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Abstract 

 

The thermal evolution of the crystal structure of the prototypical orthorhombic perovskite 

LaFeO3 has been studied in detail by powder neutron diffraction in the temperature range 

25 < T < 1285 K. A conventional bond length/bond angle analysis, combined with an 

analysis in terms of symmetry-adapted modes, allows key aspects of the thermal behavior 

to be understood. In particular, the largest-amplitude symmetry modes (viz. in-phase and 

out-of-phase octahedral tilts, and A-site cation displacements) are shown to display 

relatively ‘normal’ behavior, increasing with decreasing temperature, which contrasts 

with the anomalous behavior previously shown by the derivative Bi0.5La0.5FeO3. 

However, an unexpected behavior is seen in the nature of the intra-octahedral distortion, 

which is used to rationalize the unique occurrence of a temperature dependent crossover 

of the a and c unit cell metrics in this compound.  
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Introduction 

 
The series of lanthanide orthoferrites LnFeO3 have been widely studied for a variety of 

physical and chemical properties, for example magnetism1, multiferroicity2, catalysis3 

and application in solid-oxide fuel cells4. This family also represents a very rich source of 

information for understanding trends in fundamental perovskite crystallography as a 

function of A-cation size5,6.  For all lanthanides, the thermodynamically stable phase for 

LnFeO3 at room temperature is the prototypical orthorhombically-distorted perovskite 
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(space group Pnma) represented by the Glazer tilt system a
+
b

–
b

–  (equivalently in this 

space group setting, a
–
b

+
a

–). This structure type is often known as ‘the GdFeO3 

structure’, or ‘the Pnma perovskite’ or ‘Pbnm perovskite’, depending on the choice of 

axis system. The octahedral tilting gives rise to an enlarged unit cell, of four times the 

volume relative to the aristotype cubic perovskite cell ap, given by aO ~ √2 ap, bO ~ 2 ap, 

cO ~  √2 ap in the standard Pnma setting (Figure 1). This is the most common distorted 

structure type for perovskites, and is typically stable for a range of tolerance factors7, t < 

0.975; the tolerance factor for LaFeO3 is 0.954. As shown by Woodward8, a balance of 

favorable covalent versus ionic bonding interactions at the A-site is largely responsible 

for the stability of this particular distortion, and for 0.975 < t < 1.02 the alternative tilt 

system a
–
a

–
a

–
 (described in space group R-3c) becomes more stable. This transition from 

Pnma to R-3c can be seen at room temperature, as a function of A-cation size in the series 

LnNiO3
9 and also occurs as a function of increasing temperature in a number of 

perovskites, including LaGaO3
10, LaCrO3

11 and LaFeO3 itself12,13. In this respect, an 

alternative view of the relative stabilities of the two structure types has been given in 

terms of the relative polyhedral volume ratios of the perovskite AO12 and BO6 sites14,15 

(ie. the A-site polyhedron expands more rapidly versus temperature than the B-site, thus 

stabilizing the R-3c phase at higher T). 

 

We have recently analysed the thermal behavior of the crystal structure of an unusual 

member of the GdFeO3-structure perovkite family, viz. Bi0.5La0.5FeO3 (BLFO)16. This 

compound was studied as a comparison to the important multiferroic perovskite BiFeO3, 

which we had shown to undergo a transition to a paraelectric, but unstable, GdFeO3-like 

structure at its ferroelectric TC
17. Our study of BLFO revealed some unexpected features; 

in particular a strong magnetostrictive effect below its magnetic ordering temperature, 

TN, which leads to a highly unusual structural response. The primary aim of the present 

study was therefore to compare the behavior of BLFO to that of LaFeO3, which has a 

similar TN, a similar t, but a ‘simpler’ composition at the perovskite A-site, free from the 

effects of mixed cation influences, and the effects of the Bi3+ lone-pair. Powder neutron 

diffraction (PND) is the technique of choice for this study, as precise determination of 

light atom (oxygen) positions and also magnetic ordering are required. 
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Another structural curiosity in the GdFeO3-structure perovkites is the observation of 

Zhou and Goodenough6 that there is an inherent octahedral distortion present in this 

family, in addition to the octahedral tilting, which can rationalise subtle features in the 

evolution of lattice parameters for a given LnMO3 family, as a function of Ln
3+ size. In 

general for this Glazer tilt system, the relationship a > c (in the Pnma setting) must 

always be valid, if the tilted octahedral units are perfectly rigid (since the a- tilts occur 

around the a-axis of the orthorhombic unit cell). However, there are a few cases where c 

> a occurs, and this is apparently due to the subtle octahedral distortions (specifically the 

deviation of the O-B-O angles in the ac plane away from 90°). Woodward et al.18 suggest 

that deviation need only be of the order of 1° to over-ride the effect of a modest 

octahedral tilt on the relative a/c dimensions. The cases where c > a are situated at the 

extreme end of the phase stability region of the Pnma phase (t ≥ 0.97) and include 

LaGaO3
10, LaCrO3

11 and SrRuO3
19. LaFeO3 itself (t = 0.96) is just below this region and, 

although it exhibits a unit cell with a > c at room temperature a crossover to c > a has 

recently been observed at around 700 K in the powder X-ray diffraction (PXRD) study of 

Selbach et al.13.  As far as we are aware this is the only instance where such a crossover 

has been observed in a perovskite system as a function of temperature rather than 

composition. However, the previous study did not offer a detailed rationale for this 

behavior, perhaps because PXRD is unable to determine sufficiently precise oxygen atom 

positions. The second aim of this study is therefore to understand the detailed nature of 

this crossover, in terms of the precise evolution of all the relevant structural parameters 

versus temperature.  

 

Experimental Section 

 

Synthesis: Polycrystalline LaFeO3 was synthesised using a conventional mixed oxide 

solid-state route. Stoichiometric quantities of La2O3 and Fe2O3 were thoroughly ball-

milled (1hr @ 600 rpm) and heated in an alumina crucible to 800 °C for 5 hrs. 

Subsequent regrinding and re-annealing at 1100 °C for 10 hrs led to the final product. 

Powder X-ray diffraction (Panalytical Empyrean diffractometer) was used to confirm 
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phase purity.  

Neutron powder diffraction (NPD): Time-of-flight neutron powder diffraction 

experiments were conducted using the HRPD and GEM diffractometers at the ISIS 

neutron spallation source at the Rutherford-Appleton Laboratories. The polycrystalline 

samples (~3 g) were mounted in cylindrical vanadium cans. Data were collected at a 

range of temperatures between 25 K and 550 K (HRPD) and 525 K and 1285 K (GEM). 

Each scan was counted for 40 µAhr (HRPD) or 50 µAhr (GEM) incident proton beam 

(corresponding to ca. 75 min and 20 minutes, real-time, respectively). 

Diffraction Data Analysis: All diffraction data were analyzed by Rietveld refinement 

using the General Structure Analysis System (GSAS) software package. Parameters 

refined included background coefficients, lattice parameters, profile coefficients, atomic 

positional coordinates, isotropic atomic displacement parameters and magnetic moment 

for the Fe3+ site. For HRPD refinements data from two detector banks were used, whereas 

four detector banks were used in the case of GEM. Models and refinement strategies 

were kept as self-consistent as possible given the differences between the two 

instruments. Isotropic refinement of all atoms was carried out for the Pnma phase, 

whereas anisotropic refinement was used for the R-3c phase.  Given the limitations of 

deriving precise, fully anisotropic thermal parameters and dynamical information from 

powder diffraction data, it should be borne in mind that the results presented here 

represent a time and space average crystal structure. In addition to traditional analysis of 

structure evolution in terms of bond lengths and angles, we find it constructive to 

complement this with analysis in terms of symmetry-adapted normal modes, which de-

correlate the effects of octahedral tilts and other distortions; this is implemented in the 

ISODISTORT suite20.  

 

Results  

 

Thermal evolution of lattice metrics 

For all temperatures in the range 25 < T < 1255 K the diffraction patterns displayed clear 

superlattice reflections at the pseudocubic M-point (k = ½, 0, ½) and X-point (k = 0, ½, 

0) in addition to the R-point (k = ½, ½, ½). The group-theoretical analysis of Howard and 
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Stokes21 (which simplifies the Glazer tilt classification into 15 unique models based on 

strictly rigid tilts) suggests four possible space groups compatible with the simultaneous 

presence of both in-phase (M-point) and out-of-phase (R-point) tilts. Of these, only the a
–

b
+
a

–  tilt system is compatible with the observed primitive orthorhombic crystal 

symmetry, which signifies the Pnma space group as an unambiguous choice, in the 

present case. At a temperature of 1270 K the M-point and X-point peaks had disappeared, 

and the lattice metrics were compatible with rhombohedral symmetry, demonstrating the 

phase transition to the R-3c phase, with no evidence of an intermediate phase. For the 

magnetic structure, a G-type antiferromagnetic order, with the moment constrained along 

the c-axis, was found to be satisfactory (Shubnikov symmetry Pn�ma�), although a 

slight canting of the moment has been confirmed previously22. At a temperature of ~760 

K the peaks due to magnetic ordering tended to zero, as shown by the refined value of 

magnetic moment (Supplemental material); this is slightly higher than previous reports of 

TN in the range 735 - 750 K23,24.  

The thermal evolution of lattice parameters within the Pnma regime is shown in Figure 2. 

Representative Rietveld fits and further details of refinements are provided in the 

Supplemental material25. The greatest degree of ‘orthorhombic distortion’ is observed at 

the lowest temperatures; at intermediate temperatures the normalized (pseudo-cubic) 

parameters tend to coalesce, and a crossover from a > c to c > a is seen around 770 K, 

above which there is a divergence of the lattice parameters prior to the rhombohedral 

phase being reached. We note that there is a systematic offset of the lattice parameters 

derived from the HRPD and GEM data. Hence the apparent anomalies seen around the 

region 500 – 600 K are artefacts of these differing systematic errors. This is unfortunate, 

but of no serious consequence to the overall trends we observe in either lattice parameters 

or other derived structural features discussed below. 

 

Thermal evolution of bond lengths/angles and symmetry-adapted modes 

 

In the Pnma crystal structure the B-site (Fe) lies on an inversion center, and so there are 

three independent Fe-O bond lengths, three independent O-Fe-O bond angles and two 

independent Fe-O-Fe bond angles for the two unique O sites (Figure 1). The behavior of 
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these parameters versus temperature is shown in Figures 3-5. 

In the symmetry-mode approach the seven independent positional parameters of the 

Pnma structure are re-cast as seven distinct internal modes26: two octahedral ‘tilts’ 

(labelled M3
+ and R4

+), three octahedral distortions (M2
+, X5

+(O) and R5
+(O)) and two A-

site cation displacements (X5
+(A) and R5

+(A)). Of these, the M3
+, R4

+ and X5
+(A) modes 

are often found to have the largest mode amplitudes in many Pnma perovskites (further 

details of the mode amplitude definitions is given in the Supplemental). The M3
+ mode 

(‘in-phase’ or ‘+’ tilt in Glazer notation) acts around the b-axis, whilst the R4
+ mode 

(‘out-of-phase’ or ‘-‘ tilt) is effectively a tilt around the a-axis of the orthorhombic 

supercell, in the Pnma setting. We note at this stage that the M3
+  tilt, acting alone, does 

not break the 4-fold symmetry down the b-axis, and permits the a and c axial metrics to 

remain equal, whereas the R4
+ tilt enforces c < a if rigid octahedra are to be retained. 

 

Discussion 

 

Octahedral tilting, distortion and the a-c crossover 

 

The behavior of the lattice metrics is in good agreement with the powder XRD study of 

Selbach et al.13; in particular the minimum of orthorhombic distortion coincides closely 

with TN in both studies. This, however, seems to be purely coincidental. In contrast, this 

behavior is markedly different to that observed for Bi0.5La0.5FeO3
16, where a maximum in 

orthorhombicity is observed near TN; this is discussed in more detail later. In the present 

case, there is no abrupt change in behavior of the lattice parameters around TN, but 

instead a more gradual ‘plateauing’ of the a-parameter below this temperature, whereas 

the relative expansivities of the b and c axes remain very similar towards lower 

temperatures. 

The relative expansivities of the unit cell axes are clearly influenced by the thermal 

evolution of both Fe-O bond lengths and inter-octahedral (Fe-O-Fe) and intra-octahedral 

(O-Fe-O) bond angles. As shown in Fig. 1, the Fe-O1 bond vector has its largest 

component along the b-axis, and the expansion of this bond can be seen to be primarily 

responsible for the change in the b-axis, as shown in Figures 2 and 3: ie. the Fe-O1 bond 



7 
 

increases by ~ 0.028 Å (from 2.005 to 2.033 Å) over the region 25 < T < 1240 K, 

corresponding to an increase in b of ~ 0.087 Å (from 7.850 to 7.937 Å). In contrast, the 

Fe-O2 bond lengths are relatively invariant with temperature, and the changes in the a 

and c axes are therefore driven largely by changes in the bond angles (or 

correspondingly, octahedral tilts and distortive modes).  

A particularly interesting feature of LaFeO3 is the crossover from a > c to c > a, as a 

function of increasing temperature. As discussed in the Introduction, this effect can be 

considered as a ‘competition’ between the ‘out-of-phase’ octahedral tilt mode around the 

a-axis (R4
+ mode) and the O2-Fe-O2’ intra-octahedral distortion angle (Fig. 4), which 

influences features predominantly within the ac plane. As can be seen from the evolution 

of the tilt modes (Fig. 6) both tilts show a general reduction in amplitude from lower to 

higher temperatures, but the changes in M3
+  are much larger than those in R4

+ across the 

entire temperature range. Indeed, the changes in M3
+ are larger than those in R4

+ even at 

intermediate temperatures, and show an escalating reduction in amplitude towards zero at 

the transition into the R-3c phase (symmetry requirements dictate a first-order transition 

here). At the lower temperatures studied (T < 600 K) there is a plateauing in the 

amplitude of the R4
+  tilt. These trends might suggest that an instability at the M-point is 

the primary driver for structural evolution, and that changes in the R-point tilt are 

secondary. The changes in the M3
+ and R4

+  tilt modes are mirrored in the corresponding 

inter-octahedral (Fe-O-Fe) angles, which show a smooth and large expansion for Fe-O2-

Fe angle and a smaller change for Fe-O1-Fe, which plateaus at low temperature (Fig. 5). 

The O2-Fe-O2’ angle shows quite a remarkable behavior. As can be seen in Fig. 4, the 

O2-Fe-O2’ angle (largely ‘in-plane’ relative to the a and c axes) exhibits a near-constant 

value (~91.2°) across the entire temperature range, significantly deviating from the ideal 

90°, but not subject to thermal variation. On the contrary, the O1-Fe-O2 and O1-Fe-O2’ 

(‘out-of-plane’) angles show changes of similar magnitude (1.5 - 2°) but opposite sign 

across the temperature range studied. Hence, the crystal-chemical origin of the a-c 

crossover is clear, though perhaps surprising: it is driven by the fact that, across the key 

temperature range 600 < T < 900 K, the decreasing amplitude of the R4
+  tilt allows c to 

increase relative to a, whereas the significant, but constant, in-plane distortion of the 
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FeO6 octahedron, as defined by the O2-Fe-O2’ angle, does not allow a to recover relative 

to c on approaching the higher temperature regime. 

 

A-site modes and comparison to Bi0.5La0.5FeO3 

 

In addition to the octahedral tilt modes discussed above, there are five other internal 

degrees of freedom. Of these, the three relating to oxygen atoms only represent different 

distortions of the octahedral units; each of these is relatively small and/or relatively 

invariant with temperature (see Supplemental). In fact, the significant distortion (O2-Fe-

O2’) of the FeO6 octahedron highlighted in the previous section is de-correlated from 

these internal modes, and is best perceived simply as a lattice strain: ‘stretching’ of the c 

versus a unit cell axes. The two remaining modes are the A-site (La3+) cation 

displacements: X5
+(A) is the most significant, and relates to an anti-polar displacement of 

successive b-axis layers along the a-axis (Fig. 1), whereas R5
+(A) relates to a much 

smaller displacement along the c-axis. An interesting feature of the unit cell axial 

behaviour (Fig. 2) which we have not yet addressed, is the continuing divergence of the a 

and c axes towards lower temperature despite the fact that the R4
+ mode no longer 

continues to increase below ~ 600 K. The reason for this is not straightforward to see in 

terms of any direct geometrical measure of the octahedral framework, but is almost 

certainly driven by the continually increasing displacement of the A-cation (principally 

via the X5
+(A)  mode below this temperature (Fig. 7). Typically, in the Pnma perovskite 

the two features of increased octahedral tilting and increased A-site displacement towards 

lower temperature are expected to go hand-in-hand. In this case, although the only tilt 

mode that is still increasing significantly towards lower T (ie. M3
+) cannot directly affect 

the c/a ratio, it clearly still co-operates to allow the A-site displacement and consequently 

permits a mechanism that allows the a-axis to achieve a relatively low thermal 

expansivity at the lowest temperatures. It is well-known8 that covalent contributions to 

the A-O bonding encourage the A-site displacements in this structure type, and bond-

valence arguments27,28 can be used to show that the resultant shorter/longer A-O bond 

distribution relative to the a rather than c-axis will allow this effective ‘expansion’ of a 

versus c at lower temperatures. In fact, the bond valence sum for La3+ does increase due 
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to the enhanced displacement (Supplemental), but apparently does not negate the above 

argument.  

One of the original aims of this study was to compare the thermal structural response of 

this parent material to the more complex derivative BLFO. The latter material displays 

some highly unusual features in its structural behavior versus temperature16. In particular, 

the most significant macroscopic feature is a dramatic plateauing of the expansivity of the 

c-axis (not the a-axis) below TN. This is ascribed to a magnetostrictive response to the 

antiferromagnetic ordering, which is correlated with counter-intuitive changes to both the 

M3
+ and X5

+(A) modes: ie. both the in-phase tilt mode and the A-site a-axis 

displacements decrease significantly throughout the temperature regime below TN. The 

orthorhombic distortion in BLFO also shows a maximum near TN, in contrast to the 

minimum seen here, and there is no a-c axis crossover. As we have seen above, there is 

no such magnetostrictive effect in LaFeO3 (although we do observe a very small ‘excess 

volume’ effect, as described in the previous PXRD study13). Moreover, for LaFeO3, the 

variation of the M3
+ and X5

+(A) modes proceeds in the intuitively expected sense, ie. 

larger amplitudes towards lower temperatures.  

Obviously the differences in behavior must be due to the nature of the A-site occupancy: 

although La3+ and Bi3+ have nominally very similar ionic radii23, their electronic nature is 

fundamentally different, Bi3+ displaying a stereochemically-active lone pair. These 

features are shown by a comparison of the unit cell volumes for the two, which are very 

similar throughout the temperature range studied. For example, at 300 K and 700 K: 

242.8 and 245.5 Å3 for LaFeO3 and 243.6 and 246.2 Å3 for BLFO, respectively. On the 

other hand the thermal evolution of both the individual cell parameters and also the key 

mode amplitudes are dramatically different. At 300 K the structure of LaFeO3 is 

surprisingly similar to that of BLFO, with mode amplitudes M3
+, R4

+, X5
+(A) of 0.719, 

1.206, 0.321 and 0.744, 1.225 and 0.259 for LaFeO3 and BLFO, respectively. The 

corresponding values at 700 K are: 0.658, 1.196, 0.268 for LaFeO3 and 0.837, 1.167 and 

0.313 for BLFO, emphasizing the contrasting trends in M3
+ and X5

+(A), in particular.  

 

Conclusions 
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LaFeO3 retains an orthorhombic (Pnma) perovskite structure across a very wide 

temperature range 25 < T < 1255 K, and is free from the complicating effects seen in 

other examples of this, the most common structural distortion of the perovskite structure 

(for example those having ‘lone-pair’ cations at the A-site or ‘Jahn-Teller’ cations at the 

B-site). This system therefore serves as an excellent model to understand the nature of 

some of the key structural distortions common to this structure type. Although a magnetic 

ordering transition occurs within the Pnma phase regime, this appears not to have any 

dramatic magneto-structural influence, in contrast to that seen in the Bi-containing 

derivative Bi0.5La0.5FeO3. Nevertheless, a curious anisotropic thermal expansion is 

observed in LaFeO3, and this has been rationalized in detail using both conventional 

geometric arguments and complementary symmetry-mode analysis. Several significant 

features are highlighted, some of which are unexpected: anisotropic bond length 

expansion, differing behavior of the two octahedral tilt modes and an invariant O-Fe-O 

bond angle. The latter effect is shown to be the key influence in understanding the 

previously reported crossover of the a and c parameters in this composition, and further 

emphasizes that although ‘rigid octahedral tilts’ provide an essential starting point for the 

analysis of perovskite structures, more subtle effects must also be taken into account in 

explaining some of the more esoteric structural behaviors encountered. 

 

Supplementary Material 

 

Representative CIF files (for Rietveld refinements at 50, 275, 775, 1210 and 1270 K) 

have been deposited with ICSD: further details may be obtained from 

Fachinformationszentrum (FIZ) Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (e-

mail: crysdata@fiz-karlsruhe.de) on quoting deposition numbers 429714-429718. 
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Figure 1. Crystal structure of LaFeO3 viewed along (a) [010] and (b) [101]. The principal 

tilt modes and A-site displacive mode are shown schematically. 
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Figure 2. Thermal evolution of the lattice parameters. Note that b’ = b/√2 
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Figure 3.  Thermal evolution of the Fe-O bond lengths: Fe-O1 (diamonds), Fe-O2 

(triangles), Fe-O2’ (squares). 
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Figure 4.  Thermal evolution of the O-Fe-O bond angles: O2-Fe-O2’ (triangles), O1-Fe-

O2 (squares), O1-Fe-O2’ (diamonds). 
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Figure 5.  Thermal evolution of the Fe-O-Fe bond angles: Fe-O1-Fe (diamonds), Fe-O2-

Fe (circles). 
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Figure 6.  Thermal evolution of octahedral tilt modes: M3
+ (squares), R4

+(diamonds). 

 

 

 

Figure 7.  Thermal evolution of the A-site displacive modes: X5
+ (squares), R5

+ 

(diamonds). 
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Graphical Abstract 
 
The unusual thermal evolution of lattice metrics in the perovskite LaFeO3 is rationalised 
from a detailed powder neutron diffraction study. 
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Highlights 

 

 

Crystal structure of the perovskite LaFeO3 studied in detail by powder neutron 
diffraction. 
Unusual thermal evolution of lattice metrics rationalised.  
Contrasting behaviour to Bi-doped LaFeO3. 
Octahedral distortion/tilt parameters explain unusual a and c lattice parameter behaviour 
 




