
�������� ��	
���
��

Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent
double subduction

Di-Cheng Zhu, Shi-Min Li, Peter A. Cawood, Qing Wang, Zhi-Dan
Zhao, Sheng-Ao Liu, Li-Quan Wang

PII: S0024-4937(15)00232-7
DOI: doi: 10.1016/j.lithos.2015.06.023
Reference: LITHOS 3632

To appear in: LITHOS

Received date: 4 May 2015
Accepted date: 29 June 2015

Please cite this article as: Zhu, Di-Cheng, Li, Shi-Min, Cawood, Peter A., Wang, Qing,
Zhao, Zhi-Dan, Liu, Sheng-Ao, Wang, Li-Quan, Assembly of the Lhasa and Qiang-
tang terranes in central Tibet by divergent double subduction, LITHOS (2015), doi:
10.1016/j.lithos.2015.06.023

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/42544609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.lithos.2015.06.023
http://dx.doi.org/10.1016/j.lithos.2015.06.023


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 -1- 

Assembly of the Lhasa and Qiangtang terranes in 

central Tibet by divergent double subduction 

 

Di-Cheng Zhu1,*, Shi-Min Li1, Peter A. Cawood2,3, Qing Wang1, Zhi-Dan Zhao1, 

Sheng-Ao Liu1, Li-Quan Wang4 

 

1. State Key Laboratory of Geological Processes and Mineral Resources, and School 

of Earth Science and Resources, China University of Geosciences, Beijing 100083, 

China 

2. Department of Earth Sciences, University of St Andrews, North Street, St 

Andrews KY16 9AL, UK 

3. Centre for Exploration Targeting, School of Earth and Environment, University of 

Western Australia, 35 Stirling Hwy, Crawley WA, 6009, Australia 

4. Chengdu Institute of Geology and Mineral Resources, Chengdu 610082, China 

 

 

Revised manuscript submitted to Lithos (June 12, 2015) 

 

*Corresponding author: Di-Cheng Zhu 

State Key Laboratory of Geological Processes and Mineral Resources 

China University of Geosciences 

29# Xue-Yuan Road, Haidian District 

Beijing 100083, China 

Phone: (+86-10) 8232 2094 (O) 

Fax: (+86-10) 8232 2094 

Email: dchengzhu@163.com 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 -2- 

Abstract 

Integration of lithostratigraphic, magmatic, and metamorphic data from the Lhasa-

Qiangtang collision zone in central Tibet (including the Bangong suture zone and 

adjacent regions of the Lhasa and Qiangtang terranes) indicates assembly through 

divergent double sided subduction. This collision zone is characterized by the 

absence of Early Cretaceous high-grade metamorphic rocks and the presence of 

extensive magmatism with enhanced mantle contributions at ca. 120110 Ma. Two 

JurassicCretaceous magmatic arcs are identified from the 

CaimaDuobuzaRongmaKangqiongAmdo magmatic belt in the western 

Qiangtang Terrane and from the Along TsoYanhuDaguoBaingoinDaru Tso 

magmatic belt in the northern Lhasa Terrane. These two magmatic arcs reflect 

northward and southward subduction of the Bangong Ocean lithosphere, 

respectively. Available multidisciplinary data reconcile that the Bangong Ocean may 

have closed during the Late JurassicEarly Cretaceous (most likely ca. 140130 Ma) 

through arc-arc “soft” collision rather than continent-continent “hard” collision. 

Subduction zone retreat associated with convergence beneath the Lhasa Terrane 

may have driven its rifting and separation from the northern margin of Gondwana 

leading to its accretion within Asia. 

 

Keywords: Multidisciplinary data; Divergent double subduction; Bangong Ocean; 

“soft” LhasaQiangtang collision; central Tibet 
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1. Introduction 

The Wilson cycle involves the opening and closing of ocean basins and its 

recognition in the rock record provides a clear manifestation of the process of plate 

tectonics (e.g., Wilson, 1966; Dewey and Spall, 1975). Closure of ocean basins 

during the latter stages of the Wilson cycle involves the subduction of oceanic 

lithosphere and results in arc-continent or continent-continent collision. Two distinct 

geodynamic frameworks have been proposed for the closure of ocean basins (cf. 

Frisch et al., 2011). The first involves single-sided oceanic subduction leading to the 

development of a single magmatic arc on the overriding plate, subduction of the 

passive continental margin on the down-going plate, and development of large-scale 

fold and thrust structures and associated high-grade metamorphism in the collision 

zone. This pattern is exemplified by the Alpine-Himalayan orogen (cf. Sengör, 1987; 

Yin and Harrison, 2000; Leech et al., 2005). The second mechanism of ocean basin 

closure involves divergent double-sided oceanic subduction without significant 

subduction of the opposing continental blocks and leads to the development of two 

magmatic arcs on the opposing overriding plates, extensional basins, and generally 

low-grade metamorphism, as well as extensive long-lived granitoid magmatism with 

a mantle isotopic signature within the collision zone that postdates ocean closure 

(Soesoo et al., 1997). The modern Molucca Sea in eastern Indonesia (cf. 

Hinschberger et al., 2005) and the Paleozoic Solonker suture in central Asian 

Orogenic Belt (Xiao et al., 2003; Eizenhöfer et al., 2014, 2015a, 2015b) are 
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examples of this second mechanism. The distinct tectonic, metamorphic, and 

petrological consequences of single versus double divergent subduction zones during 

ocean basin closure (Soesoo et al., 1997; Zhao, 2015) provide a set of testable 

relationships for evaluating suture zones juxtaposing continental blocks in the 

geological record. The focus of this paper is to critically evaluate these features for 

differentiating the assembly of the Lhasa and Qiangtang terranes and intervening 

Bangong suture in central Tibet, which is ascribed to the Mesozoic closure of the 

Tethyan Bangong Ocean. 

The existence of the Bangong Ocean is inferred from the presence of extensive 

dismembered ophiolitic fragments within the Bangong suture zone, which separates 

the Gondwana-derived Qiangtang and Lhasa terranes in central Tibet (Fig. 1a) (cf. 

Yin and Harrison, 2000; Zhu et al., 2013). The suture zone and its relationships with 

the bounding terranes have been highlighted as providing an important record of 

breakup, drift and accretion-related tectonism, magmatism, sedimentation, and 

metamorphism associated with the fragmentation of Gondwana’s northern margin 

and subsequent assembly of the dispersed terranes into Asia. However, the details 

of the assembly history of the Bangong oceanic lithosphere including subduction 

polarity and timing of ocean closure remain in dispute. For example, the 

predominant view is that the ocean was subducted northward beneath the 

Qiangtang Terrane (Allègre et al., 1984; Yin and Harrison, 2000; Guynn et al., 2006; 

Kapp et al., 2007; Zhang et al., 2012a). Alternatively, some have argued for a 
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divergent double-sided subduction zone involving both northward subduction 

beneath the Qiangtang Terrane and southward subduction beneath the Lhasa 

Terrane (Pan et al., 2012; Zhu et al., 2013; Deng et al., 2014). Estimates for the 

time of closure of the Bangong Ocean range from the Middle Jurassic to Late 

Cretaceous (cf. Pan et al., 1983, 2012; Yin and Harrison, 2000; Kapp et al., 2007; 

Zhu et al., 2009, 2011, 2013; Zhang et al., 2012a; Fan et al., 2014). 

In this paper, we integrate our new geochronological and geochemical data (see 

Tables S1S3) with available information from the Bangong suture zone and show 

that the records of magmatism, sedimentation, and metamorphism are consistent 

with divergent double-sided subduction and associated mantle dynamics (e.g., 

Soesoo et al., 1997). This synthesis corroborates the southward subduction of 

Bangong Ocean lithosphere beneath the Lhasa Terrane and argues that this 

subduction is analogous to the westward subduction of the Pacific lithosphere that 

led to the development of back-arc basins in the western Pacific (Schellart et al., 

2006; Cawood et al., 2009; Niu, 2014), providing a good example to evaluate 

mantle geodynamics operating during Gondwana dispersion and Asian accretion. 

 

2. Geological record within the Bangong suture and adjacent regions 

In central Tibet, the Bangong suture zone separates the Qiangtang Terrane to 

the north and the Lhasa Terrane to the south (Fig. 1a) (Yin and Harrison, 2000; Zhu 

et al., 2013). Based on the differences in basement rock and sedimentary cover, the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 -6- 

Lhasa Terrane is divided into northern, central, and southern subterranes, separated 

by the Shiquan RiverNam Tso Mélange Zone (SNMZ) and Luobadui–Milashan Fault 

(LMF), respectively (Zhu et al., 2011). The Qiangtang Terrane is divided into eastern 

and western subterranes separated by the Longmu TsoShuanghu suture zone 

(LSSZ) (Fig. 1a) (cf. Zhu et al., 2013). To evaluate the closure history of the 

Tethyan Bangong Ocean, this paper focuses on the JurassicCretaceous sedimentary, 

metamorphic, and magmatic records of rock units and their relations within the 

Bangong suture zone and adjacent regions of the Lhasa and Qiangtang terranes, 

which are defined here as the Lhasa-Qiangtang collision zone (Figs. 1b and 2). 

 

2.1. Lithostratigraphy 

The Jurassic rock units in the northern Lhasa subterrane include sandstones with 

interstratified volcanic rocks (Jienu Group) (Fig. 1b), flysch sediments (Lagongtang 

Formation), and limestones (Rila Formation) (Fig. 2) (cf. Pan et al., 2004; Wang et 

al., 2013). These units are overlain by Lower Cretaceous volcano-sedimentary units 

(e.g., Qushenla and Duoni formations) (Zhu et al., 2006a) and younger limestones 

(Langshan Formation) and are intruded by varying-sized plutons (including the large 

Baingoin and Along Tso batholiths) (Fig. 2) (Xu et al., 1985; Haider et al., 2013). In 

the western Qiangtang subterrane a continuous Lower Jurassic succession is present 

(cf. Raterman et al., 2014), which contrasts with the northern Lhasa subterrane 

where rock units of this age are lacking. These units consist mainly of sandstones 
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and limestones along with some Upper Jurassic volcanic rocks (Amdo Formation) 

(Bai et al., 2005; Sun, 2005) and are intruded by 170150 Ma granitoids (Fig. 2). 

Subsequent units include Lower Cretaceous conglomerates, sandstones, and 

limestones (Ouli and Dongqiao formations), and volcanic rocks (Meiriqiecuo 

Formation), lying unconformably on the Jurassic units (cf. Sun, 2005; Wang et al., 

2013). The Jurassic to Lower Cretaceous units in the northern Lhasa and western 

Qiangtang subterranes are unconformably overlain by the Upper Cretaceous 

terrestrial molasse of the Jingzhushan and Abushan formations, respectively (Fig. 2) 

(Pan et al., 2004; Li et al., 2013a; Wang et al., 2013). Some units (e.g., Amdo, 

Dongqiao, and Qushenla formations) in the northern Lhasa and western Qiangtang 

subterranes extend into the Bangong suture zone (Fig. 2), which also includes the 

Muggargangri Group and Shamuluo Formation (Fig. 1b). 

The Muggargangri Group consists mainly of interstratified sandstone, siltstone, 

and shale along with rare limestone, with the latter units possibly tectonically 

interleaved (Fig. 1b) (Wen, 1979; Cheng and Xu, 1986; Xia and Liu, 1997; Wang et 

al., 2013). The group is mainly Early to Middle Jurassic in age (Pan et al., 2004; 

Wang et al., 2013) but locally ranges into the Early Cretaceous (Kapp et al., 2007) 

(Fig. 2). This group has undergone extensive tectonic disruption and contains 

abundant ophiolitic fragments, and is generally interpreted as an accretionary 

complex (Pan et al., 2004; Duan et al., 2013; Wang et al., 2013). Equivalent units 

of the Muggargangri Group extend into the southern portion of the western 
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Qiangtang subterrane in the vicinity of Duobuza (Fig. 1b) (Duan et al., 2013) and 

into the northern edge of the Lhasa Terrane in the vicinity of Daru Tso (i.e. the Xihu 

Group) (Xia and Liu, 1997; Wang et al., 2013) (Fig. 1b). 

The accretionary complex and associated ophiolitic fragments are unconformably 

overlain by the Shamuluo Formation (Fig. 2) that is exposed discontinuously within 

the Bangong suture zone (Fig. 1b). This formation consists of sandstone and 

siltstone interbedded with shale and fossil-rich limestone that yielded a Late Jurassic 

to Early Cretaceous age (Xia and Liu, 1997; Pan et al., 2004; Zhang et al., 2004; 

Wang et al., 2013). These Jurassic-Cretaceous units are intensely deformed and 

locally exhibit tight upright to overturned folds (Allègre et al., 1984; Yin et al., 1988; 

Yin and Harrison, 2000; Pan et al., 2004; Kapp et al., 2007; Wang et al., 2013; 

Volkmer et al., 2014). The youngest age group (ca. 210 Ma) of detrital zircons from 

sandstones of the Muggargangri Group north of Geize is consistent with derivation 

from the Qiangtang Terrane (Zeng et al., 2015). 

In the western Bangong suture zone northwest of the Along Tso, the Shamuluo 

Formation extends onto the northern edge of the Lhasa Terrane (Fig. 1b) and is 

unconformably overlain by the Lower Cretaceous Qushenla Formation (Fig. 2). The 

Qushenla Formation in the northern Lhasa subterrane is dominated by volcanic 

rocks and is distributed from Along TsoYanhu in the west (referred to as the Yanhu 

volcanic rocks) to NW Baingoin (Fig. 1b). Subsequent sedimentation is characterized 

by the Aptian-Albian shallow marine limestone of the Langshan Formation (Fig. 2), 
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which is regionally exposed in the northern (Fig. 1b) and central Lhasa subterranes 

(Yin et al., 1988; Pan et al., 2004; Zhang et al., 2004; Kapp et al., 2005, 2007; 

Wang et al., 2013; Volkmer et al., 2014). Time-equivalent limestone is reported in 

the upper Dongqiao Formation in the vicinity of Dongqiao (Fig. 1b) within the 

Bangong suture zone (Wang and Dong, 1984; Zheng et al., 2003) and north of 

Amdo on the southern edge of the western Qiangtang subterrane (Bai et al., 2005; 

Sun, 2005) (Fig. 1b). 

 

2.2. Metamorphism 

Regional metamorphism within the Bangong suture zone was initially inferred to 

have occurred at ca. 171 Ma based on a lower intercept U-Pb age of discordant 

zircons and sphenes from the Amdo gneiss (Xu et al., 1985; Harris et al., 1988a). 

Subsequent study on the gneiss identified 185170 Ma amphibolite-facies 

metamorphism on the basis of hornblende Ar-Ar dating and sphene U-Pb dating 

(Guynn et al., 2006), which was also verified by zircon U-Pb dating (Guynn et al., 

2013). Recently, high-pressure granulite-facies metamorphism at ca. 190–180 Ma 

was documented from the Amdo metaigneous and metasedimentary rocks by zircon 

U-Pb dating (Zhang et al., 2010, 2012b, 2014a). Approximately coeval 

metamorphism may have occurred at Basu located ca. 400 km southeast of (Zhang 

et al., 2008) and at Dong Tso located ca. 700 km west of the Amdo gneiss (Wang et 

al., 2008) (Fig. 1b). All these geochronological data indicate metamorphism within 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 -10- 

the Bangong suture zone occurred in the Early-Middle Jurassic (see Cohen et al., 

2014 for time scale). On a regional scale, there is no isotopic age data for Early 

Cretaceous metamorphism of the Jurassic accretionary complex and other 

sedimentary units, and from the Jurassic ophiolitic fragments within the Bangong 

suture zone, which only include greenschist facies metamorphic mineral 

assemblages (Girardeau et al., 1984; Kapp et al., 2005; Sun, 2010). This contrasts 

with the India-Asia continental collision zone, where early Cenozoic high-grade 

metamorphic rocks that formed in response to this collision are locally present (cf. 

Leech et al., 2005; Donaldson et al., 2013). 

 

2.3. Magmatic arc on the western Qiangtang subterrane 

Early research in the western Qiangtang subterrane did not recognize any 

evidence for arc magmatism (cf. Pan et al., 1983; Allègre et al., 1984; Dewey et al., 

1988). This contrasts with structural evidence for southward vergence of Cretaceous 

thrusts and the southward obduction of ophiolitic fragments onto the northern Lhasa 

subterrane, which was related to northward subduction beneath the Qiangtang 

Terrane (Girardeau et al., 1984; Kapp et al., 2003). The identification of 185–170 

Ma granitoids (Fig. 2) in the Amdo microcontinent, which is interpreted to represent 

a “missing” Jurassic continental arc along the western Qiangtang subterrane, 

provides evidence for northward subduction (Guynn et al., 2006). More recent 

evidence for a continental arc along this subterrane include the Jurassic magmatism 
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from Caima-Duobuza-Qingcaoshan-Liqunshan in the west (170150 Ma) (Kapp et 

al., 2005; Li et al., 2014a, 2014b, 2015a; Liu et al., 2014), from Rongma (ca. 150 

Ma; Ran et al., 2015) and Kangqiong (ca. 148 Ma; Li et al., 2015c) in the center, 

and from the Upper Jurassic Amdo Formation in the east (Sun, 2005) (Fig. 1b). 

The 170150 Ma magmatism in the west (Figs. 1b and 2) is characterized by the 

presence of coeval calc-alkaline and highly fractionated I-type granitoids with mafic 

enclaves showing high-Nb and low Zr/Y geochemical signatures, indicative of 

continental arc magmatism associated with a MASH process (melting, assimilation, 

storage, and homogenization) above a subduction zone (Li et al., 2014a, 2014b). 

These Jurassic granitoids show more negative zircon Hf(t) values inboard (i.e., 

continentward) from DuobuzaQingcaoshan to Liqunshan (Fig. 3a). This relationship 

is similar to that from the Gangdese arc in southern Tibet, which results from the 

northward subduction of the Yarlung-Zangbo oceanic lithosphere (cf. Zhu et al., 

2011). This similarity further corroborates the presence of a continental arc during 

the Mid-Late Jurassic. To the east in Kangqiong (Fig. 1b), the granitoids show 

adakitic geochemical signatures with high Mg# (5853), which are inferred to be 

derived from the partial melting of the subducting Bangong Ocean lithosphere 

(MORB + sediment) and subsequently hybridized by peridotite in the mantle wedge 

(Li et al., 2015c). To the north of Dongqiao, the volcanic rocks (including abundant 

volcaniclastic rocks) of the Amdo Formation (Fig. 1b) show a wide compositional 

spectrum from basalt to rhyolite but are dominated by andesite (Sun, 2005). Such 
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rock association, together with the high-Mg adakitic signature (Mg# = 62) of the 

andesite and the low Zr/Y (2.1–3.0) ratios of the basalts, indicate a convergent 

margin setting rather than continental extensional setting (Pearce and Norry, 1979) 

for their generation. These geochronological and geochemical data corroborate the 

presence of a Jurassic continental arc extending ca. 1100 km along the length of the 

western Qiangtang subterrane. Nevertheless, it should be noted that this arc 

(170150 Ma) is likely younger than the arc proposed by Guynn et al. (2006) on the 

basis of the 185–170 Ma granitoids from Amdo. 

In addition to the Jurassic magmatism, abundant Early Cretaceous magmatic 

rocks are also identified in the western Qiangtang subterrane (cf. Kapp et al., 2005, 

2007; Liu et al., 2012; Li et al., 2013b, 2014a, 2015a) as exemplified mainly by the 

granitoids from Duobuza and the volcanic rocks from the Meiriqiecuo Formation 

(Figs. 1b and 2). The Duobuza granitoids are interpreted to link with the giant 

Duobuza porphyry Cu–Au deposit (cf. Li et al., 2013b, 2014a, 2015a). These rocks 

consist of 125115 Ma diorite and granodiorite and show positive zircon Hf(t) values 

(+1 to +10; Fig. 3a) (Li et al., 2013b, 2014a, 2015a). The Meiriqiecuo volcanic 

rocks mainly occur in Duobuza and Rena Tso (Fig. 1b) and are dated at 124105 Ma 

(Liu et al., 2012; Fan et al., 2015; Li et al., 2015a). Bimodal volcanic suites with 

different ages are reported from Duobuza (ca. 120 Ma; Fan et al., 2015) and Rena 

Tso (ca. 110 Ma; Liu et al., 2012). All available geochemical data indicate that the 

Meiriqiecuo volcanic rocks are exclusively high-K calc-alkaline or shoshonitic (Fig. 
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3b). Generally, the 125105 Ma magmatism is interpreted as having formed in a 

magmatic arc as a result of the northward subduction of Bangong Ocean lithosphere 

beneath the Qiangtang Terrane (cf. Li et al., 2013b, 2014a, 2015a; Fan et al., 

2015). 

Early Cretaceous granitoids from both Qingcaoshan and Liqunshan show similar 

zircon Hf(t) values, while the coeval and younger Duobuza granitoids (120104 Ma) 

display enhanced zircon Hf(t) values compared, to those of the Jurassic granitoids 

from each locality (Fig. 3a). Given the nature of a continental arc with ancient 

basement as indicated by the negative zircon Hf(t) values of the Jurassic granitoids, 

this difference points to an increased contribution of a mantle component (depleted 

asthenosphere- or enriched mantle wedge- or subcontinental lithospheric mantle-

derived melt) in the generation of the Cretaceous Duobuza granitoids (120104 Ma). 

 

2.4. Magmatic arc on the northern Lhasa subterrane 

Magmatic rocks are well documented from the northern Lhasa subterrane in 

central Tibet (cf. Pan et al., 1983; Allègre et al., 1984; Xu et al., 1985; Coulon et al., 

1986; Harris et al., 1988b, 1990; Pearce and Mei, 1988), resulting in a hypothesis 

involving southward subduction of the Bangong Ocean lithosphere (cf. Pan et al., 

1983; Allègre et al., 1984). The rocks are best exposed in the northern Lhasa 

subterrane. They include the Along Tso Batholith and Yanhu volcanic rocks in the 

west, the Baingoin Batholith in the east (Figs. 1b and 2), as well as other Jurassic-
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Cretaceous volcano-sedimentary strata mostly distributed in the east (Fig. 2) (cf. 

Pan et al., 2004; Wang et al., 2013). 

The Along Tso Batholith (Fig. 1b) is composed largely of granodiorite intruded by 

mafic dykes (Fig. 1c), dioritic enclaves and plutons, and monzogranites, showing a 

rock association similar to the Gangdese Batholith in the southern Lhasa subterrane 

(cf. Zhu et al., 2011, 2013). Zircon U-Pb age results suggest that the mafic dykes 

were emplaced at ca. 120 Ma (Fig. S1) (Table S1), while the granitoids (including 

granodiorite, dioritic enclave and intrusion, and monzogranite) were emplaced 

between ca. 120 and 110 Ma (Zhu et al., 2011; Sui et al., 2013). Although these 

rocks are inferred to be subduction-related (cf. Pan et al., 1983, 2012), there is no 

convincing geochemical evidence for this inference. 

The Baingoin Batholith comprises two-mica tourmaline monzogranite intruded by 

ultrabasic dykes (Fig. 1d), granodiorite with dioritic enclaves that contains quartz 

xenocrysts (Fig. 1e), quartz diorite, tonalite, and syenogranite (Xu et al., 1985; 

Harris et al., 1990). Three monazites from a granite within the batholith yielded a 

mean U-Pb age of 121  2 Ma, which was taken to represent its time of 

emplacement (Xu et al., 1985). Available new zircon U-Pb age data indicate 

emplacement ages ranging from 139 Ma to 110 Ma (Haider et al., 2013; Volkmer et 

al., 2014; this study). Magma chemistry changes through time (Zhu et al., 2012) as 

exemplified by the zircon Hf(t) values decreasing from ca. 132 Ma to ca. 120 Ma but 

increasing at 118110 Ma (Fig. 3c) (Table S2). 
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The age of the Baingoin Batholith (Xu et al., 1985; Harris et al., 1990) (Fig. 3c) 

overlaps the timing of northward subduction of Neo-Tethyan Ocean lithosphere 

beneath the southern margin of the Lhasa Terrane (cf. Zhu et al., 2011, 2013). 

However, this is unlikely to be the geodynamic driver as the batholith was some 600 

km from the southern margin (cf. Kapp et al., 2007; Leier et al., 2007) which would 

require low angle subduction (Coulon et al., 1986; Zhang et al., 2004; Kapp et al., 

2005, 2007) that could not then account for coeval calc-alkaline magmatism along 

the terrane’s southern margin (cf. Zhu et al., 2011, 2013). The increasing zircon 

Hf(t) values of the 118110 Ma granitoids (Fig. 3c) and the presence of dioritic 

enclaves and ultrabasic dykes (Fig. 1d) point to enhanced mantle contributions, 

which are unlikely to be explained by the hypothesis arguing for crustal anatexis in 

relation to intra-block thrusting resulting from the Lhasa-Qiangtang collision (Xu et 

al., 1985). Instead, the positive zircon Hf(t) values of the 132  2 Ma granitoids 

indicate that their parent magmas most likely originated from the partial melting of 

juvenile crust. This, together with the apparent southward (i.e., continentward) 

decrease in zircon εHf(t) values of the Mesozoic–early Tertiary rocks from the four 

north–south traverses across the Lhasa Terrane (Zhu et al., 2011), indicate that the 

Bangong Ocean lithosphere likely subducted southward beneath the Lhasa Terrane. 

The Yanhu volcanic rocks (Figs. 1b and 2) provide additional evidence for the 

southward subduction of the Bangong Ocean lithosphere beneath the northern 

Lhasa subterrane. These rocks consist primarily of andesite with minor basalt and 
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rhyolite (Fig. 3b), forming a bimodal volcanic suite in places (Fig. 1f) (Sui et al., 

2013). Zircon U-Pb age (Zhu et al., 2011) and whole-rock geochemical data of 

these rocks reveal a distinct compositional variation with time, i.e. from calc-alkaline 

(131120 Ma) to high-K calc-alkaline and shoshonitic (116110 Ma) (Fig. 3b). Such 

variation most likely reflects a change in tectonic affinity from arc-related (131120 

Ma) to rift-related (116110 Ma) as indicated by their clinopyroxene chemistry (Fig. 

3d) (Table S3), which provides a diagnostic means of establishing the 

tectonomagmatic affinity of host rocks (Loucks, 1990). 

Magmatic arc activity along the northern Lhasa subterranes is probably as old as 

mid-Jurassic based on the presence of the ca. 164 Ma high-Mg andesites recently 

identified from the eastern bank of Daru Tso (Li et al., 2015d). These rocks display 

high MgO (5.047.43 wt.%), Mg# (6370), and low Y (1217 ppm) with negative 

zircon Hf(t) (8.5 to 6.7) (Li et al., 2015d), indicative of derivation by partial 

melting of subducting ocean lithosphere with sediments followed by hybridization of 

peridotite in the mantle wedge. Coeval volcanic rocks, commonly referred to as the 

Jienu Group of Mid-Late Jurassic age (Fig. 2) (cf. Yin et al., 1988; Pan et al., 2004; 

Wang et al., 2013), are discontinuously distributed in the northern Lhasa subterrane 

at Rutog in the west, Oma in the center, and Daru Tso in the east (Fig. 1b). 

Unfortunately no geochronological and geochemical data are available for the Jienu 

Group volcanic rocks at either Rutog or Oma. However, given the stratigraphic 

comparison and the exposed locations of these Jurassic volcanic rocks (including the 
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ca. 164 Ma Daru Tso high-Mg andesite), their generation is attributed to the 

southward subduction of the Bangong Ocean lithosphere beneath the Lhasa Terrane. 

 

2.5. Early Cretaceous (120110 Ma) mafic magmatism within the 

Bangong suture zone 

Mafic magmatism of late Early Cretaceous age (120110 Ma) within the Bangong 

suture zone occurs at Tarenben and Duoma (Zhu et al., 2006), Zhonggang (Fan et 

al., 2014), and Julu (Liu et al., 2014) (Figs. 1b and 2). The basalts from Duoma and 

Tarenben occur as pillow lavas interbedded with bioclastic limestone and purplish 

red chert and yield zircon U-Pb age of ca. 108 Ma (Zhu et al., 2006). The 

Zhonggang basalts are interbedded with limestone and are intruded by cogenetic 

gabbro, which is dated by U-Pb zircon at ca. 116 Ma (Fan et al., 2014). The Julu 

basalts occur as pillow lavas intercalated with radiolarian chert and are likely 

emplaced at ca. 104 Ma on the basis of a U-Pb zircon age on cogenetic gabbro (Liu 

et al., 2014). Other occurrences of possible Early Cretaceous mafic magmatism 

within the Bangong suture zone (Zhang et al., 2014b) are not considered here 

because of the absence of age data (e.g., Riganpei Tso and Pudu Tso) or an 

inconsistency between the determined 40Ar/39Ar age (Zhang et al., 2014b) and 

sedimentary records (e.g., Penghu; Wang et al., 2013). 

Available geochemical data indicate that the Early Cretaceous mafic magmatism 

within the Bangong suture zone consists of ocean island basalt (OIB)-like rocks that 
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display positive Nb-Ta anomalies, as seen in Tarenben and Duoma (Zhu et al., 2006) 

and Zhonggang (Fan et al., 2014), and arc-like rocks that exhibit negative Nb-Ta 

anomalies as exemplified by the Julu basalts (Liu et al., 2014). Zr/Y and Nb/Y ratios, 

expressed as Nb values [= log (Nb/Y) + 1.74 – 1.92  log (Zr/Y)], provide 

information on the source of the basalts (Fitton et al., 1997). The high Zr/Y ratios 

and positive Nb values of the OIB-like rocks suggest a deep-mantle source (Fig. 4) 

(Fitton et al., 1997), whereas the low Zr/Y ratios and negative to positive Nb 

values of the arc-like rocks point to a mixed mantle source involving a shallow N-

MORB source (Nb < 0) and a deep depleted source (Nb > 0). Such mixed 

characteristic of magma source region is analogous to that documented by the Iron 

King volcanic rocks from west-central Arizona involving arc and oceanic plateau 

components (Condie et al., 2002). 

 

3. Discussion 

3.1. Reevaluation on the timing of the Lhasa-Qiangtang collision 

Three hypotheses have been proposed for the timing of the Lhasa-Qiangtang 

collision. 

Hypothesis I: Collision initiates in the Middle Jurassic and ends in the Late 

Cretaceous. Changing sedimentary environments along the Bangong suture zone, 

led Pan et al. (1983) to propose that collision between the Lhasa and Qiangtang 

terranes was diachronous commencing in the Middle Jurassic in the east and 
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terminating in the Late Cretaceous in the west. Xu et al. (1985) argued that the 

Lhasa-Qiangtang collision probably occurred in the Middle Jurassic on the basis of 

metamorphism of the Amdo gneiss at ca. 171 Ma. However, subsequent work on 

the amphibolite-facies to granulite-facies metamorphism of the Amdo gneiss and 

Basu eclogite indicates an Early Jurassic age (190170 Ma), which is interpreted to 

represent the accretion between micro-continents (e.g., Amdo and Basu) within the 

Bangong Ocean and the Qiangtang Terrane (Guynn et al., 2006, 2013; Zhang et al., 

2008, 2014a). 

Hypothesis II: Collision terminates in the Late Cretaceous. The presence of 

120108 Ma OIB-type basaltic rocks and interbedded bioclastic limestones within the 

Bangong suture zone (Figs. 1b and 2) has been interpreted to indicate the presence 

of oceanic islands, and thus oceanic crust, within the Bangong suture zone (Zhu et 

al., 2006; Fan et al., 2014; Liu et al., 2014; Zhang et al., 2014a). However, this 

hypothesis is inconsistent with paleomagnetic data in which the southern margin of 

the Lhasa Terrane remained at latitude ~20 ± 4°N during ca. 11050 Ma (Lipper et 

al., 2014). Given that the Lhasa Terrane was probably approximately 600 km wide 

in the Early Cretaceous (Kapp et al., 2007; Leier et al., 2007) this would imply a 

paleolatitude for the northern margin of ca. ~26 ± 4°N. Such a paleolatitude is 

virtually indistinguishable from that of the southern margin of the Qiangtang 

Terrane as indicated by the new paleomagnetic data (29.3 ± 5.7°N) of the ca. 

110104 Ma volcanic rocks from NE Gerze (Chen et al., 2015). Although the errors 
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on the paleomagnetic data are large enough that may indicate the presence of an 

ocean basin between the Lhasa Terrane and Qiangtang Terrane at this time, the 

results of stratigraphic and structural studies (cf. Kapp et al., 2007; Raterman et al., 

2014) and mantle dynamics described below allow us to argue that the Lhasa 

Terrane may have already collided with the Qiangtang Terrane prior to ca. 110 Ma. 

Hypothesis III: Collision occurs during the Late Jurassic to Early 

Cretaceous. This hypothesis was based on the single zircon U-Pb ages of 140120 

Ma for the Amdo granite (Xu et al., 1985), which was interpreted as having derived 

from the anatexis of a Proterozoic crust in a collisional environment (Allègre et al., 

1984; Dewey et al., 1988). This interpretation for the Amdo granite formed the 

basis for the model of Yin and Harrison (2000), who argued that the Lhasa-

Qiangtang collision took place in the late Jurassic near Amdo (Long. 91E) and in the 

middle Cretaceous near Shiquan River (Long. 80E). Additional evidence for this 

hypothesis comes from the stratigraphic and structural studies along the Bangong 

suture zone. Ophiolites south of Tsige Dartso are unconformably overlain by the 

Lower Cretaceous Dongqiao Formation, which consists of a lower succession of 

ophiolitic-derived sandstone and conglomerate (Fig. 2) and an upper bioclastic 

limestone (Aptian−Albian; 125100 Ma) (Wang and Dong, 1984; Yin et al., 1988; 

Zheng et al., 2003). East of Dongqiao, around Amdo, the lowermost Dongqiao 

Formation conglomerate is unconformable on fossiliferous strata with ages of early 

Cretaceous (143131 Ma; Sun, 2005). To the west of Dongqiao in the Nyima basin, 
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geological mapping and geochronological data indicated that this basin underwent 

major deformation and denudation resulting in it evolving from marine to nonmarine 

environments between ca. 125 Ma and ca. 118 Ma (Kapp et al., 2007). Further to 

the west in Domar within the western Qiangtang subterrane (Fig. 1b), structural 

mapping and detrital zircon U-Pb dating identified a significant Late JurassicEarly 

Cretaceous shortening rather than significant Cenozoic shortening in response to the 

India-Asia collision (Raterman et al., 2014). All these observations are interpreted to 

be associated with the Lhasa-Qiangtang collision during the Late Jurassic to Early 

Cretaceous (Wang and Dong, 1984; Yin et al., 1988; Zheng et al., 2003; Sun, 2005; 

Kapp et al., 2007; Raterman et al., 2014). On the other hand, the well-developed 

Upper Cretaceous terrestrial molasse sedimentary rocks, such as the Jingzhushan 

Formation on the northern Lhasa and the Abushan Formation on the western 

Qiangtang subterranes Fig. 1b), suggest that the two terranes had collided by this 

time. 

In summary, the lithotectonic evidence for deformation and crustal thickening, 

evidenced by angular unconformities and accumulation of non-marine successions in 

the Bangong suture zone in the mid-Cretaceous, as well as the scarcity of 140130 

Ma magmatic in the western Qiangtang subterrane (Li et al., 2014a), and the 

presence of ca. 114 Ma anorogenic felsic (A2-type) rocks that point to a 

postcollisional setting (Eby, 1992) identified in the northern Lhasa subterrane (Chen 
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et al., 2014), support Lhasa-Qiangtang collision taking place in the Late Jurassic to 

Early Cretaceous, most likely 140130 Ma. 

 

3.2. A divergent double-sided subduction model for the closure of the 

Bangong Ocean 

The closure of the Bangong Ocean is widely ascribed to the continental collision 

between the Lhasa and Qiangtang terranes (Kapp et al., 2003, 2005, 2007; Zhang 

et al., 2004, 2012a; Volkmer et al., 2014). This model appears to be supported by 

the similarities of structural styles between the northern Lhasa and Tethyan 

Himalayan thrust belts (Raterman et al., 2014), both of which represent passive 

margins on the lower subducting plate of a collision zone. However, Early 

Cretaceous magmatism is extensive in the northern Lhasa subterrane (Figs. 1b and 

2), which is in contrast to the Tethyan Himalaya where Cenozoic magmatism is 

limited to small leucogranite bodies. This difference was first noted by Harris et al. 

(1990), who suggested that the temperatures required for the origin of the 

extensive magmatism in the northern Lhasa subterrane cannot result from 

continental collision between two major lithospheric blocks, as in the Tertiary 

evolution of the Himalayas, but can better be described as docking between terranes. 

High-temperature magma generation during the Early Cretaceous in the northern 

Lhasa subterrane has been corroborated by the identification of ca. 114 Ma 

anorogenic (A2-type) magmatism at Daguo (Fig. 1b) (Chen et al., 2014), the 
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increase in mantle contributions at 120110 Ma in the Duobuza granitoids (Fig. 3a) 

and at 118110 Ma in the Baingoin Batholith (Fig. 3c), and the subduction- to 

extension-related magmatism (131110 Ma) at Yanhu (Fig. 3d). South-directed 

thrusting in the northern Lhasa subterrane has been related to subduction beneath 

the Qiangtang Terrane. However, the timing of thrusting ranges in age from Late 

Cretaceous to earliest Tertiary (cf. Murphy et al., 1997; Kapp et al., 2003, 2005, 

2007; Volkmer et al., 2014), postdating the timing of final Lhasa-Qiangtang 

amalgamation. This means that such south-directed thrusting may have been 

strengthened by the northward subduction of the Neo-Tethyan Ocean lithosphere 

beneath the southern Lhasa subterrane and thus cannot be considered as a strong 

argument for the northward subduction of the Tethyan Bangong Ocean lithosphere 

beneath the Qiangtang Terrane. 

The absence of the Early Cretaceous high-grade metamorphic rocks along the 

Bangong suture zone may be attributed to the low degrees of exhumation, 

analogous to absence of such rocks in parts of the Coast Mountains arc in western 

North America (Rusmore et al., 2005) and/or to the presence of a sedimentary 

cover as interpreted for the lack of Jurassic granitoids in places in the western 

Qiangtang subterrane (Guynn et al., 2006). However, these two possibilities are less 

likely because no Early Cretaceous high-grade metamorphic rocks have been 

documented along the entire Bangong suture zone despite the fact that (1) the 

sedimentary cover for the western Qiangtang subterrane is only ca. 3.5 km thick 
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(Haines et al., 2003) and (2) the Lhasa-Qiangtang collision zone experienced rapid 

exhumation from mid-crustal levels between 108 and 90 Ma (Kapp et al., 2007; 

Volkmer et al., 2014). Thus, the lack of Early Cretaceous high-grade metamorphic 

rocks most likely reflects the distinct character of the subduction-collision history 

rather than varying degrees of subsequent exhumation along the Bangong suture 

zone. 

Given the presence of magmatic arc rocks on both the northern margin of the 

Lhasa Terrane and the southern margin of the Qiangtang Terrane, and the lack of 

Early Cretaceous high-grade metamorphic rocks in the Lhasa-Qiangtang collision 

zone, we suggest that the Bangong Ocean closed via divergent double-sided 

subduction resulting in soft collision of opposing arcs (Soesoo et al., 1997). We 

outline the following 4 stage model which accounts for available stratigraphic, 

structural, metamorphic and magmatic character of the region: 

Stage A (> 140 Ma): Subduction of the Bangong Ocean lithosphere may have 

begun as early as the Middle Permian beneath the Lhasa Terrane, perhaps triggered 

by collision of the southern margin of the terrane with northern Australia (cf. Zhu et 

al., 2011, 2013). Subduction of the ocean beneath the western Qiangtang 

subterrane likely initiated in the Mid-Late Triassic triggered by the Western-Eastern 

Qiangtang collision (Zhu et al., 2013; Zeng et al., 2015). This was accompanied by 

the development of the Jurassic accretionary complex, including the Muggargangri 

Group that is associated with subduction underneath the Qiangtang Terrane and the 
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Xihu Group that is associated with subduction underneath the Lhasa Terrane (Fig. 

5a). Spreading within the Bangong Ocean may have ceased in the Late Jurassic on 

the basis of OIB-type basaltic rocks and slab-derived dacitic adakites in the western 

Qiangtang subterrane (156  2 Ma) which are interpreted to reflect oceanic ridge 

subduction (Li et al., 2015e). Arc-related magmatism at this stage was represented 

by the 170150 Ma granitoids and Amdo Formation volcanic rocks in the western 

Qiangtang (Fig. 1b) and the ca. 165 Ma Jienu Group volcanic rocks (Li et al., 2015d) 

and coeval granitoids in the northern Lhasa subterrane (Fig. 5a). 

Stage B (140130 Ma): Continued divergent subduction ultimately leads to the 

closure of the Bangong Ocean (Fig. 5b). Consequently, the northern Lhasa and 

western Qiangtang subterranes were welded together through “soft” arc-arc 

collision. Coeval sedimentation and deformation led to complicated tectono-

sedimentary relationships within the collision zone, as exemplified by the angular 

unconformities between the Shamuluo and Qushenla formations with their 

underlying strata (Fig. 2) (Yin et al., 1988; Zheng et al., 2003; Zhang et al., 2004; 

Kapp et al., 2005, 2007; Wang et al., 2013). Magmatism at this stage is weak or 

absent due to the termination of normal subduction (Soesoo et al., 1997) explaining 

the scarcity of magmatic rocks of 140130 Ma in both the western Qiangtang and 

the northern Lhasa subterranes. 

Stage C (130120 Ma): The cold and dense Bangong oceanic lithosphere below 

the “soft” arc-arc collision zone ruptures and detaches due to gravitational instability 
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(Soesoo et al., 1997), resulting in the upwelling of materials from the mantle wedge. 

This rupture most likely occurs in the south of the collision zone (Fig. 5c), facilitating 

the decompression and dehydration melting of mantle wedge materials, producing 

calc-alkaline melts with arc signatures (Figs. 3b and 3d). This phase is represented 

by the 131120 Ma Yanhu volcanic rocks and the ca. 120 Ma mafic dykes (Fig. 1) in 

the northern Lhasa subterrane and melting of juvenile crust and overlying 

sedimentary rocks that generated the 134130 Ma metaluminous (with positive 

zircon Hf(t) values) and the 125120 Ma peraluminous (with negative zircon Hf(t) 

values) granitoids (Fig. 3c) in the Baingoin Batholith. In the north of the collision 

zone, the oceanic lithosphere remains attached to the overlying sedimentary section 

(Fig. 5c), small-scale mantle flow provides limited convective heat (Magni et al., 

2012), consequently producing minor magmatism as documented in the western 

Qiangtang subterrane at this stage. 

Stage D (120110 Ma): Continued sinking of the Bangong Ocean lithosphere 

leads to the rupture propagating from the south to the north, eventually resulting in 

its complete detachment from the overlying crust (Soesoo et al., 1997) and/or 

breakoff due to continued slab pull through mineral phase changes at depth 

producing excess negative buoyancy (Niu, 2014) (Fig. 5d). Such processes create a 

gap that is filled with upwelling hot asthenosphere, consequently resulting in partial 

melting of the asthenosphere and the overriding metasomatized lithosphere to 

produce mafic magmatism that continues for a few millions of years and induce 
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crustal (including overlying crust and sedimentary rocks) anatexis that can proceed 

over a considerably longer period (van de Zedde and Wortel, 2001). As a result, 

magmatism occurs throughout the collision zone (Figs. 1b and 5d) and displays a 

compositional diversity with variable enhanced mantle contributions, explaining the 

presence of the 120104 Ma granitoids in Duobuza in the western Qiangtang 

subterrane (Fig. 3a) and the 118110 Ma granitoids from the Baingoin Batholith in 

the northern Lhasa subterrane (Fig. 3c). 

The divergent double subduction model explains the following features that 

characterize the Lhasa-Qiangtang collision zone: a) absence of Early Cretaceous 

high-grade metamorphic rocks of continental crust due to the detachment of the 

continental crust from dense oceanic lithosphere (Soesoo et al., 1997) preventing 

the deep subduction and accompanying metamorphism of the continental 

lithosphere; b) Aptian-Albian shallow-marine limestone sedimentation (including the 

Langshan and Dongqiao formations and their equivalent strata within the Bangong 

suture zone) representing accumulation in a syncontractional basin (Kapp et al., 

2005, 2007; Leier et al., 2007) in which subsidence was driven by the sinking of the 

Bangong Ocean lithosphere (Soesoo et al., 1997; Zhao et al., 2015) rather than a 

back-arc extension basin related to low-angle northward subduction of the Neo-

Tethyan ocean lithosphere (Zhang et al., 2004); c) ca. 120110 Ma OIB- and arc-

like rocks (Fig. 4) within the Bangong suture zone (Figs. 1b and 2) that were 

derived from the varying-degree decompression melting of asthenospheric materials 
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(Ferrari, 2004) enveloped by the inverted-U–shaped oceanic slab due to the 

breakoff of the Bangong Ocean lithosphere (Fig. 5d). The association of coeval 

limestones and OIB-like rocks that formed in this setting resemble ocean islands, 

but are not indicative of the presence of oceanic crust as previously interpreted (Zhu 

et al., 2006; Fan et al., 2014). 

 

3.3. Broader implications 

The observations and interpretations presented above show that the Bangong 

Ocean most likely experienced pre-Cretaceous double-sided subduction, which is 

analogous to the modern Pacific Ocean whose lithosphere displays an advancing 

subduction zone beneath the western South American plate resulting in the 

deformation of the overriding plate (corresponding to the Qiangtang Terrane) and 

retreating subduction zone beneath the eastern Australian and Eurasian plate 

causing the overriding plate to extend (corresponding to the Lhasa Terrane) 

(Schellart et al., 2006; Cawood et al., 2009; Niu, 2014). In particular, the 

northward retreat of the southward-dipping subduction zone may have driven the 

separation of the Lhasa Terrane from Gondwana margin during the Late Triassic 

(Sengör, 1979; Zhu et al., 2011, 2013; Pan et al., 2012; Metcalfe, 2013) and the 

development of back-arc basins represented by the Shiquan River-Nam Tso mélange 

zone during the Mid-Late Jurassic (Zhu et al., 2011, 2013; Pan et al., 2012). This is 

analogous to the eastward retreat of the western Pacific subduction zones that led 
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to the development of back-arc basins in the western Pacific (Schellart et al., 2006; 

Cawood et al., 2009; Niu, 2014), providing a reasonable geodynamic mechanism 

responsible for the Gondwana dispersion and Asian accretion. 

This synthesis demonstrates that the Bangong Ocean may have closed through 

arc-arc “soft” collision driven by divergent double-sided subduction (Fig. 5) during 

the Early Cretaceous, analogous to the modern Molucca Sea lithosphere subduction 

in eastern Indonesia (Hinschberger et al., 2005). Unlike the continent-continent 

hard collision (e.g., the Tertiary India-Asia collision) that was followed by continental 

deep subduction (cf. Leech et al., 2005), such arc-arc “soft” collision was most likely 

accompanied by the detachment of dense oceanic lithosphere without the 

involvement of continental deep subduction (Soesoo et al., 1997; Zhao, 2015). Such 

detachment will result in the loss of a slab pull force from the descent of the normal 

subducting Bangong Ocean lithosphere, leading to the preservation of its overlying 

accretionary complex systems (e.g., the Muggargangri and Xihu Group) (Fig. 1b), 

oceanic plateaux or seamounts, and enclosed microcontinent (e.g., the Amdo 

microcontinent) that are too buoyant to subduct (cf. Niu et al., 2003; Cawood et al., 

2009; Niu, 2014). This would explain the presence of the diffuse ophiolitic mélanges 

(> 100 km wide) from Amdo to Daru Tso (Fig. 1b) (Pearce and Mei, 1988; Pan et 

al., 2004; Wang et al., 2013) within the Lhasa-Qiangtang collision zone. “Soft” 

collision through double-sided subduction may be applicable to other accretionary 
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orogens with well-preserved accretionary complex and ophiolitic fragments (e.g., 

the Central Asian Orogenic Belt, Xiao et al., 2003). 

Although closure of the Bangong Ocean by divergent double-sided subduction, 

accounts for the observed geological features of the Lhasa-Qiangtang collision zone 

in central Tibet, further data on the provenance of the JurassicCretaceous 

sedimentary rocks within the Bangong suture zone and in the northern Lhasa 

subterrane are needed to establish if they were sourced from the arc on the western 

Qiangtang or the arc on the northern Lhasa subterranes. Also the nature and 

evolution of the JurassicCretaceous Daru TsoNagqu basin needs to be resolved to 

determine if it was built on accretionary complex, ophiolite or continental crust. 

 

4. Conclusions 

(1) The Bangong Ocean lithosphere was most likely subducted northward 

beneath the Qiangtang Terrane and southward beneath the Lhasa Terrane, forming 

two JurassicCretaceous magmatic arcs currently represented by the opposing 

CaimaDuobuzaRongmaKangqiongNorth Amdo magmatic belt and the Along 

TsoYanhuDaguoBaingoinDaru Tso magmatic belt, respectively. 

(2) Extensive 120110 Ma magmatism with enhanced mantle contributions 

occurs within the Lhasa-Qiangtang collision zone, and this zone only experienced 

low-grade greenschist-facies metamorphism rather than high-grade amphibolite- to 

granulite-facies metamorphism in the Early Cretaceous. 
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(3) The Bangong Ocean may have closed during the Late JurassicEarly 

Cretaceous (most likely ca. 140130 Ma) through arc-arc “soft” collision rather than 

continent-continent “hard” collision. 

(4) The special geological features that characterize the Lhasa-Qiangtang 

collision zone are consistent with the divergent double-sided subduction of the 

Bangong Ocean lithosphere and associated distinct mantle dynamics. 
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Figure captions 

Fig. 1 (a) Tectonic outline of the Tibetan Plateau (Zhu et al., 2013) showing the 

location of the Bangong suture zone (red dashed line). (b) Simplified 

geological map showing the distinct JurassicCretaceous geological records 

within Lhasa-Qiangtang collision zone (Adapted from Wang et al., 2013). Age 

data sources: Western Qiangtang (Li et al., 2013b, 2014a, 2014b, 2014c, 

2015a; Ran et al., 2015); Bangong suture zone (Zhu et al., 2006; Fan et al., 

2014); Northern Lhasa (Kapp et al., 2007; Zhu et al., 2011; Chen et al., 

2014; Li et al., 2015b; this study). (cf) Photos showing field occurrences of 

magmatic rocks in the northern Lhasa subterrane. 

Fig. 2 Generalized tectonostratigraphic columns for the Lhasa-Qiangtang collision 

zone showing the lithostratigraphical units and their relations (Adapted from 

Zheng et al., 2003; Chen et al., 2005; Wang et al., 2006, 2013; Raterman et 

al., 2014). See text for details. 

Fig. 3 (a) Plots of εHf(t) vs. U-Pb ages of the granitoids from the western Qiangtang 

subterrane (cf. Li et al., 2013b, 2014a, 2015a; Fan et al., 2015). (b) Th vs. 

Co plot (Hastie et al., 2007) for the volcanic rocks from the western 

Qiangtang and northern Lhasa subterranes. Data of Duobuza (Li et al., 2014; 

Fu et al., 2015), Rena Tso (Liu et al., 2012), and Yanhu (Sui et al., 2013; 

Zhu et al., 2011). (c) Plots of εHf(t) vs. U-Pb ages of the granitoids from the 
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Baingoin Batholith in the northern Lhasa subterrane (Table S2, this study). 

(d) AlZ (percentage of tetrahedral sites occupied by Al) vs. TiO2 of 

clinopyroxene from the Yanhu volcanic rocks in the northern Lhasa 

subterrane (Table S3, this study). Trends in arc- and rift-related are from 

Loucks (1990). 

Fig. 4 Plot of Zr/Y vs. Nb of the 120110 Ma basalts from the Bangong suture zone. 

Nb was calculated following the method of Fitton et al. (1997) [= log (Nb/Y) 

+ 1.74 – 1.92  log (Zr/Y)]. Data sources: Duoma and Tarenben (Zhu et al., 

2006); Zhonggang (Fan et al., 2014); Julu (Liu et al., 2014); Seamounts 

near the East Pacific Rise (Niu and Batiza, 1997). 

Fig. 5 Schematic illustrations showing the closure of the Bangong Ocean driven by a 

divergent double-sided subduction system in the central Tibet during the 

JurassicEarly Cretaceous (not to scale). Paleolatitude data of the southern 

margin of the Qiangtang Terrane are from Chen et al. (2015) and of the 

northern margin of the Lhasa Terrane are inferred from Lippert et al. (2014). 

See text for details. 
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Research Highlights 

 

►Two magmatic arcs on the opposing overriding Lhasa and Qiangtang terranes 

►Extensive 120110 Ma magmatism with enhanced mantle contributions 

►Absence of Early Cretaceous high-grade metamorphic rocks 

►Divergent double-sided subduction of the Bangong oceanic lithosphere 


