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• Land contaminated with radium is haz-
ardous to human health.

• Contamination characterised with
gamma-ray spectrometry.

• Machine Learning to derive activity and
depth estimated from spectral shape.

• Lanthanum bromide and Neural Net-
work provided optimum performance.

• The developed approach demonstrates
a powerful assaying tool.
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Radium (226Ra) contamination derived frommilitary, industrial, and pharmaceutical products can be found at a
number of historical sites across the world posing a risk to human health. The analysis of spectral data derived
using gamma-ray spectrometry can offer a powerful tool to rapidly estimate andmap the activity, depth, and lat-
eral distribution of 226Ra contamination covering an extensive area. Subsequently, reliable risk assessments can
be developed for individual sites in a fraction of the timeframe compared to traditional labour-intensive sampling
techniques: for example soil coring. However, local heterogeneity of the natural background, statistical counting
uncertainty, and non-linear source response are confounding problems associated with gamma-ray spectral
analysis. This is particularly challenging, when attempting to deal with enhanced concentrations of a naturally
occurring radionuclide such as 226Ra. As a result, conventional surveys tend to attribute the highest activities to
the largest total signal receivedby a detector (Gross counts): an assumption that tends to neglect higher activities
at depth. To overcome these limitations, a methodology was developed making use of Monte Carlo simulations,
Principal Component Analysis andMachine Learning based algorithms to derive depth and activity estimates for
226Ra contamination. The approach was applied on spectra taken using two gamma-ray detectors (Lanthanum
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Bromide and Sodium Iodide), with the aim of identifying an optimised combination of detector and spectral
processing routine. It was confirmed that, through a combination of Neural Networks and Lanthanum Bromide,
the most accurate depth and activity estimates could be found. The advantage of the method was demonstrated
bymappingdepth and activity estimates at a case study site in Scotland. There themethod identified significantly
higher activity (b3 Bq g−1) occurring at depth (N0.4 m), that conventional gross counting algorithms failed to
identify. It was concluded that the method could easily be employed to identify areas of high activity potentially
occurring at depth, prior to intrusive investigation using conventional sampling techniques.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Regulation of radium contaminated land

Radium (226Ra) was used extensively during the 20th century in
military, industrial, and pharmaceutical products (Tyler et al., 2013).
226Ra has a half-life of over 1600 years, and is the parent of an additional
8 radioactive elements that together produce a complex array of alpha,
beta and gamma emissions (Pratt, 1993). Follow-up studies into the
health implications of radium dial workers in the US typify the risks
associated with long-term radium exposure (Stebbings, 2001). Within
the UK, radium was used extensively as a composite in luminescent
paint principally by the military during wartime periods. Prior to the
Radioactive Substances Act 1960 (HMSO, 1996) vast inventories of
waste were routinely burned and buried with little record presenting
complex remediation challenges (Wilson et al., 2013).

A report published in 2012 by the UK government, conservatively
estimated there to be 150–250 Radium Contaminated Legacy Sites
(RCLS) linked to Ministry of Defence activities within the UK (DECC,
2012). Moreover, it was recognised that there could be as many as
1000 contaminated sites in the UK alone. Similar RCLS can be found
across other parts of Europe and North America (IAEA, 1998).

a) UK legislation has now provided the Scottish Environmental Protec-
tion Agency (SEPA) with a framework to classify radioactively con-
taminated land and set guidelines to describe the amount of
contamination that may give rise to significant harm to humans
(The Radioactive Substances Act 1993 Amendment (Scotland)
Regulations, 2011). Homogeneous contamination at RCLS in
Scotland is controlled by the following criterion: An effective dose
must not exceed 3 mSv per annum (Statutory Guidance to support
the Radioactive Contaminated Land (Scotland) Regulations, 2008).

Homogeneous contamination can be defined as contamination that
is dissociated or not in particulate form, which can vary significantly
in activity over small spatial scales.

Surface flux measurements using dosimetry can be used to rapidly
assess the effective dose at a site (IAEA, 1998). Yet, this measurement
is somewhat limited in thoroughly assessing the activity and burial
depth of homogeneous contamination, which tend to change signifi-
cantly across a RCLS (Varley et al., 2015b). These factors are critical
pieces of information for long-term remediation purposes, particularly
at sites that are exposed to the public, where changes in site use or
erosion events may occur increasing the risk of contact (Dale et al.,
2013).Currently, not one Scottish legislation alone can be used to specif-
ically outline an activity limit that must not be exceeded for suspected
homogeneous contamination at a RCLS. Therefore, in this study we
accept that 226Ra should be treated under the exemption for Naturally
Occurring Radioactive Materials declaring:

b) An activity must not exceed 10 Bq g−1(The Radioactive Substances
Act 1993 Amendment (Scotland) Regulations, 2011).

The discrete nature of the items that were initially disposed of can
also lead to the formation of hot particles. At one RCLS at Dalgety Bay,
Fife, Scotland, a diverse range of hot particles and historic artefacts
(b70 MBq) has been found (Dale et al., 2013). If such items were to be
picked up by a member of the public this may result in a significant
committed dose (Tyler et al., 2013). Amethod for the real-time identifi-
cation of 226Ra containing hot particles at RCLS has been outlined in our
previous work (Varley et al., 2015a).

In light of the uncertainties behind site formation and the lack of
disposal records, once a RCLS has been identified the contamination
should be systematically characterised to ascertain the risk it poses to
long-term human health; thus going beyond limited surface dosimetry
estimates (IAEA, 1998). In this paper we propose a method that can be
rapidly and inexpensively deployed at a RCLS to provide accurate
estimates of near-surface homogenous 226Ra contamination depth,
activity, and spatial distribution.

1.2. Environmental gamma-ray spectrometry

Handheld gamma-ray spectrometry (HGS) or mobile gamma-ray
spectrometry, generally performed using inorganic scintillators, is
often the cheapest and most robust technique of characterising RCLS
(IAEA, 1998, 2003; Knoll, 2010; Dale et al., 2013; Read et al., 2013;
Haddad et al., 2014). Using this method the spatial extent and activity
of gamma-emitting radionuclides can be estimated using remote
surface measurements without the need for time-consuming invasive
methods (Tyler, 2008). Individual energy spectra produced during a
survey are representative of the localised radiation field a detector has
passed through (Beck et al., 1972).

For mapping purposes each spectrum can be post-processed using
an algorithm to unfold spectral information (Kock et al., 2012). The
first objective of this unfolding process is to identify whether there are
characteristic signals from radium contamination (source), which
typically differ in shape from background spectra. For example, notice
characteristic peaks at 351, 609, 1120, 1764 and 2244 are generated
by a radium source (Fig. 1A). However, source-background separation
is often complicated by spatial fluctuations in background (40K, and
the 238U and 232Th series) and comparatively benign (137C in the case
of RCLS) radioelements, alongside variations in soil density and
composition, which together introduce nuisance spectral changes
(Runkle, 2006). Fagan et al. (2012) presents an informative review of
the challenges associated with, and the techniques employed in,
spectral classification.

Once a contaminated spectrum has been identified, the second aim
is to identify spectral elements that are symptomatic of source burial
depth and activity. Notice non-linear changes take place across the
spectrum as the burial depth of a source varies: for example lower
energy peaks are attenuated more relative to higher energy peaks
with increasing burial depth (Fig. 1A).

The multiple photopeak method aims to capture this occurrence by
calculating the area under two background-subtracted full energy peaks
with the purpose of comparing the observed ratio to that of a calibrated
one to estimate source burial depth and activity (Miller et al., 1994;
Thummerer and Jacob, 1998, Haddad et al., 2014). Another method
that utilises more spectral information is termed Full Spectral Analysis
(FSA). FSA compares the spectral similarity of an obtained spectrum to
a calibration library by a weighted least-squares fitting procedure

http://creativecommons.org/licenses/bycd/4.0/


Fig. 1. A) Nonlinear spectral response as a function of homogeneous source burial depth and a typical background taken using 71 × 71mmNaI:Tl detector. B) Spectra taken over 1 s dem-
onstrating stochastic noise of background and 25 cm extended source.
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using the majority of spectral channels (Hendriks et al., 2001; Caciolli
et al., 2012; Guastaldi et al., 2013).

The practical application of to these methods is, however, somewhat
limited by stochastic noise presented within individual spectra intro-
duced as a consequence of the short count times required to map a
RCLS in high resolution within a limited time period (IAEA, 1998;
Alamaniotis et al., 2013a) (Fig. 1B). Subsequently, many HGS surveys
fall back on unsophisticated spatial interpretation methods such as the
total signal (Gross counting) where the highest activities are attributed
to the highest count rates (Adsley et al., 2004). At the majority of RCLS,
this assumption is known to break down and higher activities at greater
depths fail to be acknowledged (Fig. 2). For example, a 0.1 Bq g−1 homog-
enous source at the surface will produce an identical signal to a 1 Bq g−1
Fig. 2. Total signal from background, 0.1 and 1 Bq g−1 homogeneous sources as a function
of burial depth.
homogenous source (radius 1m)buried at approximately 40 cm. Further-
more, weaker source signal can easily be mistaken for background.

This paper investigates: i) whether improvements can bemade into
the identification and estimation of depth and activity of homogeneous
226Ra contamination through consideration of the distribution of counts
across the spectrum; and ii) whether the superior energy resolution of
LaBr:Ce can demonstrate improvement compared to conventional
NaI:Tl. Thiswas achieved through amultivariate approach that develops
the noise suppression and dimensionality reduction properties of the
Principal Component Analysis (PCA) transform alongside the pattern
recognition capabilities of Machine Learning (ML).
2. Material and methods

2.1. Field site and data collection

The case study site is found in Scotland, although its exact location
cannot be disclosed and thus coordinates have been made anonymous
and background maps are not included. The site has known to be
associated with 226Ra contamination for some time due to the historic
disposal of military products. The exact physical form of contamination
was not known and little information was available regarding the
estimated inventory of the site. However, disposal of 226Ra was known
to have taken place over a number of years, particularly during and
immediately after WWII, when a large number of military aircraft
were dismantled. Large sections of the site suspected of being contami-
nated could not be accessed due to undergrowth. All measurements
were taken under the supervision of SEPA.

Site access also provided a good opportunity to perform a supple-
mentary HGS detector comparison alongside novel spectral processing
techniques. The first detector, Sodium Iodide (NaI:Tl), was chosen as it
is the workhorse of environmental gamma-ray spectrometry and in
our previous work has proved effective at determining the depth and



Fig. 3. Schematic diagram of the two-layer Monte Carlo model used to acquire source
spectral responses.
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activity of 226Ra (Varley et al., 2015b). The second detector, Lanthanum
Bromide (LaBr:Ce), has over the past decade received much interest
since it provides better energy resolution (~2.5% at 662 keV) than the
NaI:Tl (~7% at 662 keV) at the same time as offering similar robustness
(Guss et al., 2010) (Fig. 4B). However, each LaBr:Ce spectrumpresents a
large number of background counts distributed throughout the
spectrum owing to internal isotopes (138La and 227Ac) (Iltis et al.,
2006). Although laboratory comparisons have been performed between
these two detectors, limited field comparisons have been performed
(Menge et al., 2007; Milbrath et al., 2007).

Over the course of four days, in excess of 25,000 spectrawere collect-
ed using the two detectors (both 71 × 71 mm). To ensure that spectra
acquired by eachdetectorwere comparable thedetectorswere attached
to awheel barrow system, offset longitudinally by 0.5m and attached at
a height of 0.1m from the floor, to ensure the same groundwas covered.
1024 channel spectra were acquired using Ortec's Maestro software
every second together with GPS coordinates provided by an SX Blue II
differential GPS with a 0.6 m positional accuracy. A walking speed of
0.5 m s−1 was maintained during the survey. Data were logged and
displayed in real-time with Stirling Mobile Gamma Spectrometry
System (SMoGSS), software developed in-house, which also provided
alarms when spectra, suspected of containing contamination compo-
nents, were acquired.

It was acknowledged to adequately characterise the contaminated
areas of the site the background spectral population would have to
also be accurately characterised to use as a baseline in later modelling.
The site was chosen because it was made up of a similar geological
composition and was immediately next to the site. Therefore, 10,000
spectra (approximately 30% of the entire dataset) were taken on the
same day where weather conditions remained i.e. a clear day.

2.2. Monte Carlo Simulations

To obtain a representative detector spectral response for a given
detector to homogeneous source geometry can be problematic if
attempted through laboratory based calibrations (Maučec et al., 2004).
This is due to complications associated with distributing a radioactive
source and also obtaining one active enough to provide acceptable
counting uncertainties at greater depths after subtraction of the
background (Hendriks et al., 2002). Consequently, Monte Carlo Simula-
tions (MCS) were used in this study since a homogeneous source could
be accurately modelled (Allyson and Sanderson, 2001).

Source spectra containing 1024 channels (the same as field spectra)
were generated using the software package Monte Carlo N-Particle 5
(MCNP5) (Briesmeister, 1993). It was acknowledged that a wide-
range of source geometries may be present at the site; thus posing an
intricate source population to model. Therefore, for simplicity the
majority of contamination was assumed to be heterogeneously
distributed and underneath an unknown uniform depth of relatively
non-contaminated overburden. This permitted a simple two-layer
cylinder model to be developed within MCNP5 (Fig. 3). The bottom
layer (of thickness Zc) was assumed to homogenously contaminate
down to a depth of 0.8 m, and the thickness of the upper layer (Zu)
was altered to simulate increasing non-contaminated overburden
(Thummerer and Jacob, 1998). Further information regarding the
Monte Carlo routines used is provided in the supplementary materials
(Appendix 1).

2.3. Dataset generation

In order to train and cross validate models, two synthetic spectral
calibration datasets were produced: a training dataset and a cross-
validation dataset. The training dataset comprised of spectra recorded
to a low statistical counting uncertainty with well-defined spectral
shape. This allowed for an optimised model to be fitted to systematic
changes in detector response rather than counting noise. This
encompassed taking relatively long background measurements (60 s)
at different places on the background analogue site to produce a
relatively well defined background spectrum. This collection of low
uncertainty background spectra were then randomly spiked with
Monte Carlo derived spectral responsewith a low statistical uncertainty
(see Appendix 1 for details).

The cross-validation dataset was formed in much the same way as
the training dataset, however, 1 s counts were obtained from the
background analogue site and simulations with much higher counting
uncertainties were used. The Monte Carlo regimes used to achieve this
are described in the supplementarymaterials (Appendix 1). Resultantly,
the cross-validation dataset contained a much larger noise component
thatwas consideredmore representative of spectral responses collected
in the field at the contaminated site. The purpose of this dataset was to
ensure that models were not being over-fitted to the training dataset.
2.4. Spectral binning

HGS spectra obtained over 1 s tend to exhibit large counting
uncertainty (Alamaniotis et al., 2013b) (Fig. 1B). In our previous work
(Varley et al., 2015a) using NaI:Tl and LaBr:Ce we have found it more
suitable to observe general changes in spectral shape by transforming
each spectrum (1024 channels) into a smaller number of non-
overlapping energy bins (typically 10–25 bins depending on the
detector). This negates some counting noise without significant loss of
energy differentiation (Jarman et al., 2008). Two binning methods
were implemented. The first placed bins around Regions of Interest
(ROIB) based on characteristic 226Ra emissions and scattering regions
(Fig. 4). The second more systematic approach, coined resolution
binning (RB), developed bins based upon the deterioration of energy
resolution with increasing energy (Runkle, 2006).

ROIB used on a NaI:Tl was shown to be the most effective detector
setup in the routine monitoring of 226Ra “hot” particles. However, this
work is inherently different given that it is not practical to transform
bins into the time series in order to negate local background changes
as large areas were known to be homogeneously contaminated.
Therefore, the employment of Principal Component Analysis to directly
compare background and source could favour more bins (RB) and the
superior energy resolution and energy efficiency of LaBr:Ce, since



Fig. 4. Binning methods for NaI:Tl and LaBr:Ce detectors.

Fig. 5. Patternswithin loadings from the PCs 1, 2 and 3 for NaI:Tl betweenMonte Carlo de-
rived cross-validation set (circles) and field results (triangles). Notably, burial depth is
separated within Principal Component space (yellow indicates surface and red buried)
and increasing distance from the background population (Cyan ellipse — derived using
mahalanobis distance) infer increases in activity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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counts from internal contamination may be suppressed more
efficiently.

Importantly, energies below 250 keV were discarded from analysis
given that large systematic variations take place on a spatial scale that
can be very challenging to predict (Caciolli et al., 2012). This can be
attributed to the photoelectric effect becoming the dominant form of
photon interaction, which is controlled by the composition of the soil
matrix (Tyler, 2008).
2.5. Principal Component Analysis

Principal Component Analysis (PCA) was employed to produce a set
of noise reduced uncorrelated spectral shapes known as Principal
Components (PCs) (Du et al., 2010). The mathematical routine used to
derive this is presented in the supplementary materials (Appendix 2).
Here a brief description is given.

Importantly, before the dataset was spectrally decomposed through
PCA, each spectrum was noise adjusted to in an attempt to yield equal
variance in all channels (Hovgaard, 1997). The process of PCA then
orders subsequent PCs according to the total variance contributed to
the dataset. Here, the assumption was taken that the majority of
variance corresponds to source signal in the lower order PCs and uncor-
related counting noise in the higher order PCs (Hotelling, 1933). All but
the first 3 PCs were then discarded, substantially reducing the dimen-
sionality of the dataset and alleviating uncorrelated elements associated
with counting noise (Runkle, 2006). Furthermore, spectral drift compo-
nents were also separated out into higher order PCs. Patternswithin the
first 3 PC loadings, corresponding to signal, were then used to infer
whether there were contributions from 226Ra and at what depth and
activity it was occurring (Adams et al., 2012) (Fig. 5).

PCA was performed on the entire dataset (training, cross-validation,
and field spectra) to enable field spectra to be encompassed into the
same PC structure as synthetic data (training and cross-validation
datasets) providing a direct means of spectral comparison (Varley
et al., 2015b) (Fig. 5). The intention behind this was for patterns
contained within the synthetic spectral data to be modelled. This
would then allow similar patterns within field spectral signals to be
characterised using the same models, thus providing activity and
depth estimates.
In general, notice that depth (angle from background population)
and activity (distance from the background population) could be in-
ferred from the first 3 PCs (Fig. 5). Importantly, the cyan ellipses (Fig.
5) indicate the location in PC space where 95% of the background pop-
ulationwould occupy if background points were not concealed by over-
lying MC spectra. A detailed description of Mahalanobis distance
(Appendix 3) can be found in the supplementary materials as it is
used later as a classification algorithm.

This demonstrates a significant reduction in dimensionality (from
10 to 25 bins to a 3 PCs) whilst still maintaining a considerable propor-
tion of the signal, therefore simplifying the later modelling process.
However, non-linearities were presented within the PCA transformed
data that can be problematic to model using convention regression
and classification algorithms, such as non-linear regression (Adams
et al., 2012) and Mahalanobis distance (Runkle, 2006).
2.6. Machine Learning

A solution to extracting significant patterns within PC loadings is
offered by data-driven Machine Learning (ML) algorithms (Sharma
et al., 2012). Providing there is sufficient data available to robustly
train and cross-validate models, ML is able to fit to high dimensional,
complex feature spaces (Fig. 5) where noise structure may differ from
Gaussian. Recent developments in software have provided user-
friendly development environments tailored towards practical applica-
tion (Ao et al., 2010). For these reasons, ML has been used to interpret
gamma-ray spectrometry data previously (Yoshida et al., 2002;
Dragovic et al., 2005; Kangas et al., 2008; Wei et al., 2010; Sharma
et al., 2012). Early exploration and previous experiences offered two
promising ML methods: Neural Networks (NN) and Support Vector
Machines (SVM) (Varley et al., 2015a). For detailed definitions and
training procedures used on NNs (Apendix 4) and SVMs (Appendix
5) refer to the supplementary materials.
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It was found early on to generate optimum performance for ML it
was more suitable to divide the modelling task into two:

i) To classify PC loadings into source or background; and
ii) Apply a regression to provide depth and activity estimates.

Binary classification presents a trade-off between false positive and
true positive rates, and as there was no predefined false positive rate,
Receiver Operator Characteristics (ROC) was chosen as a robust
measure of detection rate (T.J. Stocki et al., 2008). To quantify classifica-
tion, the Area Under the Curve (AUC) of an ROC plot was calculated
whereby values closer to one were considered better classifiers. To
robustly test the classifiers, a uniform random sample of activities
(0.1–2 Bq g−1) and depth (0–0.8 m) was drawn to derive AUC from
the cross validation set. Each ML algorithm was run 10 times on 10
independent randomly drawn datasets, which provided a standard
deviation for the AUC. Notably, a field spectrum was only classified as
being from the source class if the ML method identified that spectrum
as being a source 5 or more times during the 10 individual runs.

Regression performance was assessed by calculating the r2 value
between model prediction and actual values on the cross validation
set which was formed by a uniform random sample of activities (0.1–
20 Bq g−1) and depths (0–0.8 m) (Moreira et al., 2010). To ensure
uncertainties onfinal estimates could be assessed for thefinal optimised
model, it was fitted and cross-validated to 10 randomly drawn spiked
dataset (Section 2.3) providing a standard error and mean for each
field measurement. PCs were normalised to their mean and variance.
Training and cross-validation datasets comprised of 2000 and 4000
data points, respectively.

3. Results and discussion

3.1. Spectral classification

The best classification results, independent of algorithm, detector, or
binning method, were found by using the first 3 PCs. This is consistent
with source signal being captured within these first few PCs and lower
ordered PCs containing principally noise (Dickson, 2004). This result
significantly reduced dimensionality and simplified detection. This
could explain the reason why the number of hidden neurons was
consistently below 10 and learning tended to converge around 4000
epochs for all optimal classification NNs. SVM gamma (300–1000) and
cost (100–800) were relatively large implying the classification
boundary required a close-fitting boundary that was highly dependent
on individual training points (Meyer and Wien, 2014).

ML methods showed a significant improvement in AUC (0.793–
0.840) over traditional Mahalanobis distance (0.786–0.792) (Table 1).
This suggests the classification boundary was non-linear and so, a
Gaussian assumptionwas too simplistic to accuratelymodel the bound-
ary, whereas theML algorithmswere capable to define these accurately.
Of the two ML methods, NN (0.831–0.84) consistently outperformed
SVM (0.793–0.824) for all detector configurations. However, patterns
within the two binning systems are harder to explain since resolution
Table 1
Area Under the Curve values for different detector, binning system and algorithm combi-
nations. Abbreviations: Region of Interest Binning (ROIB), Resolution Binning (RB), Neural
Networks (NN) and Support Vector Machines (SVM).

NaI:Tl LaBr:Ce

Algorithm Binning system Binning system

RB ROIB RB ROIB

Mahalanobis 0.788 ± 0.004 0.786 ± 0.006 0.785 ± 0.007 0.792 ± 0.005
NN 0.831 ± 0.005 0.830 ± 0.003 0.836 ± 0.004 0.840 ± 0.006
SVM 0.815 ± 0.003 0.793 ± 0.005 0.796 ± 0.006 0.824 ± 0.005
binning produced better results for NaI:Tl whereas region of interest
binning suited LaBr:Ce better. For LaBr:Ce this may be due to the
alleviation in counting noise through fewer, logically placed, bins aiding
in the de-noising process particularly in contaminated areas (Fig. 4b).
NaI:Tl with almost no internal contamination, more bins may have
providing more information in which to draw more representative
PCs from.

In previous work where a real-time application was needed the
internal contamination posed by LaBr:Ce was found to hinder its
detection capabilities (Varley et al., 2015a). However, the ability to
post-process data, and thus, negate the influence of intrinsic counts
using a technique such as PCA demonstrated the superior energy reso-
lution and efficiency of LaBr:Ce can still be utilised to provide improved
detection rates over a s short count time. Another reason could be that
in a real-time application a relatively large number of input dimensions
are required (13 bins) to capture spectral shape changes. The smaller
number of noise-reduced PCs (3 loadings) provided a clearer signal for
ML to distinguish between.

3.2. Depth and activity estimates

In keepingwith the classification results, it was found that using the
first 3 PCs as inputs produced the lowest r2 values for all NNs. Ten-to-15
thousand learning epochs were found to be adequate to train all NNs.
More neurons were needed for resolution binning (18–20), in compar-
ison to region of interest binning (10–15), suggesting the structure of
data in the feature space was slightly more complex for resolution
binning.

Consistently higher r2 values, for activity and depth, using either
binning system, were found for LaBr:Ce (0.738–0.752 and 0.590–
0.608, respectively) when compared to NaI:Tl (0.691–0.696 and
0.527–0.544, respectively). Noteworthy, all p-values for r2 values were
significant (b0.005). This further supported the argument that the
superior energy resolution and efficiency of LaBr:Ce could be utilised
for environment monitoring on condition that there is enough training
data to implement a post processing algorithm (such as PCA) to lessen
the effect of nuisance signals from internal contamination. For HGS
monitoring where real-time output is required, NaI:Tl is probably still
the most reliable detector. Again using fewer, more systematically
placed energy bins (ROIB), provided higher performance.

Fig. 6 provides some insight into the inner workings of the overall
approach. For instance, the lower activity (0.1 Bg g−1) surface (2 cm)
source presents clear peaks in the lower energy region of the spectrum
(notice the dominant 609 keV peak in both the raw and binned spectra)
as photons have not been significantly attenuated by the small distance
of soil they have had to travel through. Conversely, the spectrum
Fig. 6. Neural network estimations of 3 different spectra obtained using the lanthanum
bromide detector: low activity (0.1 Bg g−1) at the surface (2 cm depth), high activity
(1.2 Bg g−1) at depth (35 cm) and background. The raw data (1024 channels) has also
been provided alongside binned source spectra for comparison.
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estimated to be at greater depth (35 cm) at greater activity (1.2 Bq g−1)
the spectrum appears more flat as many of the lower full energy
photons have been attenuated by the thicker mass of soil; resulting in
a reduction in lower energy peaks. However, comparing the higher
energy bin containing the 1764 keV peak, and significant amount of
low energy scatter, to the background spectrum, provides evidence for
a much deeper contamination.

3.3. Analysis of case study site

Spectral classification and regression of field data was performed
using two NN on region of interest binning-LaBr:Ce spectra. Activity
and depth estimates of source spectra demonstrate the advantages the
approach (Fig. 7). The majority of highest activity contamination
(N1 Bq g−1) was estimated to be buried beyond 0.2 m, with the highest
activities occurring at greater depths (0.3–0.5 m). Hotspots identified
during the survey using straightforward gross counting (red colours),
although they represent the highest surface dose rates they were
relatively low activity (b1 Bq g−1) positioned at the surface (b0.05 m).

Another feature is the exponentially increasing manner of the
activity of detected source spectra with greater depth (Fig. 7). This
represents the limit of detection, beyond these depths 226Ra could not
be confidently separated from background by the classification NN.
Notice that the standard error for measurements generally increases
with greater depth. This can be attributed to fewer source counts across
the spectrum producing a lower signal to noise ratio making the fitting
procedure more difficult for the regression NN.

In this scenario, results would have to be treated with considerable
caution. To potentially validate its presence, neighbouring measure-
ments should be analysed to see if there was an extended layer present
or the measurement was isolated contamination. In the event of a
significant isolated measurement, further measurements would have
to be taken, in that area, at a later time, to validate its presence. This
could take place alongside intrusive investigations. Nonetheless, these
types of scenario present a considerable challenge to circumvent using
remote gamma-ray measurements.

Contamination at this site could not be identified beyond0.6musing
themethod, because at these depths, much higher activitieswould have
been beyond the limit of detection (Fig. 7). This reflects the ultimate
limitation of in situ and mobile gamma-ray spectrometry. Crucially
though, this type of method could be used as the first tool to rapidly
survey a site, where hotspots, potentially at depth, could be identified
Fig. 7. Activity and depth estimates alongside standard error for source spectra from field
site. Colour ramp indicates gross count rate. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
for later intrusive work. Naturally, to gain a better assessment of deeper
contamination identified by the technique, borehole measurements
could be taken and a similar spectral processing approach could be
applied (Varley et al., 2015b). Alternatively, longer counting times
using a higher resolution detector, for instance a High Purity
Germanium detector, could be implemented; potentially improving
overall detection accuracy. Importantly, all of these approaches could
be applied prior to labour intensive soil sampling.

In addition, the case study provided evidence that the critical value
for the exemption of Naturally Occurring Radioactive Material (above
10 Bq g−1) is not exceed at the site at less than 0.6 m.

An interesting section of the site (graphical abstract), consisting of
an area of ground approximately 600m2 in size, has been characterised
and spatially smoothed using inverse distance weighting (Shepard,
1968). This area displays a large variation in activity, depth and lateral
distribution of contamination. Notice how the highest intensity gross
counting hotspots (red sections on upper plot) correspond to relatively
low activity (N0.01 Bq g−1 or green areas) that are close to the surface
(N0.05 cm). However, there tends to be much higher contamination at
greater depths (Fig. 7) in the close vicinity of these areas (pink areas
in the foreground). An explanation for this is that hotspots may
represent the latest (less contaminated) spoil, laid down at the end of
the formation of the tip (ash and clinker can been seen at surface on
some of the hotspots). Much higher concentrations of 226Ra would
appear to have been laid down earlier in the history of the site, perhaps
during and immediately after the Second World War when large 226Ra
inventories were being disposed of. This contamination occurs at
greater depths under a relatively non-contaminated overburden,
which is likely to have been used to cover contamination at a later date.

4. Conclusions

A method employing Principal Component Analysis and Neural
Networks was developed and applied for rapid estimation of the
depth and activity of homogeneous 226Ra contamination from surface
measurements taken using handheld gamma-ray detectors. This
enables the accurate characterisation of an area contaminated with
226Ra and interpolated maps of the processed data ultimately allow for
the risk to human health, in both long and short term, to be robustly
assessed. The superior energy resolution of LaBr:Ce resulted in better
depth and activity resolving capability demonstrated that it was more
suitable than the standard NaI:Tl for this type of contaminated land
application and could easily be applied to other gamma emitting
radionuclides such as 137Cs.
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