Optimal trait-sampling strategies

30 Oct 2015

This is the peer reviewed version of the following article: Paine, C. E. T., Baraloto, C., Díaz, S. (2015), Optimal strategies for sampling functional traits in species-rich forests. Functional Ecology, 29: 1325–1331, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12433/full. This article may be used for non-commercial purposes in accordance With Wiley Terms and

This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

1	Trave
1	ITTLE Ontimal strataging for compling functional traits in spacing risk forests
$\frac{2}{3}$	Optimal strategies for sampling functional traits in species-fich forests
4	AUTHORS AND AFFILIATIONS
5	C. E. Timothy Paine (Corresponding author), <u>c.e.t.paine@stir.ac.uk</u>
6	• Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK,
7	phone: +44 (0)1786 467785, fax: +44 (0) 1786 467843
8	
9	Christopher Baraloto, Chris.Baraloto@ecofog.gf
10	• INRA, UMR "Ecologie des Forêts de Guyane", 97387, Kourou Cedex, French Guiana
11	• International Center of Tropical Botany, Department of Biology, Florida International
12	University, Miami, Florida, 33199 USA
13	
14	Sandra Diaz, sdiaz@efn.uncor.edu
15	Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) and Departamento de
16	Diversidad Biológica y Ecología, FCEFyN, Universidad Nacional de Córdoba, CC 495, 5000
17	Córdoba, Argentina.
18	
19	AUTHOR CONTRIBUTIONS
20	All authors conceived the question, CETP and CB collected data with the BRIDGE team, CETP
21	performed the simulations and wrote the first paper with contributions from all authors.
22	
23	RUNNING TITLE
24	Optimal trait-sampling strategies
25	Vermonne
20	KEYWORDS Eronah Cuiana, functional traita, nlant traita, anagifia laaf araa, waad dangity, compling dagian
21	tropical forest
20	tropical forest
30	WORD COUNTS
31	Abstract: 156
32	Main text: 3072
33	Number of references: 34
34	Figures: 2
35	Tables: 1
36	
37	

38 Abstract

39 Functional traits provide insight into a variety of ecological questions, yet the optimal 40 sampling method to estimate the community-level distribution of plant functional trait values 41 remains a subject of debate, especially in species-rich forests. We present a simulation analysis 42 of the trait distribution of a set of nine completely sampled permanent plots in the lowland rain 43 forests of French Guiana. Increased sampling intensity consistently improved accuracy in 44 estimating community-weighted means and variances of functional trait values, whereas there 45 was substantial variation among functional traits, and minor differences among sampling 46 strategies. Thus, investment in intensified sampling yields a greater improvement in the accuracy 47 of estimation than does an equivalent investment in sampling design complication. Notably, 48 'taxon-free' strategies frequently had greater accuracy than did abundance-based strategies, 49 which had the additional cost of requiring botanical surveys. We conclude that there is no 50 substitute for extensive field sampling to accurately characterize the distribution of functional 51 trait values in species-rich forests.

52

53

54 INTRODUCTION

55 Functional traits impact plant fitness via their effects on recruitment, growth, 56 reproduction and survival (Lavorel & Garnier 2002; Violle et al. 2007). Scaling from functional 57 traits measured on individuals up to community-level distributions of trait values has provided 58 insight into a variety of issues surrounding community assembly and ecosystem processes 59 (McGill et al. 2006). Traits have been particularly useful in species-rich forests where the rarity 60 of many species has stymied efforts to characterize their niche requirements (Baraloto, Paine, 61 Poorter, et al. 2010; Fortunel et al. 2013). Standardized protocols for the measurement of 62 functional traits and intensive efforts to compile trait data have fuelled explosive growth of 63 functional trait databases (Kattge et al. 2011; Pérez-Harguindeguy et al. 2013), which in turn, support the development of trait-based dynamic global vegetation models (Scheiter, Langan, & 64 65 Higgins 2013). 66 An investigator's choice of sampling strategy can have a major influence on the 67 inferences he or she makes regarding the strength and extent of ecological processes. For 68 example, common sampling designs for coring of trees can systematically bias estimations of

69 forest growth and productivity (Nehrbass-Ahles et al. 2014). The increasing use of functional 70 traits in plant ecology spurred Baraloto et al. (2010a) to assess trait-sampling strategies in 71 species-rich forests. After measuring the traits on every individual tree in nine 1-ha plots of 72 lowland tropical rain forest, they simulated performing four sampling strategies over a gradient 73 of sampling intensity. Their study, however, suffered from a number of defects, which we 74 remedy in the current contribution. First, their analysis did not assess interactions between 75 strategy and intensity. Second, Baraloto et al. (2010a) classified the results of their simulations 76 into successes and failures using an arbitrary criterion, then analysed these binomally-distributed

77	variables as though they followed Gaussian distributions. Third, their analysis did not take into
78	account variation among sites. Finally, Baraloto et al. (2010a) examined sampling strategies
79	based on species abundance only in passing, although such strategies are widely used in
80	functional trait studies in extra-tropical ecosystems (Conti & Díaz 2013; Fisichelli, Frelich, &
81	Reich 2014; Lavorel et al. 2008; Pakeman & Quested 2007). This paper updates Baraloto et al.
82	(2010a) with an expanded and refined response to the question: What sampling strategy yields
83	the most accurate characterization of community-level trait distributions in species-rich forest
84	communities?
85	We expand upon Baraloto et al. (2010a) by evaluating the interacting effects of sampling
86	strategy, sampling intensity, and functional trait identity on the probability of accurately
87	characterizing the community-level distribution of functional trait values. We characterize the
88	distribution of trait values in terms of its mean and variance (Díaz et al. 2007; Violle et al. 2007).
89	First, we obtain the true community-level distributions by assessing the trait values of every
90	individual tree (Baraloto et al. 2010). Then, in simulation, we estimate the mean and variance of
91	functional traits that result from applying each sampling strategy over a range of sampling
92	intensities. We compare these estimates with the true values to determine the accuracy of
93	estimation for every combination of strategy, intensity and trait. We include sampling strategies
94	in which individuals are selected based upon their regional or local stem density or basal area, as
95	measures of abundance, and we analyse their accuracy using mixed-effect models.
96	
97	Methods
98	We sampled functional traits on 4672 individual trees representing 668 species in nine 1-

ha plots of lowland rain forest in French Guiana between November 2007 and September 2009

100	(Baraloto, Paine, Patiño, et al. 2010). In each plot, all trees >10 cm diameter at breast height
101	(d.b.h.) were mapped, measured for d.b.h. and climbed to obtain a branch for leaf samples. For
102	the current study, we used the same 10 functional traits as analysed by Baraloto et al. (2010a).
103	The eight leaf traits are correlated with the global leaf economics spectrum (Díaz et al. 2004;
104	Wright et al. 2004): chlorophyll content, concentrations of δ^{13} C, N and δ^{15} N, C:N ratio, thickness,
105	toughness and specific leaf area (SLA), one is associated with the global wood economics
106	spectrum (Chave et al. 2009): bole density, and one is of uncertain affinities (Baraloto, Paine,
107	Poorter, et al. 2010): laminar surface area. The methods of trait sampling in the field and
108	subsequent laboratory analysis are detailed in Baraloto et al. (2010a).
109	We investigated the accuracy of 12 plot-based strategies. Three are based on abundance
110	estimated as basal area, three are based on abundance estimated as number of stems, three are
111	'taxon-free' (sensu Lavorel et al. 2008), and the final three have varying motivations. The
112	strategies vary widely in the amount of field data required prior to trait sampling, and each
113	emphasizes different aspects of the tree community (Table 1). Most strategies were included
114	because they have recently been used in published studies. The BA REGION and BA LOCAL
115	strategies sample individuals on the basis of the basal area of their conspecifics in the region or
116	local plot, respectively. BA INDIVIDUAL, on the other hand, samples individuals on the basis
117	of their own basal area. It, therefore, tends to sample very large individuals. As such, BA
118	REGION requires botanical inventories and d.b.h. measurements from multiple plots, whereas
119	BA LOCAL and BA INDIVIDUAL require botanical inventories and d.b.h. measurements from
120	a single local plot. Variants of these strategies have been applied in non-tropical communities
121	(Conti & Díaz 2013; Fisichelli et al. 2014; Lavorel et al. 2008; Pakeman & Quested 2007). The
122	commonness strategies (COMMON REGION and COMMON LOCAL) are similar, but are

123 based on stem density in the region or in the local plot, and require either regional or local 124 botanical inventories, respectively. The SPECIES strategy flips COMMON LOCAL on its head, 125 and weights species inversely by their local abundance, thus emphasizing relatively rare species. 126 The three taxon-free strategies require no botanical determinations. In CLUMP, three 127 random spatial locations within the plot are selected, and trees were selected based on their 128 proximity to these foci. A variant of CLUMP has been used by the RAINFOR project (Patiño et 129 al. 2009). The SIZE strategy stratifies the tree community into five equally spaced size-classes based on d.b.h, from which individuals were drawn at random (Poorter, Bongers, & Bongers 130 131 2006). In RANDOM, individual trees are randomly selected from the plot. Although we have not 132 seen this strategy used in the literature, it provides a basis for comparison with other more 133 complicated strategies. The final three strategies are more idiosyncratic. The ONE PER SP strategy samples a 134 135 single individual from each species in each plot. Trait values for all individuals of each species in 136 the plot are then set equal to the conspecifics of the sampled individuals (Kraft, Valencia, & 137 Ackerly 2008). This strategy requires a full botanical inventory prior to sampling. The 138 DATABASE strategy samples one individual per species from the region and applies that 139 individual's trait values to all conspecifics (Paine et al. 2012; ter Steege et al. 2006). Note that 140 our implementation of the DATABASE strategy may overestimate its accuracy, because the trait 141 values we use come from a regional data base including only the plots under consideration, 142 rather than from other regions, and because species-trait combinations for which no data were 143 available were left as missing data, rather than being replaced with genus- or family level means 144 (Baraloto, Paine, Patiño, et al. 2010). Finally, the basis of comparison for all sampling strategies 145 was the BRIDGE strategy, in which every individual in the plot is sampled (Baraloto et al. 2012).

146	We simulated each strategy 500 times in each of the nine plots in the BRIDGE network.
147	Sampling strategies, except those for which sampling intensity does not vary (BRIDGE,
148	DATABASE and ONE PER SP), were executed over a gradient of sampling intensity (1, 2, 3, 5,
149	10, 20, 30, 40 and 50% of individuals sampled per plot). Sampling intensities greater than 50%
150	are impractical as they require essentially as much work as does 100% (BRIDGE) sampling. In
151	contrast to Baraloto et al. (2010a), the sampling of individuals was probabilistic. Thus, in
152	RANDOM, all individuals in a plot had an equivalent probability of being sampled (equal
153	weights for all individuals), whereas unequal weights were used in all other strategies. In BA
154	REGION, for example, an individual's probability of being sampled was proportional to the BA
155	of its conspecifics in the region (Table 1).
156	We assessed the performance of each sampling strategy, sampling intensity and trait as
157	the accuracy in recovering the true mean and variance of trait values. Baraloto et al. (2010),
158	considered resampling events as successes (or failures) with respect to an arbitrary threshold. We,
159	in contrast, define accuracy as the absolute value of the per cent difference between the trait
160	values estimated in each re-sampling event to those derived from BRIDGE sampling. We
161	analysed the performance of each of the nine strategies for which intensity was varied using a
162	linear mixed-effect model. Accuracy values were log-transformed for analysis to improve the
163	normality of residuals, and back-transformed for presentation. Tests of significance are irrelevant
164	in the analysis of simulation output. Rather, our primary interest was to assess the relative
165	importance of variation among sampling strategies, functional traits, and sampling intensity in
166	determining the accuracy of estimation of the mean and variance in trait values. Thus, we
167	modelled the log-transformed accuracy of estimation as a normally distributed variable based on
168	the three-way interaction of sampling intensity, strategy and trait. Plots were included as a

169	random effect. We calculated the percentage of variance in the accuracy of estimations explained
170	by sampling strategy, intensity and trait identity using the method of Nakagawa and Schielzeth
171	(2013). Simulations and mixed-effect models were implemented in R 3.1.1 (R Core
172	Development Team 2014) using the lme4 package (Bates et al. 2014). The R script used to
173	conduct the simulations is available as Appendix S1 in Supporting Information.
174	
175	RESULTS
176	Sampling intensity, sampling strategy, and the trait under consideration affected the
177	probability of accurately estimating the true mean and variance in functional trait values (Fig. 1).
178	Executed at low sampling intensities, all strategies yielded inaccurate estimates of trait means
179	and variances, but increased intensity consistently increased the accuracy of estimation. Over a
180	broad range of sampling intensity, the taxon-free strategies of CLUMP, SIZE and RANDOM
181	had consistently superior performance in estimating both the mean and variance of most traits.
182	Contrastingly, the strategies based upon basal area or commonness, whether assessed locally or
183	regionally, performed less well. In general, performing botanical inventories prior to trait
184	sampling did not improve the accuracy of estimating the mean or, especially, the variance in trait
185	values. The error in estimates of the trait variances exceeded that of trait means by an order of
186	magnitude, on average. Despite sampling of every species, and approximately one-third of the
187	individuals in a plot, the ONE PER SP strategy performed no better than sampling an equivalent
188	number of randomly selected individuals. Notably, the DATABASE strategy estimated means
189	and variances approximately as well as field-based sampling strategies that were executed at
190	10% sampling intensity. There was considerable variation among traits in the probability of
191	correctly estimating their mean and variance, as certain traits were recalcitrant to intensified

192 sampling. Accurate estimates of mean leaf toughness and δ¹⁵N were achieved only rarely,
 193 regardless of the sampling intensity or strategy employed.

194 We partitioned the variance in the accuracy of estimating means and variances of 195 functional trait values to determine the relative importance of sampling strategy, sampling 196 intensity and trait identity (Fig. 2). The most important determinants of accurately estimating the 197 mean and variance in trait values were the trait under investigation and sampling intensity, 198 respectively. Sampling strategy, in contrast, was far less important in determining the accuracy 199 of estimation. Interactions among sampling intensity, strategy, and trait were weak, implying that 200 increasing sampling intensity increases the probability of accurate estimation for all traits and 201 strategies, not only some. Similarly, sampling strategies performed equivalently well (or poorly) 202 in estimating mean and variance for all traits. Finally, sampling strategy, intensity and trait 203 together jointly explained more variance in the accuracy of estimation for means, whereas the 204 percentage of variance that remained unexplained was greater for trait variance.

- 205
- 206 **DISCUSSION**

207 Investment in sampling strategy and sampling intensity

By assessing the interactions between sampling strategy, sampling intensity and trait identity, we dissected the relative contributions of each to the accurate estimation of trait distributions. Overall, sampling intensity was the single best predictor of accuracy in the estimation of the mean and variance of trait values (Fig. 2). Statistical interactions with trait identity and sampling strategy were weak, indicating that more-intense sampling consistently yielded more accurate estimations. Moreover, sampling intensity explained far more variance in the probability of accurate estimation than did sampling strategy, indicating that an investment in sampling

intensity would yield a greater improvement in the accuracy of estimation than would an
equivalent investment in a complicated sampling design. Sampling intensity was an especially
strong predictor of the variance in trait values (Fig. 2). In other words, intense sampling is
essential for accurately estimating trait variance. It is not possible to advocate a minimal
intensity of trait sampling for all trait-based studies, however, as their tolerance of inaccuracy in
functional trait estimation will vary, depending on their objectives. Nevertheless, sampling just
10% of individuals is likely to yield sufficiently small estimation errors in most cases.

222 Traits varied widely in terms of the accuracy at which their distributions could be estimated. Means and variances for some, such as foliar thickness and δ^{13} C, were accurately 223 224 estimated by sampling relatively few individuals. Others, including foliar toughness and δ^{15} N, 225 defied accurate estimation. Accordingly, trait identity affected the accuracy of estimation of trait 226 means (Fig. 2). Interestingly, among-trait variation was much less in the estimation of trait 227 variance. Similar variation among traits has been reported for temperate herbaceous communities 228 (Pakeman & Quested 2007, Lavorel et al. 2008). The reasons behind this variation among traits remain unclear. One possibility is that leaf toughness and $\delta^{15}N$ are more sensitive than other 229 230 traits we analysed to extrinsic sources of error, which affect their measurement, and thereby 231 complicate efforts to estimate their distributions. Variation in soil isotopic signatures can cause substantial variation in δ^{15} N (Nardoto et al. 2014), whereas leaf toughness, in this study, was 232 233 prone to measurement error arising from variation in the distance of the punch test to veins in the 234 leaf blade (Baraloto et al. 2010a). Though reducing sources of extrinsic variation may increase 235 the accuracy of estimating trait values, we do not know why the sampling necessary to obtain 236 accurate estimates varies among traits.

237 Taxon-free strategies have superior performance

Our simulations indicate that simple, taxon-free, sampling strategies can often 238 239 characterise community-level functional trait distributions more accurately than can more-240 intricate strategies. Notably, strategies based on stem density or basal area of species, whether 241 assessed locally or regionally, performed less well than did taxon-free sampling strategies for a 242 given level of sampling intensity (Fig. 1). Abundance-based sampling also implies a greater 243 commitment of resources to field sampling, because it must be preceded by local or regional 244 botanical inventories (Table 1). The SIZE strategy, which entailed the random sampling of size-245 stratified individuals, yielded the least-biased estimates of community-level trait distributions, 246 with CLUMP and RANDOM running closely behind. These results are consistent with Baraloto 247 et al. (2010a), though that study examined only one, slightly different, abundance-based strategy. 248 They also agree with a recent examination of sampling designs for dendrochronology studies, in 249 which random sampling yielded the least-biased estimates of tree growth and productivity 250 (Nehrbass-Ahles et al. 2014). 251 Therefore, we advocate the use of taxon-free sampling techniques for estimating 252 community-level trait distributions in species-rich forests, though they have relatively poor 253 performance in Alpine grasslands (Lavorel et al. 2008). As a practical matter, concentrating field 254 sampling at a few spatial foci, as in CLUMP, is likely to simplify logistics, accounts for spatial

variation in species composition, and may provide a minor improvement in accuracy overrandom sampling.

What explains the poor performance of abundance-based strategies? In diverse
ecosystems, such as those studied here, even the most common species represent a small
proportion of individuals. For example, the most common tree species in the forests we studied,

260 Eschweilera coriacea (Lecythidaceae), represented only 3.4% of all observed individuals. 261 Across our nine forests, the ten most-common species together represent only 20% of individuals. 262 Contrastingly, at the scale of the Amazon basin, E. coriacea and 226 other 'hyperdominants' 263 (1.4% of the approximately 16.000 species of Neotropical trees), represent 50% of all individual 264 trees. Their broad-scale dominance is attributable to their wide spatial ranges, however, rather 265 than to numerical abundance at local sites (ter Steege et al. 2013). In less species-rich plant 266 communities, or those with a less-equitable distribution of individuals among species, 267 abundance-based sampling strategies may be more appropriate. The accuracy of abundance-268 based sampling strategies would also be reduced if the most-common species did not have the 269 most-typical trait values. This situation should be uncommon, because environmental filtering. which leads to the sorting of species along environmental gradients (Grime 2006), is strong in 270 Neotropical forests (Kraft et al. 2008; Paine et al. 2011). In a recent study of French Guiana trees, 271 272 species abundance was negatively correlated with the distinctiveness of trait values, as predicted 273 by environmental filtering (Mouillot et al. 2013). Mouillot et al. found similar relationships for 274 herbaceous plants in the Alps, and fish on coral reefs in the Pacific. Abundance-based trait 275 sampling strategies therefore yield poor results in diverse ecosystems not because common 276 species have atypical traits, but rather because even the common species in such species-rich 277 ecosystems are represented by few individuals. They should be more accurate in ecosystems in 278 which more individuals are concentrated among fewer species. 279 We reiterate the caution sounded by Baraloto et al. (2010a) regarding the use of database-280 derived trait values to estimate community-level trait distributions. They are tempting because 281 the cost associated with extracting trait data from a database is minuscule, compared to that

incurred through even low-intensity field work (Baraloto et al. 2010a). Moreover, global trait

283	databases such as TRY (Kattge et al. 2011) are essential for broad-scale comparative studies. At
284	the relatively small scale of this study, however, the DATABASE strategy rarely yielded
285	accurate estimations of means or variances. Sampling as few as 10% of individuals was typically
286	sufficient to yield more accurate estimates that those obtained through DATABASE lookups.
287	The ONE PER SP strategy (Kraft et al. 2008) yielded good performance in almost all cases (Fig.
288	1). In diverse ecosystems, however, it could require sampling of half of all individuals (Pitman et
289	al. 2001). We conclude that, despite the commitment of time and money required, there is no
290	substitute for extensive field sampling to accurately characterize the distribution of trait values in
291	species-rich forests.
292	
293	ACKNOWLEDGEMENTS
294	The authors declare no conflicts of interest. We thank Angela Moles and an anonymous reviewer
295	for their insightful comments on an earlier version of the manuscript. SD was supported by The
296	Leverhulme Trust, United Kingdom, and by CONICET and FONCyT, Argentina. The Agence
297	National de la Recherche, France, supported this research thorough a grant from its Biodiversité
298	section, as well as an "Investissement d'Avenir" grant (CEBA, ref. ANR-10-LABX-25-01).
299	
300	DATA ACCESSIBILITY
301	Functional trait data are deposited in the TRY Global Functional Trait Database. (http://try-
302	db.org).
303	

- Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S. & Lavorel, S. (2010) A multi trait approach reveals the structure and the relative importance of intra-vs. interspecific
 variability in plant traits. *Functional Ecology*, 24, 1192–1201.
- Baraloto, C., Hardy, O.J.O., Paine, C.E.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez,
 M.-A.A., Molino, J.-F., Sabatier, D., Savolainen, V. & Chave, J. (2012) Using functional
 traits and phylogenetic trees to examine the assembly of tropical tree communities. *Journal of Ecology*, **100**, 690–701.
- Baraloto, C., Paine, C.E.T., Patiño, S., Bonal, D., Hérault, B. & Chave, J. (2010) Functional trait
 variation and sampling strategies in species-rich plant communities. *Functional Ecology*, 24, 208–216.
- Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Hérault, B.,
 Patiño, S., Roggy, J.-C. & Chave, J. (2010) Decoupled leaf and stem economics in rain
 forest trees. *Ecology Letters*, 13, 1338–1347.
- Bates, D.M., Maechler, M., Bolker, B.M. & Walker, S. (2014) lme4: Linear mixed-effects
 models using Eigen and S4.
- Chave, J., Coomes, D.A., Jansen, S., Lewis, S.L., Swenson, N.G. & Zanne, A.E. (2009) Towards
 a worldwide wood economics spectrum. *Ecology letters*, 12, 351–66.
- Conti, G. & Díaz, S. (2013) Plant functional diversity and carbon storage an empirical test in
 semi-arid forest ecosystems (S Lavorel, Ed.). *Journal of Ecology*, **101**, 18–28.
- 324 Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-325 Martí, G., Grime, J., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro-Díez, P., 326 Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M.C., Shirvany, A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., 327 328 Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk, V., Guerrero-Campo, J., Hynd, 329 A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martínez, M., Romo-Díez, A., Shaw, 330 S., Siavash, B., Villar-Salvador, P. & Zak, M.R. (2004) The plant traits that drive 331 ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295.
- Díaz, S., Lavorel, S., Bello, F. de, Quétier, F., Grigulis, K. & Robson, T.M. (2007) Incorporating
 plant functional diversity effects in ecosystem service assessments. *Proceedings of the National Academy of Sciences of the United States of America*, 104, 20684–9.
- Fisichelli, N. A., Frelich, L.E. & Reich, P.B. (2014) Temperate tree expansion into adjacent
 boreal forest patches facilitated by warmer temperatures. *Ecography*, 37, 152–161.
- Fortunel, C., Paine, C.E.T., Fine, P.V. A., Kraft, N.J.B. & Baraloto, C. (2013) Environmental
 factors predict community functional composition in Amazonian forests. *Journal of Ecology*,
 102, 145–155.
- Grime, J. (2006) Trait convergence and trait divergence in herbaceous plant communities:
 mechanisms and consequences. *Journal of Vegetation Science*, 17, 255–260.
- Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Westoby,
 M., Reich, P.B. & Wright, I.J. (2011) TRY--a global database of plant traits. *Global Change Biology*, 17, 2905–2935.
- Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008) Functional traits and niche-based tree
 community assembly in an Amazonian forest. *Science*, **322**, 580–582.
- Lavorel, S. & Garnier, E. (2002) Predicting changes in community composition and ecosystem
 functioning from plant traits: revisiting the Holy Grail. *Functional Ecology*, 16, 545–556.

- Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., Berman, S.,
 Quétier, F., Thébault, A. & Bonis, A. (2008) Assessing functional diversity in the field –
 methodology matters! *Functional Ecology*, 22, 134–147.
- McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology
 from functional traits. *Trends in Ecology & Evolution*, 21, 178–185.
- Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki,
 M., Lavergne, S.S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J. & Thuiller, W.
 (2013) Rare species support vulnerable functions in high-diversity ecosystems (GM Mace,
 Ed.). *PLoS Biology*, **11**, e1001569.
- Nardoto, G.B., Quesada, C.A., Patiño, S., Saiz, G., Baker, T.R., Schwarz, M., Schrodt, F.,
 Feldpausch, T.R., Domingues, T.F., Marimon, B.S. et al. (2014) Basin-wide variations in
 Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N
 measurements. *Plant Ecology & Diversity*, 7, 173–187.
- 362 Nakagawa, S. & Schielzeth, H. (2013) A general and simple method for obtaining R2 from
 363 generalized linear mixed-effects models. *Methods in Ecology and Evolution*, 4, 133–142.
- Nehrbass-Ahles, C., Babst, F., Klesse, S., Nötzli, M., Bouriaud, O., Neukom, R., Dobbertin, M.
 & Frank, D. (2014) The influence of sampling design on tree-ring based quantification of
 forest growth. *Global Change Biology*. 20, 2867-2885.
- Paine, C.E.T., Baraloto, C., Chave, J. & Hérault, B. (2011) Functional traits of individual trees
 reveal ecological constraints on community assembly in tropical rain forests. *Oikos*, 120,
 720–727.
- Paine, C.E.T., Baraloto, C., Díaz, S. (2015) Data from The BRIDGE database. TRY Global
 Functional Trait Database. (<u>http://try-db.org</u>).
- Paine, C.E.T., Norden, N., Chave, J., Forget, P.-M., Fortunel, C., Dexter, K.G. & Baraloto, C.
 (2012) Phylogenetic density dependence and environmental filtering predict seedling
 mortality in a tropical forest. *Ecology Letters*, 15, 34–41.
- Pakeman, R.J. & Quested, H.M. (2007) Sampling plant functional traits: What proportion of the
 species need to be measured? *Applied Vegetation Science*, 10, 91–96.
- Patiño, S., Lloyd, J., Paiva, R., Baker, T.R., Quesada, C.A., Mercado, L.M., Schmerler, J.,
 Schwarz, M., Santos, A. J.B., Aguilar, A., Czimczik, C.I., Gallo, J., Horna, V., Hoyos, E.J.,
 Jiménez, E., Palomino, W., Peacock, J., Peña Cruz, A., Sarmiento, C., Sota, A., Turriago,
 J.D., Villanueva, B., Vitzthum, P., Alvarez Dávila, E., Arroyo, L.L., Baraloto, C., Bonal, D.,
- Chave, J., Costa, A.C.L., Herrera, R., Higuchi, N., Killeen, T.J., Leal, E., Luizão, F.J., Meir,
 P., Monteagudo, A., Neill, D.A., Núñez Vargas, P., Peñuela, M.C., Pitman, N.C.A., Priante
 Filho, N., Prieto, A., Panfil, S.N., Rudas, A., Salamão, R., Silva, N., Silveira, M., Soares
- deAlmeida, S., Torres-Lezama, A., Vásquez-Martínez, R., Vieira, I.C.G., Malhi, Y. &
 Phillips, O.L. (2009) Branch xylem density variations across the Amazon Basin. *Biogeosciences*, 6, 545–568.
- Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S. & Poorter, H. (2013) New handbook
 for standardised measurement of plant functional traits worldwide. *Australian Journal of Botany*, **61**, 167–234.
- Pitman, N.C. A., Terborgh, J.W., Silman, M.R., Núñez Vargas, P., Neill, D.A., Cerón, C.E.,
 Palacios, W. A. & Aulestia, M. (2001) Dominance and distribution of tree species in upper
 Amazonian terra firme forests. *Ecology*, 82, 2101–2117.
- Poorter, L., Bongers, L. & Bongers, F. (2006) Architecture of 54 moist-forest tree species: traits,
 trade-offs, and functional groups. *Ecology*, 87, 1289–301.

- 395 R Core Development Team. (2014) R: A Language and Environment for Statistical Computing.
- Scheiter, S., Langan, L. & Higgins, S. (2013) Next-generation dynamic global vegetation
 models: learning from community ecology. *New Phytologist*, **198**, 957–969.
- ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F.,
 Prévost, M.-F., Spichiger, R., Castellanos, H., von Hildebrand, P., Vásquez, R. & VásquezMartínez, R. (2006) Continental-scale patterns of canopy tree composition and function
 across Amazonia. *Nature*, 443, 444–447.
- 402 ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., et al. (2013) Hyperdominance in the
 403 Amazonian Tree Flora. *Science*, 342, 1243092–1243092.
- Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007)
 Let the concept of trait be functional! *Oikos*, **116**, 882–892.
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares,
 J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias,
 J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C.H., Midgley, J.J., Navas, M.-L.,
 Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L.D., Pyankov, V.I.,
 Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. & Villar, R. (2004) The
 worldwide leaf economics spectrum. *Nature*, 428, 821–827.
- 413 SUPPORTING INFORMATION
- 414 Additional supporting information may be found in the online version of this article.
- 415 **Appendix S1** *R* script for all analyses
- 416 Please note: Wiley Blackwell are not responsible for the content or functionality of any
- 417 supporting information supplied by the authors. Any queries (other than missing material) should
- 418 be directed to the corresponding author for the article.
- 419

420 TABLES

421 *Table 1* Trait sampling strategies investigated in this study.

Туре	Name	How are individuals sampled?	Weighting*	Requirement*	Intensity
Abundance- based	BA REGION	Proportional to species basal area in the region	Overweights species that are regionally common, widespread and large-statured	Botanical inventories and d.b.h. from the region	1-50%
	BA LOCAL	Proportional to species basal area in the local plot	Overweights species that are locally common and large-statured	Botanical inventory and d.b.h. from local plot	1-50%
	BA INDIVIDUAL	Proportional to individual basal area	Overweights species with large-statured individuals, regardless of abundance	Botanical inventory and d.b.h. from local plot	1-50%
	COMMON REGION	Proportional to regional abundance	Overweights species that are common and widespread, regardless of stature	Botanical inventories from the region	1-50%
	COMMON LOCAL	Proportional to local abundance	Overweights species that are locally common, regardless of stature or regional abundance	Botanical inventory of local plot	1-50%
	SPECIES	Inversely proportional to local abundance	Overweights species that are locally rare	Botanical inventory of local plot	1-50%
Taxon-free	RANDOM	Randomly	Accurately reflects local species composition	None	1-50%
	SIZE	Stratify individuals by stature. Draw individuals randomly from strata	Overweights species with large individuals	d.b.h. from local plot, but no botanical inventory	1-50%
	CLUMP	Rank individuals by distance to three randomly located foci. Draw individuals based on their proximity to nearest focus.	Accurately reflects local relative abundance. Accounts for geographic variation in species composition	None	1-50%
Special	ONE PER SP	Draw one individual from the	Overweights species that are locally rare	Botanical inventory of	~33%

	plot to represent each species		local plot	
DATABASE	Draw one individual from the region to represent each species	Overweights species that are locally rare	Regional checklist of species	100%
BRIDGE	Select all individuals	Accurately reflects local species composition	Botanical inventory of local plot	100%

Notes: Weighting is defined with respect to drawing individuals at random. Requirement indicates field work required prior to trait sampling. 423

424

425 FIGURES

426 *Figure 1*

427	The probability of correctly estimating the community mean or variance in functional
428	trait values increases with increasing sampling intensity and varies among sampling strategies
429	and the trait under consideration. Lines show predictions from linear mixed-effect models,
430	applied to simulation output. Larger values represent less-accurate estimates of the true mean and
431	variance. Note that the X-axis is log-transformed. Results from the ONE PER SP, DATABASE
432	and BRIDGE strategies are shown as points because they are only defined at a single sampling
433	intensity (Table 1). Vertical arrows indicate that the estimation error of DATABASE and ONE
434	PER SP exceed the plotted region for Leaf δ^{15} N.
435	
436	Figure 2
437	The per cent variance in the probability of accurately estimating community mean and
438	variance in trait values explained by sampling intensity (I), sampling strategy (S), the sampled
439	trait (T) and their interactions. Note that the per cent variance explained by some interactions is
440	so slight that their bars are scarcely visible.