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Summary

1. Existing spatially explicit capture-recapture (SECR) software does

not have the ability to fit flexible nonparametric models of animal

density.

2. We describe and implement in the R package secrgam, a flexible

method for estimating density surfaces from SECR data, using regres-

sion splines.

3. Package secrgam is an extension of package secr to implement

some models available in the generalised additive model package mvcv.

It accommodates density models that are arbitrarily flexible functions

of spatially- and temporally-referenced variables. This includes one-

dimensional and multi-dimensional smooths of covariates and smooths

with interactions. The shape and smoothness of the fitted density

surfaces is data-driven and can be determined using AIC or similar

criteria. We illustrate use of the package by estimating the density

surface from a simulated camera trap survey of leopards.

4. Package secrgam provides a flexible tool for species distribution

modelling using SECR data.

Key-words: spatially explicit capture-recapture, generalised additive model,

species distribution model, density estimation
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Introduction

The first spatially explicit capture-recapture (SECR) software was program

Density, developed by Efford et al. (2004) to implement the inverse prediction

method of Efford (2004). The R (R Development Core Team, 2014) pack-

age secr (Efford, 2013) implementing the maximum likelihood estimation

methods of Borchers & Efford (2008) was developed in 2008 and has since

been extended substantially. Singh et al. (2010) developed the R package

SPACECAP that implements a Bayesian estimation method.

Theory for modelling non-uniform density surfaces with SECR data using

nonhomogeneous Poisson processes (NHPPs) was developed by Borchers &

Efford (2008). Since the rate parameter of the NHPP at any point in space

is the density of activity centres at the point and the rate parameter of an

NHPP changes in space, this kind of model accommodates non-uniform dis-

tribution of activity centres. However, with the exception of package secr,

all estimation software developed to date implements models with uniform

distribution. This is frequently an unrealistic model but development of

software that implements realistic non-uniform distributions is substantially

more difficult than assuming a uniform distribution. This is because the

form of dependence of density on spatially-referenced variables is generally

unknown and may be non-monotonic (i.e. increasing in some parts of the

variable space and decreasing in others), so that flexible, data-driven models

for the dependence of density on spatially-referenced variables are required.

And it is more difficult to implement such models than uniform density mod-

els or models with fixed parametric forms.
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Efford (2013) addressed the problem to some extent by allowing density

to depend on habitat, geographic and/or other spatially-referenced variables

in package secr, using generalised linear model link functions to link these

variables to density. This allows SECR models in which the rate parameter

of the NHPP (i.e. the density) is a parametric function of explanatory vari-

ables. For example, if x is an explanatory variable, then with a log link, rate

parameters of polynomial form are possible:

D(x) = exp
{
β0 + β1x+ β2x

2 + . . .+ β2x
k
}

(1)

where k can be chosen using some model selection criterion. When density

is modelled as a function of more than one explanatory variable, interaction

terms can be included.

We extend the capabilities of secr by modelling D(x) using regression

splines. Further information, including help files and example data and ana-

lysis can be obtained by downloading and installing the secrgam package

from github (https://github.com/david-borchers/secrgam). In what follows

we assume some familiarity with the R packages mgcv, which implements

generalized additive models (GAMs; Wood, 2014) and secr (Efford, 2013),

which implements maximum likelihood estimation for SECR surveys.

Regression splines for density surface modelling

The linear predictor in a polynomial model of degree k can be viewed as a

weighted sum of the basis functions x0, x1, x2, . . ., xk (in which the para-
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meters β0, . . . , βk are the weights). When used as a means of representing

unknown smooth functions, such polynomial basis functions have some un-

desirable properties (see Section 3.2.1 of Wood, 2006) and so in package

secrgam we use regression splines instead of polynomials to represent un-

known smooth functions.

Regression splines involve a set of locally-defined basis functions (“local”

in the sense that each basis function is non-zero only on some relatively

small interval of the explanatory variable range). The weighted sum of these

functions is the unknown smooth function representation. Specifying spline

basis functions involves specifying the kind of basis function (e.g. cubic

splines, thin plate splines, B-splines), the number of basis functions to use

(k), and the range of each basis function (the covariate values at which it

is non-zero). The range is determined by the spline “knot” locations. (see

Wood, 2014, Section 3.2.1 for an explanation of knots), the number of which

is determined by the kind of basis function and k. As with polynomial

regression, in which k is the highest power of the explanatory variable, the

greater k is in the case of regression splines, the greater the flexibility of the

resulting function. A regression spline representation of D(x) of Equation (1)

would be

D(x) = exp {β0b0(x) + β1b0(x) + β2b2(x) + . . .+ β2bk(x)} (2)

where b0(x), . . . , bk(x) are k spline basis functions evaluated at x and β0, . . . , βk

are the weights. Three forms for bj(x) are implemented in package secrgam:

thin plate regression splines, cubic regression splines and tensor product re-
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gression splines. Each of these can be functions of single or multiple variables.

For example if x and y are explanatory variables one can have

D(x, y) = exp

∑
j

βx,jbx,j(x) +
∑
j

βy,jby,j(y)

 (3)

or D(x, y) = exp

∑
j

βjbj(x, y)

 (4)

where bx,j(x) and by,j(y) are univariate spline basis functions of x and y, and

bj(x, y) is a bivariate spline basis function of both x and y. Equation (4)

implicitly includes interaction terms, whereas (4) does not. See Wood (2006)

for details of univariate and multivariate spline bases and related issues.

Density surface modelling with secrgam

To fit regression spline models of density to SECR data, secrgam relies heav-

ily on package secr, which does maximum likelihood estimation for a wide

range of SECR models, and on the generalised additive model (GAM) pack-

age mvcv. Package mvcv can’t be used directly to fit SECR models, because

SECR likelihoods are not in the exponential family, but it can readily be

used to construct spline basis functions. Having done this, secr can be used

(after some R object manipulation) to fit regression spline models to SECR

data.

The key to fitting regression spline models using secr is representing them

as linear models (on the link function scale), since secr can fit this kind of

model. The first step in the process is to evaluate the basis functions at all

values of x that are used in fitting the model. (We use x to represent spatially-
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referenced explanatory variables, which may be scalar or vector.) Because

activity centre locations are unobserved (latent) variables in SECR models,

spatially referenced variables at all possible activity centre locations for any

detected animal must be considered (see Borchers & Efford, 2008; Efford

et al., 2009). A grid of points representing all such locations is called the

“mask”. Evaluation of the basis functions at every mask point is done using

mvcv, which returns a design matrix containing bj(xu) (j = 0, . . . , k, u =

1, . . . , U) for all xu on the mask, where x = (x1, . . . , xU) is a vector of U

explanatory variables. Package secr can then be used to fit an SECR model

with the design matrix returned by mvcv.

So secrgam comprises a set of wrapper functions around secr that (1)

interprets regression spline model specifications and does some R object ma-

nipulation (using mvcv) to formulate a regression spline model as a linear

model on the link function scale (this includes knot placement, which is done

by mvcv), (2) uses secr to fit the model, and (3) manipulates the objects

output by secr (e.g. prediction, plotting and summaries of point and inter-

val estimates of density). Using secr to fit the model has the substantial

advantage that it gives users access to the extensive range of SECR models

and associated functions implemented in secr.

Note that the regression spline models fitted with secrgam are similar to

GAMmodels fitted with mvcv using the option fx=TRUE to fix the smoothness

of the fitted model, but they are different from GAM models fitted with mvcv

using fx=FALSE (the mgcv default), which implements penalised regression

splines with automatic smoothness selection. The key differences between the

two methods is that in the latter case the smoothness of the fitted function
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is determined automatically (by penalising “wiggliness” and using a model

selection criterion to find an optimal penalty), whereas it must be specified

explicitly via the argument k (see below) in secrgam, and the user must

manually select an appropriate k using a model selection criterion. Penalised

regression splines are not implemented in secrgam.

Model specification in secrgam

The syntax for fitting models in secrgam is identical to that of secr except

that (1) function secrgam.fit is used in place of secr.fit and (2) the GAM

model specification syntax of mvcv can be used to specify the density model.

(A note on terminology: although these models of animal density are not

strictly GAMs because the SECR likelihood is not in the exponential family,

we refer to them as GAM density models for convenience.)

For example, the code below fits a GAM density model of altitude (vari-

able alt) to the SECR capture history object Boland.CH1 with the mask

Boland.mask1, using thin plate spline basis functions with k = 4 .(Thin

plate splines are the mgcv default when using the “s( )” option for smooths;

tensor product splines are also available in secrgam by using the “te( )”

option.)

model = list(D~s(alt, k=4)) # (specifies the GAM density model)

fit = secrgam.fit(capthist=Boland.CH1, model=model, mask=Boland.mask1)

(The structure of masks is described in the help files of secr.) The fitted

regression spline model can be viewed using secrgam (see below).
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Camera-trap survey analysis

We illustrate secrgam by using it to model density as a function of spatially-

referenced variables from a simulated camera-trap survey of leopards. The

simulated leopard data are based on a camera-trap survey conducted by the

Cape Leopard Trust Boland Leopard Project. Data were simulated from a

model fitted to the real data using secrgam, but the simulated density was

higher than that of the fitted model – to give more power to detect spatial

trend and so better illustrate the density modelling capabilities of secrgam.

Fig. 1: Landuse class (left) and altitude (right) plots of the Boland camera
trap survey area. Black crosses are camera trap locations.

Figure 1 contains image plots of altitude and landuse type in the area,

with camera traps overlaid. Two additional variables, the shortest distance to

water and shortest distance to urban area, were calculated from the data in

Figure 1. Figure 2 shows these variables on the mask (called Boland.mask1)

used to fit the SECR models below. Recall that the mask contains all activity

centre locations of animals that could be detected on the survey; the detection
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range on this survey is such that there is negligible probability of detecting

an animal with activity centre outside the mask shown in Figure 2. These

plots were created using the image function of secrgam. The plot of distance

to water (variable name dist2.Water), for example, was created as follows

(asp=1 retains the original aspect ratio):

image(Boland.mask1,covariate="dist2.Water",asp=1,main="Distance to Water")
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Fig. 2: Distance to urban area (left plot) and distance to water (right plot),
both in metres. Black crosses are camera trap locations. Distances are shown
for the secrgam mask. “Holes” in the mask are urban areas or water, neither
of which are suitable leopard habitat and were therefore excluded.

Simulated survey data were created by fitting a GAM density model to

the original survey data, using the secrgam function sim.popn.secrgam to

generate a population from this GAM density model (but with higher density

than the original model), and the secr function sim.capthist to generate

capture histories from this population using detection function parameters

from the original fit. The commands below do this (with 150 activity centres

in the mask), taking the secrgam fitted object fit.ex as the true density
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model. The last two commands below plot the capture histories and overlay

the locations of the camera traps on this to create a plot like Figure 3. (Some

plotting options have been omitted from the last two commands, for brevity.

Functions coef and sim.capthist are secr functions, while the two plot

commands below call the secr functions plot.capthist and plot.traps .)

cameras=traps(fit.ex$capthist) # extract the secr traps object

g0=coef(fit.ex)["g0",1] # extract det. fn. parameter g0

sigma=coef(fit.ex)["sigma",1] # extract det. fn. parameter sigma

# simulate the population on the mask:

popn=sim.popn.secrgam(fit.ex,N=150,mask=Boland.mask1)

# simulate a capture history:

Boland.CH1=sim.capthist(cameras,n.occasions=13,

detecpar=list(g0=g0,sigma=sigma)

# plot the capture histories (rad offsets dots from cameras)

plot(Boland.CH1,rad=750,tracks=TRUE,gridlines=FALSE)

plot(cameras,add=TRUE) # add the camera locations

GAM models for density with various combinations of landuse category

(LUfactor) and smooths of altitude (alt), shortest distance to urban area

(dist2.Urban) and shortest distance to water (dist2.Water) were fitted,

including linear models and models with k up to to 4. The best model,

chosen by AIC, was fitted using the commands below. Also shown below are

the commands used to create Figure 4 and the right hand plot in Figure 5.

model = list(D~s(alt,k=3)+s(dist2.Water,k=3))

fit1.a3.dW3= secrgam.fit(Boland.CH1,model,Boland.mask1)

plot(fit1.a3.dW3,type="smooth") # (plots of smooths of alt and dist2.Water)

plot(fit1.a3.dW3,type="density",asp=1) # (image plot of est. density on mask)
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Fig. 3: Simulated leopard camera trap data. Different animals are represen-
ted by different coloured dots; recaptures of the same animal are linked by
lines and camera traps are represented by red crosses.

Plots of smooths of altitude and distance to water, together with 95%

confidence limits are shown in Figure 4.

The estimated density surface from the selected model is shown in Fig-

ure 5. It can be seen that the estimated density surface is a fairly good

representation of the surface from which the data were generated. This does

not of course imply that one will reproduce the true density surface this

well in practice: our model has the considerable advantage that the true

model was in the set of models fitted to the data (in fact it was a model just

like the selected model, with D s(alt,k=3)+s(dist2.Water,k=3)). It does,

however, demonstrate that with the right model and adequate data, it is

possible to get a good representation of the underlying non-uniform density

model by using secrgam. The point estimate of abundance on the mask from

the fitted model, obtained using the secrgam function region.ND (which is

a minor extension of the secr function region.N) is 117 animals with 95%

confidence interval (88, 155); recall that simulated abundance is 150.
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Fig. 4: Estimated smooth functions of altitude (left) and distance to water
(right). Dashed lines are 95% confidence limits; tick marks on the horizontal
axis show locations of the camera traps.

The ability of SECR GAM density models to capture the true distribution

of animals in an area of interest will depend on sample size and survey design.

The real data sample size (number of animals detected) for this survey was

20, whereas our simulated sample size is 66. With a simulated sample size

of 20, a uniform density model was preferred (∆AIC=10) on the basis of

AIC - despite the very considerable non-uniformity in the true density model

(shown in the left panel of Figure 5).

The ability of SECR GAM density models to capture the true distribution

of animals will also depend on where detectors are located. One can see

from the right panel of Figure 1 and the left panel of 4 that there are no

camera traps at the highest and lowest altitudes contained in the mask.

(The range of altitudes in Figure 4 corresponds to the range in the mask.)

Extrapolating from the range of altitudes covered by the cameras to those

outside this range is a matter of faith (that the form of the relationship
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Fig. 5: Plots of true (left) and estimated (right) density in the Boland camera
trap survey mask. Black crosses are camera trap locations.

between density and altitude persists beyond the range covered by cameras).

If there is interest in density at the more extreme altitudes, a better design

would be to locate some cameras at these altitudes. Even if these cameras

generate no detections, this is informative about the relationship between

altitude and density. In general, surveys that wish to model the dependence

of density on explanatory variables should have detectors that span the range

of all explanatory variables of interest.

Summary

The R package secrgam provides an extension to the maximum likelihood

SECR estimation package secr, to allow flexible data-driven modelling of

density. While our example analysis above considers only modelling change

in density over space, secrgam also implements smoothing over time

We anticipate that secrgam will prove useful for modelling and under-

standing relationships between habitat and other spatially-referenced vari-
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ables and density, using SECR survey data.

Although secrgam relies on the widely-used GAM package mvcv to set up

basis functions, the smoothing methods implemented in secrgam are not as

general as those in mvcv. In particular secrgam does not use penalised like-

lihood methods and automated selection of the “wiggliness” of the smooths.

This means that the user must determine the wiggliness by trying a vari-

ety of values of the smoothness parameter k and choosing between models

manually using model selection criteria such as AIC. When there are complex

relationships between explanatory variables and density (i.e. when the op-

timal ks are large), the model selection process may be very time-consuming

and it may not be feasible to consider all plausible models. Although we have

analysed only a few datasets using secrgam, we have found k< 5 to be ad-

equate in all these cases, and manual model selection to be quite feasible. It

would nevertheless be useful to have software that implemented a penalised

likelihood approach with automated model selection, as does mvcv.

Finally, note that secrgam does not implement density surface models

for conditional likelihoods (see Borchers & Efford, 2008, Section 3.2) because

these likelihoods do not involve any model for density.
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