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1 INTRODUCTION

ABSTRACT

We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the
twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We
independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains
361 762 galaxies with an effective redshift of z; owz = 0.32; the CMASS sample consists of
777 202 galaxies with an effective redshift of zcpass = 0.57. We extract the BAO peak position
from the monopole power-spectrum moment, ¢, and from the ,u2 moment, o, where u is the
cosine of the angle to the line of sight. The 1>-moment provides equivalent information to that
available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm
to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the
monopole and w”>-moment, which are related to radial and angular shifts in scale. We report
H(z1owz)7s(za) = (11.60 £ 0.60) x 10*kms~! and D (zLowz)/7s(zq) = 6.66 £ 0.16 with a
cross-correlation coefficient of ryp, = 0.41, for the LOWZ sample; and H(zcmass)7s(zd) =
(14.56 + 0.37) x 10°kms~! and Da(zemass)/7s(za) = 9.42 £ 0.13 with a cross-correlation
coefficient of ryp, = 0.47, for the CMASS sample. We demonstrate that our results are not
affected by the fiducial cosmology assumed for the analysis. We combine these results with the
measurements of the BAO peak position in the monopole and quadrupole correlation function
of the same data set (Cuesta et al. 2016, companion paper) and report the consensus values:
H(zrowz)7s(za) = (11.63 + 0.69) x 10°kms™" and Da(zLowz)/7s(za) = 6.67 £ 0.15 with
rup, = 0.35 for the LOWZ sample; H(zcmass)7s(za) = (14.67 £ 0.42) x 10°kms~! and
DA(ZCMAss)/rS(Zd) =9.47 £ 0.12 with THD, = 0.52 for the CMASS sample.

Key words: galaxies: haloes—cosmological parameters—cosmology: theory —large-scale
structure of Universe.

projection is a function of the Hubble expansion.! The anisotropic
information can be extracted from measuring the BAO peak posi-

The baryon acoustic oscillation (BAO) signal in the clustering of
galaxies provides a robust route to measure the cosmological expan-
sion rate (Eisenstein et al. 2005). The angular separation of galaxies
conveys different cosmological information compared to the radial
separation. The observed projection of the BAO-scale in the angular
direction depends on the angular diameter distance, while the radial

* E-mail: hector.gil@port.ac.uk

tion in moments of the correlation function or Fourier-space power
spectrum.

The Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013), which is part of SDSS-III (Eisenstein et al. 2011),
has provided the largest set of numbers of spectroscopic galaxy

! Negligible evolution is expected over the redshift interval between galaxies
separated by the BAO scale.
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observations made to date; in this paper we analyse the final, Data
Release 12 (DR12; Alam et al. 2015) sample. Our work follows on
from measurements made for DR11 samples presented in Anderson
et al. (2014) and Beutler et al. (2014). We analyse the low-redshift
(LOWZ) and high-redshift (CMASS) samples independently, which
were targeted using different algorithms (Reid et al. 2016). DR12
contains approximately 1000 deg? more solid angle than DR11, an
increase of approximately 12 per cent. Additionally, the methodol-
ogy adopted to create galaxy catalogues has been improved (Reid
et al. 2016; Ross, Percival & Manera 2015), leading to improved
understanding, and mitigation, of potential systematic errors.

In this paper, we present a Fourier-space analysis of the line of
sight (LOS) dependent clustering, extracting the BAO position. The
monopole and quadrupole calculated were analysed to measure the
redshift-space distortion (RSD) signal in Gil-Marin et al. (2016,
hereafter Paper I). In this paper, we present a new method for fitting
the w”>-moment of the power spectrum rather than the quadrupole
to obtain the anisotropic information. As the p>-moment is a sim-
ple linear combination of monopole and quadrupole, this change
is lossless. Fitting to the ©?-moment allows the use of the same
equations as for the monopole and quadrupole (with different pa-
rameters) simplifying the modelling, and particularly the way in
which we can isolate BAO information from the broad-band signal.
Note that using the ;>-moment instead of the quadrupole is a mere
fitting technique that simplifies the identification of the BAO peak
in the higher order multipoles of the power spectrum. However, one
can still use the estimators used in Paper I to compute the monopole
and quadrupole, and reconvert them into monopole and 1>-moment.
Since the p>-moment is just a linear combination of the monopole
and quadrupole, the result is identically the same to measure the
wu?-moment using the estimator described in Bianchi et al. (2015).

The outline of our paper is as follows: in Section 2, we introduce
the data, the mocks used to compute the covariance matrices and test
for systematics, and briefly describe the reconstruction technique. In
Section 3, we present the formalism used to calculate the monopole
and p2-moments. The method applied to fit the BAO is described
in Section 4. The measurements of the BAO peak position in the
DR12 BOSS galaxies are presented in Section 6, for both pre- and
post-reconstructed catalogues. In Section 5, we test for potential
systematics of the model and of the fitting process using the post-
reconstructed mocks. Finally Section 7 presents the conclusions of
this paper.

2 DATA AND MOCKS

2.1 The SDSS III BOSS data

As part of the Sloan Digital Sky Survey III (Eisenstein et al. 2011)
the Baryon Oscillations Spectroscopic Survey (BOSS) (Dawson
et al. 2013) measured spectroscopic redshifts (Bolton et al. 2012;
Smee et al. 2013) for more than one million galaxies and over
200000 quasars. The galaxies were selected from multicolour SDSS
imaging (Fukugita et al. 1996; Gunn et al. 1998; Smith et al. 2002;
Gunn et al. 2006; Doi et al. 2010) focusing on the redshift range
of 0.15 < z < 0.70. The galaxy survey used two primary target
algorithms, selecting samples called LOWZ, with 361 762 galaxies
in the final data release DR12 (Alam et al. 2015) between 0.15 <
z < 0.43 and CMASS, with 777 202 galaxies in DR12 between
0.43 < z <0.70. The full targeting algorithms used and the method
for calculating the galaxy and random catalogues are presented in
Reid et al. (2016). The samples jointly cover a large cosmic volume
(Veir = 7.4 Gpc3) with a number density of galaxies that ensures
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that the shot noise does not dominate at BAO scales at the relevant
redshifts. Obviously in the edges of the redshift-bin of the LOWZ
and CMASS samples the shot noise has a more relevant role than
close to the centre of the redshift-bin, just because of the difference
in the number density of galaxies. However, the power-spectrum
signal is dominated by those galaxies of the centre of the bin, which
is less affected by shot noise. Full details of the catalogues are
provided in Reid et al. (2016).

In order to correct the several observational artefacts in the cat-
alogues, the CMASS and LOWZ samples incorporate a set of
weights: a redshift failure weight, w., a fibre collision weight,
W, and a systematic weight, wyy,s (CMASS only), which combines
a seeing condition weight and a stellar weight (Ross et al. 2012;
Anderson et al. 2014; Reid et al. 2016). Hence, each galaxy target
contributes to our estimate of the target galaxy density field by

We = wsys(wrt' + W — ]) (1)

The redshift failure weights account for galaxies that have been ob-
served, but whose redshifts have not been measured: nearby galax-
ies, which are approximated as being ‘equivalent’, are up-weighted
to remove any bias in the resulting field. The fibre collision weight
similarly corrects for galaxies that could not be observed as there
was another target within 62 arcsec, a physical limitation of the
spectrograph [see Ross et al. (2012) for details]. The systematic
weight accounts for fluctuations in the target density caused by
changes in the observational efficiency. This effect is only present
for the CMASS sample, which relies on deeper imaging data; such
a weight is not required for the brighter LOWZ sample (Tojeiro
et al. 2014).

Additionally, we adopt the standard weight to balance regions of
high and low density (Feldman, Kaiser & Peacock 1994; Beutler
et al. 2014),

wsys(r)
Weys(X) + we(@n(r) Py’

wrkp(r) = @
where n is the mean number density of galaxies and Py is the
amplitude of the galaxy power spectrum at the scale where the error
is minimized. We assume Py = 10000 4> Mpc?, which corresponds
to the amplitude of the power spectrum at scales k ~ 0.10 2 Mpc ™"
(Reid et al. 2016).

2.2 The mock survey catalogues

Mock samples are a key component in the analysis of precision
cosmological data provided by galaxy surveys. They are a fun-
damental requirement to test and analyse the large-scale structure
and they help determine systematic errors on the measurements.
Most of the relevant large-scale physics is captured by approxi-
mate methods, so we do not necessarily need to base mock cat-
alogues on full N-body cosmological simulations; small numbers
of N-body simulations can instead be used to calibrate a more ef-
ficient scheme. In this paper, we use mocks created by two dif-
ferent approaches: MultiDark-Patchy BOSS DR12 mocks? (here-
after MD-parcHY mocks) (Kitaura et al. 2016, companion paper)
and Quick-Particle-Mesh mocks (White, Tinker & McBride 2014),
hereafter opm mocks. Both schemes incorporate observational ef-
fects including the survey selection window, veto mask and fibre
collisions. In Paper I, we demonstrated that the covariance matrices
obtained using these two types of mocks were similar and yielded

2 http://data.sdss3.org/datamodel/index-files.html
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Table 1. Cosmological parameters chosen for the fiducial cosmology, for
the MD-patcHY cosmology and Qpm cosmology.

Qm Qa Qph? h 1
Fid. 0.31 0.69 0.023 569 0.7 0.9624
MD-parciy  0.307 115 0.692 885  0.022045  0.6777 0.96
QPM 0.29 0.71 0.022 442 0.7 0.97

similar errors-bars and cross covariance parameters (see figs 3 and
13 in Paper I). Because of this, in this paper we perform two paral-
lel analyses of the data using MD-parcHY and Qpm mocks. Since the
measurements and the errors coming from the two sets of mocks are
very similar, we average both the measurements and errors in order
to obtain a single value for each parameter. Since the covariance
matrix is estimated from a set of mocks, its inverse is biased due
to the limited number of realizations. We account for this effect by
applying the correction proposed by Hartlap, Simon & Schneider
(2007). In addition to this scaling, we have to propagate the error
in the covariance matrix to the error on the estimated parameters.
We can do this by scaling the variance for each parameter by the
factor of equation (18) of Percival et al. (2014). The corrections to
the error bars described above are small (<2 per cent for opm and
<1 per cent for MD-paTCHY), but are included in all the error bars
quoted in this paper.

2.3 Fiducial cosmology

In this paper, we analyse the data assuming a fiducial cosmological
model. The values of this cosmological model, as well as the cos-
mologies of opm and MD-parcHY mocks, are presented in Table 1.

In Section 5 we show that the arbitrary choice of cosmology
has a systematic effect of <0.3 per cent on the peak position values
obtained from the Qpm mocks. We have checked the effect of this
systematic error by adding it in quadrature along with the statistical
errors for the data. We have found that this represents justa 5 per cent
increase of the size of the total error-bars budget for the case of
the position of the BAO peak in the isotropic post-recon signal in
the CMASS sample, and much less in the rest of the variables.
Because of this we consider this effect as sub-dominant and we
will not consider it in the results of this paper. We present a further
discussion of this point later in Section 5.

2.4 Reconstruction

The initial BAO signal in the clustering is damped by the comov-
ing motions of galaxies, potentially reducing the fidelity of BAO
measurements. Using the observed density field, we can model the
galaxy motions, and move the overdensity back to its ‘original” po-
sition, recovering a fraction of this signal (Eisenstein et al. 2007).
The fraction of the signal recovered is dependent on the density of
galaxies, which limits how well the displacement field can be deter-
mined (Burden et al. 2014). RSDs complicate the implementation
of this method, as they produce a LOS-dependent distortion that has
to be included when estimating the displacement field. In Fourier-
space, an iterative method can be used to compensate for this effect
(Burden, Percival & Howlett 2015), where a correction is computed
at each step using the prior estimate of displacements. An alterna-
tive approach is to grid the galaxy overdensity field, and determine
RSD and displacements using a finite-difference routine based on
the values of the overdensities at grid-points (Padmanabhan, White
& Cohn 2009). Both methods provide consistent results; we use the
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finite-difference method here. We will make measurements both
before applying this algorithm (pre-recon), and after (post-recon).

3 POWER-SPECTRUM ESTIMATOR

We build the galaxy power-spectrum multipole estimator by defin-
ing the function

F(r) = wjﬁ—‘jz(r)[wc(r)nm — (0], 3)

2

where n and ng are, respectively, the observed number density of
galaxies and the number density of a synthetic catalogue Poisson
sampled with the same mask and selection function as the survey
with no other cosmological correlations. The functions w. and wgkp
were defined in equations (1) and (2), respectively. The factor o,
is the ratio between the weighted number of observed galaxies over

al

Ne:
the random catalogue, ¢y = > ; &l w./Ns, where N denotes the

1
number of objects in the synthetic catalogue and N, the number of
galaxies in the real catalogue. The factor I, normalizes the amplitude
of the observed power in accordance with its definition in a universe
with no survey selection.

We compute the power-spectrum multipoles using the imple-
mentation of the Yamamoto estimator (Yamamoto et al. 2006) pre-
sented in Bianchi et al. (2015), which is based on using multiple
Fast Fourier Transforms, keeping the relevant LOS information by
approximating the LOS of each pair of galaxies with the LOS of
one of the two galaxies (see section 3 of Paper I for more details on
the algorithm used). This is a reliable approximation on the scales
of interest, which clearly improves on assuming a single fixed LOS
for the whole survey for the quadrupole, but will eventually break
down at large scales and high order multipoles (Yoo & Seljak 2015;
Samushia, Branchini & Percival 2015).

We use a random catalogue of number density of n4(r) =
o ii(r), with o) ~ 50, for pre-recon, and o, =~ 20 for post-recon
catalogues. We place the LOWZ and CMASS galaxy samples on
1024% quadrangular grids, of a box of side L, = 2300 »~'Mpc for
the LOWZ galaxies, and L, = 35004 'Mpc to fit the CMASS
galaxies. This approach corresponds to a grid-cell resolution of
3.42h~'Mpc for the CMASS galaxies and 2.25h~'Mpc for the
LOWZ galaxies. The fundamental wavelengths are therefore k¢ =
1.795 x 107> hMpc~! and k; = 2.732 x 1073 hMpc~! for the
CMASS and LOWZ galaxies, respectively. We apply the Cloud-in-
Cells scheme (CiC) to associate galaxies with grid-cells, and bin
the power-spectrum k-modes in 60 bins between the fundamental
frequency k¢ and a maximum frequency of ky = 0.33 2 Mpc, with
width Alogok = [logio(km) — logio(ks)]/60.

We limit the scales fitted as follows: our procedure for determin-
ing the largest scale for the fitting process is based on limiting the
impact of the systematic weights, and is presented in appendix A of
Paper 1. We limit scales to k > 0.02 #Mpc~' for the monopole and
k > 0.04 hMpc~' for the quadrupole. The smaller scale used for
the BAO peak determination is ky.x = 0.3 2 Mpc", as for smaller
scales the BAO information is quite limited.

In this paper, we work with the combined north and south
samples, NGC+SGC, for all the power-spectrum multipoles. This
combination is performed by averaging both NGC and SGC
components weighted by their area, Pnxgc + sgc = (PnacAnce +
PSGCASGC)/(ANGC + Ascc), both for LOWZ and CMASS sam-
ples. The values of the areas are: AKONZ = 5836 deg?, ALQYZ =
2501 deg?, AGHASS = 6851 deg” and ASMASS = 2525 deg?.
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4 FITTING THE POWER-SPECTRUM
MOMENTS

4.1 Modelling the power-spectrum moments

We model the power-spectrum multipoles in order to measure
the position of the BAO features and marginalize over the broad-
band information. To reduce the complexity of the fits, we choose
to fit the monopole and the u*-moment, defined as P*) =
2/5PP(k) + P©(k), rather than the monopole and quadrupole.
As the pair monopole—u’>-moment are a linear transformation of
the pair monopole—quadrupole, the information content is the same
in both. P**) has the property that, in linear theory, the shape is the
same as P, and we can therefore use the same modelling proce-
dure for both, albeit with different free parameters describing the
deviations from linear theory to account for LOS dependent effects.

To create the model moments, we start by computing the linear
power spectrum at a given cosmology, Pj,, which we generate
using Cams (Lewis, Challinor & Lasenby 2000). The linear power
spectrum was separated into two components, one containing the
BAO oscillations, Oy, and a smooth component, Pjiygn; Prin(k)
= Ojin(k)Pjinsm (k). This separation was performed using the same
method applied to the data, but employing an analytic model for the
BAO and smooth model based on the fitting formulae of Eisenstein
& Hu (1998). The position of the BAO peak is described by o,
which parametrizes the features of the oscillations as a function of
k in the Oy,-function, Oy,(k/a). We use a superscript ‘(0)” for the
monopole and ‘(2)’ for the value measured from the ?-moment.
We adopt the model described in Anderson et al. (2014) to account
for deviations in the smooth fit away from this linear model. The
full model is

Pmodel(k; O[) = ledel‘sm(k){l + [Olin(k/a) - l]ei%kzxﬁl }7 (4’)

where Ppodel, sm 18 @ phenomenological parametrization of the non-
linear power-spectrum monopole with no-BAO,
2 A3 A4 A5

Pmodel.sm(k) =B Plin,sm(k) + Alk + A2 + 7 + kT + kT,
and B, A; and X, are free parameters that account for RSDs and
nonlinearities. Together with «, there are eight free parameters for
each model. These parameters are allowed to be different in the fits
to the monopole and 1> moment and we adopt superscripts ‘(0)’
for the monopole and ‘(2)’ for the fit to the #*-moment, where
appropriate.

The survey window acts as a convolution of the power-spectrum
moments, smoothing the true power spectrum to produce that ob-
served. As the survey window affects the BAO, it cannot be de-
scribed by a variation of the free parameters described above. To
include the window effects, we follow the approach described in
section 5.4 of Paper I, producing matrices to account for these ef-
fects through a discrete convolution

PO (k) =Y WY POragaky) + Y W PP ogalk)),
J J

&)

PR (k) =Y WEPO gtk + > WIZPPrgaalky),  (6)
J J

where, W{}”/ are the elements of the window-survey matrix, P el
are the pre-masked models described by equation (4), and P
are the final products for the observed moments. Details of how
the W{}”/ elements are estimated can be found in equation (14) of

Paper 1. This model is able to fit both pre- and post-recon power-
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spectrum moments with residuals that are of far lower significance
than the BAO signal (see Section 5).

4.2 Finding the best-fitting parameters

The monopole and p?-moment are assumed to be drawn from a
multivariate Gaussian distribution, whose covariance can be com-
puted using the galaxy mocks described in Section 2.2. For the
pre-recon analysis we consider two different sets of mocks, Qpm
and MD-patcHY, whereas for the post-recon analysis we only use
QpM mocks. For details about the computation of the covariance
matrices we refer the reader to section 6.1 of Paper 1.

Equation (4) includes eight free parameters for each of the two
power-spectrum moments, so we have 16 free parameters in total
to be fitted to each set of measurements. To investigate this param-
eter space we use a bespoke Markov-Chain Monte Carlo (MCMC)
routine, run for each fit for 10% steps split into 10 sub-chains, which
satisfies the convergence check that each sub-chain gives consistent
results. Each chain was started close to the best-fitting locations
found using a downhill simplex routine, and a burn-in of 10° steps
was removed from each. To reduce the computational burden, each
chain was thinned by a factor 10% before measuring marginalized
parameters and errors. We only consider the interval 0.8 < o; <
1.2 for oy and «, to avoid unphysical solutions and to reduce the
convergence time of the MCMC routine. This is a very conservative
prior which is never hit by the MCMC routine, and that happens
to be at more than 5o of the final results. Due to noise, secondary
maxima where the BAO signal is located within the large-scale,
noisy, part of the power spectrum, can cause a mobility issue for the
chains. Given that the data storage and analysis are computation-
ally expensive, we choose to run relatively long chains, which are
less affected by the secondary maxima, and thin them to allow the
subsequent analysis to be performed quickly.

The correlation among the parameters of interest, oy and «; is
shown later in Fig. 2. The correlation among the «-parameters and
the rest of nuisance parameters, B, A; and X, is found to be very
weak or consistent with O (|r] < 0.10). The strongest is a weak
correlation of r >~ 0.27 between « and X,; and between «, and
3, for the CMASS sample; and r >~ —0.30 between « and X,;
and between «; and X, for the LOWZ sample.

4.3 Interpreting the measured BAO scales

Our BAO scale measurements are given by o and oy, and their
covariance. To translate these parameters into easily-to-model cos-
mological measurements, we adopt the standard definitions of the
Alcock—Paczynski (AP) parameters,

_ HY@rGa)

o _ Da@rizy)
' H@(za)

T DY) @

Our measurements of «( and o, each provide degenerate measure-
ment of &) and v | . Ross et al. (2015) showed that we should expect
a degeneracy of the kind,

a;n+n — a‘ll‘lali’ (8)
where for the post-recon monopole (and RSD removal), m = 1/3
and n = 2/3, and for the p’-moment, m = 3/5 and n = 2/5.
Our window function convolution accounts for any deviations from
these ideal solutions caused by the survey geometry. Thus, the AP
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Table 2. Measured BAO peak positions o and «; recovered from the mocks and presented in terms of their expected values. These results have been
obtained from the QpMm post-recon mocks for the LOWZ and CMASS samples, for different assumptions of cosmologies and different BAO models. We
show the difference between the measured and the expected BAO position in the monopole, o — othp and in the p?-moment, oy — ag){p. For reference

the expected BAO peak position for each cosmology and BAO model for both moments are listed. Two different cases are analysed: a(1~’), where the
BAO peak position is obtained from the fit to the mean of 1000 mocks; and &(P), where the BAO peak position is obtained from the mean of the
BAO peak position fits to each individual mock. The former statistic is only sensitive to the systematic errors of the model, whereas the latter includes

noise-dependent effects.

Statistic Sample BAO model Cosmology oy — a(C)Xp ozSXp wy — aEXp ot;Xp
a(P) LOWZ Quph? = 0.023569 Qm =0.29 0.00137 4 0.000 74 0.976 687 0.0022 £ 0.0010 0.976 687
Qn =0.31 0.00061 + 0.00048 0.982765 0.00103 £ 0.000 66 0.984 004
Quph? = 0.022442 Qm =0.29 0.00137 4 0.00048 1.000 000 0.00175 4 0.000 68 1.000 000
Qm =0.31 0.00131 + 0.00050 1.006223 0.00158 £ 0.000 69 1.007 491
CMASS Qph? = 0.023569 Qm =0.29 —0.00253 £ 0.00031 0.976 687 —0.00257 £+ 0.00044 0.976 687
Qn =0.31 —0.00274 + 0.00031 0.986 808 —0.00290 + 0.00044 0.988 829
Qph? = 0.022442 Qm =0.29 —0.00098 £ 0.00032 1.000 000 —0.00102 + 0.00044 1.000 000
Qn =0.31 —0.00127 £+ 0.00032 1.010363 —0.00147 £ 0.00045 1.012431
a(P) LOWZ Quph? = 0.023569 Qm =0.29 0.00173 £ 0.00050 0.976 687 0.00227 + 0.00071 0.976 687
Qn =0.31 0.00204 + 0.00051 0.982765 0.002 54 + 0.00073 0.984 004
Quph? = 0.022442 Qm =0.29 0.00153 + 0.00051 1.000 000 0.00140 4 0.00072 1.000 000
Qmn =0.31 0.00177 £+ 0.00052 1.006223 0.00155 + 0.00073 1.007 491
CMASS Qph? = 0.023569 Qm =0.29 —0.00243 £ 0.00032 0.976 687 —0.00244 + 0.00045 0.976 687
Qn =0.31 —0.00224 + 0.00033 0.986 808 —0.00209 + 0.00045 0.988 829
Qph? = 0.022442 Qm =0.29 —0.00135 £ 0.00033 1.000 000 —0.00147 + 0.00045 1.000 000
Qn =0.31 —0.001 12 £+ 0.000 34 1.010363 —0.001 16 £+ 0.00046 1.012431

parameters, o) and o | can be written in terms of the position of the
BAO peak in the monopole and p>-moment,

~3/2 5/2 9/4 ~5/4
(x”=o{0/a2/; ou:(xo/az/. )
Using these expressions we relate the BAO peak position in the
monopole and ;?>-moment to the Hubble parameter and the angular
distance as,

2

H(2)r(za) = [H@r ol e, ey (10)
and
Da()/ry(za) = [Da(2)/rs(za)] ey *et, . (11)

For the fiducial cosmological model of Table 1, [H(zi owz)rs(za)]™
= 11.914 x 10°kms~" and [Da(zrowz)/7s(za)]™ = 6.667 for the
LOWZ sample and [H(zcmass)rs(za)] = 13.827 x 10°kms™!
and [Da(zcmass)/Fs(za)]™ = 9.330 for the LOWZ sample. In this
fiducial cosmological model we have r,(zq) = 143.70 Mpc. We
report these parameters and its correlation coefficient as a final
result.

5 TESTS ON GALAXY MOCKS

In this section we test for potential systematics in the BAO model as
well as those associated with the fitting algorithm. We focus on Qpm
post-recon mocks, which we analyse assuming using two different
cosmologies (with 2, = 0.29 or 2, = 0.31) and two different
BAO models (with 4% = 0.022442 or Qyh* = 0.023 569). For
the four different combinations of 2, and 2,42, we test that we
are able to recover the expected BAO shifts positions even when
the cosmology or the BAO model assumed for analysing the mocks
does not necessarily match their true values. In the case where both
the cosmology and the BAO model assumed match those values
from the mocks, the expected values for ¢y and «, are 1. However,
when either the cosmology or the BAO model assumed differ from
those of the mocks, we expect that the values for o and «, will
differ from 1, with the expected values given by equations (7). We

will refer to these expected BAO peak position as o © and o5 .
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We start by computing the best-fitting values of o and «, for
the average monopole and p’>-moment over the 1000 realizations
of the mocks, for the four different combination of €2, and />
(labelled oz(;’) in Table 2). By averaging the power-spectrum mo-
ment over the realizations we reduce the noise-dependent system-
atic errors to a negligible level compared to the systematic errors of
the model. Therefore, when we compare the obtained «; with its
expected value we are exclusively testing the potential systematics
of the BAO model itself. Given the results of Table 2 associated
with the statistic a(;’) we can state that the BAO model is able to
reproduce the expected value of the BAO peak position in both the
monopole and p>-moment with <0.30 per cent accuracy.

In order to test for noise-dependent systematic errors we have
also computed expected value for oy and «, for each mock and
average among them. Unlike the former case, now we do not cancel
the noise-dependent systematic associated with each individual fit.
The results are listed in Table 2, labelled a(P) (i.e. the average
of the BAO peak position of the mocks). For some values of the
cosmology and BAO model we observe that the deviation between
the expected and the recovered values has significantly changed
with respect to fitting the average power from the mocks, «(P).
This result is due to the remaining statistical noise associated with
each individual mock fit. In general, we are able to recover the
BAO peak position in both the monopole and p?-moment with
<0.25 per cent accuracy. These values are significantly below the
statistical errors on the measurements, in a similar way as we have
seen for the a(P) statistic. We therefore conclude that the potential
systematic errors, both noise-dependent and model-dependent, do
not play any important role in the BAO peak position estimation
in the monopole or ?>-moment, where the statistical errors of the
survey dominate. We therefore do not apply any correction to the
obtained results from the data.

6 RESULTS

Fig. 1 presents the post-recon power-spectrum monopole (blue
squares), quadrupole (blue circles) and p?-moment (green
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Figure 1. The measured LOWZ (top panel) and CMASS (bottom panel) DR12 post-recon, monopole (blue squares), quadrupole (red circles) and x2-moment
(green triangles) power spectra. For all the cases the measurements correspond to a combination of the northern and southern galaxy caps according to their
effective areas as described in Section 3. The error-bars are calculated from the dispersion of measurements using the opm mocks. The red, blue and green lines
correspond to the best-fitting model of equation (4) with the BAO peak position as a free parameter. Within each panel we also present the power-spectrum
monopole and ;2-moment divided by the smooth power spectrum calculated in our fit to the data. For the monopole and 1%>-moment we see how the model is
able to capture the BAO features observed in the data. For clarity, the bottom sub-panels show the residuals between the measurement and the model, AP =
pmodel _ pdatadivided by the 1o error of the data. The black dashed lines marks the 1o and 20 deviations.
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Table 3. Marginalized measurements of the BAO peak position for the monopole, g, and for the ;.>-moment, &, in the LOWZ and CMASS sample of
the DR12 data as indicated. Also listed are their cross-correlation coefficient, rp. For the post-recon samples we also show the derived AP parameters,
a and «y with their corresponding cross-correlation coefficient, . We include the value of the best-fitting x? divided by the number of degrees of

freedom (dof). The different rows are for the pre and post-recon catalogues, when both Qpm and MD-pPaTCHY covariances are used.

Sample Catalogue Covariance ') o) ro2 a o 7L )(2 /dof
LOWZ Pre-recon MD-pATCHY 0.998 £ 0.028 1.019 £ 0.037 0.78  1.053 + 0.067 0.974 £ 0.039 —0.33  37.16/43
QPM 0.989 + 0.031 1.005 £ 0.039  0.78 1.031 &£ 0.069 0971 £ 0.042 —-0.32 35.72/43

Post-recon ~ MD-PATCHY 1.009 + 0.017 1.018 £ 0.027  0.81 1.032 & 0.050  0.999 4+ 0.023  —0.40 59.53/43

QPM 1.009 £+ 0.019 1.016 £+ 0.029  0.81 1.027 +£ 0.053  1.001 £ 0.025 —0.42  55.57/43

CMASS Pre-recon MD-pATCHY 1.002 + 0.015 0.996 + 0.024 0.75 0987 + 0.045 1.010 £ 0.023  —0.52  43.73/38
QPM 0.997 £ 0.016 0988 £ 0.024 0.73 0974 £ 0.045 1.010 £ 0.025 —-0.52  38.48/38

Post-recon ~ MD-parcny  0.9895 £+ 0.0091  0.974 £ 0.013  0.75 0950 £ 0.024 1.010 + 0.014 —0.43  49.00/38

QPM 0.9899 £ 0.0088 0974 £ 0.014 0.74 0950 + 0.025 1.010 &+ 0.014  —0.51  37.24/38

triangles), for the LOWZ and CMASS samples of the DR12 data Pre-recon Post-recon

measurements (top and bottom panels as labelled) from the com-
bination of the NGC and SCG. The coloured lines show the best-
fitting model given by equation (4) with the BAO peak position for
the monopole (c) and for the p?>-moment (e,). For simplicity we
only show the best-fitting model according to the covariance matrix
extracted from the Qpm mocks. We will later show in Table 3 the re-
sults from the data assuming both Qpm and MD-pATCHY covariance.
The model for the quadrupole has been obtained from the models
for the monopole and p?-moment. As the BAO peak positions in
the monopole and p>-moment are similar to those in the fiducial
model, there is no apparent BAO signature in the quadrupole. Within
each panel, we also display the data and best-fitting model for the
monopole and u>-moment divided by the smoothed power spec-
trum Py, of equation (5) for the best-fitting model. For clarity, the
bottom sub-panels show the residuals between the measurement
and the model, AP = P™d%! — phata_ djvided by the 1o error of
the data. The black dashed lines marks the 1o and 2o deviations.
The model is able to accurately reproduce the BAO features both in
the monopole and 1>-moment for both LOWZ and CMASS sample.
As expected, the BAO features are more significant in the monopole
than in the ;4*>-moment, as the former has a higher signal-to-noise ra-
tio. Similarly, the BAO features are stronger in the CMASS sample
than in the LOWZ.

At large scales, the quadrupole measured for both LOWZ
and CMASS samples is small, consistent with the reconstruc-
tion process removing the linear component of the RSD. How-
ever, the reconstruction process is not able to fully suppress
the whole RSD signal and nonlinear components are left, as is
the AP effect caused by the potential differences between the
true underlying 2, and the fiducial value assumed, in this case
Qn =0.31.

Fig. 2 displays the output of the MCMC chains when estimating
the BAO peak position in the monopole and w’>-moment, in the
pre- and post-recon data catalogues, for the LOWZ and CMASS
samples, as labelled in each panel. The blue and red contours display
the 68 per cent and 95.4 per cent confident regions, respectively In
this case the QpMm covariance matrix has been used in all cases. By
comparing the pre- and post-recon panels we see how the likelihood
surface in the oy — o, parameter space is significantly reduced in
the both LOWZ and CMASS sample, both for « and «,. These
results are consistent with DR11 results (Anderson et al. 2014;
Tojeiro et al. 2014).

Table 3 presents the marginalized measurements of ¢y and a
(and the derived AP parameters, o and o ; for the post-recon sam-
ples) calculated from the MCMC chains (such as those presented
in Fig. 2), for the following cases:
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Figure 2. Likelihood surfaces in the g —a parameter space obtained from
measuring the power-spectrum DR12 data monopole and ;4?>-moment. The
black points are the (down-sampled) output of the MCMC chain, for the
CMASS and LOWZ samples, for both pre- and post-reconstructed cata-
logues, as labelled. In all cases the Qpm-covariance matrix has been used
for estimating the power-spectrum errors and their correlations. The blue
and red contours show the 68 per cent and 95.4 per cent confident regions,
respectively.

(i) Pre-recon catalogues when the MD-PATCHY covariance matrix
has been used.

(ii) Pre-recon catalogues adopting the Qpm covariance matrix.

(iii) Post-recon catalogues when the MD-pAaTCHY covariance ma-
trix has been used.

(iv) Post-recon catalogues when the Qpm covariance matrix has
been used.

The pre-recon results from both MD-patcHY and QpM covariance
matrices agree very well, both in the measurement and errors, sug-
gesting that, as it was observed for the RSD analysis in Paper I,
the impact of the differences between mocks when translated into
the covariance matrices of the power spectra is not significant. For
pre-recon, we measure the BAO peak position in the monopole with
~3 per cent and ~~1.5 per cent precision in the LOWZ and CMASS
samples, respectively. In the x>-moment we are able to measure the
BAO peak position with ~4 per cent and ~2.4 per cent precision in
the LOWZ and CMASS samples, respectively.

The post-recon results using either MD-PATCHY or QpM covari-
ance matrices also agree very well, with differences that are much
smaller than the uncertainties due to the statistical errors. The post-
recon results show an improvement on the level of precision for
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Figure 3. Distribution of the MCMC points for the DR12 data post-recon catalogues where the Qpm covariance matrix is used, in terms of the BAO peak
position variables (¢ and a2, in the top panels) and the AP parameters (o and « | , in the bottom panels) for the LOWZ sample (left-hand panels) and for the
CMASS sample (right-hand panels). In blue lines the 1o ellipses (A x? = 2.30) and in red lines the 20 ellipses (A x> = 6.17) corresponding to Gaussian fits
to the likelihood based on the parameters given Table 3. For all cases the distribution of points is close to a Gaussian distribution.

the BAO peak position determination, both in the monopole and
in the pu”-moment. We are able to improve the determination of
the BAO peak position in the monopole down to ~1.8 per cent and
~0.90 per cent precision for the LOWZ and CMASS samples, re-
spectively. The BAO peak position in the ;1>-moment is determined
with ~2.8 per cent and ~1.4 per cent precision for the LOWZ and
CAMSS samples, respectively. For the CMASS sample, this result
represents an improvement of ~50 per cent, both in «( and «,. For
the LOWZ sample the improvement is of ~40 per cent for ¢« and
~25 per cent for ;.

The top panels of Fig. 3 show the distribution of points in our
MCMC chains for the post-recon LOWZ and CMASS DR12 data
samples. We have included 1o (Ax? = 2.30 in blue ellipses) and
20 (Ax? = 6.17 in red ellipses) contours from the Gaussian fit
corresponding to the parameters extracted from the Qpm covari-
ance quoted in Table 3. For the BAO peak position variables,
ao and o, as well as the AP variables o and «, the distri-
bution of points matches well the Gaussian fits. Combining the
best-fitting results on ¢« and o, of Table 3 for both opm and MD-
PATCHY-based covariance matrices and the relations of equation (7),
we report, H(ziowz)rs(za) = (11.60 £ 0.60) x 10°kms~' and
Da(zrowz)/rs(za) = 6.66 £ 0.16 for the LOWZ sample with a
cross-correlation coefficient of ryp, = 0.41; and H(zcmass)7s(2a)
= (1456 £ 0.37) x 10°kms~' and Da(zemass)/1s(za) =

9.42 £ 0.13 with a cross-correlation coefficient of ryp, = 0.47.
These quantities represent for H(z)rs(zq) a 5.2 per cent and a
2.5 per cent measurement precision, for LOWZ and CMASS, re-
spectively; and for Da(z)/rs(za) a 2.4 per cent and a 1.4 per cent
measurement precision, for LOWZ and CMASS, respectively. We
can also put constraints on Dy(z) = (cz(1 + z)D3H )"/, which
is the combination of parameters upon which the BAO location
would depend for a galaxy sample with an isotropically dis-
tributed set of equally weighted pair separations. We find that
for LOWZ Dy(zLowz)/1s(z4) = 8.62 £ 0.15; whereas for CMASS
Dy (zemass)/rs(zq) = 13.70 £ 0.12.

6.1 Consensus values

We combine the measurements presented above with those obtained
using the correlation function monopole, £, and quadrupole, £,
of the same data set reported in (Cuesta et al. 2016, companion pa-
per), and report the consensus values for H(z)rs(zq), Da(z)/rs(zq)’
and Dy (z)/rs(zq). We summarize these values in Table 4. We see

3 Note that in (Cuesta et al. 2016, companion paper) a different fiducial
cosmology has been used to compute ) and o) . However, the results in
terms of H(z)rs(zq) and Da(z)/rs(zq) should not depend on this assumption.
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Table 4. Distance constrain parameters, H(z)rs(za), Da(2)/rs(zq) and their correlation coefficient ry p,, , inferred
from the post-recon power spectrum (this work) and correlation function analysis (Cuesta et al. 2016, companion
paper), and the corresponding consensus value. The correlation coefficient between the power spectrum and the
correlation function has been determined using the Qpm post-recon mocks. In addition, we show the derived

parameter Dy

Sample Statistic H@rszo) [10°kms™ ] Da@)/rs(za)  rup,  Dv(@)/rs(za)
LOWZ Power spectrum 11.60 £ 0.60 6.66 +0.16 0.41 8.62 £+ 0.15
Correlation function 11.65 + 0.81 6.67 £0.14 0.29 8.59 £+ 0.15

Consensus 11.63 £ 0.69 6.67 +0.15 0.35 8.61 £+ 0.15

CMASS Power spectrum 14.56 + 0.37 942 +0.13 0.47 13.70 + 0.12
Correlation function 14.75 £ 0.50 9.52 +0.13 0.57 13.79 + 0.14

Consensus 14.67 + 0.42 9.47 +0.12 0.52 13.74 + 0.13

that both analyses agree well within 1o error-bars. Although in
theory the power spectrum and the correlation function contain the
same information, in practice the analysis is performed on a finite
range of scales, and the information content of the two estimators
differs slightly. The correlation between them is large, as reported
in the DR11analysis (Anderson et al. 2014) with a correlation fac-
tor of r ~0.95 for «. Using the post-recon Qpm mocks we have
determined that for DR12 data the correlation factor between the
power spectrum and the correlation function is 0.91 in the LOWZ
and 0.83 in the CMASS sample, for both o and & . This change
is not produced by the differences between the geometries of DR11
and DR12, which are very similar, but because for DR11 the fit-
ting to the isotropic correlation function was performed using eight
bin-positions, whereas for the anisotropic correlation function of
DR12 was performed only using 1 bin-position. This makes the
DR12 anisotropic correlation function fits noisier with respect to
the DR11 ones, but at the same time, the correlation factor between
& and P is reduced. In this way, the reduction on the error-bars pro-
duced by using more bin-positions is partially canceled by the fact
that the correlation factor approaches to 1. Thus, the final results on
the consensus value of the error-bars does not strongly depend on the
number of bin-positions used in the correlation function analysis.

From Table 4 we also note that both for LOWZ and CMASS the
errors on H(z)rs(zq) are ~25 per cent smaller when this quantity is
estimated from the power spectrum. On the other hand, the errors
on Dx(z)/rs(zq) are similar for both LOWZ and CMASS. We have
observed these differences not only from the likelihood of the data,
but from the dispersion of the mocks, which demonstrates that the
origin of this discrepancy is related to the methodology of how
PO(k) and P are fit compared to how & and @ are, and not
with the data. These differences suggest that fitting the BAO peak
position in the ;>-moment (instead of fitting the quadrupole) is able
to constrain better the AP distortion in the radial direction, both for
LOWZ and CMASS.

Using this correlation factor, we combine the measurements to
obtain a consensus value,

aconzm7 (12)
2
op+o: (1471 172
con = T~ s 13
oun = 3% () (13)

where ap + op and oz £ o are the AP parameters measured
from the power spectrum and correlation fraction, respectively, and
Ocon £ Ocon the consensus value. When r = 0, both measurements
would be independent and we would get a reduction of a factor
of 2 on the error-bars, whereas when r = 1 both measurements are
fully correlated and therefore the error-bars is unchanged. Using the

MNRAS 460, 42104219 (2016)

correlation factors found in this paper, combining the correlation
function and power-spectrum measurements improve the error bars
by a few per cent, both in LOWZ and CMASS.

7 CONCLUSIONS

We have presented a new method to use baryon acoustic oscillations,
measured with respect to the line of sight (LOS), to make cosmo-
logical measurements. The method fits the model of Anderson et al.
(2014) to both the monopole and 1>-moments, providing two cor-
related measurements of BAO positions using both statistics. This
technique allows the clean separation of the BAO component from
the broad-band power for both spherically-averaged determinations
and measurements that are anisotropic around the LOS. This separa-
tion is harder to achieve when fitting the quadrupole where the BAO
signal is removed if the fiducial cosmology matches the true one.
We have applied this method to measurements of the anisotropic
power spectra for the LOWZ and CMASS DR12 galaxies of the
Baryon Oscillations Spectroscopic Survey of the Sloan Digital Sky
Survey III, presented in Paper I, to constrain the BAO peak position
in the monopole (a) and in the w>-moment (a,).

We have tested potential systematics of the BAO model using
the post-recon Qpm mocks catalogues, assuming different cosmol-
ogy parameters and different BAO features models. We are able to
constrain the BAO peak position in the monopole and x>-moment
better than 0.3 percent accuracy. These values are several times
smaller than the 1o statistical errors in the LOWZ and CMASS
samples. Furthermore, the scatter in these values appears random,
and a significant component is likely due to residual noise. These
tests explicitly demonstrate that the method is independent of the
fiducial cosmology assumed when calculating the power spectrum,
or the BAO model to be fitted to the data.

We have used the MD-parcHy and QpM mocks in the pre-
reconstructed and post-reconstructed catalogues to estimate the co-
variance matrices and hence the error-bars in the BAO peak position
parameters. We have found no significant differences in the results.
From the post-reconstructed DR12 data power-spectrum monopole
and p2-moment we have measured: ao(z owz) = 1.009 £ 0.018
and a»(zowz) = 1.017 £ 0.028 with rp, = 0.81, where z;owz =
032, and aO(ZCMASS) =0.9897 £ 0.0090 and ag(ZCMAss) =0.974 +
0.014 with ro, = 0.75, where zcymass = 0.57. We report these mea-
surements in terms of cosmological parameters: H(zpowz)rs(zq) =
(11.60 & 0.60) x 10° kms~! and Da(zLowz)/7s(za) = 6.66 & 0.16
with a cross-correlation coefficient of ryp, = 0.41, for the LOWZ
sample; and H(zcmass)rs(za) = (14.56 £ 0.37) x 10°kms™! and
Da(zemass)/Fs(za) = 9.42 £ 0.13 with a cross-correlation coeffi-
cient of ryp, = 0.47, for the CMASS sample.
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We have combined these measurements with those obtained us-
ing the correlation function monopole, £, and quadrupole, £,
of the same data set reported in (Cuesta et al. 2016, companion
paper). We report H(z owz)rs(za) = (11.63 £ 0.69) x 10° kms™!
and D (zLowz)/rs(za) = 6.67 £ 0.15 with a cross-correlation coef-
ficient of rpy p, = 0.35, for the LOWZ sample; and H(zcmass)7s(2a)
= (1467 + 042) X 103kms*1 and DA(ZCMAss)/rs(Zd) =947 £+
0.12 with a cross-correlation coefficient of ryp, = 0.52, for the
CMASS sample. We see that the results reported from the analysis
of the power spectrum agree well within 1o error-bars with the
consensus values inferred from combining the power spectrum and
2-point correlation function analyses.
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