (Parsons and Gilvear 2002). Alnus glutinosa, along with 

herbaceous species, is one of the first species to colonise bare gravel areas (Parsons and 

Gilvear 2002) where vegetation succession, following flood and disturbance events, may 

be rapid with A. glutinosa / Salix woodland establishing within 30 years (Gilvear and 

Willby 2006). Thus, by identifying and describing patterns of demographic and genetic 
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structure within A. glutinosa populations, a key tree species of European riparian habitat, 

this study aims to extend current knowledge of the hydrogeomorphological influences on 

riparian vegetation. Following identification of the woodland tree species present and 

genetic characterisation of the A. glutinosa populations studied, following hypotheses 

were tested: 

 
I. Mature riparian woodland is comprised of larger, older A. glutinosa adult trees, 

and has a lower density of individuals than young riparian woodland. 

 
II. In comparison with young riparian woodland, little or no A. glutinosa seedling 

regeneration occurs within mature riparian woodland. 

 
III. Distance from the main river channel will influence the temporal structure of 

riparian A. glutinosa woodland. 

 
IV.  Differences in the pattern of spatial genetic structure between different A. 

glutinosa age cohorts will be observed, indicative of different influences occurring 

between generations. 

 
V. Temporal genetic structure will reflect the demographic structure identified. 

 

3.3 Materials and methods 

3.3.1 Study species 

Alnus glutinosa (L.) Gaertn, commonly known as black alder, is an important temperate 

riparian tree species distributed across Europe. Growing alongside the edge of rivers and 

standing water, A. glutinosa can act as a pioneer species and forms a key element of 
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dynamic river systems (McVean 1953). A monoecious tree, the male and female flowers 

form as catkins during February / March and are wind-pollinated (McVean 1955). 

Following fertilisation, the female flower forms as a woody cone-like fruit containing 

approximately 60 seeds (strictly achenes) that are dispersed in autumn (McVean 1953). 

The seeds, which have lateral cork-like float chambers and an oily outer coat, are 

principally dispersed by water, although seed dispersal by wind can occur up to a distance 

of 60m (McVean 1955). Trees mature between the ages of three and 30 years and are 

considered self-incompatible (Steiner and Gregorius 1999). Growth habit is described as 

variable by McVean (1953), from low multiple-stemmed bush form to tall single-bole 

trees. At the locations studied here, some trees appeared as multi-stemmed trees 

characterised by trunks growing individually, but so close to one another at the base that 

is was not possible to distinguish whether they were the same tree or not. Future 

reference to multi-stemmed trees refers to the growth characteristic described here.  

 

3.3.2 Study sites 

Sampling of A. glutinosa trees took place within four riparian sites located alongside the 

River Tummel in the eastern Highlands of Scotland. The study area (Figure 3.1) covers the 

River Tummel from just south of the Pitlochry dam to its confluence with the River Tay. It 

is approximately 60 m wide and flows within a wandering gravel-bed channel and has a 

mean discharge, at the River Tay confluence, of 70m3s -1 (Gilvear and Willby 2006). 

Analyses of old maps and documentary sources show that major changes to the river 

planform have occurred over the last 200 years (Gilvear and Winterbottom 1992). Flood 

protection embankments of the 19th and 20th centuries transformed unstable river 

sections to narrower, single-channel reaches, with limited lateral migration (Gilvear and 
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Winterbottom 1992) however the embankments fell into disrepair following a large flood 

event in 1903 (Parsons and Gilvear 2002). Subsequently, the river has returned to a more 

natural morphology and although the river still occupies one main channel, lateral 

instability is prevalent (Winterbottom 2000), secondary channels are activated at high 

flow, and backwaters are present (Parsons and Gilvear 2002). Each of the four study sites 

encompassed areas of dynamic river shingle, where river action deposits and re-arranges 

shingle, and a wide range of successional vegetation communities occur. The A. glutinosa 

woodland occurs on shingle and other alluvial soils alongside areas of bare shingle, 

neutral grassland, and open water, including abandoned river channels and backwaters. 

Here, the term ‘backwater’ refers to a former river channel that, through the deposition 

of alluvial or woody debris, has lost its upstream connection with the main river channel 

but maintains a downstream connection. The four sites, referred to here, in upstream to 

downstream order as Tomdachoille, Moulinearn, Ballinluig, and Richard’s Island, occur 

over an approximate 6 km stretch of the River Tummel, with Richard’s Island located on 

the confluence of the River Tummel and the River Tay (Figure 3.1). Each site varied in size, 

ranging from 6.5 Ha to 19.3 Ha (Table 3.1). These four sites are of national importance, 

designated collectively as the Shingle Sands Site of Special Scientific Interest (SSSI), 

forming a series of extensive and dynamic river shingle areas in various stages of 

colonisation (Scottish Natural Heritage 2013). The study sites are also of European 

conservation importance, forming part of the Shingle Islands Special Area of Conservation 

(SAC) for Annex I priority feature ‘alluvial forests with Alnus glutinosa and Fraxinus 

excelsior’ (JNCC 2014). All necessary permissions were gained from the landowners, land 

manager, and the statutory authority prior to fieldwork being undertaken in 2011.  
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Figure 3.1  Map showing the location of the four study sites on the River Tummel. Inset map shows the 

location of the River Tummel in Scotland.  
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3.3.3 Sample collection and preparation 

3.3.3.1 Tree core sampling and preparation  

Tree cores were taken from 60 A. glutinosa trees located at the Ballinluig site. Straight, 

single stemmed trees with a DBH >5 cm, free of any apparent injury, were selected for 

sampling and the diameter at breast height (DBH) and diameter at 30 cm height was 

recorded. Cores were taken using a standard 4.3 mm increment corer at 30 cm above 

ground. One core per tree was taken except for in the case where the pith was missed in 

which case two cores, perpendicular to each other, were taken to improve the likelihood 

of intercepting the pith. The increment corer was sterilised prior to coring each tree and 

all cores were stored and air-dried in paper straws. Dried samples were mounted, sanded 

and polished up to 1200 grit following standard procedures (Speer 2010), then scanned at 

1600 dpi, using an Epson GT-20000 flatbed scanner, and saved as .jpg files. Ring width 

was measured to an accuracy of 0.001 mm using CooRecorder v.7.4 (Larsson 2003a) and, 

where cores had been taken from the same tree, cross-referenced using CDendro v.7.4 

(Larsson 2003b). Bark width was measured following the same methodology.  

 

3.3.3.2 Riparian woodland inventory data collection 

At each of the four study sites woodland inventory data were recorded in four 20 m x 20 

m plots, within mature woodland and young woodland / scrub habitats. Areas of mature 

and young woodland were identified by walk overs of each site, aerial photography and 

maps. Maps of each site were then overlaid with a grid, representing 20 m x 20 m plots, 

and potential inventory plots from each stratified section selected randomly using a 

random number generator. On site, assuming accessibility, inventory plots were sampled 

according to the randomly generated points. All trees were recorded and classed as 
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seedlings based on their height (<30 cm), as saplings based on their height (>30 cm) and 

size (<20 cm circumference at 30 cm height) and as adult when ≥20 cm circumference at 

30 cm height. Adult trees were identified as multi-stemmed or single stemmed and the 

DBH and at 30 cm height was measured.  

 

3.3.3.3 Leaf sample collection, DNA extraction and microsatellite analysis 

A total of 902 leaf samples were collected from adult and sapling trees across the four 

study sites (Table 3.1), randomly sampling individuals situated at a range of distances 

apart. Trees were classed as adults where ≥20 cm circumference at 30 cm height. Trees 

were identified as saplings based on their height (>30 cm high) and size (<20 cm 

circumference at 30 cm height).  Occasionally, in the case of multi-stemmed trees, leaves 

were collected from more than one stem. In this situation each stem was recorded as an 

individual sample, but shared the same geographical location as the other stems of the 

same multi-stemmed tree. The geographical location of each sampled tree was recorded 

using a Garmin GPSMAP 62s handheld navigator and, in the adult cohort, DBH and at 30 

cm height was measured for subsequent woodland structure analyses. Leaf samples were 

immediately placed in silica gel (Chase and Hill 1991) and subsequently stored at room 

temperature.  

 

Genomic DNA from the seedling samples was obtained using the Isolate Plant DNA Mini 

Kit (Bioline), according to manufacturer instructions, and eluted into a final volume of 30 

μL. Genomic DNA from the leaf samples was obtained using the DNeasy 96 Plant Kit 

(Qiagen) following manufacturer instructions. All extracted DNA was stored at -20 oC until 

further use. DNA concentration was quantified using a NanoDrop 2000 
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Spectrophotometer (Thermo Fisher Scientific) and samples were adjusted to 10 ng/ μL for 

PCR amplification. DNA was amplified using the multiplex of 12 nuclear microsatellite 

markers (Ag01, Ag05, Ag09, Ag10, Ag13, Ag14, Ag20, Ag23, Ag25, Ag27, Ag30, Ag35) of 

Lepais and Bacles (2011). Multiplex reactions were carried out in a total volume of 5 μL 

using 1X Type-it Microsatellite PCR Kit (Qiagen) and 0.5 μL of template DNA and 

performed in a Veriti thermocycler (Applied Biosystems). PCR conditions followed those 

described in Lepais and Bacles (2011): 5 min denaturation at 95 oC followed by 30 cycles 

of 95 oC for 30 s, 58 oC for 180 s, and 72 oC for 30 s, finishing with a final elongation step 

of 60 oC for 30 min. Following test amplicon success on 2% agarose gel 1 x TBE 

electrophoresis, samples were sent to DNA Sequencing and Services (Dundee, UK) for 

fragment analysis on a Biosystems 3730 capillary sequencer at a 1:50 dilution using 

GeneScan 500 LIZ size standard (Applied Biosystems). The resulting electropherograms 

were analysed using GeneMarker v.2.4.0 software (Softgenetics) and the correct 

assignment of allele size class checked in FlexiBin (Amos et al. 2007).  

 

Based on Bonin et al. (2004), repeat amplification (including some blind samples) and 

fragment analysis was undertaken to estimate allele and genotype mismatch errors 

within each population and across all populations. Across all four populations a total of 

160 leaf samples (20% of the total genotyped sample size) were repeated. Genotyping 

errors and null alleles were quantified using two methods, as advocated by Dąbrowski et 

al. (2014), using  Micro-Checker (Van Oosterhout et al. 2004) and Cervus v.3.0.7 

(Kalinowski et al. 2007). 
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Genotypic linkage equilibrium between loci pairs within each population and across all 

four populations was checked using FSTAT v.2.9.3.2 (Goudet 1995). Significant 

associations between loci were identified by randomly associating genotypes at pairs of 

loci over 1100 and 8800 permutations respectively, based on the 5% nominal level after 

Bonferonni correction.  

 

Table 3.1  Details of the four study sites and the number of A. glutinosa adult and sapling trees sampled at 

each site.  

Site name Site code Latitude Longitude 
Size of site 
(Ha) 

No. adults 
sampled 

No. saplings 
sampled 

Tomdachoille Tom 3
o
 41’ 43’’ 56

o
 40’ 38’’ 19.3 190 38 

Moulinearn Mou 3
o
 41’ 20’’ 56

o
 40’ 35’’ 6.5 128 70 

Ballinluig Bal 3
o
 40’ 36’’ 56

o
 39’ 37’’ 18.5 232 45 

Richard's Island RIs 3
o
 39’ 52’’ 56

o
 38’ 26’’ 9.6 180 19 

 

 

3.3.4 Data analysis 

3.3.4.1 Developing a size-age standard for A. glutinosa  

To estimate the age of sampled A. glutinosa trees, the numbers of annual rings revealed 

on each increment core were counted. For individuals where the core did not include the 

pith an age correction procedure adapted from Duncan (1989) was implemented as 

follows. The number of missing years not represented by the core was estimated by first 

identifying the length of core missing (based on the diameter measured in the field and 

the length of the sampled core), then estimating the average annual growth ring width 

based on the first five years of the sample, the number of missing years then estimated 

by dividing the missing length by the mean ring width. The number of tree rings measured 

and the estimated missing years were summed for each core and the final individual tree 

age estimated based on the mean number of tree rings from each core. No correction 
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factor to adjust for tree rings lost due to coring height was applied as it was not possible 

to measure tree height. Consequently all subsequent estimates of A. glutinosa tree age 

are based on a ‘greater than’ age. 

 

Regression analysis was used to describe the relationship between diameter at 30 cm 

field measurements and tree age based on the above ring counts. To test whether a 

straight-line model or non-linear regression model provided the best description of the 

data the F test using anova was used. Following Crawley (2013), the straight-line linear 

model was consequently compared to a linear model bound by zero, and to a polynomial 

regression. Using AIC, the straight-line linear regression was also compared to an 

asymptotic regression. All analyses were conducted using R (R Core Team 2014). 

Subsequently, all A. glutinosa trees sampled in the field (as part of woodland inventory 

survey and leaf collection) were assigned an estimated age based on diameter at 30 cm 

height. 

 

3.3.4.2 Woodland structure  

3.3.4.2.1 Riparian woodland inventory 

For each species, the mean number of adults, saplings and seedlings recorded in both 

mature and young woodland habitat at each site, and across all four sites was calculated. 

For A. glutinosa, the mean DBH, age, stems per adult and per sapling, and density per 

hectare for adults, saplings, and seedlings, was calculated for mature and young 

woodland habitat at each site, and across all four sites. The age of adult A. glutinosa 

trees, based on the circumference at 30 cm height measured in the field, was estimated 

using the size-age standard described in (Sections 3.3.4.1 and 3.4.1). In the case of multi-
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stemmed trees, DBH and age were taken from the largest stem. To assess the level of 

multi-stemmed trees the total number of individual adult and sapling stems was divided 

by the number of adult and sapling trees respectively, giving a number of stems per adult 

and per sapling for the mature and young woodland habitats. Welch’s T-test was used to 

test for differences in the mean DBH, age, and, number of stems per adult and per sapling 

between mature and young woodland habitat at each site, and across all four sites.  

 

3.3.4.2.2 Alnus glutinosa woodland structure 

Analysis of A. glutinosa woodland structure was investigated by examining the location of 

individual sapling and adult A. glutinosa trees in relation to the main river channel. For 

each individual tree three Euclidean distance variables were considered: ‘east-west 

distance’ represented the distance between the location of each tree and the centre line 

of the River Tummel along an east-west gradient; ‘near-distance’ represented the 

shortest distance between each tree and the centre line of the River Tummel, regardless 

of direction; and, at each site, the ‘distance-south’ represented the distance between the 

location of each tree and the most southerly location of each site. The distance-south 

measure accounted for the most downstream point of each site as, within the study 

reach, the River Tummel flows in an approximately north to south direction. All distances 

were measured using ArcGIS v.10.2.2 (ESRI Inc. 2014), based on digital ordnance survey 

maps (EDINA Digimap® 2015).  

 

Initial analysis tested if saplings occurred closer to the main channel, and at the upstream 

location of each site, in comparison to adults. Significant difference between saplings and 

adults for each distance measure were tested using the Wilcoxon rank sum test, 
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implemented in R (R Core Team 2014). Secondly, the relationship between the age of 

individual A. glutinosa adults and their location within each site in relation to the main 

river channel was investigated. To account for the Poisson distribution of tree age 

generalized linear mixed models were implemented. Analysis was undertaken using R (R 

Core Team 2014), using the glmer function in the lme4 R package (Bates et al. 2014a; 

Bates et al. 2014b). The fixed predictor variables of A. glutinosa tree age were the three 

distance measures described, and each site was included as a random effect. As 

continuous values, all the numerical predictor variables were centred and scaled by 

subtracting the mean of each variable from each variable value, and then dividing by the 

standard deviation. Prior to undertaking statistical analysis, the data was examined, 

following Zuur et al. (2010), to identify any potential data problems. Consequently, 

collinearity between the east-west distance and near distance measures was identified 

(correlation coefficient = 0.76). Thus, subsequent model comparisons were used to 

identify which distance measure was the most explanatory. Model selection was based on 

using Akaike information criterion (AIC). The best model was selected based on the 

lowest AIC value and the alternative models were assessed using differences in AIC (∆i), 

and associated Akaike weights (wi) following Burnham and Anderson (2002). To describe 

the amount of variance explained by each model, the marginal R2 (proportion of variance 

explained by fixed factors) and conditional R2 (proportion of variance explained by both 

the fixed and random factors) was estimated following Nakagawa and Schielzeth (2013), 

implemented using the MuMIn R package (Barton 2015).  
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3.3.4.3 Genetic analysis 

Initial A. glutinosa genetic analysis sought to first, identify the level of clonality across the 

four study sites, and second, to examine whether major genetic discontinuities existed 

either within or between the study sites. Subsequent analysis focused on comparison 

between different A. glutinosa age cohorts. Age cohorts were determined based on the 

age estimates obtained for individual A. glutinosa adults. Three age cohorts were defined: 

saplings (n = 166), the 200 youngest adult trees, and the 200 oldest adult trees, with 

individuals from each site represented within each age cohort (Table 3.2). Restricting the 

youngest and oldest cohorts to 200 individual A. glutinosa trees ensured that there was 

no crossover between upper 95% confidence interval of the young cohort and the lower 

95% confidence interval of the old cohort.    

 

Table 3.2  Details of the three A. glutinosa age cohorts examined.   

    No. individuals from each study site     

Cohort n Tom Mou Bal RIs 
Mean age 

(years) 
Age range 

(years) 

Sapling 166 36 66 45 19  -  - 

Young 200 53 57 56 34 26  6 - 36 

Old 200 56 12 96 36 96 68 - 233 

 

 

3.3.4.3.1 Occurrence of clones 

Initial analysis sought to clarify whether leaves collected from more than one stem of the 

same multi-stemmed tree shared the same genotype. Implemented in GenClone v.2.0 

(Arnaud-Haond and Belkhir 2007), genotypes from all sampled trees were compared and, 

where identical genotypes were revealed, field records were consulted to determine 

whether they were sampled from the same multi-stemmed tree (i.e. shared the same 
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geographical coordinates). Where clones were detected, only one individual was retained 

for subsequent analysis.  

 

3.3.4.3.2 Identification of major spatial genetic structure 

To identify whether major genetic discontinuities existed, either within or between the 

four study sites, genetic clustering methods were used to investigate population 

structure. Using the individual-based Bayesian genetic assignment method in STRUCTURE 

v.2.3.4 (Pritchard et al. 2000; Falush et al. 2003) to infer the number of distinct genetic 

clusters, analysis was first undertaken with no a priori geographic location provided, using 

the admixture model (α, allowed to vary, based  on the data and initialised at 1) to 

account for mixed ancestry among populations, and the correlated allele frequency 

model (λ = 1), which assumes that the K populations have undergone independent drift 

away from any ancestral population (Pritchard et al. 2010). For each analysis, 10 

iterations were run for each K = 1 to K = 8 (River Tummel reach) and K = 1 to K = 4 (each 

individual site). Each run was composed of a burn-in of 100,000 followed by 200,000 

Markov Chain Monte Carlo (MCMC) iterations, which was sufficient to reach 

convergence. Due to the low level of population structure detected all analysis were 

repeated using the LOCPRIOR model (coding each population as a different integer), with 

the aim of improving STRUCTURE performance (Hubisz et al. 2009). All outputs were 

evaluated by first pooling parameter estimates for each run to identify the lowest mean 

likelihood L(K) and variance per K value, implemented in STRUCTURE HARVESTER (Earl 

and vonHoldt 2012); and second, by inspecting the assignment of individuals to 

populations for the most appropriate value of K (Pritchard et al. 2010). 

 



88 
 

Validation of clustering-based analysis, such as STRUCTURE, is important (Guillot et al. 

2009); therefore further analysis to investigate the presence of genetic structure was 

undertaken using Geneland v.4.0.4 (Guillot et al. 2005a; Guillot et al. 2005b), another 

Bayesian clustering program. As recommended, analysis was started using the 

uncorrelated allele frequency model (Geneland Development Group 2012), as setting K as 

an unknown in the correlated model can lead to an overestimation of K (Guillot et al. 

2014). Using the mcmc function each analysis was based on 1,000,000 Markov Chain 

Monte-Carlo (MCMC) iterations, thinning set to 1,000, and a burn-in of 200 for each value 

of K = 1 to K = 10. Runs were performed 10 times for each model to compare average 

posterior probabilities for each value of K. As the correlated model is better at detecting 

structure in the case of low differentiation (Guillot 2008) each analyses was then re-run 

using the correlated model, fixing K at the value obtained from the uncorrelated 

frequency model. Analysis was used to investigate population structure across the four 

study sites.   

 

3.3.4.3.3 Genetic diversity between age cohorts 

Genetic diversity statistics for each age cohort, including the mean number of alleles per 

locus (NA), allelic richness (AR) (Petit et al. 1998), gene diversity (HE) (Nei 1978) and the 

inbreeding coefficient (FIS) (Weir and Cockerham 1984) were calculated using SPAGeDi 

1.4c (Hardy and Vekemans 2002). Rarefaction analysis of AR was based on 300 gene 

copies and significance of FIS values were obtained following 10,000 permutations of gene 

copies within individuals relative to each population. Significant differences between NA, 

AR, HE, and FIS between age cohorts were tested using the Kruskal-Wallis test, 
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implemented using R (R Core Team 2014). The presence of private alleles was detected 

using GenAlEx v.6.501 (Peakall and Smouse 2006; Peakall and Smouse 2012). 

 

3.3.4.3.4 Spatial genetic structure 

Assessment of differences in spatial genetic structure (SGS) within the youngest and 

oldest cohorts of A. glutinosa trees was undertaken in SPAGeDI v.1.4c (Hardy and 

Vekemans 2002). SGS within the sapling cohort was previously assessed in 2 (see Sections 

2.3.10 and 2.4.7). The extent of SGS between each of the three cohorts was also assessed. 

Kinship coefficients (Fij) between individuals i and j were estimated using Nason’s kinship 

coefficient (Loiselle et al. 1995), as it is found to be statistically robust (Vekemans and 

Hardy 2004). Nason’s kinship coefficient is based on the probability that a random gene 

from i is identical to a random gene from j, and defined as Fij = (Qij – Qm) / (1 - Qm), 

where Qij is the average probability of identity by state for random gene copies from 

individuals i and j, and Qm is the average probability of identity by state for gene copies 

coming from random individuals from the reference population (Vekemans and Hardy 

2004). In each dataset, the association between all pairs of Fij and spatial distances (r) was 

characterised by averaging the pairwise statistics to a set of predefined distance intervals. 

Preliminary tests were undertaken to establish suitable distance classes that would 

enable comparison between three age cohorts, and to ensure as close to >100 pairwise 

comparisons within each distance class, as advised by Hardy and Vekemans (2013). The 

tests revealed that very few pairwise comparisons occurred between distances of 600 m 

and 2,000 m, and that between 2,000 m and 5,000 m mean Fij values showed no 

significant change in slope. Consequently, subsequent analysis were restricted to a 

maximum distance of 550 across nine distance classes set at 20m, 40m, 60m, 80m, 100m, 
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200m, 300m, 400m and 550m. For further investigation, and due to the larger dataset, 

additional analyses for the oldest and youngest adult cohorts were undertaken using 

smaller distance classes (smallest distance class 5 m in the oldest cohort, 10 m in the 

youngest cohort).  In every analysis over 100 pairwise comparisons occurred within each 

distance class except in the between youngest adult-sapling cohort analysis where only 

75 pairwise comparisons occurred in first distance class (20 m) and, in the between oldest 

adult-youngest adult analysis where no pairwise comparisons occurred until 

approximately 100 m. Averaged Fij were regressed to the natural logarithm of the 

distance ln(rij) to provide the regression slope (b). To allow comparison between analyses 

relatedness values were calculated using the same allele frequencies, based on all A. 

glutinosa saplings and adults (n = 820). To test for SGS, and to obtain 95% confidence 

intervals, the regression slope was compared to that obtained following 10,000 random 

permutations of the spatial positions of individuals under the null hypothesis that Fij and 

dij are uncorrelated. Standard errors and mean multilocus Fij estimates within each 

distance class were obtained through jackknifing over loci following Sokal and Rohlf 

(1995).   

 

To compare the extent of SGS among three age cohorts, the Sp statistic was used 

(Vekemans and Hardy 2004), as it accounts for differences in SGS due to variation in 

sampling schemes.  The Sp statistic was calculated as –b / (1 - F(1) ), where b is the  

regression slope of Fij on the natural logarithm of the distance classes, and F(1) is the mean 

Fij between individuals belonging to the first distance interval. Thus Sp considers average 

kinship across individuals relative to the extent of the decrease in F across distance 
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intervals. The standard error of b is given as an estimate of the variability of Sp, calculated 

by jackknifing over loci (Hardy et al. 2006).  

 

Finally, to assess the level of temporal genetic structure, comparison between the 

genotype and age of individual adult A. glutinosa trees was made. Using the same 

methodology described for examining SGS, pairwise genetic distances were compared to 

pairwise age differences. Twenty five age classes were applied automatically using 

SPAGeDi, at 2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 24, 27, 29, 32, 35, 38, 42, 46, 51, 56, 61, 69, 

78, 92, and 227 years to ensure an approximately equal number, and over 100, pairwise 

comparisons within each age class.  

    

3.4 Results 

3.4.1 Tree cores 

All adult trees sampled, bar 13 individuals which could not be measured in the field, were 

assigned an estimated age (n = 640). In total, 88% of all tree ages were adjusted to 

compensate for missing rings from the pith of the tree. Following exploratory analysis a 

straight-line model, based on diameter at 30 cm and tree age, was found to best describe 

the data, indicating a mean age increase of 2.6 (±SE 0.14) years for every centimetre 

increase in diameter (R2 = 0.84) (Figure 3.2).     
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Figure 3.2  Linear regression analysis showing the relationship between diameter at 30 cm height and tree 

age (number of growth rings) for A. glutinosa (n = 60) within the lower River Tummel. Dotted line 

represents 95% confidence interval. 

 

3.4.2 Riparian woodland structure 

A total of 13 tree species were recorded across the four study sites (Appendix 3.1). 

Species composition varied between sites, and between woodland habitat types. Alnus 

glutinosa and Salix sp. were the most frequently occurring species, with other species 

including Acer pseudoplatanus and Betula pendula (Figure 3.3). Across all four study sites, 

A. glutinosa accounted for 51% and 52% of all adult trees counted in the mature and 

young woodland habitat respectively (Figure 3.3). In the mature woodland, A. glutinosa 

accounted for 1% of all saplings and none of the seedlings counted (Figure 3.3). By 

comparison, in the young woodland, A. glutinosa accounted for 34% of all saplings and 

33% of all seedlings observed (Figure 3.3). Although the overall mean number of 

individual A. glutinosa adult trees in the mature and young woodland habitats was 

practically identical, the size-structure of A. glutinosa in mature and young woodland 

differed (Figure 3.4). Significantly larger stem DBH in adult A. glutinosa trees was found in 
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mature woodland compared to young woodland at every study site, and across all four 

sites (Table 3.3 ). Similarly, A. glutinosa trees at every site, and across all four study sites, 

were significantly older in the mature woodland (Table 3.3). No discernible pattern in the 

number of A. glutinosa stems per adult, or the number of A. glutinosa stems per sapling, 

between the mature and young woodland habitats was apparent and across all four sites 

the number of stems per adult and per sapling was practically identical (Table 3.3). 

However, at the Ballinluig site, significantly more A. glutinosa stems per adult occurred in 

the young woodland, compared to the mature woodland (Table 3.3). Comparison 

between the number of stems per adult and the number of stems per sapling (i.e. 

regardless of woodland habitat type) consistently revealed a higher number of stems per 

adult at each site although this difference was only significant at the Richard’s Island site 

(Table 3.4). No obvious pattern in A. glutinosa adult tree density, or adult stem density 

was apparent: higher densities of A. glutinosa adults were found in the mature woodland 

at all sites except Tomdachoille; but higher densities of A. glutinosa adult stems were 

found in the young woodland at the Tomdachoille and Ballinluig sites (Table 3.3). 

However, the density of A. glutinosa saplings, sapling stems, and seedlings was 

consistently higher in the young woodland at every study site (Table 3.3). The total 

number of A. glutinosa stems per hectare (i.e. adults plus saplings plus seedlings) was 

consistently higher in the young woodland compared to the mature woodland.  
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Figure 3.3  Mean number of seedling (Se), sapling (Sa), and adult (A) individuals within the mature and young woodland habitats at each study site, and across all four sites. 
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Figure 3.4  Size-structure of A. glutinosa, including seedlings (Se), Saplings (Sa), and adults (based on diameter at breast height (DBH)) within mature and young woodland 

habitats at each study site, and across all four sites.  
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Table 3.3  Mean Alnus glutinosa values ± standard errors  for forest inventory quadrats within mature (MW) and young woodland (YW) habitat at each site, and across all 

four sites. Significant values for differences in DBH, age, stems per adult tree, and stems per sapling tree between mature and young woodland are shown next to the 

young woodland values as *P < 0.05 and ***P < 0.001. 

 
 

Table 3.4  Mean number of Alnus glutinosa stems per adult tree ± standard errors  and stems per sapling  

tree ± standard errors  at each study site, and across all four sites. Significant differences between the  
adult and sapling trees are shown next to the stems per sapling values as **P < 0.01. 

No. quadrats

DBH 24.5 ± 11.7 10.9 ± 3.6*** 12.8 ± 4.1 8.4 ± 1.8*** 19.8 ± 9.1 8.6 ± 5.0*** 18.8 ± 6.4 ­ 18.8 ± 8.7 9.8 ± 3.7***

Age 79.5 ± 36.8 33.6 ± 11.0*** 39.4 ± 12.6 26.6 ± 5.4*** 62.9 ± 27.4 28.2 ± 16.7*** 59.5 ± ­ 59.5 ± 26.6 30.8 ± 11.4***

Stems per adult tree 2.0 ± 1.0 1.9 ± 1.2 2.6 ± 2.4 2.4 ± 1.6 1.5 ± 1.0 2.6 ± 1.74* 2.3 ± 1.7 ­ 2.0 ± 1.5 2.1 ± 1.4

Stems per sapling tree ­ 1.8 ± 1.2 2.0 ± 1.7 2.0 ± 1.8 ­ ­ ­ 1.2 ± 0.5 2.0 ± 1.7 1.9 ± 1.6

Density adults / Ha 237.5 ± 17.7 587.5 ± 795.5 725.0 ± NA 190.0 ± 332.0 500.0 ± 253.7 350.0 ± NA 3.7 ± 200.5 ­ 472.2 ± 222.7 300.0 ± 437.1

Density adult stems / Ha 475.0 ± 141.3 1112.5 ± 1538.0 1875.0 ± NA 450.0 ± NA 765.0 ± 316.6 925.0 ± NA 825.0 ± 390.5 ­ 916.7 ± 487.3 642.9 ± 904.9

Density saplings / Ha ­ 312.5 ± 123.7 150.0 ± NA 575.0 ± NA ­ ­ ­ 125.0 ± NA 16.7 ± NA 353.6 ± 237.0

Density sapling stems / Ha ­ 550.0 ± 353.6 275.0 ± NA 1150.0 ± 409.3 ­ ­ ­ 150.0 ± NA 30.6 ± NA 671.4 ± 524.1

Density seedlings / Ha ­ 150.0 ± ­ 465.0 ± 245.4 ­ 675.0 ± NA ­ 175.0 ± NA ­ 364.3 ± 218.7

2
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Richard's Island 2.3 ± 1.7 1.2 ± 0.5**

All 4 sites 2.1 ± 1.5 1.9 ± 1.6
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3.4.3 Alnus glutinosa woodland structure 

The Wilcoxon rank sum test indicated significant difference between the location of A. 

glutinosa sapling and adult trees in relation to the main river channel along both the east-

west distance and the near distance, with saplings occurring closer to the river than 

adults (Table 3.5). No significant difference was observed between the location of A. 

glutinosa sapling and adult trees along the distance south measure (Table 3.5). 

 

Table 3.5  Results of the Wilcoxon rank sum test analysing differences between the location of A. glutinosa 

sapling and adult trees in relation to the main river channel based on three distance measures.   

  Wilcoxon rank sum test Mean distance (m) ±SE 

Distance  W P value Saplings Adults 

East-west 69531 0.000 139 ±6 180 ±3 

Near 77719 0.000   95 ±4 145 ±2 

South 49407 0.156 478 ±24   426 ±10 

 

Model comparison examining the relationship between A. glutinosa tree age and distance 

from the main river channel revealed all three fixed predictor distance measures 

considered explained more than the null model (Table 3.6). Comparison between the 

east-west distance and the near distance predictor measures identified east-west 

distance to provide a better model (Table 3.6). Subsequent model comparison, based on 

∆i and wi, and considering only distance south and east-west distance as predictor 

variables, identified the predictors of the best-supported model for explaining the 

demographic structure of A. glutinosa trees as both distance south and east-west 

distance (Table 3.7). The variance explained by this best model was identified as marginal 

R2 = 0.1655 (fixed factors), and conditional R2 = 0.3657(fixed and random factors).   
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Table 3.6  AIC values, in ascending order, for each fixed predictor distance measure considered in GLMM 

examining the relationship between A. glutinosa tree age and distance from the main river channel .  

GLMM factors   

Fixed Random AIC 

South distance  + east-west distance Site 12,002.31 

South distance + near distance Site 12,285.59 

East-west distance Site 12,724.43 

South distance Site 12,900.34 

Near Site 12,955.09 

Null Site 13,525.87 

 

Table 3.7  GLMM model comparison results considering south distance and east-west distance as fixed 

predictors for temporal variation A. glutinosa adults across the four study sites (random factor).  

GLMM factors       

Fixed Random AIC ∆i wi 

South distance  + east-west distance Site 12,002.31 0.00 1.00 

East-west distance Site 12,724.43 722.12 0.00 

South distance Site 12,900.34 898.03 0.00 

 

3.4.4 DNA extraction and microsatellite analysis 

A total of 884 individuals (711 adults and 173 saplings) were successfully genotyped at 12 

microsatellite loci. Missing data was recorded at seven loci, with loci Ag14 reporting 7.5% 

mean missing data, Ag25 and Ag27 reporting 1.2% mean missing data and all other loci 

reporting <1% missing data. Repeat genotyping of samples revealed low levels of allele 

and genotype mismatch errors. The mean mismatch error rate per allele varied within 

each study site but was consistently <1% within each site (Table 3.8). The mean mismatch 

genotype error rate was higher and variable between each study site, but low across all 

four populations at 2.50% (Table 3.8). Null alleles were consistently revealed at locus 

Ag14 at every study site in both Micro-Checker and Cervus analyses. Other null alleles 

were identified in each study site but with no consistency between sites or between 

analysis methods. All subsequent analysis is based on accepting the error checking results 

which were consistently positive between different analysis methods, as recommended 

by Dąbrowski et al. (2014). Therefore, locus Ag14 was excluded from subsequent analysis 
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(as previously reported in Lepais and Bacles 2011). Removal of locus Ag14 resulted in an 

overall lower allele and genotype mismatch error rate (Table 3.8). All loci pairs, within 

each study site, and across all four sites, were found to be in linkage equilibrium. 

 

Table 3.8  Mean mismatch error rates per allele and per genotype based on repeat amplification and 

genotyping of individuals within each study site. Results are shown for all 12 amplified loci, and for 11 loci 

following exclusion of locus Ag14 due to the presence of null alleles. 

    12 loci 11 loci (excluding Ag14) 

Population 
Repeat samples     

(%) 
Allele error 

rate (%) 
Genotype error 

rate (%) 
Allele error 

rate (%) 
Genotype error 

rate (%) 

Tom 38 0.18 2.63 0.20 2.63 

Mou 11 0.00 0.00 0.00 0.00 

Bal 18 0.00 0.00 0.00 0.00 

RIs 10 0.96 11.11 0.00 0.00 

All 4 sites 20 0.19 2.50 0.09 1.25 

  

 

3.4.5 Population genetic analysis 

3.4.5.1 Occurrence of clones 

Of the 887 individual A. glutinosa stems genotyped 815 genotypes were identified with 65 

genotypes occurring more than once, and a total of 137 stems sharing a genotype with at 

least one other stem. Of these 137 stems, 129 stems shared the same geographical co-

ordinates with at least one other stem, and eight stems, although sharing a genotype, did 

not share any geographical coordinates. Where stems shared the same genotype and 

geographical coordinates, only one individual was retained for subsequent analysis, 

representing 62 genotypes. All eight stems sharing the same genotype but not the same 

geographical coordinates were retained, representing three genotypes. Consequently, 

unless stated otherwise, all future analysis is based on 820 stems (653 adult and 167 
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saplings), representing 815 genotypes. Overall, where multi-stemmed trees occurred 

there was a 0.76 likelihood of the stems being genetically identical.  

 

3.4.5.2 Genetic structure 

Cluster analysis in STRUCTURE revealed no distinct genetic clusters within any site, or 

across all four sites. In each analysis the lowest mean log likelihood L(K) and variance 

values were for K = 1, and inspection of the assignment of individuals showed that the 

proportion of the sample assigned to each cluster was symmetric and all individuals were 

admixed. Output from analysis using the LOCPRIOR model gave less clear results. 

Individual sites, as well the aggregate of all four sites, resulted in K = >1 having the lowest 

mean log likelihood values. However, convergence was not clear and, in all cases, K = 1 

showed little variance in output while each K = >1 output showed high variance between 

iterations. Inspection of the assignment of individuals to populations revealed admixture 

in all individuals. Consequently LOCPRIOR output was viewed with some caution as non-

convergence may point towards spurious results (Guillot et al. 2009). Analysis with 

Geneland was concurrent with the output from STRUCTURE, with no genetic clustering 

revealed.  

 

3.4.5.3 Genetic diversity 

A total of 97 alleles were revealed across the 11 loci, ranging from 3 – 15 alleles per locus, 

across all three age cohorts. Genetic diversity measures were very similar between each 

age cohort although a similarly low but significant departure from Hardy-Weinberg 

genotypic proportions was identified within the oldest tree cohort (Table 3.9). No 

significant differences between age cohorts for the number of alleles per locus (NA), allelic 
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richness (AR), expected heterozygosity (HE) or inbreeding coefficient (FIS) were revealed by 

the Kruskall-Wallis test. Six private alleles were identified, two in the sapling cohort, three 

in the youngest tree cohort, and one in the oldest tree cohort. All loci pairs, within each 

age cohort, were found to be in linkage equilibrium at the 5% nominal level after 

Bonferroni correction.  

 

Table 3.9  Multilocus genetic diversity for each age cohort: N, number of samples; NA, mean number alleles 

per locus; AR, allelic richness; HE, gene diversity; and FIS, inbreeding coefficient.   

  Saplings Youngest adults Oldest adults 

N 166 200 200 

NA 8.27 8.45 8.36 

AR 8.21 8.35 8.20 

HE 0.64 0.65 0.64 

FIS 0.01 0.00   0.03* 

*p < 0.05.   

 

3.4.6 Spatial genetic structure 

Analysis of the oldest 200 A. glutinosa adult trees revealed positive Fij values occurring in 

pairwise comparisons up to pairwise distances of 40 m although kinship values were low 

(maximum Fij 0.0031), and not significant (Figure 3.5a). Testing of this SGS pattern with 

smaller distance classes (first distance class 5 m, then 10 m) revealed the same pattern in 

Fij values, although significant positive SGS was observed in the 20 m – 30 m distance 

class in both analyses. In contrast, the youngest 200 A. glutinosa trees revealed negative 

Fij values in pairwise distances up to 40 m before generally levelling out around zero, with 

the exception of Fij values peaking just outside the positive 95% confidence interval at 200 

m (Figure 3.5b). Testing of this SGS pattern with smaller distance classes (first distance 

class 10 m) revealed the same pattern of Fij values. The pattern of Fij values revealed in 

the sapling cohort were very similar to that reported previously (Section 2.4.7), and 
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shown in Figure 3.5c, with negative Fij observed for pairwise distances up to 60 m prior to 

levelling out around zero. Between-generation SGS, obtained by analysing pairs between 

the oldest adults and the saplings, revealed no obvious pattern, with low variation in SGS 

(Fij values between -0.0030 and 0.0028) except in the 80 m – 100 m distance class where 

significant positive SGS was observed (Figure 3.5e). Similarly, analysis of SGS between the 

youngest adults and saplings also revealed no obvious pattern, although significant 

positive SGS was observed in the 20 m – 40 m distance class (Figure 3.5f). Between-

generation comparison among the old and young cohort was not possible as no pairwise 

comparisons occurred in the first four distance classes (<100 m). Use of the Sp statistic as 

a measure of SGS intensity showed that cohort of the oldest 200 A. glutinosa trees 

revealed the most intense, and only positive, SGS (Table 3.10). The Sp values for the 

youngest 200 adults, and for the between cohort comparisons (oldest-sapling and 

youngest-sapling) were very similar (Table 3.10). Finally, comparison of pairwise genetic 

distances against pairwise age differences revealed very little variation in Fij values, 

although significant negative SGS was observed in the 10 – 12 years age difference class 

and significant positive SGS was observed in the 14 – 16 years age difference class (Figure 

3.6).   
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Figure 3.5  Spatial autocorrelograms for  a) the oldest 200 adults; b) the youngest 200 adults; c) saplings; d) 

the paired oldest adult and sapling cohorts; and e) the paired youngest adult and sapling cohorts of A. 

glutinosa. Relatedness between individuals is based on Nason’s Fij kinship coefficient, implemented in 

SPAGeDi. Broken lines represent the 95% upper and lower confidence intervals, based on 10,000 

simulations.  
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Table 3.10  SGS parameters showing the kinship coefficient for the first distance class of 0 m – 20 m (F(1)) 

and the rate of decrease of pairwise kinship with distance (Sp) ± standard error (SE).  

Cohort F(1)  Sp ±SE 

Oldest 200 adults  0.0031  0.0023 ± 0.0009 

Youngest 200 adults -0.0069 -0.0009 ± 0.0009 

Saplings -0.0111 -0.0050 ± 0.0013 

Oldest & saplings -0.0028  0.0008 ± 0.0012 

Youngest & saplings -0.0027  0.0010 ± 0.0018 

 

 
Figure 3.6  Temporal autocorrelogram of the adult generation (n = 640) based on Nason’s kinship 

coefficient (Fij), implemented in SPAGeDi. Broken lines represent the 95% upper and lower confidence 

intervals, based on 10,000 location permutations. Error bars around mean Fij values represent standard 

errors obtained through jackknifing over loci to obtain multilocus estimates.  
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inventory plots were identified. Despite differences between study sites, A. glutinosa 
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were consistently observed in young woodland, few, sometimes no, seedlings or saplings 

were recorded in the mature woodland plots. This lack of A. glutinosa regeneration within 

mature woodland is reported elsewhere (McVean 1956; Claessens et al. 2010), and is 

considered a consequence of low under-storey light levels as well as a lack of moisture 

(Claessens et al. 2010), with regeneration only found to occur in forest openings greater 

than 1,000 m2, or following disturbance events such as flooding (Claessens et al. 2010). 

Consistent with many pioneer species, A. glutinosa requires relatively high light levels for 

successful regeneration. 

 

Analyses based on the age and location of individual trees, in relation to the main river 

channel, clearly identified a spatio-temporal pattern within the riparian A. glutinosa 

woodlands studied here. Taking account of differences between each study site, the 

location of adult trees in relation to the main river channel explained up to 37% of the 

variance in tree age. The east-west distance between each tree and the main river 

channel was the variable explaining the most variation in A. glutinosa age, with older 

trees located further away from the main river channel than younger adult trees, and 

significantly further away from the main river channel than sapling trees. This finding 

supports the hypothesis that there is an interaction between hydrogeomorphic processes 

and the riparian A. glutinosa woodland studied here. In particular, the spatio-temporal 

pattern of tree ages, along a transverse gradient perpendicular to the main river channel, 

suggests that the historical, lateral east-west movement of the River Tummel has 

influenced A. glutinosa stand development. Lateral channel migration is an important 

factor in influencing the demography of riparian vegetation (Naiman and Decamps 1997), 

and the insight gained here is consistent with other studies. For example, riparian trees, 



106 
 

including Alnus rubra (red alder), along the Queets River, Washington, USA, a dynamic 

alluvial river, were found to have a smaller basal area if located within the active 

floodplain, with larger trees located further away from the river on the mature terrace 

(Balian and Naiman 2005). This study is believed to be the first to use tree cores to age A. 

glutinosa trees in order to examine the temporal structure of A. glutinosa woodland, to 

identify cohorts of A. glutinosa adults  based on their age, and to subsequently relate 

tests of genetic diversity and genetic structure to age cohorts.   

 

The resultant insight gained is consistent with the empirical evidence previously obtained 

for the same reach of the River Tummel, presented earlier, and allowed investigation into 

temporal genetic variation in A. glutinosa for the first time.  

 

Alnus glutinosa multi-stemmed growth 

An unexpected finding from the woodland inventory work was that the number of stems 

per adult was consistently higher than the number of stems per sapling, although this 

difference was only significant at the Richard’s Island site (Table 3.4).  Sprouting of woody 

species has been observed elsewhere, as a response to stressful environments, including, 

for example, coastal dunes (Nzunda et al. 2007) and steep slopes with shallow soils (Sakai 

et al. 1995) and is advantageous in that a tree maintains its presence in woodland 

through the persistence niche (Bond and Midgley 2001). In this study it had been 

considered that basal regeneration of A. glutinosa within the study sites may occur as a 

response to the deposition of silts / gravel on top of seedlings / young saplings following 

flood events, or simply the continued growth of more than one stem, originating from the 

same tree that escaped burial, as observed by Gilvear and Willby (2006). However, the 
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consistent pattern across all four study sites of adults having more stems per tree than 

saplings suggests that, while sprouting may occur during the sapling stage, sprouting must 

also occur in the later, adult life-stage of A. glutinosa. Interestingly, a review of sprouting 

in woody species found that sprouting ability may increase with tree size, and that adult 

sprouting is indicative of species persistence following disturbance events, such as 

flooding or drought, particularly when recruitment is low (Bond and Midgley 2001), as 

observed in the mature woodland studied here. The mean number of 2.1 stems per A. 

glutinosa adult tree reported here is lower than the mean of 3.2 stems reported for A. 

glutinosa trees located in the forested wetlands of the Ibero-Atlantic region of Portugal 

and Western Spain (Rodríguez-González et al. 2010). Rodríguez-González et al. (2010) 

identified hydrology as the dominant driver for the number of stems per tree, with a 

higher number of stems per A. glutinosa tree observed in more saturated sites, with 

sprouting interpreted as a response to flooding stress and a means to persisting at sites 

with poor seedling recruitment. In the study undertaken here no clear pattern in the 

number of stems per A. glutinosa tree can be discerned, particularly given the mosaic of 

habitat types occurring within the four study sites. Finally, the genetic analysis revealed 

that where A. glutinosa growth was multi-stemmed there was a 76% likelihood of stems 

from the same tree being genetically identical. Believed to be the first genetic analysis of 

multi-stemmed A. glutinosa growth, this result suggests the possibility of different factors 

influencing or driving multi-stemmed growth. Whilst most multi-stemmed trees are 

genetically identical, some apparent multi-stemmed trees are genetically distinct 

individuals. The cause of genetically distinct multi-stemmed trees is unknown although 

the stranding of multiple seeds following hydrochorous dispersal of seed would feasibly 

lead to genetically distinct individuals occurring close to each other.  
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Population genetic analysis 

Heterozygosity between the sapling, youngest adult and oldest adult cohorts were 

practically identical, with levels of expected heterozygosity in line with that reported for 

North African (Lepais et al. 2013), Irish (Cubry et al. 2015), and Northern Irish (Beatty et 

al. 2015) A. glutinosa populations. In particular, allelic richness, a suitable measure for 

assessing short-term genetic diversity loss (Lowe et al. 2005), was also more or less 

identical between cohorts. This observed lack of difference between generations suggests 

that high outcrossing rates and high gene flow, typical of tree species (Petit and Hampe 

2006), maintains similar levels of genetic diversity between A. glutinosa generations.  

 

Of note, the cohort of oldest adults revealed a significantly positive inbreeding 

coefficient, indicating a departure from Hardy-Weinberg proportions due to an excess of 

homozygotes. Although many forest tree species show no departure from Hardy-

Weinberg equilibrium (Hamrick et al. 1992), where an excess of homozygotes has been 

identified, it has typically been at the seed stage and not in later adult life stages (e.g. 

Yazdani et al. 1985; Alvarez-Buylla et al. 1996). In these studies, the occurrence of 

thinning, or selection, between the seed and adult life stages, are posited as possible 

mechanisms resulting in null or negative FIS values in the adult generation (Yazdani et al. 

1985; Alvarez-Buylla et al. 1996).  Positive FIS values in the adult generations are reported 

in populations of Fraxinus excelsior L.  in north-eastern France (Morand et al. 2002), in 

Dalbergia nigra located in the Brazilian Atlantic Forest (Leite et al. 2014), and in a number 

of Northern Irish A. glutinosa populations (Beatty et al. 2015). In all studies no firm 

explanation accounted for the FIS values observed although the presence of null alleles 



109 
 

and assortative mating (Morand et al. 2002), a Wahlund effect (Leite et al. 2014, Beatty et 

al. 2015), and inbreeding (Beatty et al. 2015) are considered. Similarly, no firm 

explanation for the positive FIS values observed in the oldest A. glutinosa adults in this 

study are available. While undetected null alleles may be present within any of the 11 loci 

included here it seems unlikely that any effect of null alleles on FIS would be apparent in 

the oldest adult cohort but not in the youngest adult or sapling cohorts. Based on the 

spatio-temporal variation described above a Wahlund effect is possible, due to the 

presence of breeding subunits within the study population and / or uneven patterns of 

recruitment, as suggested by Beatty et al. (2015). One further possibility is historical 

mating among relatives in the oldest generation. Initial, small aggregations of A. glutinosa 

at each study site, now represented by the oldest A. glutinosa trees, may have resulted in 

overlapping generations and increased mating between related individuals, leading to a 

subsequent increase in homozygosity not observed in the contemporary generations. It 

may also be possible that small historical A. glutinosa populations may have been 

restricted by grazing when the river was more managed by flood embankments, again 

resulting in increased mating between related individuals. Finally, although no clear 

explanation is identified to account for the significantly positive FIS value in the oldest 

adult cohort, the overall effect is low (FIS 0.03), and lower than FIS values reported for 

Northern Irish populations (maximum FIS 0.155) (Beatty et al. 2015).  

   

Despite clear evidence of spatio-temporal structure within the riparian A. glutinosa 

woodlands surveyed, no significant SGS was identified in the first distance classes, either 

within or between the age cohorts studied. Nevertheless distinct differences between the 

oldest adult cohort and the younger cohorts were revealed. In the first two distance 
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classes (pairwise distances up to 40 m) the young adult and sapling cohorts both reveal a 

similar pattern of negative Fij values, however the oldest adult cohort is different, 

showing positive Fij values. These patterns are consistent with the Sp statistic for each age 

cohorts examined, with the oldest adult cohort showing the only positive Sp, as well as 

the most intense Sp across all cohort comparisons and between-cohort comparisons. 

These findings are also consistent with the between-cohort analyses where the Sp values 

indicate that individuals in the sapling and youngest adult cohorts are more related to 

each other than individuals in the sapling and oldest adult cohorts are. 

 

Although not significant, the SGS pattern for the oldest adult cohort is consistent with the 

SGS pattern, and Sp statistic, identified for the adult generation in (2) and the SGS pattern 

in the young adult cohort is consistent with the SGS pattern of the sapling cohort. 

Further, the differing SGS patterns are consistent with the significant FIS identified in the 

oldest adult cohort but not in the young adult or sapling cohorts. Given the regeneration 

requirements of A. glutinosa, particularly suitable light and water levels and disturbance-

driven areas of open gravel habitat, it seems unlikely that seeds would successfully 

establish in proximity to a parent tree. Hence, no or negative SGS would be expected in 

short distance classes, particularly where seed and pollen dispersal is high (as reported in 

Chapter 2). In the oldest adult cohort, the SGS pattern and FIS values identified here 

suggest an underlying process influencing higher relatedness in the oldest cohort of A. 

glutinosa trees studied here, consistent with the findings reported and discussed 

previously in 2.  
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Despite evidence that there is spatio-temporal demographic structure within the riparian 

A. glutinosa woodlands studied, a remarkable lack of temporal genetic structure across 

the adult generation was identified. Trees with two years difference in age between them 

are no more related to each other than trees with a difference in age of over 200 years. 

The absence of temporal genetic structure is consistent with the absence of a reduction in 

gene diversity in young cohorts, further indicating extensive gene flow and high 

outcrossing rates.  

 

3.6 Conclusion 

Forest inventory work revealed evident differences between young and mature riparian 

woodland, with A. glutinosa accounting for approximately 50% of all recorded trees. 

Notably, virtually no A. glutinosa regeneration occurred within the mature woodland, 

with seedling regeneration occurring predominantly in the young woodland. Alnus 

glutinosa tree density was also higher in the young riparian woodland. Widespread, multi-

stemmed ‘sprouting’ growth of sapling and adult A. glutinosa trees indicated different 

factors influencing multi-stemmed growth, including site disturbance. The development 

of a size-age standard for A. glutinosa, based on tree ring counts, enabled identification of 

a spatio-temporal structure within the riparian sites studied. In the dynamic river system 

studied here, riparian A. glutinosa woodland appears to be structured along a transverse 

gradient perpendicular to the main river channel, with older adult trees located further 

away from the river and younger adult and sapling trees located closer to the river. This 

finding illustrates an interaction between riparian woodland and hydrogeomorphic 

processes, particularly the historical, lateral, east-west movement of the River Tummel. 

Despite evidence for demographic structure within A. glutinosa woodlands, little 
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indication of genetic diversity or structure was identified. Measures of genetic diversity 

between A. glutinosa saplings, youngest adult trees, and oldest adult tree showed no 

difference between cohorts, indicative of high outcrossing and high gene flow. The 

inbreeding coefficient suggested an excess of homozygotes in the oldest adult cohort 

which is not definitively explained and, although low, may indicate a Wahlund effect or 

historical influences. Similarly, although no significant SGS was observed in any of the A. 

glutinosa age cohorts, the spatial autocorrelograms revealed positive SGS in the oldest 

adult cohort and negative SGS in the sapling and youngest adult cohorts.  

 

Although some spatial genetic pattern was observed within each age cohort, no temporal 

genetic differentiation was observed, indicating random gene flow occurs across 

generations. 
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Appendix 3.1 Tree species recorded in woodland inventory quadrats 

 
Table 3.11  Tomdachoille tree species recorded in four 20 m x 20 m woodland inventory quadrats. 

Quadrat Habitat Species 
No. 

adults 
No. adult 

stems 
No. 

saplings 

No. 
sapling 
stems 

No. 
seedlings 

Tom1 Mature Acer pseudoplatanus 0 0 0 0 71 

  
Alnus glutinosa 10 16 0 0 0 

  
Betula pendula 4 4 0 0 0 

  
Crataegus monogyna 0 0 1 1 0 

  
Fraxinus excelsior 2 2 13 15 6 

  
Prunus padus 3 6 3 3 0 

  
Salix sp. 1 2 1 1 0 

  
Ulmus glabra 1 1 1 1 0 

Tom2 Mature Acer pseudoplatanus 0 0 0 0 5 

  
Alnus glutinosa 10 23 0 0 0 

  
Betula pendula 6 8 0 0 0 

  
Fraxinus excelsior 2 2 1 1 1 

  
Prunus padus 2 2 2 8 0 

  
Sambucus nigra 1 2 1 3 0 

Tom3 Young Acer pseudoplatanus 0 0 0 0 9 

  
Alnus glutinosa 1 1 16 32 12 

  
Betula pendula 1 1 6 6 3 

  
Fagus sylvatica 0 0 0 0 3 

  
Fraxinus excelsior 0 0 0 0 10 

  
Salix sp. 1 1 9 31 11 

Tom4 Young Alnus glutinosa 46 88 9 12 0 

  
Betula pendula 2 5 0 0 0 

  
Corylus avellana 0 0 2 8 0 

  
Fraxinus excelsior 1 1 5 5 6 

  
Prunus padus 1 3 15 29 3 

  
Salix sp. 20 29 17 19 0 

    Ulmus glabra 1 1 0 0 0 
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Table 3.12  Moulinearn tree species recorded in four 20 m x 20 m woodland inventory quadrats. 

Quadrat Habitat Species 
No. 

adults 
No. adult 

stems 
No. 

saplings 

No. 
sapling 
stems 

No. 
seedlings 

Mou1 Young Acer pseudoplatanus 1 1 1 1 2 

  
Alnus glutinosa 0 0 25 32 13 

  
Betula pendula 0 0 15 18 24 

  
Quercus robur 0 0 0 0 1 

  
Salix sp. 3 22 2 24 2 

Mou2 Mature Acer pseudoplatanus 1 1 1 1 0 

  
Alnus glutinosa 29 75 6 11 0 

  
Salix sp. 13 29 1 1 0 

Mou3 Young Acer pseudoplatanus 3 6 20 41 5 

  
Alnus glutinosa 23 54 30 64 13 

  
Betula pendula 4 9 2 3 1 

  
Salix sp. 14 32 31 87 0 

Mou4 Young Alnus glutinosa 0 0 14 42 30 

  
Betula pendula 0 0 5 7 8 

  
Pinus sylvestris 0 0 0 0 1 

    Salix sp. 0 0 0 0 2 

 

Table 3.13  Ballinluig tree species recorded in four 20 m x 20 m woodland inventory quadrats. 

Quadrat Habitat Species 
No.     

adults 
No. adult 

stems 
No. 

saplings 

No. 
sapling 
stems 

No. 
seedlings 

Bal1 Mature Alnus glutinosa 17 25 0 0 0 

  
Fraxinus excelsior 0 0 0 0 9 

  
Pinus sylvestris 2 2 0 0 0 

  
Salix sp. 2 3 2 12 0 

Bal2 Mature Alnus glutinosa 31 45 0 0 0 

  
Fraxinus excelsior 2 4 0 0 0 

  
Prunus padus 1 3 4 11 0 

  
Salix sp. 4 4 0 0 0 

Bal3 Mature Alnus glutinosa 11 21 0 0 0 

  
Crataegus monogyna 4 5 0 0 0 

  
Fraxinus excelsior 2 2 1 4 0 

  
Pinus sylvestris 1 1 0 0 0 

  
Prunus padus 1 3 1 15 1 

Bal4 Young Alnus glutinosa 14 37 0 0 27 

  
Fraxinus excelsior 0 0 2 3 0 

  
Prunus padus 0 0 2 3 0 

  
Quercus robur 0 0 0 0 1 

    Salix sp. 20 34 0 0 11 
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Table 3.14  Richard’s Island tree species recorded in four 20 m x 20 m woodland inventory quadrats. 

Quadrat Habitat Species 
No. 

adults 
No. adult 

stems 
No. 

saplings 

No. 
sapling 
stems 

No. 
seedlings 

RIs1 Mature Acer pseudoplatanus 3 3 1 1 0 

  
Alnus glutinosa 14 29 0 0 0 

  
Betula pendula 1 1 0 0 0 

  
Crataegus monogyna 14 17 4 4 0 

  
Fraxinus excelsior 5 5 2 2 0 

  
Prunus padus 5 13 1 3 0 

  
Salix sp. 16 26 1 1 0 

  
Ulmus glabra 3 3 0 0 0 

RIs2 Young Alnus glutinosa 0 0 5 6 7 

  
Betula pendula 0 0 1 1 6 

  
Salix sp. 5 15 34 95 93 

RIs3 Mature Acer pseudoplatanus 3 3 1 1 0 

  
Alnus glutinosa 7 22 0 0 0 

  
Betula pendula 7 10 0 0 0 

  
Crataegus monogyna 1 1 1 1 0 

  
Fraxinus excelsior 5 5 1 1 0 

  
Prunus padus 3 10 0 0 0 

  
Salix sp. 4 8 0 0 0 

RIs4 Mature Acer pseudoplatanus 5 6 3 3 0 

  
Alnus glutinosa 23 48 0 0 0 

  
Betula pendula 2 4 0 0 0 

  
Crataegus monogyna 2 2 3 5 0 

  
Fraxinus excelsior 5 5 1 1 0 

  
Prunus padus 1 2 0 0 0 

  
Salix sp. 1 1 0 0 0 

    Ulmus glabra 6 11 2 3 0 
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4 ** 

Chapter 4 

Landscape genetics of a key riparian tree species  

Alnus glutinosa  at a river catchment scale 
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4.1 Abstract 

Rivers and their terrestrial corridors are among the most diverse and complex of 

terrestrial landscapes. River systems may act as important corridors for plant dispersal 

and gene flow over large landscapes. This study takes a landscape genetics approach to 

investigate, at a river catchment scale, the genetic structure of Alnus glutinosa (L) Gaertn, 

a widespread European tree and keystone species of riparian ecosystems. Leaves from 

1,457 adult trees from 49 populations, across six rivers within the River Tay catchment 

(Scotland), were genotyped at 12 microsatellite loci to test landscape-based hypotheses, 

including the dispersal mechanisms of windborne pollen and waterborne seed dispersal. 

No downstream accumulation of genetic diversity and no genetic structure were found 

within any river or across the catchment despite significant differentiation between 

populations. Populations connected by (waterborne) seed dispersal and (overland) pollen 

dispersal showed significantly lower FST values than populations only connected by pollen 

dispersal. No isolation by distance (IBD) was found for overland Euclidean distances 

however significant IBD was found at hydrological distances >25 km at the catchment 

scale. This study shows that wind dispersal of pollen appears to be the main dispersal 

factor however the dispersal of seed via rivers influences the genetic structure of riparian 

A. glutinosa populations.  

 

4.2 Introduction 

Landscape genetics seeks to understand how geographic and environmental 

heterogeneity influence spatial genetic variation, population structure and gene flow 

(Manel et al. 2003; Manel and Holderegger 2010). Populations occur in a landscape 

mosaic with patterns of population genetic differentiation often reflecting the spatial 
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variation of dispersal, the movement of individuals or propagules that can sustain gene 

flow (Ronce 2007). Consequently, gene flow is a function of the dispersing individual, the 

habitat in which the population is located, and the intervening landscape (Sork et al. 

1999; Baguette et al. 2013). Understanding how landscape features influence genetic 

variation within and between populations therefore has important implications for 

ecology, evolution, and conservation biology (Sork et al. 1999; Holderegger and Wagner 

2006; Storfer et al. 2007; Segelbacher et al. 2010). Nevertheless, incorporating the 

complexity of heterogeneous landscape and other biotic factors (e.g. climate, elevation, 

geography) alongside observed genetic variation to assess interactions is challenging 

(Holderegger and Wagner 2006; Balkenhol et al. 2009; Storfer et al. 2010). 

 

Within terrestrial landscapes, riparian corridors are among the most dynamic, diverse and 

complex of landscapes, adding disproportionately to both terrestrial and aquatic 

ecosystem function and diversity (Gregory et al. 1991; Naiman et al. 1993). Situated at 

the interface of terrestrial and aquatic zones, riparian vegetation influences, and is 

influenced by, hydrogeomorphic processes (e.g. Corenblit et al. 2007; Stoffel and Wilford 

2012), typically forming spatial and temporal vegetation mosaics (Naiman and Décamps 

1997).  As well as appearing as clearly defined landscape features, enabling the 

identification of spatially distinct populations (e.g. populations on different rivers), rivers 

can influence patterns of gene flow both by acting as a physical barrier to the movement 

of some species and a conduit for the dispersal of other species (e.g. Sork et al. 1999; 

Storfer et al. 2007). 
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A defining characteristic of rivers and their riparian habitat is their linearity. River systems 

may, therefore, act as important corridors of passive plant movement, facilitating 

dispersal of individuals and genes across landscapes, and maintaining connectivity 

between upstream and downstream populations (e.g. Naiman and Decamps 1997). In 

plants, gene flow is maintained via dispersal of pollen and seed (Ennos 1994), with both 

pollen and seed being influenced by interactions with abiotic or biotic dispersal agents. 

Hydrochory, the passive dispersal of organisms by water, is an important biotic dispersal 

agent of plants, influencing the population dynamics and geographic distribution of plant 

species (Nilsson et al. 2010). Plant adaptations such as hydrochorous propagules (e.g. 

Johansson and Nilsson 1993) and cork-like seed tissue (e.g. McVean 1955) enable plant 

survival in water, facilitating the downstream dispersal of plant material within a river 

catchment.  

 

Structural connectivity, described as the linking of habitats and populations by a spatial 

structure (Manel and Holderegger 2013), is clearly provided by rivers. In the case of 

aquatic and riparian plant species, the structural connectivity provided by river 

catchments potentially facilitates the dispersal of plants and the functional connectivity of 

plant populations across large, heterogeneous landscapes. Functional connectivity, the 

response of individuals to landscape features (Taylor et al. 1993), will influence gene flow 

and shape spatial genetic variation across landscapes. Clearly, spatial genetic variation 

will also be shaped by the ecology of individual species, such as different dispersal 

mechanisms, and it is therefore important to consider species-specific life-history 

attributes in landscape genetic studies (Bolliger et al. 2014). For example, because rivers 

generally have unidirectional flow, the ‘unidirectional diversity hypothesis’ infers there 
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will be a downstream accumulation of genetic diversity, and upstream paucity, as a 

consequence of the downstream direction of seed dispersal (e.g. Ritland 1989; Markwith 

and Scanlon 2007). In contrast, the movement of plant propagules via animals (zoochory) 

or wind (anemochory) can occur across river catchments, in both an upstream and 

downstream direction (Werth and Scheidegger 2014). 

 

Alnus glutinosa (L.) Gaertn, commonly known as black alder, is an important temperate 

riparian tree species distributed across Europe. Growing in small woodlands or alongside 

the edge of rivers and standing water A. glutinosa may act as a pioneer species and forms 

a key element of dynamic river systems (McVean 1953). A monoecious tree, the male and 

female flowers form as catkins during February / March and are wind-pollinated (McVean 

1955). Following fertilisation the female flower forms as a woody cone-like fruit which 

contains the seed, dispersed in autumn (McVean 1953). The seeds, which have lateral 

cork-like float chambers and an oily outer coat, are principally dispersed by water, 

although seed dispersal by wind can occur up to a distance of 60m (McVean 1955; 

Chambers and Elliot 1989). Alnus glutinosa is considered self-incompatible (Steiner and 

Gregorius 1999).      

 

In this study, the objectives were to assess the genetic diversity and structure in widely 

occurring A. glutinosa populations within the River Tay catchment in the eastern 

Highlands of Scotland. Key to the approach this study took was to use the differing 

dispersal mechanisms of A. glutinosa, overland pollen dispersal and river-mediated seed 

dispersal, to test landscape-based hypotheses. Following genetic characterisation of A. 



123 
 

glutinosa populations across the River Tay catchment the following hypotheses were 

tested: 

 
I. An accumulation of downstream genetic diversity (and upstream paucity) will be 

observed as a consequence unidirectional downstream dispersal of A. glutinosa 

seed.  

 
II. Populations located on the same river will be more genetically similar to each 

other, due to increased landscape connectivity via rivers, than to populations 

located on different rivers where connectivity between populations via river flow 

is not possible.  

 
III. The effect of isolation by distance (IBD) on pairwise population differentiation will 

differ between overland Euclidean distance and hydrological distance along rivers.  

 

4.3 Materials and methods 

4.3.1 Study site 

Sampling of riparian A. glutinosa trees took place within the River Tay catchment, 

situated in the eastern Highlands of Scotland, encompassing an area over 5,000 km2. The 

River Tay itself is the longest river in Scotland, flowing 193 km from source to outflow. 

The catchment has a number of large tributaries, has a predominantly upland catchment, 

and is characterised by semi-natural floodplains and by gravel-bed channels. The main 

rivers encompass bare shingle to mixed woodland habitat, including abandoned river 

channels, with some sites of European conservation importance, designated under the 

‘Shingle Islands’ Special Area of Conservation (SAC) for Annex I priority feature ‘alluvial 
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forests with Alnus glutinosa and Fraxinus excelsior’ (JNCC 2014). Approximately 95 km of 

the River Tay was sampled for A. glutinosa, as well as five of its tributaries including the 

Rivers Tummel, Braan, Almond, Earn and the Lunan Burn (Figure 4.1, Table 4.1).  

 

4.3.2 Sample collection 

In July - August 2011 and 2012 leaf material was collected from 49 A. glutinosa 

populations located across the River Tay catchment, including the River Tummel (n = 12), 

the River Tay (n = 16), the River Braan (n = 3), the Lunan Burn (n = 4), the River Almond (n 

= 5), and the River Earn (n = 9) (Figure 4.1). Future reference to the river catchment refers 

to the inclusion of all populations across all rivers unless otherwise stated. 

 

Sampled populations occurred in a range of habitats including river bank trees, riparian 

woodland, alder carr, floodplain, and slopes with wet flushes, and ranged between 20 – 

260 m above sea level. All populations were located adjacent to a main river channel with 

the exception of some loch populations along the Lunan Burn and Lochs Earn, Tay and 

Tummel and three further populations adjacent to the historical river route but now 

disconnected from the main channel (Figure 4.1 and Table 4.1). Sampled populations 

were located approximately 5 km apart along the river channel / waterbody except where 

access was not possible or no A. glutinosa was present. The geographical location of each 

sampled tree was recorded using a Garmin GPSMAP 62s handheld navigator. Leaf 

material was collected from up to 30 evenly sampled trees within each population, with 

at least 10 m between each sampled tree. Leaf material was collected from a total of 

1,457 adult trees. Leaf samples were immediately placed in silica gel (Chase and Hill 1991) 

and subsequently stored at room temperature.  
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Figure 4.1  Map showing the location of the 49 A. glutinosa populations located along the Rivers Tummel, Tay, Braan, Lunan, Almond, and Earn. Site details are given in 

Table 4.1. Inset map shows location of River Tay catchment in Scotland, UK.  
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Table 4.1  Details of the 49 A. glutinosa populations. ‘Tay upper’ and ‘Tay lower’ refer to populations 

located upstream or downstream respectively of the River Tummel confluence (Figure 4.1). ‘Population 

code’ letters refer to the river, and number refers to the upstream – downstream location. Coordinates 

identify centre of each population, based on individual coordinates. 

River               
(length 
sampled) Population name 

Population 
code 

Population 
location Latitude Longitude 

Altitude 
(m) 

Tummel Kinloch Rannoch Tu1 River 56.70182 -4.17930 203 
(40 km) Dalriach Tu2 River 56.70785 -4.05638 164 
 Aldcharmaig Tu3 Loch 56.71377 -3.95905 144 
 Lick Ford Tu4 Loch 56.70775 -3.90194 144 
 Coille Mhòr Tu5 Loch 56.71702 -3.83807 144 
 Faskally Tu6 River 56.71026 -3.77033 91 
 Tomdachoille Tu7 River 56.67708 -3.69576 70 
 Moulinearn Tu8 River 56.67630 -3.68843 68 
 Tynereich Island Tu9 River 56.66413 -3.67448 64 
 Ballinluig Tu10 River 56.65919 -3.67759 63 
 Richard's Island Tu11 Disconnected 56.64349 -3.66340 60 
 Richard's Island Tu12 River 56.64094 -3.66458 59 
Tay_upper Loch Tay Marshes TaU1 Loch 56.47781 -4.30409 107 
(50 km) Fiddlers Bay TaU2 Loch 56.48491 -4.23480 105 
 Ardeonaig TaU3 Loch 56.49832 -4.16741 105 
 Lawers TaU4 Loch 56.53021 -4.13964 105 
 Callelochan TaU5 Loch 56.55918 -4.08163 105 
 Dalerb TaU6 Loch 56.58139 -4.02072 105 
 Newhall Bridge TaU7 River 56.60278 -3.97714 98 
 Aberfeldy TaU8 River 56.62407 -3.87272 85 
 Edradynate TaU9 River 56.64553 -3.81293 83 
 Grandtully TaU10 River 56.65265 -3.74298 64 
Tay_lower Kindallachan TaL11 Disconnected 56.63415 -3.64365 57 
(45 km) Tom Ban TaL12 River 56.58452 -3.62276 53 
 Dunkeld TaL13 River 56.56267 -3.58034 51 
 Bloody Inches TaL14 Disconnected 56.53057 -3.39534 34 
 Cambusmichael TaL15 River 56.47167 -3.44782 17 
 Denmarkfield TaL16 River 56.42441 -3.46110 11 
Braan Dullator Br1 River 56.52775 -3.72123 208 
(10 km) Drumour Bridge Br2 River 56.53730 -3.68592 178 
 Inver Br3 River 56.56008 -3.60672 62 
Lunan Loch of Lowes Lu1 Loch 56.57227 -3.55634 105 
(22 km) Loch of Butterstone Lu2 Loch 56.58763 -3.52638 104 
 Loch of Clunie Lu3 Loch 56.58425 -3.43938 55 
 Burnside Lu4 River 56.57176 -3.37433 46 
Almond Conichan Al1 River 56.46482 -3.87119 262 
(48 km) Newton Bridge Al2 River 56.46323 -3.81105 231 
 Buchanty Al3 River 56.43596 -3.73279 170 
 Glenalmond Al4 River 56.44356 -3.65887 129 
 Methven Woods Al5 River 56.42539 -3.53835 75 
Earn Edinchip Wood Ea1 River 56.37142 -4.29529 133 
(80 km) Coille Criche Ea2 Loch 56.37945 -4.24585 96 
 Ardtrostan Wood Ea3 Loch 56.38711 -4.15106 96 
 Dundern Mill Ea4 River 56.38933 -4.09733 93 
 Drumlochlan Ea5 River 56.37487 -4.03466 67 
 Lennoch Ea6 River 56.37056 -3.93596 47 
 Strowan Wood Ea7 River 56.37161 -3.91518 46 
 Haughs of Pittentian Ea8 River 56.35568 -3.82009 30 
  Dupplin Ea9 River 56.35265 -3.52115 7 
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4.3.3 DNA extraction and microsatellite analysis 

Genomic DNA from the leaf samples was obtained using the DNeasy 96 Plant Kit (Qiagen) 

following manufacturer instructions and subsequently stored at -20 oC until further use. 

DNA concentration was quantified using a NanoDrop 2000 Spectrophotometer (Thermo 

Fisher Scientific) and samples were adjusted to 10 ng/ μL for PCR amplification. DNA was 

amplified using the multiplex of 12 microsatellite markers (Ag01, Ag05, Ag09, Ag10, Ag13, 

Ag14, Ag20, Ag23, Ag25, Ag27, Ag30, Ag35) of Lepais and Bacles (2011). Multiplex 

reactions were carried out in a total volume of 5 μL using 1X Type-it Microsatellite PCR Kit 

(Qiagen) and 0.5 μL of template DNA and performed in a Veriti thermocycler (Applied 

Biosystems). PCR conditions followed those described in Lepais and Bacles (2011): 5 min 

denaturation at 95 oC followed by 30 cycles of 95 oC for 30 s, 58 oC for 180 s, and 72 oC for 

30 s, finishing with a final elongation step of 60 oC for 30 min. Following test amplicon 

success on 2% agarose gel 1 x TBE electrophoresis, samples were sent to DNA Sequencing 

and Services (Dundee, UK) for fragment analysis on a Biosystems 3730 capillary sequencer 

at a 1:50 dilution using GeneScan 500 LIZ size standard (Applied Biosystems). The 

resulting electropherograms were analysed using GeneMarker v.2.4.0 software 

(Softgenetics) and the correct assignment of allele size class checked in FlexiBin (Amos et 

al. 2007). Repeat amplification and fragment analysis was undertaken on 77 samples (5% 

of the total) to assess genotyping error due to allelic dropout (E1) and other genotyping 

error (E2) in Pedant (Johnson and Haydon 2007). Null alleles across the whole data set 

were identified using Cervus (Kalinowski et al. 2007). Genotypic linkage equilibrium 

between loci pairs was checked using FSTAT v.2.9.3.2 (Goudet 1995), with significant 

associations identified by randomly associating genotypes at pairs of loci 53,900 times 

and using a 5% nominal level after Bonferonni correction. 
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4.3.4 Genetic diversity 

Genetic diversity statistics for each sampling site, including the mean number of alleles 

per locus (NA), allelic richness (AR) (Petit et al. 1998), gene diversity (HE) (Nei 1978) and 

the inbreeding coefficient (FIS) (Weir and Cockerham 1984) were calculated using 

SPAGeDi 1.4c (Hardy and Vekemans 2002). Rarefaction analysis of AR was based on 32 

gene copies and significance of FIS values were obtained following 10,000 permutations of 

gene copies within individuals relative to each population. ADZE 1.0 (Szpiech et al. 2008) 

was used to obtain mean private allelic richness.  

 

Tests based on permutation procedures were carried out to test for differences among 

loch, river and disconnected populations for allelic richness, observed heterozygosity, 

gene diversity, and FIS using FSTAT v.2.9.3.2. Differences were checked within each of the 

three main rivers (Earn, Tay, and Tummel) and across the whole catchment (i.e. 

populations grouped based on location - loch, river or disconnected). Differences 

between rivers were also checked by grouping populations by river (i.e. populations 

grouped based on which river they were associated with). 

 

4.3.5 Testing the unidirectional diversity hypothesis 

Genetic diversity parameters AR and HE, calculated for each population, were regressed 

against the distance each population was from the most upstream population along the 

length of each river. Assuming an accumulation of downstream genetic diversity under 

the unidirectional diversity hypothesis it can be expected that private alleles would be 

more likely to occur in upstream populations. Private allelic richness for each population 
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was therefore regressed against the distance of each population, along the river, from the 

most upstream population to further test the unidirectional diversity hypothesis. 

 

Regression analyses were undertaken twice for rivers Tummel, Tay, Braan and Lunan. 

Firstly, including only populations located on each river (excluding disconnected 

populations), and secondly also including downstream populations on the River 

Tay_lower (as shown in Figure 4.1). Regressions were implemented using R (R Core Team 

2014).  

 

4.3.6 Examining genetic structure  

Initial testing for the presence of genetic structure across the river catchment used FST 

(Weir and Cockerham 1984) to investigate pairwise population differentiation. Analysis 

was implemented in FSTAT v.2.9.3.2 (Goudet 1995) to describe pairwise comparisons 

between all populations (n = 49) and between each river (n = 7, i.e. individuals from the 

same river were analysed as one population) and significance was evaluated following 

permutation tests (10,000) and strict Bonferroni correction. 

 

Pairwise population FST values were then used to test whether river-connected 

populations were more similar to each other than pairwise populations only connected 

via overland pollen dispersal. Differences in pairwise FST values were tested using the 

Wilcoxon signed-rank test, comparing pairwise river-connected population FST values (n = 

166, excluding Tay_lower populations) and pairwise overland-connected population FST 

values (n = 737, excluding Tay_lower populations), implemented using R (R Core Team 

2014).  



130 
 

 

To assess the hierarchical distribution of genetic variation within and among rivers an 

analysis of molecular variance (AMOVA) was conducted in Arlequin (Excoffier and Lischer 

2010) at three hierarchical levels (among rivers, among populations within rivers, and 

within populations). Statistical significance was tested by nonparametric permutations of 

individual genotypes among populations and among rivers. 

 

After detecting evidence of pairwise population structure, both between sites and 

between rivers, genetic clustering methods were used to investigate population structure 

within the River Tay catchment as well as within each individual river. Using the 

individual-based Bayesian genetic assignment method in STRUCTURE v.2.3.4 (Pritchard et 

al. 2000; Falush et al. 2003) to infer the number of distinct genetic clusters, analysis was 

first undertaken with no a priori geographic location provided, using the admixture model 

(α, allowed to vary, based  on the data and initialised at 1) to account for mixed ancestry 

among populations, and the correlated allele frequency model (λ = 1), which assumes 

that the K populations have undergone independent drift away from any ancestral 

population (Pritchard et al. 2010). For each analysis, 10 iterations were run for each K = 1 

to K = 8 (River Tay catchment) and K = 1 to K = 4 (each individual river). Each run was 

composed of a burn-in of 100,000 followed by 200,000 Markov Chain Monte Carlo 

(MCMC) iterations, which was sufficient to reach convergence. Due to the low level of 

population structure detected all analyses were repeated using the LOCPRIOR model 

(coding each population as a different integer), with the aim of improving STRUCTURE 

performance (Hubisz et al. 2009). All outputs were evaluated by first pooling parameter 

estimates for each run to identify the lowest mean likelihood L(K) and variance per K 
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value, implemented in STRUCTURE HARVESTER (Earl and vonHoldt 2012); and second, by 

inspecting the assignment of individuals to populations for the most appropriate value of 

K (Pritchard et al. 2010).  

 

Validation of clustering-based analysis, such as STRUCTURE, is important (Guillot et al. 

2009); therefore further analysis to investigate the presence of genetic structure was 

undertaken using Geneland v.4.0.4 (Guillot et al. 2005a; Guillot et al. 2005b), another 

Bayesian clustering program. As recommended, analysis was started using the 

uncorrelated allele frequency model (Geneland Development Group 2012), as setting K as 

an unknown in the correlated model can lead to an overestimation of K (Guillot et al. 

2014). Using the mcmc function each analysis was based on 1,000,000 Markov Chain 

Monte-Carlo (MCMC) iterations, thinning set to 1,000, and a burn-in of 200 for each value 

of K = 1 to K = 5. Runs were performed 10 times for each model to compare average 

posterior probabilities for each value of K. As the correlated model is better at detecting 

structure in the case of low differentiation (Guillot 2008) each analyses was then re-run 

using the correlated model, fixing K at the value obtained from the uncorrelated 

frequency model. Analysis was completed for each individual river, and for the whole 

catchment.  

 

Finally, because MCMC convergence was not obtained at the catchment scale using 

Geneland, further validation was sought using a discriminant analysis of principal 

components (DAPC) (Jombart et al. 2010), implemented in the R package Adegenet 

(Jombart 2008). As an alternative to Baysian-based analysis, DAPC is a multivariate 

method that uses sequential K-means and model selection to infer genetic clusters by 
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first transforming the data using principal component analysis (PCA), and then 

undertaking discriminant analysis (DA) where differentiation among groups is maximised 

and variation within groups minimised. This process offers a good alternative to Bayesian-

based analysis, notably by not assuming any population genetic model, such as Hardy-

Weinberg equilibrium or linkage equilibrium (as assumed in STRUCTURE and Geneland) 

(Pritchard et al. 2000; Jombart et al. 2010). The find.clusters function was used to 

transform the genetic data using a PCA, keeping all principle components to maximise the 

variation. The best number of clusters K was chosen interactively, as recommended in the 

Adegenet user guide, by looking at both the lowest Bayesian Information Criterion and 

the difference in slope from the optimal K (as observed in stepping stone models) 

(Jombart et al. 2014). For DA analysis, the dapc function was applied to describe the 

diversity between the (now pre-defined) clusters K. Each DA analysis was run twice, once 

using 40 PCs and then again, using fewer PCs to account for the trade-off between power 

of discrimination and over-fitting, following use of the optim.a.score function. In both DA 

analyses all discriminant functions were retained (equal to the best number of clusters, K, 

minus 1). Finally, the membership probability of each individual to each cluster was 

computed. 

 

4.3.7 Isolation by distance 

The Mantel test (Mantel 1967) was used to test if genetic differentiation between 

populations of A. glutinosa were correlated with spatial distances. Two spatial distances 

were used, Euclidean and hydrological distance. Hydrological distance, the distance 

between two populations with measurement restricted to the river network, was 

calculated to take account of whether populations were connected by downstream river 
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flow or not. For flow-connected populations, hydrological distance was calculated by 

measuring distance along the river between populations. Where populations were not 

flow-connected (i.e. on different rivers) hydrological distance was measured to a shared 

downstream confluence. Loch populations were considered flow connected and the 

distance between them calculated as the shortest, straight line distance across the loch, 

from one population to another. The two spatial distance measures were used to test the 

effect of distance, for each dispersal mechanism, on genetic differentiation; Euclidean 

distance representing overland wind dispersal of pollen and hydrological distance 

representing the dispersal of seed via the river catchment. Correlation between Euclidean 

and hydrological distance was tested and Mantel tests were performed to test the effect 

of isolation by distance (IBD), via both overland and river dispersal, on population genetic 

differentiation, firstly across population pairs within each river and then across 

population pairs within the river catchment.  

 

IBD models were tested using the mantel function in the R package Vegan (Oksanen et al. 

2014) using 10,000 permutations. Genetic differentiation was quantified using multiallelic 

pairwise FST values following Weir and Cockerham (1984), as calculated in FSTAT v.2.9.3.2 

(Goudet 1995), and unmodified and log-transformed spatial distances were used. To 

assess the presence and intensity of IBD at the catchment scale the maximum FST-spatial 

distance correlation was investigated by repeated analysis on three subsets of population 

comparisons (van Strien et al. 2015), each subset limited to a maximum pairwise 

hydrological distance of 75km, 50km and 25km. Finally, to compare hydrological and 

Euclidean distance models partial Mantel tests were implemented in the R package Vegan 

with significance assessed following 10,000 permutations. 
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4.4 Results 

4.4.1 DNA extraction and microsatellite analysis 

A total of 1457 A. glutinosa individuals were genotyped at 12 microsatellite loci; 27 

individuals failed to amplify at >6 loci and were excluded from further analysis. Based on 

1430 samples from 49 populations loci Ag14 showed significant presence of null alleles, as 

previously reported (Lepais and Bacles 2011), and was removed from subsequent 

analysis. The remaining 11 loci showed 3.40% missing data (range 0.00% - 1.47%), and 

repeated blind genotyping on 5% of the total sample gave very low genotyping errors 

with a mean allelic dropout (E1) probability across loci of 0.17% (range 0.00% - 0.80%) 

and a probability of other genotyping (stochastic) error of 0.25% (range 0.00% - 0.76%)  

across loci. All loci pairs, within each population and across all populations, were found to 

be in linkage equilibrium. 

 

4.4.2 Genetic diversity 

A total of 108 alleles were revealed across the 11 loci, with an average of 9.8 (range 4 – 

19) alleles per locus. At the population level, the mean number of alleles per locus (NA) 

was 6.26 (range 5.09 – 7.00), with a mean allelic richness (AR) of 5.43 (range 4.61 – 6.18), 

and gene diversity corrected for sample size (HE) of 0.631 (range 0.566 – 0.671) (Table 

4.2). Positive FIS values indicated a significant departure from Hardy-Weinberg genotypic 

proportions in three populations Tu3, TaU4, and TaL14, indicating heterozygote 

deficiency (Table 4.2). Ten private alleles were revealed, in nine different populations 

(Tu3, Tu6, TaU2 (x2), TaU6, Br1, Lu4, Al4, Al5, Ea7), and private allelic richness (AP) ranged 

from 0.00 – 0.077 (Table 4.2).  
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Table 4.2  Multilocus genetic diversity at the within population level: N, number of samples; NA, 

mean number alleles per locus; AR, allelic richness; AP, private allelic richness; HE, gene diversity; 

and FIS, inbreeding coefficient.  *p < 0.05, **p < 0.01. 

Population  N NA AR AP HE FIS 

Tu1 29 5.82 5.32 0.002 0.647 -0.011 

Tu2 28 6.09 5.43 0.002 0.632 -0.043 

Tu3 30 6.09 5.30 0.024 0.603 -0.083** 

Tu4 28 6.18 5.48 0.000 0.626 -0.012 

Tu5 29 6.09 5.41 0.000 0.613 -0.039 

Tu6 29 6.36 5.66 0.042 0.636 -0.048 

Tu7 30 6.36 5.62 0.001 0.617 -0.042 

Tu8 30 6.91 5.88 0.018 0.639 -0.048 

Tu9 30 5.91 5.28 0.000 0.648 -0.021 

Tu10 30 6.55 5.64 0.000 0.642 -0.034 

Tu11 30 6.27 5.51 0.002 0.654 -0.017 

Tu12 30 6.55 5.75 0.000 0.661 -0.032 

TaU1 30 6.64 5.62 0.018 0.620 -0.032 

TaU2 30 6.45 5.35 0.077 0.590 -0.028 

TaU3 29 6.64 5.79 0.001 0.649 -0.023 

TaU4 30 6.18 5.56 0.003 0.658 -0.069* 

TaU5 30 6.36 5.64 0.018 0.618 -0.005 

TaU6 30 6.45 5.59 0.036 0.646 -0.006 

TaU7 30 5.64 5.03 0.018 0.597 -0.011 

TaU8 27 6.64 5.99 0.001 0.624 -0.040 

TaU9 26 7.00 6.24 0.036 0.640 -0.006 

TaU10 29 6.64 5.84 0.001 0.643 -0.006 

TaL11 30 6.64 5.79 0.012 0.648 -0.039 

TaL12 30 5.91 5.20 0.003 0.603 -0.004 

TaL13 30 5.82 5.26 0.000 0.626 -0.004 

TaL14 30 5.91 5.28 0.001 0.608  0.068* 

TaL15 29 6.45 5.48 0.000 0.615 -0.010 

TaL16 16 6.18 6.18 0.003 0.671 -0.035 

Br1 30 6.45 5.69 0.027 0.634 -0.033 

Br2 30 6.18 5.62 0.001 0.658 -0.033 

Br3 30 5.91 5.25 0.001 0.614 -0.013 

Lu1 29 6.00 5.37 0.000 0.621 -0.015 

Lu2 30 5.09 4.61 0.000 0.566 -0.028 

Lu3 30 6.45 5.55 0.002 0.625 -0.016 

Lu4 28 5.91 5.31 0.024 0.635 -0.049 

Al1 28 5.73 5.17 0.000 0.629 -0.038 

Al2 30 6.18 5.31 0.001 0.616 -0.034 

Al3 29 6.27 5.63 0.000 0.651 -0.002 

Al4 29 6.36 5.48 0.024 0.629 -0.018 

Al5 30 6.09 5.40 0.023 0.635 -0.012 

Ea1 29 5.91 5.37 0.001 0.639 -0.011 

Ea2 30 6.36 5.64 0.018 0.665 -0.018 

Ea3 30 6.64 5.77 0.018 0.619 -0.030 

Ea4 30 6.55 5.84 0.001 0.651 -0.059 

Ea5 30 5.82 5.19 0.000 0.604 -0.009 

Ea6 30 6.55 5.80 0.001 0.647 -0.036 

Ea7 30 6.82 5.79 0.024 0.608 -0.012 

Ea8 30 6.45 5.71 0.003 0.648 -0.037 

Ea9 29 6.27 0.64 0.003 0.637 -0.041 
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Significant differences between loch and river populations were found for observed 

heterozygosity and FIS on the River Tummel, but no other significant differences were 

found either within rivers, across the river catchment, or between rivers (Table 4.3). 

Table 4.3  P values of permutation tests for allelic richness (AR), observed heterozygosity (HO), expected 

heterozygosity (HE) and inbreeding coefficient (FIS); between loch (L), river (R) and disconnected (D) 

populations within the Rivers Earn, Tay and Tummel, and across the river catchment; and between rivers 

within the river catchment. P values based on 10,000 permutations.  

  Earn Tay Tummel Catchment Catchment 

 
L R D L R D L R D L R D Al Br Ea Lu TaU TaL Tu 

N 2 7 0 6 8 2 3 8 0 14 32 3 5 3 9 4 10 6 12 

AR 0.643 0.838 0.367 0.823 0.165 

HO 0.643 0.959 0.001*** 0.260 0.872 

HE 0.974 0.922 0.067 0.436 0.435 

FIS 0.621 0.835 0.003** 0.429 0.777 

**p < 0.01, ***p < 0.001.   

 

4.4.3 Testing the unidirectional diversity hypothesis 

Linear regression analysis to test the unidirectional diversity hypothesis revealed a 

significant positive relationship between allelic richness and the position of populations 

along the River Tummel (but not for River Tummel as well as downstream River Tay 

populations) (R2 =  0.34, p = 0.046). However, no significant relationship was found if 

(upstream) Loch Tummel populations were excluded from analysis. No significant 

correlations with allelic richness were revealed for other rivers. No rivers showed a 

significant correlation between expected heterozygosity, or private allelic richness, and 

population position (data not shown).  

 

4.4.4 Genetic structure 

Although global FST was low, 0.018 across populations and 0.007 across rivers, there was 

evidence of significant genetic structure between 429 (out of a possible 1177) pairwise 

populations (Table 4.4).   
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Table 4.4  Pairwise FST population differentiation estimates with significance (above the diagonal).  

 

 

  

Tu1 Tu2 Tu3 Tu4 Tu5 Tu6 Tu7 Tu8 Tu9 Tu10 Tu11 Tu12 TaU1 TaU2 TaU3 TaU4 TaU5 TaU6 TaU7 TaU8 TaU9 TaU10 TaL11 TaL12 TaL13 TaL14 TaL15 TaL16 Br1 Br2 Br3 Lu1 Lu2 Lu3 Lu4 Al1 Al2 Al3 Al4 Al5 Ea1 Ea2 Ea3 Ea4 Ea5 Ea6 Ea7 Ea8 Ea9

Tu1 -       *      **      **      **      NS       *       *      NS      NS       *       *      **      **       *      NS       *      NS      **      NS      NS      NS      NS      **      NS      **      NS      NS      **      **      NS      **      **       *      NS      **      **       *      **      **      **      NS       *      NS      **       *       *      **       *

Tu2 0.024 -       *      NS      NS      NS       *      NS      NS      NS      NS      NS      NS      **      NS      NS      **      NS      **      NS      NS      NS      **      **      NS      **      NS      NS      **      **      NS      **      **      NS       *      **      NS      NS       *      NS      **       *       *      NS      NS      NS      NS      NS      NS

Tu3 0.017 0.029 -      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      **      NS      NS      **      NS      NS      **      **       *       *      **      NS       *      NS      NS      NS      NS      NS      NS      NS

Tu4 0.023 0.016 0.016 -      NS      **      NS       *      NS      NS      NS      NS      NS      NS      NS       *      NS      NS      **      NS      NS      NS      NS       *      NS      **      NS      NS       *       *      NS       *      **      NS      NS      **       *       *       *      NS      **       *      NS      NS       *      NS      NS      NS      NS

Tu5 0.020 0.021 0.007 0.011 -      NS      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS      **      **      NS      **      **      NS      NS      **       *       *      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Tu6 0.008 0.025 0.003 0.018 0.005 -      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS      **       *      NS      NS      **      NS      NS      **       *       *      **      NS       *      NS      NS      NS      NS      NS      NS      NS      NS

Tu7 0.015 0.026 0.019 0.017 0.020 0.017 -      NS      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS       *      NS       *      NS      NS       *      NS      NS      **      **      NS      NS      **       *       *       *      NS      **      NS       *      NS      NS      NS      NS      NS      NS

Tu8 0.009 0.018 0.007 0.017 0.003 0.003 0.008 -      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      **      NS      **      **      NS      NS      **      NS      NS       *      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Tu9 0.006 0.012 0.008 0.010 0.007 0.000 0.004 0.001 -      NS      NS      NS      NS       *      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS       *      NS      NS      **      **      NS       *      **      NS      NS      **      **      **       *      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Tu10 0.007 0.017 0.002 0.006 0.003 0.001 0.014 0.000 0.002 -      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS      **      NS      NS      **      **      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Tu11 0.019 0.013 0.014 0.006 0.017 0.006 0.008 0.005 0.000 0.007 -      NS      NS       *      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS      **      NS      NS      NS      **      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Tu12 0.014 0.024 0.005 0.011 0.009 0.003 0.004 0.002 0.000 0.005 0.005 -      NS       *      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      **      NS      NS      **      **      NS      NS      NS       *      NS      NS      NS      NS      NS      NS      NS      NS

TaU1 0.014 0.015 0.011 0.011 0.015 0.009 0.016 0.002 0.002 0.008 0.004 0.014 -      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS      **      **      NS      **      **      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

TaU2 0.039 0.046 0.050 0.019 0.043 0.041 0.023 0.002 0.028 0.036 0.023 0.031 0.020 -      NS      **      NS      NS      **      NS      NS       *      **      **      **      **      **      **      **      **      **      **      **      NS      **      **      **      NS       *       *      **      **      NS      **      **      **       *      **      NS

TaU3 0.022 0.018 0.014 0.011 0.016 0.014 0.015 0.002 0.006 0.010 0.008 0.011 0.008 0.019 -      NS      NS      NS      **      NS      NS      NS      NS       *      NS       *      NS      NS       *      NS      NS       *      **      NS      NS      **      NS      NS      NS      NS       *      NS      NS      NS      NS      NS      NS      NS      NS

TaU4 0.006 0.013 0.010 0.015 0.016 0.009 0.013 0.002 0.000 0.007 0.005 0.008 0.002 0.029 0.007 -      NS      NS      **      NS      NS      NS      NS      NS      NS      **      NS      NS       *      NS      NS      **      **      NS      NS      **      NS      NS      NS      NS       *      **      NS      NS      NS      NS      NS      NS      NS

TaU5 0.015 0.036 0.008 0.018 0.012 0.006 0.012 0.002 0.007 0.005 0.016 0.008 0.011 0.020 0.005 0.009 -      NS      NS      NS      NS      NS      NS       *      NS      NS      NS      NS      **      **      NS      NS      **      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS

TaU6 0.002 0.019 0.002 0.004 0.006 0.003 0.010 0.002 0.000 0.000 0.007 0.004 0.003 0.020 0.003 0.000 0.000 -      **      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS

TaU7 0.047 0.061 0.060 0.073 0.054 0.037 0.060 0.002 0.046 0.036 0.056 0.052 0.051 0.069 0.044 0.053 0.030 0.045 -      **       *       *      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **       *      **      **      **      **

TaU8 0.009 0.023 0.002 0.007 0.005 0.007 0.012 0.002 0.006 0.002 0.008 0.008 0.003 0.027 0.004 0.007 0.003 0.002 0.048 -      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      **       *      NS      NS      NS       *      NS      NS      NS      NS      NS      NS      NS      NS

TaU9 0.012 0.018 0.014 0.007 0.012 0.004 0.012 0.002 0.000 0.011 0.007 0.011 0.003 0.021 0.000 0.003 0.003 0.000 0.039 0.000 -      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      **      NS      NS      NS      NS       *      NS      NS      NS      NS      NS      NS      NS      NS

TaU10 0.012 0.016 0.011 0.014 0.010 0.007 0.019 0.002 0.006 0.006 0.010 0.009 0.007 0.032 0.013 0.010 0.006 0.004 0.036 0.000 0.000 -      NS       *      NS      NS      NS      NS      **      NS      NS      NS      **      NS      NS      **       *      **       *      NS      **      NS      NS      NS      NS      NS      NS      NS       *

TaL11 0.011 0.025 0.002 0.009 0.005 0.000 0.009 0.002 0.000 0.000 0.005 0.001 0.011 0.036 0.011 0.008 0.007 0.000 0.053 0.008 0.005 0.008 -      NS      NS      NS      NS      NS      **       *      NS      NS      **      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

TaL12 0.026 0.038 0.006 0.020 0.019 0.013 0.037 0.002 0.016 0.010 0.023 0.022 0.025 0.053 0.027 0.019 0.024 0.009 0.082 0.021 0.025 0.025 0.010 -      NS      **      NS      NS      **      **      NS      **      **      NS      NS      **      **      **       *      **      **      NS      NS      NS      NS       *      NS      NS      NS

TaL13 0.005 0.016 0.007 0.011 0.007 0.001 0.002 0.002 0.000 0.001 0.005 0.006 0.009 0.026 0.008 0.006 0.000 0.000 0.034 0.004 0.000 0.004 0.000 0.022 -      NS      NS      NS      **      NS      NS      **      **      NS      NS      **      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

TaL14 0.028 0.045 0.011 0.034 0.019 0.017 0.025 0.002 0.019 0.024 0.029 0.013 0.032 0.051 0.024 0.028 0.017 0.016 0.059 0.016 0.015 0.014 0.010 0.029 0.010 -      NS       *      **      **      **      **      **      NS      NS      **      **      **      **      **      **       *       *      **      **      NS      NS      NS      **

TaL15 0.021 0.031 0.002 0.016 0.014 0.006 0.016 0.002 0.008 0.004 0.016 0.003 0.016 0.036 0.003 0.014 0.001 0.002 0.046 0.006 0.007 0.012 0.002 0.019 0.008 0.012 -      NS      NS      NS      NS      NS      **      NS      NS      **      **      NS       *      **      NS      NS      NS      NS      NS      NS      NS      NS      NS

TaL16 0.022 0.017 0.023 0.014 0.023 0.021 0.025 0.002 0.016 0.008 0.016 0.014 0.025 0.048 0.012 0.015 0.020 0.009 0.041 0.021 0.018 0.026 0.018 0.035 0.016 0.044 0.017 -      NS      NS      NS       *      **      NS      NS      NS      NS      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Br1 0.030 0.040 0.022 0.021 0.023 0.025 0.022 0.002 0.017 0.019 0.025 0.013 0.030 0.046 0.016 0.018 0.018 0.014 0.070 0.014 0.020 0.026 0.018 0.026 0.027 0.041 0.012 0.012 -      NS      **      **      **       *      NS      **      **       *      **      **      **      **      **      NS      **      **      NS      NS      **

Br2 0.022 0.020 0.022 0.019 0.022 0.019 0.020 0.002 0.014 0.016 0.015 0.016 0.022 0.049 0.005 0.011 0.023 0.012 0.062 0.014 0.008 0.016 0.015 0.038 0.019 0.035 0.016 0.009 0.012 -      NS      **      **      **       *      **      **      **      **      **      **      NS      **      NS       *      **      NS      NS       *

Br3 0.002 0.013 0.004 0.010 0.006 0.006 0.008 0.002 0.001 0.000 0.013 0.008 0.008 0.032 0.010 0.006 0.008 0.000 0.035 0.006 0.005 0.010 0.002 0.023 0.000 0.019 0.010 0.007 0.022 0.018 -      **      **      NS      NS      **       *      NS      NS      NS      **      NS      NS      NS      NS      NS      NS      NS      NS

Lu1 0.041 0.046 0.018 0.022 0.034 0.019 0.032 0.002 0.020 0.023 0.017 0.015 0.033 0.044 0.028 0.033 0.025 0.017 0.078 0.030 0.027 0.024 0.012 0.033 0.025 0.043 0.018 0.035 0.038 0.031 0.031 -      **      **      **      **      **      **      **      **      **      **      **      **      **       *      NS      **      **

Lu2 0.051 0.045 0.034 0.043 0.029 0.044 0.036 0.002 0.037 0.044 0.037 0.030 0.045 0.062 0.032 0.047 0.039 0.035 0.088 0.025 0.033 0.029 0.035 0.054 0.028 0.024 0.028 0.060 0.059 0.046 0.041 0.053 -      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **      **

Lu3 0.015 0.022 0.010 0.010 0.012 0.017 0.008 0.002 0.010 0.008 0.012 0.008 0.010 0.019 0.006 0.013 0.005 0.000 0.046 0.002 0.011 0.010 0.014 0.024 0.011 0.020 0.007 0.009 0.012 0.018 0.007 0.033 0.029 -      NS      **      **       *       *      **      **      NS      NS      NS      NS      NS      NS      NS      NS

Lu4 0.009 0.019 0.003 0.011 0.000 0.000 0.008 0.002 0.000 0.003 0.009 0.002 0.007 0.031 0.009 0.007 0.002 0.000 0.045 0.001 0.004 0.001 0.000 0.017 0.000 0.006 0.001 0.017 0.014 0.012 0.003 0.026 0.026 0.000 -      **      **      **      **      **      NS      NS      NS      NS      NS      NS      NS      NS      NS

Al1 0.054 0.048 0.046 0.037 0.040 0.056 0.058 0.002 0.048 0.031 0.045 0.036 0.049 0.067 0.027 0.031 0.042 0.032 0.090 0.038 0.042 0.046 0.043 0.047 0.055 0.064 0.032 0.019 0.025 0.022 0.048 0.060 0.067 0.034 0.043 -      **       *       *       *      **      **      **      **      **      **      **       *      **

Al2 0.031 0.017 0.039 0.020 0.024 0.026 0.023 0.002 0.020 0.016 0.012 0.028 0.020 0.031 0.014 0.022 0.025 0.019 0.052 0.024 0.019 0.027 0.019 0.039 0.015 0.046 0.030 0.022 0.041 0.029 0.019 0.048 0.053 0.028 0.026 0.041 -      NS      NS      NS      **      **      **      **      **       *       *      **      **

Al3 0.022 0.026 0.029 0.017 0.022 0.027 0.017 0.002 0.020 0.008 0.020 0.017 0.024 0.028 0.007 0.019 0.020 0.011 0.047 0.021 0.019 0.030 0.016 0.037 0.016 0.044 0.022 0.006 0.021 0.019 0.010 0.038 0.053 0.014 0.022 0.025 0.006 -      NS      NS      **       *       *       *      **       *      **      NS      **

Al4 0.025 0.020 0.035 0.014 0.025 0.030 0.020 0.002 0.020 0.014 0.013 0.026 0.021 0.028 0.017 0.016 0.018 0.011 0.063 0.024 0.015 0.022 0.015 0.033 0.015 0.046 0.028 0.010 0.031 0.022 0.017 0.038 0.059 0.021 0.021 0.032 0.002 0.009 -      NS      **       *       *      **      **      NS      NS      NS      **

Al5 0.021 0.013 0.026 0.014 0.017 0.017 0.011 0.002 0.009 0.012 0.007 0.014 0.012 0.026 0.012 0.009 0.016 0.013 0.055 0.018 0.015 0.018 0.012 0.035 0.012 0.039 0.025 0.012 0.032 0.021 0.009 0.033 0.049 0.020 0.017 0.041 0.001 0.009 0.002 -      **      **      NS      **      **      NS      NS      NS      **

Ea1 0.021 0.047 0.012 0.047 0.017 0.012 0.038 0.002 0.024 0.014 0.041 0.020 0.028 0.063 0.024 0.022 0.012 0.014 0.037 0.020 0.025 0.020 0.021 0.031 0.021 0.027 0.010 0.031 0.037 0.034 0.023 0.045 0.051 0.025 0.011 0.050 0.053 0.036 0.048 0.043 -      NS      NS      **      NS      NS      **      **      **

Ea2 0.008 0.024 0.009 0.015 0.007 0.004 0.006 0.002 0.000 0.003 0.007 0.000 0.014 0.042 0.008 0.007 0.011 0.005 0.054 0.005 0.008 0.013 0.003 0.020 0.006 0.015 0.008 0.009 0.014 0.011 0.007 0.032 0.037 0.011 0.002 0.036 0.026 0.017 0.019 0.016 0.016 -      NS      NS      NS      NS      NS      NS      NS

Ea3 0.017 0.029 0.011 0.017 0.013 0.009 0.035 0.002 0.011 0.017 0.019 0.017 0.006 0.031 0.010 0.005 0.012 0.004 0.056 0.006 0.007 0.014 0.020 0.020 0.018 0.025 0.015 0.029 0.035 0.024 0.018 0.037 0.042 0.015 0.011 0.039 0.038 0.038 0.034 0.029 0.018 0.015 -      NS      NS      NS      NS      NS      NS

Ea4 0.011 0.021 0.004 0.014 0.012 0.007 0.017 0.002 0.005 0.008 0.008 0.002 0.015 0.047 0.008 0.006 0.014 0.006 0.059 0.000 0.008 0.009 0.006 0.015 0.011 0.019 0.004 0.017 0.010 0.011 0.012 0.029 0.025 0.010 0.006 0.028 0.030 0.025 0.031 0.025 0.020 0.001 0.010 -      NS      NS      NS      NS      NS

Ea5 0.014 0.025 0.004 0.019 0.000 0.000 0.014 0.002 0.005 0.001 0.013 0.009 0.013 0.035 0.010 0.009 0.000 0.005 0.031 0.002 0.009 0.008 0.007 0.017 0.000 0.015 0.003 0.020 0.020 0.021 0.005 0.035 0.032 0.007 0.000 0.045 0.023 0.025 0.029 0.017 0.010 0.010 0.013 0.008 -      NS      NS      NS      NS

Ea6 0.017 0.014 0.002 0.011 0.006 0.000 0.014 0.002 0.000 0.007 0.004 0.003 0.009 0.040 0.006 0.006 0.013 0.006 0.048 0.009 0.003 0.009 0.000 0.019 0.002 0.014 0.008 0.018 0.027 0.019 0.004 0.019 0.030 0.019 0.005 0.052 0.024 0.024 0.026 0.010 0.019 0.003 0.011 0.006 0.008 -      NS      NS      NS

Ea7 0.019 0.026 0.001 0.010 0.009 0.000 0.014 0.002 0.002 0.007 0.011 0.006 0.016 0.035 0.011 0.013 0.004 0.000 0.056 0.010 0.006 0.012 0.000 0.008 0.001 0.012 0.004 0.016 0.016 0.014 0.006 0.015 0.035 0.008 0.000 0.046 0.030 0.026 0.023 0.020 0.027 0.011 0.015 0.012 0.004 0.006 -      NS      NS

Ea8 0.020 0.013 0.002 0.011 0.004 0.007 0.012 0.002 0.000 0.005 0.004 0.001 0.009 0.036 0.002 0.002 0.009 0.006 0.053 0.003 0.004 0.007 0.003 0.013 0.007 0.015 0.002 0.012 0.003 0.008 0.009 0.024 0.028 0.009 0.002 0.026 0.024 0.020 0.021 0.013 0.020 0.001 0.012 0.000 0.003 0.000 0.005 -      NS

Ea9 0.016 0.022 0.012 0.005 0.015 0.009 0.008 0.002 0.001 0.010 0.001 0.002 0.005 0.020 0.013 0.005 0.019 0.003 0.076 0.012 0.013 0.022 0.006 0.016 0.012 0.026 0.010 0.020 0.021 0.019 0.012 0.023 0.039 0.008 0.005 0.040 0.026 0.025 0.024 0.017 0.033 0.005 0.010 0.009 0.015 0.010 0.008 0.007 -
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A few populations, notably TaU2, TaU7, Br1, Lu2, Al1 and Ea1 were significantly different 

to many other populations, both on the same river and on different rivers. Genetic 

differentiation between all pairwise river FST values was also found to be significant (Table 

4.5). The Wilcoxon signed-rank test reported significant difference between river-

connected populations and overland-connected populations (V = 4828, p = <0.001), with 

river-connected populations having a lower mean pairwise FST value (0.0130) than 

overland-connected populations (0.0199) (Figure 4.2).  

 

Table 4.5  Pairwise FST river differentiation estimates with significance (above the diagonal).  

  Tummel Tay upper Tay lower Braan Lunan Almond Earn 

Tummel − *** *** *** *** *** *** 

Tay upper 0.0045 − *** *** *** *** *** 

Tay lower 0.0029 0.0062 − *** *** *** *** 

Braan 0.0058 0.0078 0.0069 − *** *** *** 

Lunan 0.0054 0.0076 0.0042 0.0101 − *** *** 

Almond 0.0135 0.0135 0.0167 0.0120 0.0202 − *** 

Earn 0.0021 0.0051 0.0016 0.0058 0.0053 0.0180 − 

***p < 0.001. 

 

Figure 4.2  Boxplot of mean pairwise population FST values between river-connected populations overland-

connected populations.  
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AMOVA results indicated significant differences among rivers, among populations within 

rivers, and within populations, with most (98.1%) of the observed genetic variation 

attributable to variation within populations (Table 4.6).  

 

Table 4.6  Hierarchical analysis of molecular variance (AMOVA), within populations, within populations on 

the same river, and among rivers. P value based on 1,600 permutations.  

Source of variation 
Degrees of 
freedom 

Sum of 
squares 

Variance 
components 

Percentage 
of total 
variance P value 

Among rivers 6 79.32 0.017 0.5 0 
Among populations, 
 within rivers 42 265.75 0.049 1.4 0 

Within populations 2811 9692.62 3.448 98.1 0 

 

Cluster analysis in STRUCTURE revealed no distinct genetic clusters within any single river 

or across the river catchment. For each river, and across the whole catchment, the lowest 

mean log likelihood L(K) and variance values were for K = 1, and inspection of the 

assignment of individuals showed that the proportion of the sample assigned to each 

cluster was symmetric and all individuals were admixed (Figure 4.3). Output from analysis 

using the LOCPRIOR model gave less clear results. Individual river and catchment-wide 

analysis resulted in K = >1 having the lowest mean log likelihood values. However, 

convergence was not clear and, in all cases, K = 1 showed little variance in output while 

each K = >1 output showed high variance between iterations. Inspection of the 

assignment of individuals to populations revealed admixture in all individuals. 

Consequently LOCPRIOR output was viewed with some caution as non-convergence may 

point towards spurious results (Guillot et al. 2009). 
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Figure 4.3  Assignment of 1430 individuals to genetic clusters following Bayesian-based clustering analysis 

implemented in STRUCTURE (showing K = 1 to K = 3 only). Admixture was revealed in all individuals.    

 

Analysis with Geneland was concurrent with the output from STRUCTURE for Rivers 

Tummel, Almond, Braan, Lunan and Earn with no genetic clustering revealed. However, 

each of the 10 runs for the River Tay (upper and lower) populations identified two 

clusters with every run indicating population TaU7 as one cluster and the other 15 

populations forming the second cluster (Figure 4.4). Analysis of the catchment-wide data 

was not possible due to poor MCMC mixing, resulting in a poor convergence, which was 

considered an effect of the large dataset (>1,000 individuals) (Geneland Development 

Group 2012).  
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Figure 4.4  Estimated cluster membership of River Tay populations, based on K = 2 Geneland output. Each 

cluster of black points indicates the location of the 16 sampled populations (as shown in Figure 4.1), all 

identified as belonging to the same cluster apart from population TaU7 identified as a second cluster, 

indicated by the green shading.   

 

DAPC analysis was implemented with some caution as selecting genetic clusters based on 

PCA will not return a solution of K = 1, as found in the Bayesian clustering methods 

implemented. Analysis of the catchment-wide data revealed the lowest BIC for K = 19, 

however the difference in slope between K = 2 and K = 19 BIC values was small and so DA 

analysis was undertaken for both K = 2 and K = 19. The membership probability of each 

individual, for K = 2 and K = 19, indicated admixture in all individuals (data not shown), 

concurrent with the STRUCTURE analysis.  

 

4.4.5 Isolation by distance 

Hydrological and Euclidean distance were significantly correlated (correlation 0.71, p = 

<0.001). Mantel tests assessing correlation between either hydrological or Euclidean 

distance to genetic differentiation (FST) showed no correlation within individual rivers 
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(data not shown) however a significant correlation was found at the catchment scale. The 

Mantel r values were similar for unmodified and modified hydrological and Euclidean 

distance; results for log-transformed distances are given. Significant correlations between 

FST and hydrological distance between populations across the whole catchment, and 

between populations located up to 75 km and 50 km apart were found but not between 

populations <25 km apart (Table 4.7). No significant correlations were found between FST 

and Euclidean distance (Table 4.7).   

 

Table 4.7  Mantel tests of isolation by distance. Mantel r value and p value shown for comparisons of 

pairwise genetic differentiation (FST) with log-transformed hydrological distance (HydroDist) and Euclidean 

distance (EucDist) at different spatial scales.  

      Mantel test Partial Mantel test 

Spatial 
scale 

Median 
distance (km) Distance matrix r p  r p 

<110 km 33.8 log(HydroDist) 0.141 0.011* -0.126 0.024* 

 
25.1 log(EucDist) 0.069 0.122 -0.028 0.672 

<75 km 29.9 log(HydroDist) 0.156 0.004** -0.139 0.009** 

 
23.8 log(EucDist) 0.077 0.097 -0.031 0.710 

<50 km 22.0 log(HydroDist) 0.185 0.009** -0.154 0.026* 

 
20.2 log(EucDist) 0.104 0.063 -0.005 0.461 

<25 km 13.3 log(HydroDist) 0.104 0.217 -0.055 0.361 

  14.7 log(EucDist) 0.153 0.092 -0.125 0.141 

*p< 0.05; **p<0.01. 

 

4.5 Discussion 

Unidirectional diversity hypothesis 

The unidirectional diversity hypothesis presents a logical argument that an accumulation 

of genetic diversity will be observed in downstream locations as a consequence of 

hydrochory. This study found the River Tummel showed weak significance for the 

downstream accumulation of genetic diversity, with increasing values of (rarefied) allelic 

richness found over a hydrological distance of 40 km. However, no downstream 
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accumulation of genetic diversity was observed in the five other study rivers, ranging in 

distance from 10 – 95 km and, in fact, no significance was found for the River Tummel 

when analysis was based on river populations only (i.e. upstream loch populations 

removed from analysis) or when downstream River Tay populations were included in 

analysis. Empirical evidence shows mixed results for the support of the unidirectional 

diversity hypothesis (Nilsson et al. 2010). Although an increase in genetic diversity in 

downstream river locations has been found in some studies, e.g. in Potamogeton 

coloratus in ditches of the Gordano Valley, UK (Gornall et al. 1998) in Myricaria laxiflora in 

the Yangtze river, China (Liu et al. 2006), in Sparganium emersum in the Niers River in 

Germany (Pollux et al. 2009), and in Impatiens glandulifera in the Western Cleddau of 

Wales and the Tempo/Colebrooke river system of Northern Ireland (Love et al. 2013)  

many studies have found no effect of unidirectional gene flow on the pattern of genetic 

variation along rivers. A recent meta-analysis of studies reporting genetic structure of 

riparian and aquatic plant species found no support for the unidirectional dispersal 

hypothesis (Honnay et al. 2010).   

 

A number of reasons have previously been cited to explain an observed lack of increase in 

downstream genetic diversity including, effective pollen dispersal and other seed 

dispersal vectors (Nilsson et al. 2010), higher seed recruitment opportunities in upstream 

habitats due to density dependence of recruitment (Honnay et al. 2010), and 

fragmentation of the riparian habitat (Imbert and Lefèvre 2003). Whilst it is possible that 

wind dispersal of A. glutinosa seeds may contribute to some upstream gene flow seed 

dispersal distance is limited to distances up to 60 m (McVean 1955). However, as a wind-

pollinated tree, A. glutinosa has high potential for gene flow across large distances (Petit 
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and Hampe 2006) and, in this case, it seems likely that bidirectional dispersal of pollen 

over large distances acts as an efficient mechanism of gene flow across the river 

catchment, counteracting the effect of any downstream accumulation in genetic diversity 

caused by waterborne seed dispersal. As a comparison, the downstream increase in 

genetic diversity of I. glandulifera, indicative of hydrochorous dispersal of seed, may also 

be influenced by limited insect pollination dispersal distances (Love et al. 2013). The low 

levels of neutral genetic differentiation observed between A. glutinosa populations, 

ranging from 0.000 to 0.0897 (Table 4.4), as well as the relatively high levels of 

intrapopulation diversity found (Table 4.2), are also indicative of long distance gene flow 

between populations. 

 

Genetic structure 

Despite indications that a high level of gene flow via pollen dispersal occurs between A. 

glutinosa populations, significantly lower overall FST values were found between river-

connected populations (FST = 0.0130) compared with overland-connected populations (FST 

= 0.0199). Although FST, as a measure of genetic distance, does not account for 

differences in seed and pollen dispersal, the lower river-connected FST values suggest that 

seed dispersal via rivers, may also influence the genetic structure of A. glutinosa 

populations.  

 

Whilst pairwise estimates of FST provide insight into historical events, and not current 

migration (Holsinger and Weir 2009), the difference in FST values found here suggests 

connectivity between riparian A. glutinosa populations is enhanced by the presence of 

rivers, at least historically. Lower FST values between river-connected populations (versus 
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populations on other rivers) have been reported elsewhere e.g. in the wind-pollinated, 

wind and water dispersed riparian tree Euptelea pleiospermum along four rivers within 

Shennongjia National Nature Reserve, China, inferring that mountain ridges act as a 

barrier to gene flow between rivers (Wei et al. 2013), and in riparian populations of I. 

glandulifera where hydrochorous dispersal of seed is considered to be the primary means 

of dispersal (Love et al. 2013).  

 

However, the significant genetic differentiation found between 36% of pairwise 

populations across the catchment (Table 4.4), as well as between all rivers (Table 4.5), is 

indicative, to some extent, of restricted gene flow both across the catchment and within 

rivers, with even neighbouring populations appearing to be genetically different. Whilst it 

seems reasonable to expect significant inter-river differentiation due to seed dispersal 

being restricted to river-connected populations, it is difficult to interpret why some A. 

glutinosa populations were found to be significantly differentiated from nearly all other 

populations, including neighbouring populations. Some of the highly differentiated 

populations are the most upstream populations of three rivers (Braan, Almond and Earn) 

and could conceivably be less connected to other downstream populations and perhaps 

subject to different influencing factors such as density dependent recruitment. However, 

overall, the location of the highly differentiated populations appears incidental rather 

than explanatory as no pattern is apparent across the catchment. It seems, in this case, 

that care should be taken when interpreting the statistical significance of the genetic 

differentiation found based on markers with high mutation rates (Hedrick 1999), such as 

the microsatellites used here.  
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Although significant variation was found among rivers and among populations, 

partitioning of the genetic diversity showed most (98.1%) of the observed genetic 

variation was within populations (Table 4.6), as found in most tree species with extensive 

gene flow resulting in high heterozygosity (Hamrick et al. 1992). Nevertheless, it was with 

some surprise that based on the concurrent results from two Bayesian-clustering analyses 

and DAPC analysis, no genetic structure was identified at a river or catchment scale, apart 

from along the River Tay where STRUCTURE analysis suggested K = 1 and Geneland 

analysis K = 2 (Figure 4.4). It is interesting to note that the second cluster consisted solely 

of population TaU7 which was consistently differentiated from all other populations bar 

nearby upstream TaU5 (Table 4.4), and displayed a lower HE than average (Table 4.2). It 

seems unlikely however, that one population would represent a genetic cluster when no 

other clustering is observed across the catchment and it is concluded that there is no 

genetic clustering of A. glutinosa populations at the spatial scale of the study (maximum 

Euclidean distance 61 km).   

 

The lack of genetic structure found in this study is different to that reported in many 

riparian and aquatic shrubs or herbs e.g. in unbranched bur-reed Sparganium amersum 

along the Niers River flowing through Germany and The Netherlands (Pollux et al. 2009), 

in the riparian shrub Myricaria germanica in Switzerland (Werth and Scheidegger 2014), 

and in I. glandulifera populations in Wales and Northern Ireland (Love et al. 2013). In 

other wind-pollinated riparian tree species the identification of genetic structure has 

been attributed to, for example, fragmentation effects on previously widespread 

populations of Alnus maritima (Jones and Gibson 2011), and mountain ridges (highest 

peak 3105 m) acting as a genetic barrier to gene flow between E. pleiospermum 
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populations located on different rivers within the Shennongjia Mountains of China. In 

contrast, other studies have also reported no genetic structure. A lack of genetic 

structuring within and between rivers is considered a consequence of efficient gene flow 

between Populus euphratica populations across an open landscape, as well as the sex 

ratio in study populations, at least at the scale of the study (maximum Euclidean distance 

25 km) (Eusemann et al. 2013). Similarly, despite significant population fragmentation, no 

genetic structure was found within riparian Fraxinus mandshurica populations of 

Maoershan National Forestry Park, China, thought to be a consequence of extensive 

wind-mediated pollen dispersal and seed dispersal by hydrochory (Hu et al. 2010).   

 

Isolation by distance 

Despite an apparent lack of genetic structure in A. glutinosa populations at the scale 

studied here, IBD analysis suggests there is a landscape effect on gene flow. Most prior 

studies of riparian and aquatic plants have not found evidence of IBD (Honnay et al. 2010) 

with only a few studies reporting a significant relationship between genetic and 

geographic distance (Imbert and Lefèvre 2003; Liu et al. 2006; Kondo et al. 2009; Werth 

and Scheidegger 2014). As reported here, IBD was only found in Ainsliaea faurieana 

populations on Yakushima Island, Japan, when all rivers were analysed in combination, 

but not in any single river (Mitsui et al. 2010).  

 

In this study, populations of A. glutinosa at hydrological distances >25 km apart are more 

genetically different the further apart they are along the river yet there is no effect of 

Euclidean distance. Although the effect of hydrological distance is small, the increase in 

pairwise population genetic distance as a result of increasing pairwise hydrological 
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distance remains significant after accounting for Euclidean distance (Table 4.7). An effect 

of geographical distance on patterns of A. glutinosa genetic diversity at a catchment scale 

has not been found previously. In two recent A. glutinosa studies moderate IBD was 

identified in populations located across 10 European countries, but not at the regional 

scale across Flanders, Belgium (Cox et al. 2011), and no IBD was found between 24 

populations across four European countries (De Kort et al. 2014). In both of these studies 

geographic distance was measured as Euclidean distance. This study is thought to be the 

first to investigate the difference in effect of hydrological distance and Euclidean distance 

on genetic differentiation between A. glutinosa populations as a consequence of river-

borne seed dispersal and wind-borne pollen dispersal.  

 

4.6 Conclusion 

The tests implemented in this study revealed no evidence for an increase in downstream 

genetic diversity as a result of hydrochory in any of the six study rivers, suggesting 

extensive pollen flow at a river or landscape scale. Similarly, across the large, 

heterogeneous study landscape, no evidence of genetic structure was found, further 

signifying widespread pollen dispersal across the river catchment. These results initially 

suggest there is no landscape effect on genetic variation as a consequence of long-

distance dispersal of A. glutinosa pollen. However, the variable pairwise FST values and 

significant genetic differentiation identified between some populations, as well as 

between rivers, argue against a panmictic effect of pollen dispersal and suggest other 

factors influence genetic variation of A. glutinosa.    
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When testing landscape effects on the differing dispersal mechanisms of pollen and seed 

a genetic effect was found. Populations connected by waterborne seed dispersal as well 

as windborne pollen dispersal were shown to be more genetically similar than 

populations only connected by windborne pollen dispersal. Despite the evidence for 

widespread pollen dispersal this test showed that waterborne seed dispersal further 

increases connectivity between A. glutinosa populations. Tests for IBD provided the most 

interesting result, with no IBD relationship for pollen dispersal found but a significant IBD 

relationship in seed dispersal at hydrological distances >25 km suggesting that at these 

distances gene flow via seed dispersal is more constrained by hydrological distance. 

 

The results presented here are of relevance to the management of riparian habitat. As an 

important keystone species, A. glutinosa is crucial to shaping riparian systems. The 

findings here show that any one A. glutinosa population is as important as another 

population, regardless of location within the river catchment. It is therefore important to 

manage the overall wider landscape rather than individual populations of A. glutinosa. 
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5 ** 

Chapter 5 

General discussion 
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5.1 General discussion 

The aim of this thesis was to link gene flow, ecology, and landscape features to examine 

how they determine the structure of riparian plant populations. The research presented 

here focusses on A. glutinosa, a keystone tree species of European riparian ecosystems. 

Two key approaches shaped the research undertaken. Firstly, life history attributes of A. 

glutinosa were considered. In particular, the differing dispersal mechanisms of A. 

glutinosa pollen (wind) and seed (water) were linked to land and river features within the 

study area. Secondly, the study was undertaken at a range of spatial scales, investigating 

fine-scale within-population effects to between-population landscape scale effects on the 

structure of A. glutinosa populations.  

 

Chapter 2 sought to identify the pattern and distance of A. glutinosa pollen and seed 

dispersal, with the aim of determining the extent of gene flow within and between 

riparian A. glutinosa populations. Parentage analyses identified widespread A. glutinosa 

gene flow. A paternity analysis of A. glutinosa seeds revealed a leptokurtic, fat-tailed 

dispersal curve with most pollen parents (77%) found in the same population as the 

maternal parent. Although local pollen dispersal was higher than expected under random 

mating, long distance between-population pollen dispersal was also observed. Maternity 

analysis of A. glutinosa saplings revealed evident differences between wind- and water-

dispersed seed. Wind dispersal of seed was limited to distances of less than 100 m, 

however between-population, hydrochorous seed dispersal was observed up to distances 

of 2.5 km (within a 6 km river reach). Importantly, most seed-mediated gene flow (57% - 

75%) occurred via between-population hydrochorous dispersal rather than within-

population wind dispersal. Taken together these results show wind dispersal of pollen 
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and seed maintains gene flow within populations, however high levels of between-

population gene flow also occur, mediated by wind-dispersal of pollen and hydrochorous 

dispersal of seed.   

 

The extent of gene flow within and between populations influences a range of variables 

including genetic variation. Analyses in Chapters 2 and 3 revealed relatively high levels of 

genetic diversity within A. glutinosa populations and very little difference in genetic 

diversity between populations. Genetic diversity measures between populations, and 

between generations, at the local, river-reach scale were practically identical, typical of 

tree species (Petit and Hampe 2006), and consistent with the high levels of gene flow 

described. At the river-catchment scale, measures of genetic diversity between 

populations were more varied. However, no significant differences were found and no 

gradient of upstream-downstream genetic diversity was observed, suggesting bi-

directional pollen dispersal may counteract the effect of any downstream accumulation in 

genetic diversity caused by uni-directional, hydrochorous seed dispersal (Chapter 4). 

 

Chapter 4 sought to identify the influence of A. glutinosa gene flow at the river catchment 

scale, and to test landscape-scale effects on genetic connectivity between populations. 

Across the whole River Tay catchment no genetic clustering of populations was identified, 

providing further indication of widespread gene flow. Nevertheless, although pollen-

mediated gene flow appeared to be unrestricted across the river catchment, evidence for 

landscape effects on seed-mediated gene flow was apparent. Populations connected by 

waterborne seed dispersal as well as windborne pollen dispersal were more genetically 

similar than populations only connected by windborne pollen dispersal, however an 
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isolation by distance effect was observed for hydrological distances greater than 25 km. 

Overall these findings indicate that, although gene flow occurs between distant 

populations, landscape effects on the differing dispersal mechanisms of pollen and seed 

are evident. Wind-meditated pollen dispersal does not appear to be limited at the spatial 

scale studied. In contrast, although hydrochorous seed dispersal increases genetic 

connectivity between populations, this connectivity is limited by the distance between 

populations. This latter insight is especially relevant because dispersal by seed directly 

affects the colonisation of new populations.    

 

At the local, within population scale, further riverine landscape – species interactions 

were identified in Chapter 3. Dendrochronology methods to estimate the age of A. 

glutinosa trees, woodland inventory work, and genetic analyses were combined to 

provide a unique insight into both the spatial and temporal structure of riparian A. 

glutinosa woodlands. A gradient of A. glutinosa tree ages was evident, with young trees 

located closer to the main river channel and older trees located further away from the 

main river channel. Despite evident spatio-temporal structuring, no difference in 

between-generation genetic diversity (Chapters 2 and 3) or temporal genetic structure 

was apparent (Chapter 3), consistent again with the high levels of gene flow described.  

 

The overall lack of fine-scale spatial genetic structure within A. glutinosa populations 

(Chapters 2 and 3) is thought to further reflect the interplay between the ecology of A. 

glutinosa and features of the riparian / riverine-landscape it occurs within. No seedling 

regeneration was observed within mature woodland (Chapter 3) and this, combined with 

the extensive pollen and seed movement (Chapters 2 and 4), as well as the need for 
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suitable light and water levels and riverine-disturbance to enable seedling establishment 

(Claessens et al. 2010), means it is unlikely that seeds would successfully establish in the 

vicinity of a parent plant. Thus no or negative fine-scale spatial genetic structure would be 

observed, as identified in A. glutinosa saplings and young trees (Chapters 2 and 3). 

Nevertheless, spatial genetic structure is not expected to remain constant over time 

(Kalisz et al. 2001; Jones and Hubbell 2006). By utilising the estimated ages of A. glutinosa 

to compare genetic structure between different age cohorts, negative spatial genetic 

structure was identified in the sapling generation and the cohort of young trees, and 

positive spatial genetic structure was observed in the oldest tree cohort (Chapter 3). 

Although the reasons for this difference are discussed in the context of historical 

population changes (Section 2.5), without further study it remains unclear whether the 

observed changes in spatial genetic structure are driven by historical factors, local 

selection or random processes.  

 

5.2 Future research 

Further insight into seed-mediated gene flow of A. glutinosa and genetic structure at the 

river catchment scale may be gained with the use of chloroplast microsatellite markers. 

Chloroplasts are maternally inherited in A. glutinosa. Although chloroplast microsatellites 

typically show less variability, their use alongside the nuclear microsatellites utilised in 

this thesis may provide additional insight (Provan et al. 2001), especially concerning the 

extent of between-population gene flow via hydrochorous seed dispersal. In addition, 

because organelle genomes have a lower effective population size, the use of chloroplast 

microsatellites can reveal more genetic structure, including indicators of founder effects 

(Provan et al. 2001). The use of chloroplast markers at the within-population scale may 
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therefore provide additional insight into processes resulting in the different patterns of 

spatial genetic structure between the young and old generations of A. glutinosa identified 

in Chapters 2 and 3.  

 

At the catchment scale, the dendritic network of rivers hosts a range of features, with 

branches and nodes (i.e. river sections and confluences) arranged in a hierarchical way 

that dictate the distance and directionality of dispersal (Altermatt 2013). The distinct 

nature of river catchments including, for example, configuration, changing flow rates, 

longitudinal connectivity and the location of confluences, all of which influence riparian 

populations (Naiman and Decamps 1997; Francis 2006), was not directly accounted for 

within the scope of this thesis. Future work may therefore benefit from the recent 

development of spatial statistical network models that take account of distinct river 

features and the spatial autocorrelation among measurements (Peterson and Ver Hoef 

2010; Peterson et al. 2013; Isaak et al. 2014). It may be possible to apply the concepts of 

these models to riparian populations of A. glutinosa based on the hydrochorous seed 

dispersal and, by incorporating pairwise comparisons of genetic measures, provide a 

novel insight into river-catchment influences on genetic connectivity between riparian 

populations not previously undertaken.  

 

5.3 General conclusion 

How species interact with the landscapes they occur in is a central question in informing 

our understanding of how ecosystems function, interact, and respond to change. As linear 

features, rivers and their associated riparian habitat act as linking features across large 

landscapes. By taking a landscape genetics approach in this thesis, the influence of river 
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landscape features on the connectivity and genetic structure of riparian A. glutinosa 

populations was clearly identified. Key findings of this research include (1) gene flow via 

pollen dispersal is extensive; (2) gene flow via hydrochorous seed dispersal increases 

connectivity between populations but is limited at distances greater than 25 km; (3) no 

difference in genetic diversity occurs between populations; (4) riparian A. glutinosa 

woodland shows demographic structuring; (5) despite evident demographic structuring, 

no fine-scale spatial genetic structure is apparent. Central to the findings gained in this 

thesis was the incorporation of species ecology, particularly A. glutinosa dispersal 

mechanisms. By directly accounting for the differing dispersal mechanisms when 

investigating landscape effects on gene flow, the results obtained here highlight the value 

and importance of incorporating the life history traits of study species in landscape 

genetics studies.  
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