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Abstract

Increasing efforts in the collection, standardization,
and maintenance of large scale longitudinal elec-
tronic health care records (EHRs) across the world
provide a promising source of real world medical
data with the potential of providing major novel
insights of benefit both to specific individuals in
the context of personalized medicine, as well as on
the level of population-wide health care and pol-
icy. The present paper builds upon the existing
and intensifying efforts at using machine learning
to provide predictions on future diagnoses likely
to be experienced by a particular individual based
on the person’s existing diagnostic history. The
specific model adopted as the baseline predictive
framework is based on the concept of a binary di-
agnostic history vector representation of a patient’s
diagnostic medical record. The technical novelty
introduced herein concerns the manner in which
transitions between diagnostic history vectors are
learnt. We demonstrate that the proposed change
prima fasciae enables greater learning specificity.
We present a series of experiments which demon-
strate the effectiveness of the proposed techniques,
and which reveal novel insights regarding the most
promising future research directions.

1 Introduction

Recent years have witnessed a remarkable convergence of
two broad trends. The first of these concerns information
i.e. data. Rapid technological advances coupled with an in-
creased presence of computing in nearly every aspect of daily
life, have for the first time made it possible to acquire and
store massive amounts of highly diverse types of information.
Concurrently and in no small part propelled by the described
environment, research in artificial intelligence — in machine
learning, data mining, and pattern recognition, in particular
— has reached a sufficient level of methodological sophistica-
tion and maturity to process and analyse the collected data,
with the aim of extracting novel and useful knowledge.
Considering the growing appreciation of the financial bur-
den of health care and the associated human cost, it is un-
surprising that application domains pertaining to health care

have attracted a significant amount of attention. For exam-
ple, the diverse information content shared across social me-
dia platforms [Abel et al., 2011; Agarwal et al., 2011; Bau-
com et al., 2013; Beykikhoshk ez al., 2014, 2015¢,b; Bollen
et al., 2011] is increasingly recognized as a source of valu-
able insight into the behaviour of individuals, spread of epi-
demics, and the adoption of health related recommendations
and advice. The analysis of medical literature itself is another
potential target for data mining algorithms and knowledge
extraction [Andrei and Arandjelovié¢, 2016a,b; Beykikhoshk
et al., 2015a]. In this paper we are specifically interested
in the rich source of heterogeneous health data, collected
and stored in the form of large scale longitudinal electronic
health records (EHRs) [Arandjelovié, 2015a; Christensen and
Ellingsen, 2016; Xu et al., 2016].

2 Previous work

Most existing methods constrain their prediction to a nar-
row specific context, e.g. to admissions to the emergency de-
partment [Li and Guo, 2009], to heart failure related admis-
sions [Hammiill et al., 2011], to the veteran population [Hol-
loway et al., 1990] etc. In addition to their inherently limited
scope the applicability of these methods is further impaired
by their frequent reliance on a substantial amount of expert
knowledge in the choice of variables used for prediction [Lee-
gon et al., 2005]. Notwithstanding these efforts, the perfor-
mance of the methods described in the literature has largely
been disappointing [Kansagara et al., 2011]. Better results
have been reported in prediction attempts which simplify the
task even further by looking at short-term (usually of approx-
imately 30 days) predictions only [Holman et al., 2005].

One of the possible reasons for the poor performance of the
existing methods in the literature lies in their virtually univer-
sally overly simplistic inference models. In particular, unlike
in the present work, they fail to capture sequential informa-
tion on historical admissions and diagnoses; rather, they base
their predictions on a single cumulative snapshot of a patient’s
record [Bottle et al., 2006].

The present work builds upon the model recently proposed
by Arandjelovi¢ [2015b]. Evaluated on a large corpus of
real world EHRs the method demonstrated highly promis-
ing results on the task of diagnosis prediction. Additional
analyses by Vasiljeva and Arandjelovi¢ [2016a] and Arand-
jelovi€ [2016] corroborated the original findings and provided
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additional insights regarding the structure of the underlying
model, which have led to its further refinements [Vasiljeva
and Arandjelovi¢, 2016b].

For completeness and for the sake of clarifying the specific
limitations of the original method which the present work ad-
dresses, we next summarize the main ideas behind the base-
line algorithm we build upon; for full technical detail and ad-
ditional discussion the reader is referred to the original publi-
cations [Arandjelovi¢, 2015a, 2016].

2.1 Original diagnostic history based method

Consider a patient’s hospital diagnosis history H which com-
prises a sequence of diagnoses d;:

H=d —dy— ... > d,, (D)

where each d; is a discrete variable whose value is a spe-
cific diagnostic code. Examples of diagnosis coding schemes
include that provided by the International Statistical Clas-
sification of Diseases and Related Health Problems (ICD-
10) World Health Organization [2004] and the related Aus-
tralian Refined Diagnosis-Related Groups (AR-DRGs). The
algorithm proposed by Arandjelovi¢ [2015a] predicts the
most likely next diagnosis d}; , ; by learning the probabilities
of transitions from H to all other possible histories which can
result from a single follow-up diagnosis d:

dr = arg max p(H — d|H), 2

where Djcp is the set of diagnostic codes. To make the esti-
mation of the probability p(H — d|H) tractable and learn-
able from limited data, a patient’s diagnostic history H is rep-
resented using a fixed length binary vector v(H). This rep-
resentation bears resemblance to the bag of words represen-
tation frequently used in text analysis and which has since
been successfully adapted to various other application do-
mains too [Sivic and Zisserman, 2003; Arandjelovié, 2012].
Each element in v( H ) encodes the presence (value 1) or lack
thereof (value 0) of a specific salient diagnosis (i.e. the cor-
responding code) in H, save for the last element which cap-
tures jointly all non-salient diagnoses. Saliency is determined
by the frequency of the corresponding diagnosis in the en-
tire data corpus (n.b. different saliency criteria can be readily
used instead). The probability p(H — d|H) in (2) is then
estimated by superimposing a Markovian model [Sukkar et
al., 2012; Jackson et al., 2003] on the space of history vec-
tors which leads to H — d being interpreted as a transition
from the state represented by v(H) to the state represented
by v(H — d). As usual the probabilities parameterizing the
Markov model are learnt from a training data corpus. A con-
ceptual illustration of the method is shown in Figure 1.

The key idea behind the described model, supported by
a breadth of empirical evidence, is that in a vast number of
cases it is the presence of past complications which most
strongly predicts future ailments [Mudge et al., 2011; Fried-
man et al., 2008 2009; Dharmarajan et al., 2013; Butler and
Kalogeropoulos, 2012], which allows for the space of states
over which learning is performed to be reduced dramatically;
in particular, this is achieved by employing a fixed length state
representation and through binarization of its elements.
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Figure 1: Conceptual illustration of the method proposed
by Arandjelovi¢ [2015a] which superimposes a Markovian
model over a space of history vectors used to represent the
medical state of a patient. The inherent ‘forgetfulness’ of the
Markovian assumption, which is a major limitation in its use
in the application domain of interest in this paper, is overcome
by incorporating memory in the state space itself.

3 Technical contributions

In this section we introduce our main technical contribution.
A further contribution in the form of novel analyses and em-
pirical results which highlight important and promising future
research directions is presented in Section 4.

3.1 Improving the learning model

The first major contribution of the present work goes to the
very heart of the learning framework underlying the diagnos-
tic progression model, and concerns the issue of the space
over which learning is performed. In other words we propose
a paradigm change in terms of what is explicitly learnt.
Recall from the previous section that the method described
by Arandjelovi¢ [2015a] learns the probabilities of transi-
tions from the space of history vectors to the same space
of history vectors i.e. it learns p(H'|H) where H is a pa-
tient history vector and H a possible extension to that his-
tory, H = H — d. This approach follows naturally from
the structure of the problem: both H and H’ are states in
a Markov chain and indeed the baseline formulation of this
class of problems learns amongst other things precisely these
transition probabilities. However, the very aspect of the his-
tory vector representation which makes it a powerful feature
for longitudinal pattern extraction, in this instance introduces
a significant practical limitation. Because history vectors are
binarized, in general a specific transition does not uniquely
determine the diagnosis which caused the transition to occur.
In particular this occurs when a diagnosis already recorded
in a patient’s history is repeated — the transition from H to
itself does not allow the method to distinguish between dif-
ferent diagnoses in the patient’s history and determine which
effected the transition. This is a major limitation given that
many of the most serious diseases tend to be chronic in na-
ture. In the context of the baseline model described in the
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Figure 2: Illustration of the learning paradigm change proposed in the present paper. (a) The original diagnostic history based
method of Arandjelovi¢ [2015a] learns transition probabilities between different compatible patient histories (histories which
correspond to history vectors differing in at most one binary entry). (b) In contrast herein we learn directly the probabilities of
all possible diagnostic codes given a specific patient history. This change does not increase the complexity of the learning task
at hand while prima fasciae providing greater specificity in prediction.

previous section this means that a repeated diagnostic code
effects a transition from a history vector to itself.

The method introduced in the present paper solves the
aforementioned problem by changing the space over which
learning is performed. In particular, rather than learning
the probabilities of transitions between history vectors them-
selves, we learn the probabilities of follow up diagnoses di-
rectly. In other words, rather than learning probabilities of the

type:
p(v(H) — dlv(H)), 3)

we propose to learn:
p(d[v(H)). ©)

It can be readily seen that this is a stronger learning task in
the sense that knowing the follow-up diagnosis d allows for
the computation of the next Markov chain state H' = H — d
without ambiguity whereas the opposite is not the case, as
described previously.

What makes the proposed learning methodology particu-
larly sensible is that it does not carry the burden of either
greater computational complexity nor learning challenge —
the dimensionality of the space over which learning is per-
formed stays exactly the same (it is governed by the choice of
the number of salient diagnoses), which remains as densely
populated as before. Hence this learning paradigm change is
unambiguously superior to that described originally.

4 Evaluation and analysis

In this section we summarize some of the experiments we
conducted to evaluate the proposed framework and to garner
additional useful insight into the structure of its prediction
which would help illuminate the most promising avenues for
further improvement and future work.

4.1 EHR data

In an effort to reduce the possibility of introducing variability
due to confounding variables, we sought to align our eval-
uation protocol as much as possible with that adopted by
previous work. Hence we conducted our experiments using
the large collection of EHRs (over 40,000 individuals and
over 400,000 diagnostic events) described in Arandjelovié
[2015b]. For completeness here we summarize the key fea-
tures of this data set.

The EHRs adopted for evaluation were collected by a
large private hospital. The distribution of patient age in the
database is 73+ 15 years, the youngest and oldest patients be-
ing 17 months and 102 years old respectively, with the male
to female ratio 56 : 44. Approximately 23% of the patients in
the database have a date of death associated with their EHR,
which means that they are deceased and thus have a record
of a terminal diagnosis. The entire EHR collection spans a
period of 10 years, with the average number of diagnoses per
patient of 10.1+62.2. Standard ethical procedures in the stor-
age and use of data were followed, and an appropriate insti-
tutional ethical approval obtained before the commencement
of research.

4.2 A note on performance assessment

Before proceeding with a description the experiments we con-
ducted, we would like to turn our attention briefly to the ques-
tion of how performance of a method addressing the problem
at hand should be measured. It is little short of a truism to
note that this issue is crucial in ensuring that the choice be-
tween different competing models is made on meaningful ba-
sis. [Arandjelovi¢, 2015a] touched upon this discussion but
herein we would like to add some further insight.

To place the present discussion in context, let us first
summarize how performance assessment was approached in
the original work by [Arandjelovi¢, 2015a]. [Arandjelovié,
2015a] reported the performance of the baseline diagnos-



tic history based method on two different prediction tasks,
namely (i) the first follow-up diagnosis prediction, and (ii)
long term prediction of the most likely diagnosis sequence.
In both scenarios prediction was made on the basis of the pa-
tient’s current diagnostic history.

The accuracy of the first follow-up diagnosis prediction
was made initially by examining the proportion of the pre-
dictions which were correct (i.e. which correctly matched
the actual follow-up diagnosis in the data) and was anal-
ysed in further detail using cumulative match characteris-
tic (CMC) curves which capture the prediction accuracy at
rank-N for different values of N. In the present paper we
would like to put forward an argument that rank-1 accuracy
is not a good performance assessment measure for the prob-
lem at hand. Our argument is based on a simple observa-
tion which we will support further with empirical evidence in
Section 4.3. Specifically, we observed that in practice, seri-
ous chronic conditions with multiple possible comorbidities
which exhibit predictable longitudinal patterns, are interlaced
with sporadic diagnoses of more common ailments which are
often at most weakly related to the former conditions. This
means that by their very nature these sporadic episodes are
virtually unpredictable and the failure of a model to predict
them should not weigh as heavily as an error in the prediction
of chronic conditions. Therefore we would argue that predic-
tion accuracy not at rank-1 level but rather at rank-2 to rank-4,
is more insightful and reflects a method’s performance better.

To assess long term prediction accuracy in his original
work Arandjelovi¢ [2015a] used model likelihood computed
using the actual diagnostic progression observed to compare
different competing models. This manner of performance as-
sessment can be seen to be less sensitive to the confounding
aspects described in the context of follow-up diagnosis pre-
diction. The primary reason is that by its very nature this
measure necessitates a comparison between two alternatives
(i.e. two model) — the likelihood value itself is not particu-
larly meaningful in answering the question of how good a
method is. Rather, it is the comparison of the likelihoods (ra-
tio thereof) of two different models that informs the decision
on which of the two should be preferred. In this context, the
effects of spurious and ‘unpredictable’ diagnoses cancel out.

4.3 Results and discussion

Using the collection of EHRs described in Section 4.1, we
conducted a series of experiments to evaluate the perfor-
mance of the modified diagnostic history based method pro-
posed in this paper, and validate the different hypotheses that
underlie the model. To make our method readily compara-
ble with those already described in the existing literature and
the results interpretable in the context of previous findings,
we followed the standard cross-validation framework used in
previous work.

Experiment 1: Follow-up diagnosis prediction

Following previous work, in our first experiment we sought
to examine the performance of the proposed method on the
task of follow-up diagnosis prediction. For each possible par-
tial patient history in our data set we compared the prediction
made by our algorithm and compared it with the ground truth

i.e. the actual follow-up diagnosis. Our findings are sum-
marized using the standard cumulative match characteristic
curve shown in Figure 3.

It can be readily seen that the proposed method achieves
impressive accuracy of approximately 78% already for rank-1
prediction. Moreover, from this already high baseline rank- N
accuracy increases rather rapidly with NV, achieving approx-
imately 89% for rank-3 and 92% for rank-5 prediction. As
argued in Section 4.2 these values are more meaningful mea-
sures of performance in the context of the problem at hand.

It is interesting to compare the plot in Figure 3 with the
analogous plot in [Arandjelovi¢, 2015a]. While these are
not directly comparable, given that we directly predict the
follow-up diagnosis whereas Arandjelovi¢ [2015a] predicts
the follow-up history, it is insightful to analyse the magnitude
and the nature of the difference between the two CMCs. As
expected, rank-1 accuracy in Figure 3 is lower than that in
[Arandjelovi¢, 2015a]. However, the difference diminishes
for prediction at higher ranks, effectively vanishing by rank-
10.

Experiment 2: Coarse diagnosis type prediction

As already noted in in the past by Arandjelovi¢ [2016]
amongst others (also see [RGI-CGHR Collaborators, 2009]),
the hierarchical structure of most commonly used diagnosis
coding schemes encodes important information which has
received little attention to date [Vasiljeva and Arandjelovié,
2016b]. Hence, in order to illuminate possible directions for
future work in our second set of experiments we sought to
garner additional insight into the nature of errors of our al-
gorithm on a coarser coding level. We did this by examin-
ing each erroneous prediction in turn and checking whether
the prediction concerns the same category of diagnoses as
the correct one, as readily inferred from the aforementioned
hierarchy [Arandjelovi¢, 2016]. For example, an erroneous
prediction of a specific circulatory system diagnosis which
predicted a different circulatory system diagnosis can be rea-
sonably considered as being less serious than an erroneous
prediction which predicted, say, a disease of the skin and sub-
cutaneous tissue.

Our results are highly insightful. Already at rank-1 the
obtained accuracy was 94% which by rank-4 reached 100%
thereby corroborating the hypothesis put forward in Sec-
tion 4.2.

A more detailed examination of errors at rank-1 level also
revealed interesting findings. In particular, even when the
coarse follow-up diagnosis category was not correctly iden-
tified, we found that nearly universally the prediction was
highly meaningful. For example, to take some of the more
frequent errors we observed, circulatory disorders were con-
fused with blood disorders. In other instances we observed
precisely what we argued from theory: that longitudinally
patterned, chronic conditions were interlaced with episodic
and sporadic ailments which are inherently not strongly pre-
dictable on the basis of a patient’s past diagnostic history.
This corroboration of our hypothesis motivates the develop-
ment of methods capable of separating such interlaced pat-
terns and of incorporating temporal information in the pre-
dictive process, thereby providing more nuanced, temporal
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Figure 3: The cumulative match characteristic of the first
follow-up diagnosis prediction obtained by our method. As
argued in Section 4.2 we consider the performance across the
rank range of approximately 3-5 to be most relevant in prac-
tice. From the plot it can be seen that the corresponding pre-
diction accuracy is §89-92%.

rather than sequential prediction.

S Summary and future work

In this paper we introduced a novel algorithm that uses ma-
chine learning on EHR collections for the discovery of lon-
gitudinal patterns in the diagnoses of diseases. The key tech-
nical novelty concerned a learning paradigm change which
enables greater learning specificity. A series of experiments
were presented to demonstrate the effectiveness of the pro-
posed technique. Novel insights resulting from our experi-
mental findings were also discussed and highlighted.

As regards possible future work directions, a number of
possibilities were proposed by the author of the original his-
tory vector based approach that the present method was partly
inspired by. While we agree with most of these in broad
terms, our contributions, experiments, and results suggest
what we believe to be more promising immediate alternatives.
In particular while we agree with the authors of the original
method that the presence of a particular episode of care is a
predictive factor not much weaker than the exact number of
episodes (which would require prohibitively large amount of
training data to learn), we believe that history vector binariza-
tion is an overly harsh step for the reduction of the learning
space. Following the spirit of the method introduced in the
present paper we intend to explore the possibility of auto-
matically detecting chronic types of episodes of care (such as
dialysis, for example) and then using a binary representation
for non-chronic, and a more graded representation for chronic
conditions.
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