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ABSTRACT
There is a pressing need for a higher-level architectural per-
spective in metaheuristics research. This article proposes
a purely functional collection of component signatures as a
basis for the scalable and automatic construction of meta-
heuristics. We claim that this is an important step for sci-
entific progress because:

i). It is increasingly accepted that newly-proposed meta-
heuristics should be grounded in terms of well-defined
frameworks and components. Standardized descrip-
tions help to distinguish novelty from minor variation.

ii). Greater reproducibility is needed, particularly to facil-
itate comparison with the state-of-the-art.

iii). Interoperable descriptions are a pre-requisite for a data
model supporting large-scale knowledge discovery across
frameworks and problems.

A key obstacle is that metaheuristic components suffer from
an intrinsic lack of modularity, so we present some design op-
tions for dealing with this and use this to provide a roadmap
for addressing the above issues.

Categories and Subject Descriptors
H.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; D.1.1 [Applicative
(Functional) Programming]

Keywords
Metaheuristics, algorithm selection, analysis, experimental
framework, functional programming.

1. BACKGROUND
Metaheuristics methods are stochastic search algorithms that
have been employed to address a wide range of problems.
One of their major advantages is that they are abstract
search methods: the basic search logic can be applied to any
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problem which can be decomposed into the elementary con-
cepts of solution representation, solution quality and some
notion of ‘locality’, i.e. the ability to generate ‘neighboring’
solutions that are (heuristically intended to be) a function
of the quality of a given solution. Metaheuristics can be ap-
plied to a broad selection of very different problems across
sciences, engineering, economics, business and logistics [1].
However, it is well-known that no ‘Universal solver’ exists
(see e.g. [2]). The research community has responded to
this in two main ways: Firstly, by seeking inspiration for
new metaheuristics and secondly by exploiting problem do-
main specifics. For the former, the natural world has been a
rich source of ideas and researchers continue to investigate
natural phenomena in the hope of finding mechanisms with
a degree of generality. The latter can be addressed either
analytically or empirically. An analytic approach uses prob-
lem domain information to derive effective algorithms for
search components (EAX crossover for the TSP being one
such example [3]). The empirical approach performs con-
figuration tuning (by hand, using statistical design or some
machine learning technique) to create a metaheuristic bi-
ased to a target distribution of problem instances. There
are however a number of issues with both these responses
(some technical and some cultural), which we now describe.

Design Automation The desire to automate the exploita-
tion of problem features has led to interest in algorithm se-
lection methods [4] (including hyper-heuristics [5]). There
are many aspects of a problem domain that can be made
available in a domain-independent fashion. A trivial exam-
ple is the notion of the inverse of some operator — more so-
phisticated approaches are given in [6, 7, 8]. Unfortunately,
the notion of ‘domain-independent domain knowledge’ that
is well-understood in the formal methods and constraint-
programming communities is not prominent in metaheuris-
tics. For example, the only features exposed in a popular
selective hyper-heuristic framework [9] are opaque indices
representing solutions and (effectively randomized) opera-
tors. This therefore treats what could otherwise be a ‘white
box’ algorithm selection problem as a black box problem. A
standardized format for declarative descriptions of problem
domains, representations and operators would bring knowl-
edge engineering into the metaheuristics mainstream, with
significant research opportunities for increasing automation.

Communicability and Reproducibility Some metaphor-
ically inspired approaches have recently suffered strong crit-
icism for their lack of rigor: When the metaphor obscures
the specific solution-domain mechanisms used [10], the nov-
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elty of the metaphorical contribution becomes difficult to
determine. At worst, this can lead to re-invention or renam-
ing of mechanisms that are already well-understood (e.g. the
popular ‘Harmony search’ metaheuristic was determined to
be a simple variant of the foundational ‘Evolution Strate-
gies’ approach [11]). This unnecessarily fragments the field
and makes it appear impenetrable to outsiders. Using more
formal definitions helps avoid this issue, promotes princi-
pled decomposition of novel and existing frameworks [12],
and allows a better identification of potentially novelty. Re-
producibility is a stronger requirement and it is often a non-
trivial matter to replicate pre-existing work. In particular, a
metaheuristic may achieve success via (problem- or solution-
domainspecific) mechanisms which cannot easily be ported
to new architectures or applied to new problem domains.
This can make it difficult to determine if a metaheuristic
has simply been overfitted to a domain.

Scalability Historically, computing systems have tended to
get faster. The situation is no longer so simple: rather, sys-
tems are able to do more and more work in parallel [13]. To
take advantage of increasing parallel processing capabilities,
computations must be subdivided into a set of interdepen-
dent tasks to be executed efficiently in parallel across mul-
tiple cores and/or across multiple networked machines. In
computer science in general, much human effort has been
invested in algorithm-specific parallelization strategies. For-
tunately, many popular metaheuristics are ‘embarrassingly
parallel’ and it is desirable to be able to embed such generic
knowledge within a suitably structured workflow, so that
parallelization strategies can be applied automatically on
the target platform.

Knowledge Discovery It can be difficult to generalize
from a paper that compares two frameworks on a handful
of problems using ‘engineering metrics’ (such as CPU-time).
There is increasing interest in knowledge discovery on prob-
lem and algorithm features [14, 5, 15, 16, 17]. Science is
concerned with explanations rather than raw results, and in
order to support this, it is necessary to combine, exchange,
mine and reason about metaheuristics and their component
parts (e.g. acceptance, selection, perturbation etc) on a far
larger scale than has been possible to date. The goal is
to transform sharing of results from relatively isolated data
points communicated in via a paper into a large shared pool
of experimental data.

Interoperability Underlying the above issues is the gen-
eral lack of interoperability. Since there has been little com-
munity progress towards standardization, practitioners con-
tinue to create their own data formats. Fortunately, there
is growing interest in ‘metaheuristics in the large’: a de-
sire to create flexible and composite systems for solving
not only individual problems but also integrated variants
consisting of interrelated, but separated, problems. Real-
izing such systems requires interoperability of metaheuris-
tic frameworks and components: perturbative vs construc-
tive; single-state vs population-based; sequential vs paral-
lel (multi-core/distributed), single- vs multi- objective etc.
This in turn provides a foundation for generic tools (e.g.
parameter-tuning and machine-learning libraries, GUIs for
visualization and interaction etc).

In summary, whilst improving on the state of the art should
always be a key driver for a research community, the re-

lentless pursuit of novelty and the ‘up-the-wall game’ [10] is
counterproductive. While researchers labor in relative iso-
lation, the risk of misidentifying novelty and difficulty of
achieving generalization remains present. Scientific progress
is greatly hindered by the lack of a common vocabulary in
machine-readable form. In this article, we propose a neces-
sary step along this path, structured as follows: in Section
2 we discuss design issues and options for a generic suite
of metaheuristic components. In Section 3 we give a func-
tional and modular description of components, giving ex-
ample frameworks in Section 4. In Section 5 we outline a
roadmap for addressing the above issues and in Section 6 we
provide conclusions and some open research questions.

2. DESIGN PRINCIPLES
In this section, we discuss design options, taking into ac-
count the desirable features of the elementary components
of metaheuristic search. Since there is already a palette
of heuristic components such as Exponential Monte Carlo
(EMC) acceptance and tournament selection that are well-
known to have good cross-domain performance, it is clearly
desirable to be able to instantiate metaheuristics via auto-
mated component configuration. This can be considered as
a special case of software component assembly and design is-
sues can usefully be addressed from a software architecture
perspective. Desirable design features include:

i). Rapid prototyping of new ideas, while readily express-
ing common use cases and maximizing ease-of-use.

ii). Instrumentable. For example, allow the user to plug-
in ‘algorithm visitors’ to act as gauges or collect data
on various ‘observables’. For knowledge discovery, this
includes the collection of traces decorated with any de-
sired info (e.g. measures for instrumenting/predicting
component quality).

iii). “Only pay for what you use”. This means that the
design should not mandate that calculations be per-
formed (e.g. finding the objective value of a solution)
unless and until this information is explicitly required.
Meeting this criterion requires very considered design
of component interfaces.

A significant obstacle to the automated composition of meta-
heuristic components is that they suffer from an intrinsic
lack of modularity. Configuration can be defined in general
terms by expressing frameworks as higher-order functions
that take components as parameters. In order to ‘plug-in’ a
newly-devised component into a pre-defined framework, we
need to define a ‘one-size fits all’ signature for it. For exam-
ple, a possible signature for acceptance (here parametrized
by State, representing some generic notion of search state)
is:

acceptState : incumbent : State× incoming : State→ B

As a concrete example of this, Listing 1 gives a simple lo-
cal search framework. As is always the case when defin-
ing re-usable function signatures, there is a tension between
generality and the information required by some arbitrary
implementation. For example: EMC-acceptance needs to
know about temperature and tabu-based approaches need
a trace of search progress. These are just two motivating
examples of environmental state, which forms the context
for the current action of a search process. Since the key to



State i t e r a t edPe r tu rb ( s : State ,
perturb : PerturbState ,
accept : acceptState ,
i sF i n i s h ed : I sF in i sh edState ) {

while ( not i sF i n i s h ed ( s ) ) {
newS = perturb ( s )
i f ( accept ( s , newS) )

s = newS
}
return s

}

Listing 1: A framework using higher-order
functions.

metaheuristic performance is the injection of detailed do-
main knowledge into the search process, we clearly cannot
anticipate in advance what information will be required by
some component yet to be devised and therefore need to
manage this state information by some other means. Prin-
cipled handling of environment state is key to metaheuris-
tic modularisation, and is therefore essential both for com-
ponent interoperability and the automated construction of
metaheuristics.

2.1 Implementation Options
There are a number of options for handling environment
state. The tradeoff we wish to achieve is a balance between
modularity, simplicity and expressivity. For the reasons dis-
cussed above, the former is the most important requirement.
Generality is also of great importance, since we do not wish
to artificially restrict the range of heuristics we can express.
Some possible design alternatives are as follows:

Global variables This approach is probably the most rep-
resentative of current practice: metaheuristic construction is
done ‘by hand’ and environment state is scattered through-
out the implementation in an ad hoc fashion. This is of
course completely counter to modularity and is addition-
ally counter to automation: since the underlying state of
the metaheuristic can be modified at any point, it is diffi-
cult to unambiguously assign credit (e.g. via reinforcement
learning) to a specific component.

Partial function application The required state informa-
tion is passed to components when they are constructed. In
functional languages, this can be seen as equivalent to partial
function application; it is also called currying and is indeed
available in a wide range of scriptting languages including
JavaScript, Ruby and Perl. While this is more principled
than the ‘global variables’ approach, modularity is merely
enabled by this means (i.e. via encapsulation), rather than
enforced: nothing prevents this state information from being
mutated by some arbitrary component to which it is visible.

Mixins are a behavioral factorization technique, supported
in some object-oriented programming languages. They al-
low an entity to defer the implementation of behaviors to
the other entities upon which it depends. Dependencies be-
tween components are explicitly specified via reference to
interfaces providing the desired behaviors. The environment
state problem can be addressed with mixins by dividing
responsibility between ‘state providers’ and ‘state clients’.
When a component such as EMC acceptance is implemented

with mixins, rather than having explicit direct access to a
value of type Temperature, it would rather only declare the
dependency on Temperature. This can be beneficial, as oth-
erwise the implementer of EMC acceptance has to create
the Temperature component to pass it to the constructor.
This facilitates automated component assembly in ‘just in
time’ mode, i.e. many components can be plugged together
simultaneously (as opposed to step-by-step hierarchical con-
struction). Mixins typically allow also linearization: several
components of the same type can be combined to form a
‘chain of responsibility’, e.g. a composite acceptance condi-
tion or a sequence of search operators.

Combinators Combinators are pure functions (i.e. without
side-effects) that combine one or more primitive values into
a more complex form. They can be used similarly to partial
applications, to pass environment state in specific ways from
one primitive computation to another. However, they encap-
sulate state in a controlled way, ensuring that it is passed
from one primitive operation to another without unwanted
side effects or unexpected alteration. Previous work has
demonstrated that it is possible to create expressive frame-
works for constraint programming and local search with this
approach [18, 19] and recent work has further increased the
automated support for composition of components.

3. PROPOSED COMPONENTS
From the design options of Section 2, we now propose com-
ponents which address the modularity issue. The proposed
approach is ‘pure functional’, i.e. referentially transparent
and without side effects. This approach provides a num-
ber of important advantages [20], of particular relevance to
large-scale and automated design of metaheuristics: They
make it easy to reason about functional equivalence; they
provide a good abstraction mechanism; they make it easy
to represent state explicitly; they ensure determinism, eas-
ing reproducibility of behavior on a per-component basis. As
demonstrated by the presence of JavaTM in one of the exam-
ple listings below, it is entirely possible to express these com-
ponents in non-functional languages (although much more
compiler and library support/syntactic sugar is available in
languages such as Haskell, Scala, F# or Clojure). As dis-
cussed in more detail in Section 5, a functional treatment of
metaheuristics is important because this greatly facilitates
architectures which can take advantage of abundant comput-
ing resources, e.g. thread-safe parallelism [21] or ‘Software as
a Service’ (SaaS) implementation via stateless web-services.
We therefore adopt the combinator-style approach of the
previous section to give a purely functional formulation of
metaheuristics. In the following, we present the signatures
of some ubiquitous metaheuristic components.

3.1 Functional Formulation of Metaheuristics
We explicitly mandate the propagation of environment state
in component signatures and therefore consider a metaheuris-
tic framework to be a mapping

MHState,FEnv : (State, FEnv)→ (State, FEnv)

where FEnv is any environment state required by the frame-
work itself (e.g. a source of randomness or a trace of solu-
tion history). State is a generic placeholder representing the
current state of a search process, and may comprise one or
more (partial or complete) solutions (or e.g. Pareto-fronts



thereof in the case of multi-objective optimization). Addi-
tional constraints can be added to this intentionally loose
specification via the use of increasingly specialized compo-
nents (e.g. PMX recombination requires the geneome to be
a permutation), which effectively allows the injection of as
(problem- or solution-) domain knowledge. For example, the
specific type of State with which a component is implemented
determines whether it is to be treated as constructive / per-
turbative / single-state / population-based.
Specific frameworks are instantiated via a configuration, which
we can w.l.o.g. consider to be a tuple of components to be
invoked by the framework. For example, the iterated per-
turbation metaheuristic given in Listing 1 can be configured
with components for perturb, accept, and isFinished. In gen-
eral, each heuristic Hi in the tuple may need to maintain its
own environment, and can therefore be represented as:

HEnvi : (I, Envi)→ (O,Envi)

where I and O are the input and output types for the heuris-
tic. Hence a framework is configured via a tuple of heuristics
C = (HEnv1 , . . . , HEnvn):

MFState,EnvF,C : C →MHState,(EnvF ,Env1,...,Envn)

By defining a collection of components with appropriately-
chosen signatures, it is possible to facilitate the creation of
meta- and hyper- heuristics which meet the design criteria
of Section 2. In the next section, we describe component sig-
natures which have been designed with these aims in mind.

3.2 Component signatures
The following descriptions of metaheuristic components can
be seen to be ‘Platonic’ – as such, it is unsurprising that
some similarity can be observed with various concepts in
existing popular frameworks. However, it is notable that
what does not appear in a signature is of as great impor-
tance as what does: for example, with the signature for
acceptance, there is no explicit requirement for a fitness/
objective value. This is in accordance with the ‘don’t pay
for what you don’t use’ principle: any information required
beyond the bare minimum is essentially an implementation
detail of some concrete acceptance criterion and should not
be mandated up-front. This parsimonious principle is put
into effect in these signatures whenever possible.
As is quite common in modern metaheuristic libraries, con-
straints are loosely specified via the use of generic types:
State is as given in Section 3.1, Sol denotes an individual
candidate solution, Entity is a generic placeholder for some
arbitrary type (e.g. solution, integer, String etc) and Value

represents some partially-ordered type (or vector thereof).
The context of the search process (i.e. the environment state)
is represented by Env.

Perturbation We start off with the notion of perturbation.
In its simplest form, perturbation is considered as a mapping
between States but there are also other common use-cases:

P1 Some ‘reactive search’ variants have additional param-
eters representing the perturbation strength.

P2 Some variants (e.g. tabu) depend on the past trajectory
of the search.

P3 Since the size of basins of attraction is not known a
priori, it is desirable to express a ‘kick’ operation as a
sequence of lower-level operations [22]. It is therefore

interface Perturb<State , Env> {
Pair<State , Env> apply (

State incumbent , Env env ) ;
}

Listing 2: JavaTM interface for Perturb component

useful to consider any form of iterated perturbation to
itself be a kind of perturbation.

Cases P1 and P2 can be expressed via the signature:

perturbState,Env : State× Env → State× Env

where Env is environmental state propagated by the invok-
ing framework code, e.g. the parameter perturbStrength in
the case of P1 and a list of State representing the solution
trace for P2. As discussed above, the idea is that this is a
functional approach and side-effect free: i.e. any updates to
environment state are observable in the result, but not the
argument. The perturb component is exemplified in Java
code in Listing 2. A major distinguishing factor between two
different implementations of a single conceptual framework
(e.g. local search, or the simple genetic algorithm) is the
information recorded by components in order to guide sub-
sequent decisions. It should be clear that this parameteriza-
tion by environment allows the memoization of any desired
information. We therefore include the environment parame-
ter in all subsequent components without further comment.

Initialization Often one or more entities need to be cre-
ated ex nihilo (e.g. initial populations, ephemeral random
constants etc). The corresponding signature is:

createEntity,Env : Env → Entity × Env

The Env parameter allows the invoking framework to pass
any dynamic supplementary information required: for ex-
ample when creating successive members of a population,
the invoking framework might pass the ‘population so far’
as a parameter to maintain diversity.

Acceptance In single-point search, an acceptance criterion
is used to choose between incumbent and incoming solu-
tions. Popular schemes include threshold and Exponential
Monte Carlo acceptance [23]. We define acceptance to have
signature:

acceptState,Env : State× State× Env → State× Env

The more conventional approach of returning a boolean,
rather than the accepted solution, requires consistency of
interpretation between the calling code and the implemen-
tation, with greater margin for error. Also, this signature is
compositional — it can form part of an operator pipeline.

Evaluation To our knowledge, all popular frameworks as-
sume a 1-1 correspondence between a candidate solution
and its value, and often rigidly bind them programmatically
to each other. In general, one might wish to use different
notions of value (e.g. surrogates) at different points in the
search process, or in general guide the search using alterna-
tive search drivers [6]. It is therefore more useful to func-
tionally abstract the notion of computing the value of some
entity (e.g. be it a solution or a population as a whole):

evaluateEntity,V alue,Env : Entity × Env → V alue× Env



Although it might appear that this signature precludes the
implementation of computational-efficiency schemes such as
delta-evaluation , the general philosophy is to treat such
schemes as an implementation issue wherever possible. If so
desired, a concrete implementation of evaluate could (for ex-
ample) rely on solutions carrying delta values with them by
construction. Note also that there are no prior constraints
on the type of Value: in particular nothing prevents it from
being multi-objective.

Neighborhood Function This is an essential defining com-
ponent of single-point search:

localityState,Env : State× Env → [State]× Env

[State] denotes a list of search states. The Env parameter
allows information to be passed in that might be of use for
e.g. VNS-based approaches [24]. The ’only pay for what you
use’ maxim allows the resulting list of states to be a lazy
list, so that only the states needed by the client/caller are
generated. Infinite neighborhoods are thereby possible.

Selection To choose a single entity from a list:

chooseEntity,Env : [Entity]× Env → Entity⊥ × Env

where Entity⊥ denotes the possibility that none of the in-
puts are chosen. This concept can be represented directly
in many programming languages via the use of the generic
Option (a.k.a. Maybe) type. To select n entities from a list:

selectEntity,Env : [Entity]× N× Env → [Entity]× Env

Recombination A mainstay of ‘genetic algorithms’ style
approaches:

recombine2State,Env : State× State× Env → State× Env

recombineNState,Env : [State]× Env → [State]× Env

Termination condition Determines when some iterated
process should halt:

finishedState,Env : State× Env → B× Env

Generational succession This denotes the ‘merging’ of
parent and child populations, e.g. expressing the gamut of
strategies by which the end result of a single generation is
determined.

mergeState,Env : State× State× Env → State× Env

This can be seen as presenting the same signature as ac-
ceptance and binary recombination. Large scale knowledge
discovery efforts might therefore determine whether the pre-
vailing intuition about the differing semantics of these three
components is actually justified.

4. EXAMPLE FRAMEWORKS
Listing 3 gives an example of a local search framework ex-
pressed in terms of the proposed signatures. As a simple
illustration of modularity, note that LocalSearch is itself a
perturbation operator, which facilitates the implementation
of hybrid algorithms combining global and local search. By
varying the components supplied to the LocalSearch con-
structor, it is possible to express many variants of com-
mon single-state algorithms, including random walks, hill-
climbing, simulated annealing and tabu search. In the list-
ings, the subscripts 1,2 denote the respective projection of

the first and second elements of a pair. As an example
of a population-based approach, Listing 4 gives the frame-
work code for a generic Evolutionary Algorithm (EA). The
notation ++ is a shorthand for list concatenation. While
other EA framework variants are clearly possible, the exam-
ple given can be configured to express a very wide range of
common approaches.

l o c a l S ea r ch ( i n i t i a l : State , env : Env)
: ( State , Env) = {

incumbent = ( i n i t i a l , env )
best = incumbent
( done , env ) = i sF i n i s h ed ( incumbent )
while ( not done ) {

incoming = perturb ( incumbent )
incoming = accept ( incumbent1 , incoming1 ,

incoming2 )
( done , env ) = i sF i n i s h ed ( incumbent )
incumbent = ( incoming1 , env )
bes t = order ( best , incoming )

}
return best

}

Listing 3: Local Search framework

EA1( i n i t i a l : L i s t<State >,env : Env) :
( L i s t<State >,Env) = {
incumbent = ( i n i t i a l , env )
( done , env ) = i sF i n i s h ed ( incumbent )
while ( not done ) {

incoming = ( Nil , incumbent2 ) ;
repeat ( incumbent1 . l ength /2 t imes ) {

incoming=s e l e c t ( incumbent1 , 2 , incoming2 )
parents=recombineN ( incoming1 , incoming2 )
c1 = mutate ( ( parents1 )1 , parents2 )
c2 = mutate ( ( parents1 )2 , c12 )
next = incoming1 ++ c11 ++ c22

incoming = ( next , c22 )
}
incumbent = merge ( incumbent1 , incoming1 ,

incoming2 )
( done , env ) = i sF i n i s h ed ( incumbent1 ,

incumbent2 )
incumbent = ( incumbent1 , env )

}
return incumbent

}

Listing 4: EA framework

5. IMPLICATIONS
Although ubiquitous, neither the components nor the frame-
works presented above are intended to be exhaustive. In par-
ticular, this approach is entirely compatible with existing
non-functional frameworks and components provided they
are wrapped inside a functional interface that propagates
environmental state. We now discuss how the proposed ap-
proach forms a basis for addressing the issues of Section 1.

5.1 Design Automation
By virtue of modularity, our proposed approach greatly fa-
cilitates automated assembly. In particular, this allows for
bottom-up approaches, which are less subject to human bias



than the a priori prescription of a particular metaheuristic
and which therefore has relevance to foundational knowledge
discovery efforts. In other areas of design (e.g. manufactur-
ing), standardization has allowed a shift from the design of
integrated systems to the design of individual components
within the system. In metaheuristics, this reflects the natu-
ral trend for incorporating specialized problem- or solution-
domain knowledge i.e. a researcher can specialize in par-
ticular kind of components such as acceptance criteria and
determine their cross-domain ubiquity. Of course, a par-
ticular domain might well benefit from a specific top-level
metaheuristic: nothing in our proposed approach precludes
this, and subordinate components can still be configured
bottom-up as desired.

5.2 Communicability and Reproducibility
As discussed above, a pure functional description of frame-
works parameterized by their environmental configuration
makes explicit both the coupling between components and
the state changes that they undergo. The clarity thus af-
forded is precisely why descriptions in terms of pure func-
tion is the language of mathematics and foundational com-
puter science. Greater clarity obviously eases reproducibility
via re-implementation, but a much stronger notion of repro-
ducibility is the ability to invoke some (potentially remotely
hosted) existing implementation. This leads to the notion
of metaheuristic components as part of a Service Oriented
Architecture (SOA) [25]. The modern approach to SOA
is to employ web-services: self-contained software compo-
nents that are network accessible via HTTP-based protocols.
Web-service descriptions can be semantic or nonsemantic,
according to the underlying goals of the service. Semantic
web services expose machine-readable data structures, facil-
itating automated service discovery and composition.
The initial de facto standard of Simple Object Access Pro-
tocol (SOAP) has been widely supplanted by the REpresen-
tational State Transfer (REST) approach, which exhibits
superior simplicity, robustness and scalability. The stateless
nature of the proposed approach marries well with that of
REST.

5.3 Scalability
In addition to the marriage of stateless components with ef-
ficient stateless web-services described in the preceding sec-
tion, the recursive nature of the proposed signatures makes
it easy to instantiate multi-level search. For example, the
EA framework of Listing 4 is itself a perturbation operator
(of lists of solutions), illustrating possibilities for: a) inter-
operability between single-state and population-based ap-
proaches and b) a scalable composition that can take advan-
tage of the increasing availability of computing power. More
significantly, with the proposed description, metaheuristics
and components can be composed into a formal workflow us-
ing a functional mechanism known as a monad. Monads are
a form of combinator pattern that follow well-defined laws
to give strong mathematical properties [26]. By employing
a monadic workflow, it is possible to facilitate the creation
of parallelizable meta- and hyper- heuristics. Many mod-
ern languages (e.g. Haskell, F#, Scala) provide particular
syntactic sugar for monads, which will additionally signifi-
cantly simplify Listings 3 and 4. For example, we can en-
code a local search algorithm monadically as demonstrated
by the Haskell code of Listing 5. We use a library function

l o c a l S ea r ch : : State −> Env −> State

l o c a l S ea r ch i n i t i a l env =
eva lS ta t e l s ( i n i t S t a t e i n i t i a l env 0)
where l s = while not i sF i n i s h ed (

do incoming <− perturb
incoming <− accept incoming
checkFin i shed
increment )

bes t

Listing 5: Monadic formulation of Local Search

evalState to evaluate the stateful computation ls in the
context of an internal state that is initialized from the in-
ternal search state, the environment and the initial value of
an iterator.
Although the algorithm looks similar to its imperative coun-
terpart, the internal state is fully encapsulated within the
definition of localSearch. All state effects are explicit and
type safe — there are no implicit side-effects. This brings
major advantages of safety, including thread safety, and im-
proves confidence in the correctness of the algorithm, as well
as allowing efficient implementation. It also allows paral-
lelism to be safely introduced as part of the metaheuristic,
e.g. by embedding calls to the Par monad [27]. It might
be thought that a monadic workflow requires metaheuristic
researchers to become expert functional programmers, so it
should be emphasized that is a consequence of our proposed
formulation which can be exploited by those seeking the ben-
efits, rather than a mandatory aspect. Another minor but
pleasing property is that the internal state makes the param-
eter space of a component explicit, facilitating configuration
via automated tools such as [28].

5.4 Knowledge Discovery
One key way in which the proposed approach facilitates
knowledge is the ability to add arbitrary instrumentation
to components via the generic environment representation.
In particular, this allows for data mining on metaheuristic
traces. In addition, by employing our generic notion of State
(which denotes one or more solutions representing the cur-
rent state of the search), the same framework can instantiate
metaheuristics operating at different scales. For example,
a ‘composite’ recombination operator can choose from dif-
ferent types of recombination strategies, putting meta and
hyper-heuristics under the same framework in the manner
of [29]. The generic notion of State is particularly useful
in this respect, since State could even be represented by a
model: once trained it can be used to predict which the best
operator at a given moment of the search is. This supports
very recent research on using data analytics within meta or
hyper-heuristics, such as the algorithm proposed by Consoli
et al. [15]. Having these different types of algorithms under
a common framework greatly facilitates their extension and
comparison.

5.5 Interoperability
It is useful to distinguish between syntactic and semantic
interoperability. The former enables systems and system
components to communicate/exchange data unambiguously
and react accordingly. This requires specification of com-
mon data formats (e.g. XML), communication protocols etc.



Semantic interoperability builds upon the syntactic layer,
enabling the meaning of the data to be shared, based on
a pre-defined collection of ground terms specifying the in-
terpretation of syntactic content. To achieve the goal of a
common research platform, it is necessary to achieve inter-
operability of the following:

Component Implementations We discuss this most com-
plex case first, since (depending on the level of abstraction at
which we wish to interoperate), similar concerns can apply
in all the other cases. One example of prior art in meta-
heuristics is the ‘Timetabling Markup Language’ (TTML),
an XML data format representing input problem instances
and solutions to a given timetabling problem instance [30].
TTML is based on the Mathematical Markup Language
(MathML) which it uses to express the interpretation of the
components of a timetabling problem, including constraints
and how the solution is be evaluated. Another example is
the Predictive Model Markup Language (PMML), which is
a XML data format representing data mining and machine
learning models. PMML represents not only the model also
its attributes and the transformations defined on them.

Solution representations without associated constraints
(e.g. a bitstring of arbitrary length) can be specified syntac-
tically (e.g. via formats such as JSON, YAML or raw XML).
If it is additionally necessary to pass constraints to the solver
(e.g. to specify the notion of a permutation from first princi-
ples), then the full semantic power described above in ‘Com-
ponent Implementations’ may be required. Regarding prior
art, Irace is an automatic algorithm configuration algorithm
[28] that defines an input data format for tuning a range of
parameter types.

Component definitions The generic signatures of Section
3 provide a basis for syntactic interoperability of compo-
nent definitions and simple serialization languages such as
JSON suffice for data exchange of generic (i.e. representa-
tion independent) signatures. When specialized for partic-
ular solution representations (e.g. with specific associated
constraints), the interoperability category is that of the rep-
resentation. It is hopefully clear that the generality of what
is proposed suffices to act as a ‘Rosetta Stone’ for intercom-
munication between popular metaheuristic frameworks (e.g.
[31, 32, 33, 9, 34, 35, 36]).

Problem definitions There are of course many well-known
repositories of benchmark problems for specific domains (e.g.
[37, 38]), but the motivation here is to work towards a uni-
versal description format for problem domains. For meta-
heuristic purposes, this is an area in which the tradeoffs
between expressiveness and computational cost needs to be
clearly delineated. There has been some previous work in
this area [39, 40, 41] and TTML also provides a description
of problem instances. Finally, it is pleasing to note that in-
teroperability of trace information comes ‘for free’ given the
facility to exchange solution representations and problem
definitions.

6. CONCLUSIONS
In this article we have discussed some of the cultural and
technical issues that we believe are impediments to progress
in metaheuristic research. As a first step, we describe a set

of purely functional signatures representing commonly-used
metaheuristic components and designed to facilitate:

i). Interoperability at the signature level.

ii). The ability to instrument components for any desired
data mining/knowledge discovery purpose.

iii). Self-assembly of metaheuristics (and ease of credit as-
signment for their component parts) by virtue of mod-
ularity.

iv). Scalability of implementations, from multi-level search
to built-in support for parallelization.

v). The description of metaheuristics in terms of explicit
mechanisms, rather than the language of metaphor.

The functional and interoperability criteria together form
a basis for ‘Software as a Service’ implementations of meta-
heuristics via stateless web-services. The language and plat-
form agnosticism of this approach helps in turn to address
issues of reproducibility and scalability. A community initia-
tive towards machine-readable descriptions of frameworks,
components and experimental results will also motivate some
important research questions, viz.

i). How can semantic descriptions best bring declaratively-
driven approaches (e.g. such as those common in the
scheduling and planning communities) into mainstream
metaheuristics?

ii). More generally, what kind of declarative descriptions
might be required for ‘domain aware’ algorithm gen-
eration that includes problem reformulation [42] and
formal approaches to program synthesis [43].

In conclusion, we envision the emergence of a distributed,
community driven suite of tools, providing an expanded
repository of interoperable frameworks and components, bring-
ing together researchers and practitioners across domains,
unifying the field and closing the gap between scientific re-
search and empirical practice.
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[10] K. Sörensen, “Metaheuristics - the metaphor exposed,”
International Transactions in Operational Research,
vol. 22, no. 1, 2015.

[11] D. Weyland, “A rigorous analysis of the Harmony
Search algorithm: How the research community can
be misled by a “novel” methodology,” Int. J. Appl.
Metaheuristic Comput., vol. 1, no. 2, 2010.
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T. Stützle, “A template for designing single-solution
hybrid metaheuristics,” in GECCO Comp ’14, New
York, USA, 2014, pp. 1423–1426.

[13] H. Sutter, “The free lunch is over: A fundamental turn
toward concurrency in software,” Dr. Dobbs Journal,
vol. 30, no. 3, 2005.

[14] F. Thabtah and P. Cowling, “Mining the data from a
hyperheuristic approach using associative
classification,” Expert Systems with Applications,
vol. 34, no. 2, 2008.

[15] P. Consoli, L. L. Minku, and X. Yao, “Dynamic
selection of evolutionary algorithm operators based on
online learning and fitness landscape metrics,” in 10th
International Conference on Simulated Evolution And
Learning, ser. LNCS, vol. 8886. Springer, 2014.

[16] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis,
“Towards objective measures of algorithm performance
across instance space,” Computers & Operations
Research, vol. 45, 2014.

[17] A. Scheibenpflug, S. Wagner, E. Pitzer, and
M. Affenzeller, “Optimization Knowledge Base: An
open database for algorithm and problem
characteristics and optimization results,” in GECCO
’12. NY, USA: ACM, 2012.

[18] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and
P. Stuckey, “Search combinators,” Constraints, vol. 18,
no. 2, 2013.

[19] R. Senington and D. Duke, “Decomposing
metaheuristic operations,” in Implementation and
Application of Functional Languages, ser. LNCS,
R. Hinze, Ed. Springer Berlin Heidelberg, 2013.

[20] J. Hughes, “Why functional programming matters,”
The Computer Journal, vol. 32, 1984.

[21] K. Hammond and G. Michaelson, Research Directions
in Parallel Functional Programming. Springer, 1999.

[22] L. Di Gaspero and A. Schaerf, “EasyLocal++: An
object-oriented framework for the flexible design of
local-search algorithms,” Softw. Pract. Exper., vol. 33,
no. 8, 2003.
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