
Vol. 45 (2014) ACTA PHYSICA POLONICA B No 1

COST-BENEFIT ANALYSIS OF EPIDEMICS
SPREADING ON CLUSTERED RANDOM NETWORKS

Katarzyna Oleśa,b, Ewa Gudowska-Nowaka, Adam Kleczkowskib

aMark Kac Complex Systems Research Center
and

The Marian Smoluchowski Institute of Physics, Jagiellonian University
Reymonta 4, 30-059 Kraków, Poland

bDepartment of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, United Kingdom

(Received December 23, 2013; revised version received January 10, 2014)

We study, control of infectious disease epidemics spreading on random
networks with different levels of clustering. We use Gleeson’s et al., Phys.
Rev. E80, 036107 (2009) algorithm to create clustered networks in which
a proportion of individuals is located in fully-connected cliques of certain
size. A SIR model is extended to include delayed and imperfect detection
of infectious individuals. We also include a combination of responsive (pal-
liative) and preventive (vaccination) treatments and design cost-effective
disease control strategies. Cost-benefit analysis is used in combination with
epidemiological simulations to identify an optimal radius for a treatment
centred upon the symptomatic individual. Three general control strategies
occur depending on the relative cost of treatment and prevention. Network
topology and, in particular, clustering also affects the applicability of the
control strategy. The average path length appears to be more important;
the range for the control strategy is wider with the length, but the optimal
radius of control also extends. As the proportion of individuals in cliques
and therefore the coefficient of clustering is higher, the range of the costs
for which control scenario is optimal is greater. This results have impor-
tant consequences for designing disease control strategies that also satisfy
economic optimality criteria.
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1. Introduction

The spread of many human [1–3], animal [4, 5] and plant [6, 7] epidemics
can successfully be described by network models [8–12]. In this approach,
individuals are represented as nodes on a network and their interactions by
edges [13–15]. Analytical solutions arising from the graph theory [16, 17]
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and percolation [18, 19] or simulations can be used to answer questions
concerning the potential for a particular disease to invade the population and
persist there [20, 21], the relationship between the network structure and rate
of spread [22–24], the future course of an unfolding epidemic [25], and, finally,
to assess control strategies that either prevent the disease from invading [26]
or aim at its eradication [27–29]. Network models are particularly suitable
for the latter task, as they allow to represent spatial aspects of the disease
spread [30, 31] and, therefore, help in designing responsive and local control
strategies that target particular individuals or their connections [32].

A successful disease control strategy should not only aim to stop the
disease from spreading, but should achieve this at the lowest possible overall
cost [31, 33–35], including both costs of the treatment as well as of the disease
itself. In this approach, an optimal strategy is the one that minimises the
total cost of the epidemic [31, 32, 35–37] with monetary as well as social
costs included.

However, the task of identifying an optimal strategy is made complicated
by a typical lack of information about the status of the individuals and their
connectivity to others. We typically do not know whether a particular indi-
vidual is already infected and infectious, unless symptoms are displayed and
can be identified. For many diseases this lack of knowledge can be a serious
problem [2, 4] as the disease can spread far before the first symptomatic
individual is discovered. This makes responsive and local strategies difficult,
as they depend on our ability to identify epidemic foci around which they
are applied. Despite this problems, contact tracing [23, 38], “clean ring”
strategies [39–41], and similar treatment and vaccination options either are
used or are proposed to combat the disease spread. In these approaches,
an observation of a symptomatic individual triggers an action which typi-
cally affects a number of individuals connected to the observed case. The
inclusion of individuals is based upon a typical distance at which the disease
can travel unobserved [3, 31, 34], although this relationship is not always
clear [32]; this usually means treatment within a certain distance from the
focus measured in an appropriate metric [7, 42, 43].

The ability of capturing the network structure is essential for successful
epidemiological modelling of the kind studied here [22–24, 30, 37, 44]. For
convenience and tractability, many models represent interactions between
individuals as a regular network, possibly with addition of “small-world”
interactions [10, 45, 46]. Alternatively, random network models including
scale-free networks have been used [13, 14, 19, 26, 28]. However, there is a
mounting evidence [47] that many real-life networks are not tree-like, but
instead possess substantial degree of clustering [48]. Clustering (or transi-
tivity) in a complex networks refers to the tendency of two neighbours of a
given node to also be neighbours of each other, thus forming a triangle of
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edges within the graph [18, 49]. It has been shown that presence of clustering
increases the bond percolation threshold and affects the threshold behaviour
of the epidemic spread [50] when networks with the same degree distribution
and similar correlation structure are compared.

In this paper, we extend the results of our previous work [31, 32, 35]
to more realistic clustered networks. We begin by briefly reviewing the
epidemiological model used in our studies. We further apply a recently pro-
posed model of embedded cliques [18, 49] to examine epidemics spreading
in clustered random networks. We show that three broad control strategies
can be identified, the Global Strategy (GS) whereby the location of treated
individuals does not depend on their distance from the focus, the Null Strat-
egy (NS) when it is more cost-effective not to treat anybody, and the Local
Strategy (LS) which targets individuals located in the neighbourhood of the
detected (symptomatic) individual. The choice of the strategy as well as the
details of LS (the size of the treatment “ring”) are shown to depend on the
level of clustering in the network.

2. Model

Three elements form a description of our model. Firstly, we present
the epidemiological scheme describing the progress of the disease in the
individual and its spread to other individuals conditioned on a link existing
between them. Secondly, we describe the structure of the network with
contributing links that provide the potential for the spread of the disease.
Finally, we describe the epi-economic framework in which we assess the cost
and benefits of the control measures.

2.1. Epidemiological model

Epidemiological model that has been used in this work is an extended SIR
(Susceptible-Infected-Removed) model to account of pre-symptomatic and
symptomatic stages [31]. Initially, all individuals are susceptible (S), except
of a fixed small number of infected pre-symptomatic (I) individuals (5 in the
total population of 5 000), located randomly throughout the population.

Each individual is in contact with a fixed number of neighbours and the
disease can be transmitted from/to each of them. Details of the spatial
arrangement and size of the neighbourhood are given below. With probabil-
ity f per single contact with either an infected individual (I) or the detected
individual (D), the disease is passed to a susceptible individual (S) that
becomes infectious but pre-symptomatic individual (I). Subsequently, the
infected individual displays symptoms and the transition to a symptomatic
state (D) occurs with probability q.
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A symptomatic individual is assumed to be still infectious, but can spon-
taneously become removed (R) with probability r and cease to pass on in-
fection. Alternatively, it can also trigger a control event, with probability v.
Thus, at each time step, the detected individual stays in the same class with
probability (1− r)(1− v). This mechanism accounts for possible delays and
imperfections in detection of disease symptoms — any individual can show
symptoms but not be treated until after a number of steps.

The treatment event is a combination of two processes. Firstly, a de-
tected individual is treated and moves to the treated class (V). Secondly,
all individuals except removed (i.e. S, I or D) in the control neighbourhood
(see below) are also treated. This process enables the health control author-
ities to capture individuals in the class I that do not show symptoms and
all detected individuals (D) that are still waiting for treatment. In addi-
tion, it creates a zone around the focus of infection in which there are no
susceptible individuals. Neither V nor R individuals can become infected
again. The population has a constant number of individuals N , so that
N = S+ I+D+V +R.

2.2. Network model

Interactions between individuals are captured by a network structure
that exhibits a certain density of fully connected subgraphs in the form of
cycles (termed otherwise cliques). Each vertex (representing an individual)
can be a part of a c-clique, i.e. a group of c individuals that are fully con-
nected, or can be a single node (i.e. a member of a 1-clique). Nodes which
are members of a c-cliques have c − 1 edges linking them with the neigh-
bours within the same clique. For a random node with k connections to
other vertices in the network, there are additional k − c + 1 edges outside
the clique. Here, we restrict our attention to random regular graphs, i.e.
random graphs in which all nodes have the same degree k. Accordingly,
each individual node simply connects to k other nodes (either single or in
cliques).

Random clustered networks are described by the joint probability γ(k, c)
that a randomly chosen vertex has degree k and is a member of a c-clique [49].
In turn, the local clustering coefficient for a node is defined as a fraction of
pairs of neighbours of this node which are also neighbours of each other.
The degree-dependent clustering (or clustering spectrum ck) is the average
of the local clustering coefficient over the class of all nodes of degree k. The
joint probability γ(k, c) is represented by k by c matrix. In our paper, we
consider random clustered networks where all vertices have the same degree
(k = 4 or k = 10, see Fig. 1), and can be either a single node or part of
a c-clique. The proportion of individuals in cliques is denoted by p. As an
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example, the joint probability distribution γ(k, c) that generates network
with all nodes with degree k = 4, where p individuals are in 4-cliques and
the rest (1− p) are single nodes is presented below:

γ(k, c) =

0 0 0 0
0 0 0 0
0 0 0 0

1− p 0 0 p

. (1)

In practice, the algorithm by Gleeson et al. [49] works as follows. First,
it generates a list of sizes of cliques in the network (in our model, the sizes
are fixed). It then adds cliques directly into the adjacency matrix Aij by
selecting c nodes at random and connecting all nodes within the clique (by
definition Aij is 1 if the nodes i and j are connected, and 0 if not). A list
of external stubs is also created which subsequently form inter-clique edges.
Edges connecting cliques to other cliques, to individual points, and between
individual points are then added to the adjacency matrix. Finally, self-
and multi-connections are removed so that there is no more than one link
connecting two different nodes. Each vertex can be a part of only one clique.
Figure 1 shows three examples of different clustered networks.

a)
b)

c)

Fig. 1. Clustered random networks with a 4-cliques and single nodes of degree 4 —
network A (a), 4-cliques and single nodes of degree 10 — network B (b), 10-clique
and single nodes of degree 10 — network C (c).
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Infection and control neighbourhoods are defined iteratively. A neigh-
bourhood z = 1 describes a set of k points which are connected to the central
neighbour (note that each vertex has k connections). Then z = 2 extends
this set to include all first-order neighbours of each neighbour from the set
with z = 1. This procedure is then performed for higher-order neighbours.
The zone z = −1 corresponds to an empty set (only applies to control),
whereas z = 0 corresponds to the central individual only. Infection vicinity
(characterised by zinf) contains nodes to which disease can be transmitted
(if the central node is infectious, either I or D), or from which the disease
can be contracted (if the central node is susceptible, S). This neighbour-
hood is different to, and typically smaller than, the control neighbourhood
(described by z).

The neighbourhoods naturally extend to cliques. In particular, if a con-
trol event is triggered by an individual that belongs to a c-clique, all individ-
uals in this clique and at least one individual node that does not belong to
any clique, are treated. If z > 2, than more cliques than one can be included
in a single control event.

2.3. Network characteristics

Networks used in this paper can be characterized (among other measures)
by the degree-dependent clustering coefficient, ck, and by an average path
length, L, see Table I. The degree-dependent clustering coefficient [18, 49]
is given in terms of the sum

ck =
∑
c

γ(k, c)

Pk

(c− 1)(c− 2)

k(k − 1)
, (2)

where the degree distribution of the network (i.e. the probability that a ran-
dom node has k neighbours) is obtained from the relation Pk =

∑k+1
c=1 γ(k, c).

The mean degree of the network is then 〈k〉 =
∑

k kPk. A node chosen at
random from the set of all k-degree vertices is a member of a c-clique with
probability γ(k, c)/Pk. Being a member of a c-clique, it is then a part of(
c− 1
2

)
triangles, so that its local clustering coefficient [18] is expressed

by a fraction
(
c− 1
2

)/(
k
2

)
. The average path length [12] is de-

fined by

L =
logN

log〈k〉
, (3)

where N is the number of nodes in the network, and 〈k〉 = k (in our work)
stands for an average number of links per node. Increase in any of the
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three parameters, k, c, and p results in increase of the clustering coefficient,
representing increase in the proportion of individuals that are located in
cliques. In contrast, the average length decreases when k increases from
4 to 10, and is not dependent on c and p (as in our network each node has
exactly k links). However, the non-local properties of the neighbourhood
control strategy mean that all the clustering characteristics, c, k, p and ck
affect the optimal choice of control strategies.

TABLE I

Values of the parameters for networks used in the paper, ordered by a decreasing
clustering coefficient. The last column lists an average path length. Note that
always c ≤ k.

k = 〈k〉 c p ck L

10 10 0.75 0.6 4.7
4 4 0.75 0.375 7.8
10 10 0.25 0.2 4.7
4 4 0.25 0.125 7.8
10 4 0.75 0.05 4.7
10 4 0.25 0.0167 4.7

2.4. Economic model

The effectiveness of a control strategy is assessed in terms of a total
“cost” associated with a disease outbreak when such a strategy is applied.
In particular, we distinguish between two types of costs. Firstly, the costs
associated directly with diseased individuals (e.g. palliative treatment, hos-
pitalisation, absence from work, loss of production) can be estimated by the
total number of individuals that have been through the disease throughout
the outbreak, i.e. R(t = ∞). Costs associated with preventive treatment
(vaccination, culling) can be estimated by considering the final number of
individuals in the V class, i.e. V (t = ∞). Both approaches are possible
because in our model there is no transition out of either R or V classes.

Thus, the total cost of the outbreak can be estimated by

X = a1R(t =∞) + a2V (t =∞) , (4)

where a1 is a unit cost associated with each diseased individual, while a2 is a
unit cost associated with each treated individual. Without loss of generality,
we assume that a1 = 1 and a2 = a. The relative cost of treatment, a, is the
main control parameter in our paper and varies between 10−4 (preventive
treatment much cheaper than disease costs) to 103 (prevention much more
expensive than disease). Although it is difficult to estimate this values for
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real epidemics, values corresponding to a = 0.017–0.341 for influenza [51, 52]
and a = 0.01–0.85 for rotavirus and hepatitis A [53, 54] can be found in lit-
erature. Even smaller values of a can be associated with diseases for which
a vaccine is readily available and very cheap, e.g. measles (a = 0.001–0.01).
However, when costs of developing, producing and administering a vaccine,
including costs of delivery, are taken into account, a can exceed 1. In addi-
tion, culling animals or cutting trees, is also likely to bring a above 1.

In this context, we define the optimal strategy as a value of the treatment
neighbourhood, zc (which is typically larger than the infection neighbour-
hood, zinf), for which the total cost, X is minimal (and then X = Xc). The
optimisation is performed by fixing all parameters except control size, z,
performing a single replicate of a simulated outbreak for a range of values
of z. A minimum value of X, Xc, is then found for this series together
with the associated neighbourhood, zc. The whole process is then repeated
100 times to find the average values of Xc and zc and their standard de-
viations. As a consequence of this procedure, the optimal control size, zc,
does not need to be an integer (even though, the control size, z, is a discrete
number) and in that way our results are illustrated in figures. However,
in practice, the optimal control radius, zc, will be rounded up due to the
precautionary principle.

2.5. Simulation parameters

The population size is N = 5000. In this paper, we assess sensitivity of
the optimal control strategy to changes in probability of disease spread, f ,
probability of symptoms development, q, and probability of treatment, v.
Where not indicated otherwise, f = 0.1, q = 0.5, and v = 0.1. Other
parameters are fixed; probability of spontaneous recovery, r = 0.1, infection
neighbourhood, zinf = 1 (i.e. k immediate neighbours are affected in one
step). Initial number of infected (pre-symptomatic) individuals is I(0) = 5
(i.e. 0.1% of the population) and they are distributed randomly throughout
the population.

To assess sensitivity of the results to network structure and clustering,
we consider two levels of the number of links per node, k = 4 and k = 10;
two levels of cluster sizes, c = 4 (for k = 4 and k = 10) and c = 10 (for
k = 10); and three levels of the proportion of individuals in clusters, p = 0
(random network), p = 0.25 (25% individuals in clusters), and p = 0.75
(75% individuals in clusters). Note that c ≤ k.

3. Results

As shown in our previous papers [31, 32, 35], the behaviour of system
without control is characterised by a transition from limited, non-invasive
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disease for small values of f to an invasive epidemic for larger f . As f
tends to 1, all individuals in the population become infected. An addition
of control allows the authorities to stop the disease spread even for high
values of f , however, at the increased cost of treatment. There is, therefore,
a trade-off between the costs of disease cases and preventive treatment [31].
If the treatment neighbourhood, z, is too small, the disease escapes control
resulting in high values of R and, therefore, X. In contrast, if z is too
big, treatment is wasted on healthy individuals which have no contact with
infectious individuals (V and therefore X are large). As a result, a clear
optimal value of z, zc, appears, associated with the minimum of X, Xc. In
the following, we analyse how the choice of optimal strategy represented by
zc changes with the relative cost of treatment, a, for different properties of
the network (number of links per node, k, and size of the cluster, c) and the
epidemiological parameters.

3.1. Effect of changing probability of spread, f

In absence of clustering, the network is identical to a random network.
When the disease is invasive (for all f except the lowest one, f = 0.01), the
only admissible control strategies are the Global Strategy (GS) whereby the
control extends to all individuals in the population in one or very few steps,
and the Null Strategy (NS) when it is optimal not to treat any individual,
Fig. 2. GS is associated with control size zc ' 8 (for node degree k = 4,
almost all individuals are within distance of z = 8 from a random node and
so will be treated in a single event) or zc ' 4 (for k = 10). NS corresponds to
zc = −1 as no individual is treated — not even the infected one (see above
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Fig. 2. No clustering: Control size, zc, as a function of treatment cost, a, for
different probabilities of spreading disease, f : f = 0.01 (solid/red lines), f = 0.25

(dashed/navy lines), f = 0.5 (dotted/blue lines), and f = 0.98 (dash-dotted/grey
lines). Networks with degree k = 4 (left graph), with degree k = 10 (right graph).
Other parameters: q = 0.5, and v = 0.1.
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for the definition of z). The transition occurs at a = 1, except for small f
(below invasion threshold), when it is best to treat the nearest neighbours
(zc = 1) for most values of a. For intermediate values of probability of
disease spread, f , Local Strategy (LS), when treatment is applied to the
neighbourhood of a detected individual, appears for all values of costs a
smaller than 1. However, the radius of control, zc, associated with LS is
relatively high, 5 ≤ zc ≤ 7, and increases with increasing f . LS largely
disappears for f ' 1, Fig. 2, as well as for the networks with degree k = 10.

In the case with clustering, we can identify three distinct control options,
Fig. 3, the Global Strategy (GS), the Local Strategy (LS) and the Null
Strategy (NS). However, regions of applicability for each scenario depend on
the network properties and on whether the disease is invading or not.

Figure 3 (a) illustrates the situation when probability of disease spread,
f , is very low (f = 0.01) and therefore the disease is not transmitted beyond
the initial focus (cf. Fig. 1). All networks present the same behaviour. When
the cost of treatment is very low (a ≤ 0.005), GS is the cost-effective option
but with increasing costs, a, zc decreases gradually and reaches zc = −1
that corresponds to NS. The exception are networks with low k, for which
zc = 0 (treating only the detected individual) is optimal for high a. Figures 3
(b), (c), (d) show the results with increasing probability of disease spread
(f = 0.25 in (b), f = 0.5 in (c) and f = 0.98 in (d)). Three different
strategies can still be found, similarly to the random network case.

Networks with 4-cliques and node degree k = 4 (thick black/red lines
in Fig. 3) are characterized by the longest mean path length. Therefore,
the optimal control, zc, reaches the highest values when GS is the most
cost-effective scenario. Moreover, the plateaux that corresponds to LS is
the widest for networks with c = k = 4 and p = 0.75, Fig. 3. However, the
plateaux is getting narrower with increasing probability of disease spread, f .
Networks with k = 10 and with either c = 4 or c = 10 show results almost
identical to random networks with p = 0. Increase of p to 0.75 extends the
plateaux in this case as well, although the effect is small.

Number of cliques in networks affects the change between LS and NS. As
the number of cliques in the population increases, the shift between LS and
NS becomes sharper and moves towards lower treatment costs (approaching
a = 1). The higher node degree, the smaller the difference between choice
of control strategy for different number of cliques.

Finally, the network B with c = 4 and k = 10 largely follows the case of
network C with c = k = 10 regardless of proportion of nodes in cliques, p,
showing that the main effect is due to the change in the number of links
per node, k, not the size of a clique, c. The apparent decrease in zc in
the region corresponding to GS (small values of a) is due to changes in the
connectivity of the network. For k = 10, a single control event with z = 5
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already reaches most of the nodes on the network, whereas for k = 4 it is
necessary to extend z to z = 8 to achieve the same effect. Note that we keep
the same f even though k increases, so the overall effect is of making the
disease spread more rapidly.
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Fig. 3. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick black/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% (p = 0.75) of nodes in cliques, whereas dashed lines to 25%

(p = 0.25). Probability of spreading disease, f , changes from f = 0.01 in (a),
f = 0.25 in (b), f = 0.50 in (c) to f = 0.98 in (d). Other parameters: q = 0.5, and
v = 0.1.

3.2. Effect of changing time until detection, 1/q

The other important factor influencing the choice of the control strategy
is the detection time, 1/q. We first examine the effect of changing 1/q
on random networks without clustering and then determine the effects of
clustering.

We start with small values of q = 0.01 and, therefore, long times until
detection, 1/q. The longer it takes to examine the symptoms, the further
the disease can spread without being noticed. This results in only two pos-
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sibilities in the choice of the optimal control strategy: GS is chosen if costs
a < 1 and NS (with zc = −1) if a ≥ 1, Fig. 4. The same sharp transition
occurs when the network is clustered, Fig. 5 (a), although increasing pro-
portion of individuals in cliques, p, shifts the values of control, zc, in GS
upwards. LS is not an optimal choice in that case (Fig. 5 (a)). The disease
is transmitted without being detected and when the symptoms finally occur,
pathogen already has reached the whole population.
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Fig. 4. No clustering: Control size, zc, as a function of treatment cost, a, for
different probabilities of occurring the symptoms, q: q = 0.01 (solid/red lines),
q = 0.25 (dashed/navy lines), q = 0.50 (dotted/blue lines), and q = 0.98 (dash-
dotted/grey lines). Networks with degree k = 4 (left graph), with degree k = 10

(right graph). Other parameters: f = 0.1, and v = 0.1.
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Fig. 5. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% of nodes in cliques (p = 0.75), whereas dashed lines to 25%

(p = 0.25). Probability of examine the symptoms q = 0.01 in (a) and q = 0.50

in (b). Other parameters: f = 0.1, and v = 0.1.
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With decreasing detection time, 1/q, the LS starts appearing with the
associated zc also decreasing, see Fig. 4 and compare with Fig. 5 (b). In-
terestingly, the region in which LS is optimal expands significantly as 1/q
decreases. For fast detection times, LS can be applied even if the treat-
ment is about 100 times more expensive than disease cases, a ' 100. The
proportion of nodes in cliques, p, affects not only the region in which LS is
valid, but also the value of zc at the plateaux, Fig. 5, although the latter
effect is relatively small. The larger p, the more cost-effective LS is, as the
transition from LS and NS occurs at higher values of a for p = 0.75 than for
p = 0.25. Also, increase in p results in small decrease in zc at the plateaux.
The biggest effect on the transition is, however, due to changes in k, for
both non-clustered, Fig. 4, and clustered networks, Fig. 5.

As before, in the region where GS is valid, smaller values of zc correspond
to treating the whole population for k = 10 than for k = 4, see Fig. 5 and
compare with Fig. 4. The results for c = 4 and k = 10 again follow the
case with c = k = 10, so the main effect is associated with changing k.
Interestingly, the effect of increasing k is opposite for LS, as zc increases in
this case, see Fig. 5 (b). This is due to the disease spreading much quicker
for k = 10 than for k = 4, with the same f . This must be countered by
increasing the size of the control neighbourhood.

3.3. Effect of changing time until treatment, 1/v

Finally, we look at the efficiency of treatment, v. The balance between
this parameter and probability of removal, r, determines the proportion of
detected individuals that either are removed spontaneously, or are treated
in control events. Thus, 1/v can be interpreted as time from detection to
treatment, with the caveat that some individuals might become removed (R)
(recover and become immune, or die) while waiting for treatment. Similarly
to the case of detection rate, q, there is a big difference between low and
high values of recovery, v, both for the non-clustered, Fig. 6, and clustered
networks, Fig. 7.

When recovery rate, v, is small and the time until treatment, 1/v, is long,
the situation presents similar behaviour to the case of small probability of
showing the symptoms,q. As long as the symptomatic individuals remain
infectious, they continue to spread the disease while waiting for treatment.
As a result, broadly speaking, there is only a choice between GS for a < 1
and NS for a ≥ 1. However, there is some gradual change in control size, zc,
for GS and the transition at a = 1 is not as sharp as before, see Fig. 6.

Interestingly, although the fact that for long times till treatment, 1/v,
clustering introduces some evidence of a plateaux associated with LS, the
values of control size, zc is rather high (zc ' 6). The plateaux is also
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Fig. 6. No clustering: Control size, zc, as a function of treatment cost, a, for differ-
ent probabilities of recovery, v: v = 0.01 (solid/red lines), v = 0.25 (dashed/navy
lines), v = 0.50 (dotted/blue lines), and v = 0.98 (dash-dotted/grey lines). Net-
works with node degree k = 4 (left graph) and with node degree k = 10 (right
graph). Other parameters: f = 0.1, and q = 0.5.

extended towards treatment costs a > 1 when proportion of individuals in
cliques p = 0.75 as compared to p = 0.25, Fig. 7. There is no consistent
effect of clustering on control size, zc, in the region of GS, Fig. 7. In addition,
increase in degree of nodes, k, decreases the value of zc for GS and shifts the
transition from GS to NS towards costs a = 1. The reason of that behaviour
is the infection that spreads easier in the networks with degree k = 10 than
for networks with k = 4 (and for the same transmission rate, f).
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Fig. 7. With clustering: Control size, zc, as a function of treatment cost, a, for
different graph topology: networks A with node degree k = 4 and the size of
cliques c = 4 (thick/red lines), networks B with k = 10 and c = 4 (grey/blue
lines) and networks C with k = 10 and c = 10 (thin/grey lines). All solid lines
correspond to 75% of nodes in cliques (p = 0.75), whereas dashed lines to 25%

(p = 0.25). Probability of recovery v = 0.01 in (a) and v = 0.50 in (b). Other
parameters: f = 0.1, and q = 0.5.
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When treatment control can be applied without any delay (large v, small
1/v), control size, zc, is significantly lower than before. There is practically
no evidence of GS as the optimal option and the plateaux associated with LS
extends towards very small values of treatment costs, a. Thus, if we can act
quickly, it is optimal to treat population locally even if the treatment cost, a,
is very low and there is a temptation to treat indiscriminately (as in GS).
We do not assume that some additional cost is associated with detection.
Increase in clustering (from p = 0 to p = 0.25 and p = 0.75) shifts the
extend of the plateaux towards higher values of costs, a, although the effect
is small for small node degree, k, and the size go cliques, c.

The effect of changing k is similar as for the probability of showing the
symptoms, q, both for GS (decrease in control size zc as k increases) and for
LS (increase in zc), Fig. 7.

4. Discussion

Faced with an outbreak of a novel disease, the authorities need to de-
cide on the approach to controlling its spread. One possibility might be
to refrain from any preventive action and concentrate on palliative treat-
ment of infected cases, effectively letting the epidemic to unfold itself (Null
strategy). Alternatively, they can attempt to treat the whole population
as quickly as possible (Global strategy). Finally, there is a possibility of a
gradual responsive approach, whereby new cases are identified and then con-
tact tracking is used to preventively treat individuals who might have links
with the pre- and symptomatic individual (Local strategy). The extent of
this “ring” control needs then to be determined by taking into account both
epidemiological and economic factors.

In our previous work, we studied the dynamics of the disease spreading
on regular, small-world and random networks. Although they capture some
aspects of the structure of real networks of contacts between people, animals
or plants, they do not include the effect of clustering noted in many real-life
applications [47, 48]. This paper fills in this gap and takes an important
step towards application of the modelling framework to realistic systems.

We have shown here and elsewhere [31] that the broad strategy choice
(NS, GS or LS) is primarily determined by the relative cost of palliative
and preventive treatments. In this paper, we are particularly interested
in finding conditions under which the local strategy (LS) is optimal for as
wide range of treatment costs, a, as possible. If the prevention is expensive
(a � 1), the choice favours the NS. The GS becomes optimal for very low
cost of vaccination (a � 1). However, the LS emerges for a ' 1 for disease
agents with certain properties. Higher the probability of disease spread, f ,
decreases the range of optimality of LS and, at the same time, increases
optimal control size, zc, so that LS eventually merges with GS. Rise in
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either detection q or treatment rate v (corresponding to the decline in the
time till detection, 1/q, and the time till treatment, 1/v) expands the range
in which LS is optimal, mainly towards high values of treatment costs, a.
Thus, boost efficiency of detection and reaction of public health systems
makes the LS more attractive, even if the actual treatment and prevention
remain very expensive. The reason is that we are able to catch the outbreak
early and stop it from expansion. Interestingly, higher treatment rate, v,
also reduces the range of optimality for GS for very low treatment.

Network topology and its effect on the choice of the optimal control
strategy form the key element addressed in this paper. Our analysis shows
that the average path length, L appears to be the decisive factor — the
larger L, the larger the interval for which LS is optimal. However, this is
at the cost of growing control size, zc. The degree-dependent clustering
coefficient, ck is the other crucial parameter. The large value of ck leads to a
small expansion of the range of LS applicability, particularly for a > 1. The
relative insensitivity of the results to clustering is an important result for
public health measures. We are not very likely to know the exact properties
of the real network, therefore the knowledge of details of LS predicted by
the mathematical models is significant, even if they do not exactly represent
the real levels of clustering.

Altogether, in this paper, we studied the effect of topological and epi-
demiological factors on the choice of the optimal control strategy for epi-
demics spreading on clustered random networks. We particularly addressed
the applicability of the local strategy (LS) in which individuals are treated in
a neighbourhood of a detected case. The work can be extended in a number
of directions. The network can be made more realistic, using real-world data
collected for example by usage of mobile phones. The epidemiological model
can also be extended to include different levels of mixing and changes in the
network due to disease appearance. The current economic model is also very
simple; there are many levels of costs that can be incorporated, including
detection and contact tracing, hospitalisation, and delivery of vaccines.
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