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ABSTRACT 20 

Global trade and travel is irreversibly changing the distribution of species around the world.  21 

Because introduced species experience drastic demographic events during colonisation, and 22 

often face novel environmental challenges from their native range, introduced populations may 23 

undergo rapid evolutionary change. Genomic studies provide the opportunity to investigate the 24 

extent to which demographic, historical, and selective processes shape the genomic structure of 25 

introduced populations by analysing the signature that these processes leave on genomic 26 

variation. Here we use next-generation sequencing to compare genome-wide relationships and 27 

patterns of diversity in native and introduced populations of the yellow monkeyflower (Mimulus 28 

guttatus). Genome resequencing data from ten introduced populations from the United 29 

Kingdom (UK) and 12 native M. guttatus populations in North America (NA), demonstrated 30 

reduced neutral genetic diversity in the introduced range, and showed that UK populations are 31 

derived from a geographic region around the North Pacific. A selective-sweep analysis revealed 32 

site frequency changes consistent with selection on 5 of 14 chromosomes, with genes in these 33 

regions showing reduced silent site diversity. While the target of selection is unknown, genes 34 

associated with flowering time and biotic and abiotic stresses were identified within the swept 35 

regions. The future identification of the specific source of origin of introduced UK populations 36 

will help determining if the observed selective sweeps can be traced to un-sampled native 37 

populations or occurred since dispersal across the Atlantic. Our study demonstrates the general 38 

potential of genome-wide analyses to uncover a range of evolutionary processes affecting 39 

invasive populations.  40 
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INTRODUCTION  41 

The introduction of species beyond their native ranges can affect ecological and evolutionary 42 

interactions in the new habitat (Cox 2004; Phillips & Shine 2006; Liu & Pemberton 2009; 43 

Ricciardi et al. 2013), and can negatively impact levels of local biodiversity, and result in high 44 

economic costs (Pimentel 2002; Williams et al. 2010; Vila et al. 2011). Introduced populations 45 

are often used models to investigate rapid genetic changes and adaptation to novel 46 

environments, thus providing valuable insights into basic biological processes including local 47 

adaptation (Sax et al. 2007; Prentis et al. 2008). In particular, genetic analyses continue to play a 48 

central role in studies of the origin and establishment of introduced populations, as well as of 49 

the mechanisms that permit the colonisation and drive the spread of populations beyond their 50 

native range (Baker & Stebbins 1965; Lee 2002). 51 

The genomic structure of non-native populations is influenced by a variety of processes 52 

including population bottlenecks, multiple introductions, population expansion, gene flow 53 

between populations, and selection, among others (Lee 2002). For instance, in populations 54 

established after limited long distance dispersal events, the level of genetic diversity can be 55 

significantly lower than in the native range, reflecting population bottlenecks (Lachmuth et al. 56 

2010; Ness et al. 2012). However, introduction of multiple individuals from the same 57 

population, or multiple introductions from genetically diverse source populations, can 58 

counteract the loss of diversity or even result in higher levels of genetic variation within 59 

introduced populations compared to native ones (Dlugosch & Parker 2008). The level of 60 

standing variation in introduced populations is relevant to the colonisation process, as severe 61 
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bottlenecks and reduced diversity could indicate potential limitations for the rapid evolution of 62 

adaptive traits in novel environments (Barrett & Schluter 2008; Lachmuth et al. 2010; Siol et al. 63 

2010; Messer & Petrov 2013). Severe bottlenecks resulting in globally reduced diversity may 64 

indicate that natural selection is mutation limited. However, genetic variation resulting from 65 

introduction of multiple individuals can provide ample standing variation for natural selection.  66 

Genome wide studies have been employed to investigate genetic patterns in natural 67 

populations, including the relationship between native and introduced populations as well as 68 

invasion pathways of exotic plants and animals (Jahodová et al. 2007; Dlugosch et al. 2013; 69 

Tarnowska et al. 2013). Genome scans allow detecting selection acting on specific locations in 70 

the genome (Nielsen et al. 2005), and by comparing the sites under selection in the genomes of 71 

different populations, it is possible to identify candidates for genetic regions associated with 72 

local adaptation (Savolainen et al. 2013). A prerequisite to any genome wide study is identifying 73 

a large numbers of genetic markers, such as restriction site polymorphisms (e.g., AFLPs, Vos et 74 

al. 1995), or single nucleotide polymorphisms (SNPs). The growing access to high-throughput 75 

sequencing technologies at low costs opens the opportunity to conduct genome wide studies at 76 

an unprecedented depth, even in non-model organisms (Prentis et al. 2010; Twyford & Ennos 77 

2012; Ellegren 2014).  78 

The generation of genome wide markers by high throughput sequencing can employ 79 

methods for genome complexity reduction such as transcriptome sequencing (Dlugosch et al. 80 

2013) or RAD sequencing (Davey et al. 2011; Roda et al. 2013). However, for the increasing 81 

number of species in which a reference genome is available, whole genome re-sequencing 82 
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allows genotyping markers, such as SNPs, which may occur at high densities across the genome 83 

(Davey et al. 2011; Twyford & Ennos 2012; Savolainen et al. 2013). Importantly, whole genome 84 

resequencing removes many of the ascertainment biases associated with SNP chips or other 85 

genome reduction technologies. The dense marker saturation achieved through genome re-86 

sequencing is particularly useful for detecting the footprint of selection acting on specific 87 

locations across the genome. For instance, selective sweeps, in which selection drives previously 88 

rare alleles to fixation, also reduces diversity at neighbouring regions around the selected site 89 

(Messer & Petrov 2013). The signal left behind by selective sweeps can be detected by 90 

comparing patterns of variation along the genome with the level expected under a null model. 91 

Hard selective sweeps, where a single variant is driven to fixation, leave a characteristic 92 

footprint in the genome, which can be identified using summary statistics such Tajima’s D or the 93 

composite likelihood ratio (CLR) (Nielsen et al. 2005; Messer & Petrov 2013). These statistics 94 

may be particularly powerful to detect recent selective sweeps as linkage disequilibrium (LD) 95 

between the selected site and the surrounding variation is expected to be highest immediately 96 

following the fixation of the adaptive allele.  97 

Genomic studies of native and introduced populations can uncover demographic, historical, 98 

and selective processes by analysing the signature that these processes leave on genomic 99 

variation. Here we use whole genome re-sequencing to assess the relationship between native 100 

and introduced populations, and to uncover selective episodes in specific regions of the genome 101 

of introduced populations. We study the yellow monkeyflower (Mimulus guttatus, 102 

Phrymaceae), a species that has long been used as a model for ecological and evolutionary 103 
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studies in its native range (Vickery 1959; Wu et al. 2008), and which has become naturalised in 104 

Eastern North American, New Zealand, Iceland, the Faroe Islands, and Western Europe (van 105 

Kleunen & Fischer 2008; Murren et al. 2009; Tokarska-Guzik & Dajdok 2010), becoming 106 

particularly widespread in the United Kingdom (Vallejo-Marín & Lye 2013). Mimulus guttatus is 107 

ideally suited for studying the ecological genomics of non-native populations due to its recent 108 

introduction and spread (<200 years), abundant information on the ecology and evolution of 109 

native populations, and the availability of a full genome sequence, which provides a backbone 110 

for analysing and interpreting patterns of genetic variation in introduced populations. The 111 

relatively small genome of M. guttatus (1N = 430 MB), makes this species a good candidate for 112 

population genomic studies through re-sequencing, as multiple individuals can be analysed with 113 

a relatively small budget. We analysed previously available and newly generated whole genome 114 

sequence data for 12 native and 10 introduced British populations of M. guttatus, as well as five 115 

additional related taxa (n = 35 Mimulus genomes in total). Our data set allowed us to address 116 

three specific aims: (1) to determine the level of genome-wide diversity present in introduced 117 

populations of M. guttatus in the United Kingdom; (2) to investigate the genetic relationships of 118 

native and introduced populations; and (3) to search for evidence of hard selective sweeps in 119 

introduced populations. 120 
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METHODS 121 

Study system  122 

The Mimulus guttatus species complex includes a set of phenotypically variable, interfertile taxa 123 

with a native range of distribution in Western North America from northern Mexico to Alaska 124 

(Grant 1924; Wu et al. 2007). Within this complex, populations of M. guttatus Fischer ex DC. 125 

(Grant 1924) show marked variation in characteristics including life history (annual/perennial) 126 

(Hall & Willis 2006; Lowry & Willis 2010), mating system (Ritland 1990; Dole 1992), phenology 127 

(Hall & Willis 2006; Friedman & Willis 2013), floral morphology (Fishman et al. 2002), edaphic 128 

adaptations (e.g. tolerance to elevated concentrations of heavy metals or salt, Macnair & 129 

Watkins 1983; Lowry et al. 2008; Lowry et al. 2009), habitat preferences (Wu et al. 2008), 130 

chromosome number (most populations are diploid: 2n = 2x = 28, but tetraploids also occur in 131 

the native range, Sweigart et al. 2008), and clonal growth (Dole 1992; van Kleunen 2007), 132 

among others. This incredible diversity has led some taxonomists to subdivide M. guttatus into 133 

numerous morphological species (e.g., Pennell 1951; Nesom 2012). Here we adhere to the 134 

broader circumscription of M. guttatus Fischer ex DC. (Grant 1924; Wu et al. 2008). 135 

 Mimulus guttatus was introduced into the British Isles in 1812, and the first naturalised 136 

populations were reported in England around 1830 (Roberts 1964; Parker 1975). In the UK, M. 137 

guttatus is currently widespread and occurs in wet habitats along the banks of rivers and 138 

streams, in ditches, marshy areas, and other wet places (Stace 2010; Vallejo-Marín & Lye 2013). 139 

It propagates via both seeds and clonally through lateral stems that root freely at the nodes. 140 
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The source of the first naturalised populations of M. guttatus in the UK is unknown, but one of 141 

the earliest specimens of this taxon to reach Europe was derived from material collected by 142 

Langsdorff between 1806 and 1810 in the Aleutian Islands in Alaska, and transmitted to the 143 

Botanic Gardens at Cambridge (Sims 1812; Pennell 1935, p. 116). The use of Mimulus spp. as a 144 

horticultural species in Victorian England, as reflected by being readily available in seed 145 

catalogues of the time (e.g., Gardeners' Chronicle 1852), raises the distinct possibility that M. 146 

guttatus was introduced into the UK on repeated occasions and from multiple sources. 147 

Population sampling 148 

Analysing genomes across a wide geographic scale represents a trade-off between the numbers 149 

of individuals vs. populations sampled. The goal of this study was to determine the introduction 150 

history of Mimulus into the UK, the effects of the introduction on nucleotide diversity, and to 151 

identify signals of selective sweeps that are common across the UK.  To do this, we sought to 152 

obtain samples from geographic disparate regions from across the UK.  Obtaining geographically 153 

distant samples increases the likelihood of identifying introductions from multiple different 154 

donor populations.  This sampling strategy also facilitated our goal of identifying selective 155 

sweeps shared across the UK M. guttatus populations. Population specific selective sweeps 156 

caused by local adaptation to narrow geographic and ecological niches in the UK are not 157 

detected in our analyses and would require multiple individuals from the specific population of 158 

interest.  Previous molecular analyses of Mimulus guttatus have demonstrated that a scattered 159 

sampling design, with 1 individual per population, is sufficient to capture regional 160 

differentiation, and can avoid clustering biases resulting from sampling multiple individuals from 161 
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fewer populations (Oneal et al. 2014).  In total, we analysed genome data from 27 populations: 162 

12 M. guttatus populations in the native range, 10 UK M. guttatus, and five outgroups. From 163 

one of the native populations (Iron Mountain, IM) we sampled an additional 8 individuals, which 164 

allowed us to explore the sensitivity of our findings to the particular individual sampled within a 165 

population. 166 

Introduced populations 167 

We sampled 10 populations of M. guttatus spanning the range of distribution of this species in 168 

the British Isles (Table 1; Fig. 1). The northernmost population came from the Shetland Islands 169 

(QUA, N 60.105° W 1.227°) and the southernmost from Cornwall, England (CRO, N 50.163°, W 170 

5.293°). A population from Northern Ireland was also included (VIC, N 54.763°, W 7.454°). Non-171 

native populations were collected from banks of canals, streams or rivers (HOU, CER, VIC, AYR, 172 

DBL, TOM, and PAC), on roadside ditches (QUA), on waterlogged ground in an abandoned field 173 

(CRO), or in a bog near a small stream (TRE). A single wild-collected individual per population 174 

was randomly selected from each population for sequencing. 175 

Native range populations and outgroups 176 

We obtained sequence data from the Sequence Read Archive (SRA) 177 

(http://www.ncbi.nlm.nih.gov/sra) from 12 native populations of M. guttatus, and five 178 

outgroups within section Simiolus: M. nasutus (SF), M. cupriphillus (MCN), M. platycalyx (CVP), 179 

M. micranthus (EBR), and M. dentilobus (DENT). The 12 native populations of M. guttatus 180 

covered a linear transect of approximately 2800km from Haida Gwaii (Queen Charlotte Islands), 181 

British Columbia (TSG, N 53.419°, W 131.916°) to Arizona (PED, N 32.711°, W 110.628°) (Table 182 
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1). Populations in the native range occurred in a diversity of wet habitats including river and 183 

stream banks, seeps, beach dunes, bogs, and springs. A single individual represented all but one 184 

of the native populations. In the case of the Iron Mountain population (IM), we were able to 185 

obtain data for nine separate individuals. Mean coverage per genotyped base per individual 186 

ranged between 4 – 29x with an average of 10x.  187 

DNA isolation and sequencing 188 

We collected leaf tissue of British M. guttatus individuals (one per population) in the field and 189 

preserved it in re-sealable plastic bags with self-indicating silica gel (Fisher Scientific, 190 

Loughborough, UK) at room temperature. This dry tissue was used for DNA extraction using the 191 

Leaf MasterPure total DNA extraction kit (Cambio Ltd, Cambridge, UK). DNA libraries were 192 

created and barcoded using the Nextera DNA sample preparation kit (Illumina, San Diego, 193 

California), which uses a transposon based method to randomly tag DNA for multiplexed 194 

sequencing. After library construction, an Agilent Bioanalyzer (Santa Clara, California) was used 195 

to measure length distribution of library, and a fluorometer (Qubit 2.0, Life Technologies, 196 

Paisley, UK) was used to measure concentration. Equimolar quantities of each library were 197 

pooled and sequenced in an Illumina HiSeq 2500 rapid-run producing 150 base-pair paired-end 198 

reads. Overall, we obtained raw coverage of 1.5 – 11x per individual with an average of 5.7x. 199 

Raw sequence data for UK Mimulus samples is deposited in the JGI SRA (SRA accession numbers 200 

will be available upon acceptance of the manuscript).  201 
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Sequence data analysis 202 

Genome alignment and SNP genotyping 203 

Raw reads were aligned to the Mimulus guttatus v2.0 genome available from Phytozome 204 

(http://www.phytozome.net) using bowtie2 (Langmead & Salzberg 2014) using –fast-local 205 

allowing soft-clipping of poorly mapped read ends. After alignment, Picard tools 206 

(http://picard.sourceforge.net) was used to remove duplicates, add read groups, and verify that 207 

all mate information was accurate. After processing in Picard tools, the Genome Analysis Toolkit 208 

(GATK, DePristo et al. 2011) was used to call genotypes using the 'Unified Genotyper'. Minimum 209 

alignment quality was 25 and base quality was 25. Called genotypes were filtered to include 210 

genotypes with a call quality threshold of Q30 or greater. Insertions, deletions, and 211 

heterozygous sites were not included in subsequent analyses. Detailed command-line methods 212 

can be found in the Supplementary Information. After all filtering, mean coverage per 213 

genotyped base per individual for the 10 UK samples ranged from 1.7 – 5.8x with an average of 214 

3.5x . Of the 293 Mb located on the main 14 genomic scaffolds (representing 14 linkage groups), 215 

after all filtering, 71 Mb were genotyped in at least one of the UK individuals. A total of 18.3, 216 

18.5, and 8.9 Mb were genotyped in 8, 9, or 10 of the UK samples, respectively (Fig. S7).  217 

Measures of genetic diversity 218 

Nucleotide diversity at silent and non-silent sites was calculated using software described in 219 

Zhang et al. (2006). Briefly, genomes for all sequenced lines were recalled using the genotype 220 

data. Missing data was not imputed. Measurements of pairwise synonymous (πsyn) and non-221 
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synonymous nucleotide diversity (πnon-syn) were calculated through pairwise comparison of 222 

coding sequences. Coding sequences were extracted from the recalled genomes using the gff3 223 

gene annotation file available on phytozome.net. A Fisher p-value associated with each diversity 224 

value and indicates the confidence of that particular value. We only considered πsyn and πnon-yn 225 

values for genes with a Fisher p-value ≤ 0.001 and alignment length greater than 200 bases. In 226 

addition to calculating nucleotide diversity at synonymous and non-synonymous sites, whole 227 

genome alignments were used to calculate genome-wide nucleotide diversity (π) in sliding 228 

windows using VariScan (Hutter et al. 2006). Windows of 50,000 genotyped bases and 229 

overlapping steps of 1000 bases were used. 230 

 Genetic relationships between introduced and native M. guttatus 231 

In order to determine the genetic relationships between introduced and native populations we 232 

conducted an analysis of genetic similarity using a random subset of 1,400,000 SNPs. To create 233 

this data set, we randomly selected 100,000 SNPs for each of the 14 major linkage groups 234 

(chromosomes) that were genotyped in at least 30 individuals (out of 35). Our SNP data set is 235 

therefore not subject to ascertainment bias arising from selecting, for example, only coding or 236 

non-coding SNPs (Garvin et al. 2010). Instead the SNP dataset analysed here should represent a 237 

snapshot of the total genetic diversity of each sample and be shaped by both neutral and non-238 

neutral processes (Helyar et al. 2011). Within each linkage group, neighbouring SNPs were 239 

separated by 209 bp on average (209 ± 3.34; mean ± SE). Each SNP was coded as “0” if it 240 

matched the reference allele, and “1” for the alternative allele. In this analysis we included all 241 

native and introduced individuals, and the five outgroups (n = 35 individuals). Multiple 242 
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individuals from IM were included as a reference of the variation seen within a single 243 

population. 244 

We constructed a genetic distance matrix using p-distance (the proportion of nucleotide 245 

sites that differ between a pair of sequences) from the binary SNP data using the package ape 246 

(Paradis et al. 2004) in R ver. 3.0.3 (R Development Core Team 2014). The combined distance 247 

matrix was then used to estimate the relationships between all samples using a neighbour 248 

joining (NJ) analysis in ape. Support for nodes in the NJ tree was calculated using 100 bootstrap 249 

replicates. Trees were drawn using FigTree v. 1.4.0 (Rambaut 2014). The NJ distance-based 250 

approach used here is appropriate for genome-wide analyses (e.g. Brandvain et al. 2014), as 251 

maximum likelihood and Bayesian phylogenetic methods depend on specifying a mutational 252 

model, which is not practical for genome-wide data. We also conducted a Principal Component 253 

Analysis (PCA) using the function glPca in adegenet (Jombart & Ahmed 2011). This analysis 254 

provides an independent estimate of the relationships between native and introduced 255 

populations, and can be used to compare with the results of the NJ analysis. For the PCA, we 256 

selected only one individual for each of the 12 native and 10 introduced populations of M. 257 

guttatus. The identity of the particular individual chosen from the IM population had no 258 

qualitative effect on the relationships inferred from the PCA (Fig S8), and similarly, randomly 259 

choosing one IM individual instead of nine for the NJ analysis did not change the tree topology 260 

(data not shown). 261 
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Selective sweep analysis 262 

Regions in the genome showing the signature of selective sweeps were detected using the 263 

parametric approach described in Nielsen et al. (2005), and implemented in the program 264 

SweepFinder. This method compares the observed site frequency spectrum within local regions 265 

in the genome (windows) against the background site frequency spectrum seen across the 266 

entire genome (or linkage group), and calculates statistical departures from this background 267 

expectation using a composite likelihood ratio (CLR). Importantly, the null hypothesis employed 268 

by this method is derived from the background data itself and does not depend on specific 269 

population genetic models or assumptions about demographic equilibrium (Nielsen et al. 2005), 270 

which are unlikely to hold in recently introduced populations. SweepFinder is robust to models 271 

that include population growth with recombination (Nielsen et al. 2005).  272 

One potential issue with SweepFinder is that it is sensitive to SNP density (Nielsen et al. 273 

2005). To account for both shared ancestral sweeps and artefacts due to genotype density, we 274 

independently analysed the North American (NA) and UK data using the exact same criteria. Ten 275 

samples from the North American populations (AHQ, BOG, DUN, IM, LMC, MAR, PED, SWB, TSG, 276 

YJS) were chosen based on the results of the genome-wide relationship analysis. Next, 277 

independently, for both the NA and UK datasets, we determined whether a given site was 278 

polymorphic and asked how many individuals were genotyped at that particular site. Using this 279 

information, we choose sites that were genotyped in at least 8 individuals (of the 10 total) in 280 

both the UK and NA samples and were polymorphic in at least one of these populations. Thus, 281 

we ended up with a dataset that included the exact same number of sites from the exact same 282 
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genomic locations. Next, we calculated genome-wide SFS for each dataset (UK and NA). Each 283 

chromosome was divided into 5000 bins and the SFS within each bin was compared to the 284 

genome-wide SFS to look for signals of a selective sweep using the parametric approach 285 

described (Nielsen et al. 2005) and implemented in SweepFinder.  286 

 After running SweepFinder, we independently plotted the genome-wide CLR distribution 287 

for UK and NA samples. Within the NA samples, all genomic locations with CLR scores above the 288 

median value were marked for masking. Liberal masking based on the NA analyses removes 289 

hard sweeps that occurred in the last common ancestor, and removes artefacts due to variable 290 

genotype density. The NA SweepFinder results were used to mask the UK genome SweepFinder 291 

results. Only genomic positions that survived masking were considered in further analyses. 292 

Within the UK, the top 1% CLR outliers were identified as regions that have possibly experienced 293 

a hard sweep and subjected to further investigation. Gene coordinates are available in the gff3 294 

gene annotation on Phytozome and genes with positions at least partially overlapping the swept 295 

regions were extracted for further analyses.  296 

RESULTS 297 

Nucleotide diversity in M. guttatus 298 

Overall genome-wide nucleotide diversity in the UK was π = 0.015 (Fig. S1). Figures S2 and S3 299 

show patterns of nucleotide diversity across the genome for both native and introduced 300 

populations. For genes, within UK samples, diversity at silent sites was πsyn = 0.0325 while non-301 

synonymous diversity was πnon-syn = 0.0035 (Fig. S4). Within the native North American 302 
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populations, nucleotide diversity was calculated through comparisons of 10 individuals (same 10 303 

individuals used as the NA samples in sweep analyses). Genome-wide diversity within the NA 304 

samples is π= 0.031 (Fig. S1). Synonymous diversity within NA is πsyn = 0.0610 while non-305 

synonymous diversity is πnon-syn = 0.0075 (Fig. S4). Comparing NA and UK nucleotide diversity 306 

indicates an overall reduction in the introduced populations of approximately 50%.  307 

Genetic relationships of native and introduced populations 308 

The relationships between 22 native and introduced populations of Mimulus guttatus, and five 309 

outgroups based on the genetic distance of 1,400,000 SNPs distributed across the genome is 310 

shown in Fig. 2. All the population level nodes in this NJ tree had a bootstrap support of 100%. 311 

The NJ tree shows that all 10 UK populations form a single well-supported clade (Fig. 2). The UK 312 

clade is most closely related to the native TSG population, a coastal perennial M. guttatus from 313 

Graham Island (Queen Charlotte Islands) in British Columbia (Lowry & Willis 2010). The UK and 314 

TSG samples form part of a clade of populations located north of the N 40° parallel, and which 315 

includes other inland perennial (BOG and YJS), and annual populations (AHQ, IM, and MAR) 316 

(Figs. 1 and 2; Table 1). The NJ tree shows a second clade composed mainly of more southern 317 

populations, and which includes inland plants (LMC, REM), coastal perennials (SWB, DUN), as 318 

well as two annual outgroups (CVP, M. platycalyx; EBR, M. micranthus). The DUN population is 319 

the only one in this group located north of the N 40° parallel (Fig. 1). Finally, the NJ tree shows a 320 

third clade including three of outgroups (MCN, M. cupriphilus; SF, M. nasutus; DENT, M. 321 

dentilobus), as well as the two most southern populations of M. guttatus, MED, an annual 322 

inland population, and PED, an inland perennial from Arizona. Our results indicate that native 323 
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M. guttatus is separated into two main clades corresponding mostly to geographic location 324 

(North and South groups), and not to different life histories (annual/perennial) or habitat types 325 

(coastal/inland), as has been recently described by Brandvain et al. (2014). Finally, our NJ 326 

analysis also indicates that M. cupriphilus and M. platycalyx are nested within broadly 327 

circumscribed M. guttatus (Fig. 2).  328 

The results of the PCA show clear support for a close relationship between all UK 329 

samples, and also indicate that the most genetically similar native population sampled here is 330 

the coastal perennial TSG (Fig. 3). The first principal component separates the North and South 331 

groups of native M. guttatus, with DUN partly overlapping with the North group. The second 332 

principal component separates the UK samples from most of the other northern accessions (Fig. 333 

3). Together, the NJ and PCA show a common ancestry of British Mimulus guttatus, and its 334 

association with northern, native populations. 335 

Evidence of selection in introduced populations 336 

Our analysis of selective sweeps in native and introduced populations identified several genomic 337 

regions displaying changes in the site frequency spectrum (measured using the CLR statistic), 338 

consistent with the signatures of positive selection acting in these regions (Fig. 4; results for all 339 

linkage groups are shown in Fig. S5). The comparison of high CLR regions in the separate 340 

analyses conducted in NA and UK samples, allowed us to detect selective sweeps shared by 341 

both native and introduced populations. By masking these high CLR sites in NA, we located 342 

genomic regions that are candidates for selective sweeps occurring after the separation of the 343 

clade leading to the UK populations, including potentially unsampled North American donor 344 
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populations. Moreover, the masking also accounted for possible regions with high CLR scores 345 

that were simply due to low genotyped SNP density. Our analysis revealed selective sweeps on 346 

five of the 14 linkage groups in the UK, which are not shared with NA samples (Fig. 4, Table 1). 347 

Regions with high CLR scores showed significantly reduced overall diversity: Diversity within 348 

sweeps was π = 0.0076, half that of nucleotide diversity outside sweeps π = 0.0152. (p ≤ 0.0001; 349 

Figs. S6).  350 

We identified a total of 299 genes located under the candidate region for selective 351 

sweeps within the UK clade (Table S1). Synonymous diversity for genes within sweeps was 352 

significantly lower than silent site diversity outside sweeps of (πsyn = 0.0147 vs. πsyn = 0.0323; p ≤ 353 

0.0001) (Fig. S6). Within sweeps, 28 genes had πsyn < 0.01 (Table S2) and only two genes under 354 

sweeps had silent site diversity (πsyn) above the genome-wide mean. Taking advantage of the 355 

annotated genome of M. guttatus, we recorded genes located within the swept regions, which 356 

included genes involved in flowering time, abiotic stress response including nutrient transport 357 

and freezer tolerance, and biotic stress responses (Table S1).  358 

DISCUSSION 359 

Our study represents the first genome resequencing study of native and introduced populations 360 

of Mimulus guttatus. By analysing whole genome sequences of 35 individuals from 22 361 

populations we demonstrated that introduced plants in the UK are characterized by a ~50% 362 

reduction in synonymous (πsyn) genetic diversity, and that UK populations form a single clade, 363 

relative to the North American samples included here, suggesting a common origin for non-364 
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native populations. Our analysis revealed changes in the site frequency spectrum at multiple 365 

locations across the genome, consistent with selective sweeps, some of which were restricted 366 

to UK samples. The reduction of both synonymous and non-synonymous nucleotide diversity in 367 

genes located within sweep regions, compared to genes outside of these sweeps, was 368 

consistent with the expected loss of genetic diversity in regions linked to selected loci. Future 369 

studies are required to assess whether selection is indeed responsible for the observed patterns 370 

of variation in the sweep candidate regions, as well as to determine if such selection acted 371 

before or after the introduction of M. guttatus into the UK. This study illustrates the potential of 372 

whole-genome sequencing studies to provide the initial steps for understanding the genomic 373 

consequences of invasion and rapid adaptation to new environments. 374 

Origin and diversity of Mimulus guttatus populations in the UK 375 

Determining the geographic origin of introduced populations provides a reference point for 376 

studies of the potential ecological and evolutionary changes occurring during the colonization 377 

and establishment phases of biological invasions (Milne & Abbott 2000). Our sample of North 378 

American populations includes a large part of the native range of M. guttatus (Fig. 1), but 379 

admittedly still represents a small fraction of populations from this widely distributed taxon 380 

(Grant 1924). However, we were able to include populations with different life histories, 381 

morphologies, and habitat preferences (Table 1), including different ecological and 382 

morphological groups (Lowry et al. 2008; Lowry & Willis 2010).  383 

Our analysis of genome-wide polymorphism revealed two main clades of M. guttatus in 384 

the native range, which broadly correspond to their geographic origin (North and South groups; 385 
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Brandvain et al. 2014). An exception to the geographic arrangement of these two groups of M. 386 

guttatus is the DUN population. Although geographically located in the northern range (Fig. 1), 387 

DUN is nested within the southern group (Fig. 2), and may represent a secondary dispersal or 388 

reflect an introgression event between these two groups (Brandvain et al. 2014). Interestingly, 389 

the North and South clades of M. guttatus include populations with contrasting habitats, 390 

morphologies, and life histories (Table 1), suggesting that taxonomic groupings based on 391 

general morphological and ecological attributes are unlikely to correspond to monophyletic 392 

clades (Nesom 2012). At the same time, the polyphyletic nature of the M. guttatus species 393 

complex is reflected in our results by the fact that a M. guttatus population (MED) is nested 394 

within outgroup taxa (SF: M. nasutus, and MCN: M. cupriphilus; Fig. 2), while M. platycalyx (CVP) 395 

and M. micranthus (EBR) fall within M. guttatus populations. Elucidating the phylogenetic 396 

relationships within the M. guttatus species complex has proven challenging (Beardsley et al. 397 

2003; Beardsley et al. 2004), but the use of genome-wide sequences in a phylogenetic context 398 

(Wagner et al. 2013) could provide a tool to establish the genetic relationships among 399 

populations of this interfertile group.  400 

The genetic structure observed in indigenous populations, allowed us to determine with 401 

confidence that introduced populations in the UK are most genetically similar to populations 402 

from the northern end of the native distribution. In particular, our results indicate that UK 403 

samples are most genetically similar to the coastal perennial population of TSG (Figs. 2 and 3). 404 

However, without additional sampling, the exact source for introduced populations in the UK 405 

remains unknown. The genetic similarity within UK populations, which fall within a single clade 406 
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(Fig. 2), suggests that this part of the introduced range has been established either via a single 407 

introduction event or, perhaps more likely, via multiple introductions from closely related native 408 

populations. In order to determine the origin and number of introductions of UK M. guttatus 409 

with more accuracy, it will be necessary to conduct further sampling in the Alaskan end of the 410 

distribution, since historical records point to this region as a potential source for the first 411 

specimens of this taxon in Europe (Sims 1812; Pennell 1935, p. 116). 412 

Despite a 50% reduction in nucleotide diversity (π) in non-native M. guttatus, UK 413 

populations still harbour a significant amount of diversity among populations. In particular, the 414 

estimate of nucleotide diversity at synonymous sites in UK populations (πsyn = 0.0325) is above 415 

the median estimate of neutral nucleotide diversity for outcrossing flowering plants (π = 416 

0.0148), and much higher than the estimate for selfing taxa (π = 0.0035) (Leffler et al. 2012). The 417 

diversity observed in UK populations suggests that the bottleneck experienced by M. guttatus 418 

during invasion was weak enough to permit the maintenance of a significant amount of 419 

nucleotide diversity. In general, introduced populations tend to show reduced genetic diversity 420 

compared to native ones, but phenomena including large initial propagule numbers, multiple 421 

introductions, and admixture can result in equal or higher levels of genetic variation (Dlugosch 422 

& Parker 2008). The existence of non-synonymous variation in UK M. guttatus (πnon-syn = 0.0035) 423 

is potentially important for naturalisation and spread in the new range, as introduced 424 

populations may be able to respond to new selective pressures from standing genetic variation, 425 

and are not necessarily limited by mutation rate (Prentis et al. 2008). Adaptation from standing 426 
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genetic variation is particularly important for invasive species as it may allow responding more 427 

rapidly to novel selective pressures (Barrett & Schluter 2008). 428 

Detecting selection in non-equilibrium populations 429 

Our study uncovered several areas of the genome that bear the signature of positive selection. 430 

The signal left by selective sweeps include increased frequency of previously rare derived 431 

alleles, reduction of variation in linked sites, and increase in local linkage disequilibrium (Smith 432 

& Haigh 1974; Barton 1998). However, past demographic changes can confound the pattern of a 433 

selective sweep (Barton 1998; Barton & Etheridge 2004). This is particularly the case in 434 

populations that have experienced a bottleneck and subsequent population growth with 435 

recombination (Barton & Etheridge 2004; Nielsen et al. 2005). Furthermore, recombination 436 

between lineages that either escape or not the population bottleneck will result in a 437 

combination of short and long coalescent branches creating a sweep like pattern in the SFS  438 

(Pavlidis et al. 2010). Thus, inferences of selection based on genome scans in non-equilibrium 439 

populations must be done with caution. 440 

The implementation that we used to detect the signature of positive selection 441 

(SweepFinder), is relatively robust to the effects of bottlenecks and population expansion, and is 442 

particularly powerful to detect recent selective sweeps (Nielsen et al. 2005; Pavlidis et al. 2010). 443 

Recent studies have shown that SweepFinder performs better than other tests, such as the ω-444 

statistic, in non-equilibrium populations (Pavlidis et al. 2010). We consider that the very recent 445 

introduction of M. guttatus into the UK, relatively weak population bottleneck, and lack of 446 

within-UK population structure, make SweepFinder an appropriate method for detecting recent 447 
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and strong sweeps in the introduced range. Moreover, the independently analysed NA data 448 

using the exact same SNP sampling strategy allowed us to mask shared sweeps and eliminate 449 

false positives due solely to SNP sampling and variable site density. Therefore, we consider that 450 

the genomic regions identified here are strong candidates for selective sweeps in the lineage 451 

leading to UK populations. Nevertheless, it is important to recognise that we cannot currently 452 

determine whether the selection events happened in an ancestral (unsampled) native 453 

population or after the dispersal of M. guttatus to the UK. Establishing the timing of the 454 

potential selective event is essential to determine if introduced populations can exploit novel 455 

environments through (pre-)adaptations brought in from the native range, or whether adaptive 456 

evolution occurs subsequent to dispersal during the establishment and spread phases of a 457 

biological invasion (Maron et al. 2004; Colautti et al. 2009). 458 

Genes within swept regions  459 

The potential selective sweeps we detected in five M. guttatus chromosomes include 460 

approximately 300 genes. As predicted for selective sweeps, we found reduced diversity in both 461 

coding and non-coding genic regions under these sweeps (Fig S6). While it is possible to identify 462 

candidate regions for selective sweeps and to determine the genes located under these sweeps, 463 

it is not possible to know without direct testing which genes were the actual targets of 464 

selection. However, the selective sweeps identified here contain genes involved in flowering 465 

time, nutrient stress, and biotic stress (Table S2), and could be involved in adaptation to 466 

different day lengths, soil types, novel pathogens, and general responses to stress (e.g., Hodgins 467 

et al. 2012). 468 
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Of particular interest is the identification of selective sweeps in linkage group 8 (LG8).  469 

The selective sweeps at positions 2 Mbp (two million base pairs) and 5 Mbp of LG8 are 470 

exceptionally wide, consistent with very strong selection pulling a large haplotype block to high 471 

frequency very quickly giving very little time for recombination to break up linked sites. These 472 

regions of LG8 are gene rich suggesting that the width of the peak is not an artefact of reduced 473 

recombination associated with repetitive regions (Hellsten et al. 2013). Instead, these selective 474 

sweeps are located near or at a known inversion region of approximately 6Mb in length (Oneal 475 

et al. 2014). This inversion (DIV1), is polymorphic in the native range, and is associated with a 476 

number of morphological and life-history differences between annual and perennial ecotypes 477 

(Lowry and Willis 2010). Therefore this region is a good candidate for bearing adaptive variation 478 

that could be selected for in the lineage leading to the introduced populations. Mapping 479 

experiments in M. guttatus have demonstrated that a large region on LG8 is involved in critical 480 

photoperiod to flower (Friedman & Willis 2013). The selective sweep we identified on LG8 is 481 

located near (within 200,000 base pairs) one of the major QTLs for critical photoperiod 482 

identified in Friedman and Willis’ study. Flowering time is a crucial component of fitness in 483 

seasonal environments, and therefore it is expected to be under selection in the introduced 484 

range. Studies of invasive species have often demonstrated the potential for rapid evolution of 485 

phenology in the introduced range (Maron et al. 2004; Colautti et al. 2009). The geographic 486 

distribution of introduced populations at high latitudes (approximately between 50° N and 60° N 487 

in the UK), suggests that these populations experience day length conditions similar to the 488 

northern end of the distribution of M. guttatus in North America. It would be of interest to 489 
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determine if genes involved in the control of flowering under long days are under selection in 490 

northern indigenous or in introduced populations. One such candidate is Migut.D02071, a 491 

phytochrome-associated protein phosphatase gene located in one of the selective sweep 492 

regions in LG4 (Table S2). In Arabidopsis thaliana, a similar gene (ATFYPP3) participates in the 493 

regulation of flowering time in long days (www.string-db.org). Preliminary data suggests that UK 494 

populations require long days (16hr) to flower (Vallejo-Marín, unpublished). Future studies 495 

could address whether flowering time has indeed played a role in the establishment of 496 

introduced populations in high latitudes.  497 

To conclude, our results demonstrate the enormous potential for whole-genome 498 

sequencing studies to contribute to the study of non-native populations. With a modest 499 

sequencing effort we were able to quickly obtain previously unavailable information on the 500 

origin and diversity of introduced populations of M. guttatus, as well as on the genomic 501 

consequences of biological introductions, including identifying potential regions under 502 

selection.  As whole genome reference data becomes available for other non-model organisms, 503 

resequencing studies are likely to be increasingly used to study the history and consequences of 504 

biological invasions, and to establish the contribution of adaptive processes to shaping the 505 

genomes of rapidly evolving populations. 506 
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TABLES 712 

Table 1. Populations sampled for genome resequencing of Mimulus guttatus and related taxa. A single individual was 713 

sequenced per population, except for IM, where sequence data was available for nine individuals. Life history and, for native 714 

populations, their classification as coastal or inland, is provided for each population when available (Lowry et al. 2008; Lowry & 715 

Willis 2010). 716 

Population Taxon Latitude Longitude Life history Coastal/Inland Location 

Mimulus guttatus (Native)      

PED  32.711 -110.628 Perennial Inland San Pedro River, Pinal Co., AZ 

MED  37.829 -120.345 Annual Inland Moccasin, Tuolumne Co., CA 

REM  38.859 -122.410 -- Inland Rumsey, Yolo Co., CA 

LMC  38.864 -123.084 Annual Inland Yorkville, Mendocino Co., CA 

SWB  39.036 -123.691 Perennial Coastal Sperm Whale Beach, Mendocino Co., CA 

BOG  41.924 -118.804 Perennial Inland Bog Hot Springs, Humboldt, Co., NV 

MAR  43.479 -123.294 Annual Inland Marshanne Landing , Douglas Co., OR 

DUN  43.893 -124.130 Perennial Coastal Dunes, Lane Co., OR 

IM  44.401 -122.151 Annual Inland Iron Mountain, Linn Co., OR 

AHQ  44.431 -110.813 Perennial Inland Lonestar Basin Thermal Spring, Teton Co., WY 

YJS  44.951 -114.585 Perennial Inland Yellowjacket creek, Lemhi Co., ID 

TSG  53.419 -131.916 Perennial Coastal Graham Island, Haida Gwaii (Queen Charlotte 

Islands), British Columbia, Canada 

Mimulus guttatus (Introduced)     

CRO  50.163 -5.293 Perennial -- Crowan, Cornwall 

TRE  50.498 -4.465 Perennial -- Tremar Coombe, Cornwall, England 

HOU  51.097 -1.508 Perennial -- Houghton Lodge, Hampshire, England 
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CER  53.006 -3.549 Perennial -- Cerrigydrudion, Denbigshire, Wales 

VIC  54.763 -7.454 Perennial -- Victoria Bridge, Northern Ireland 

AYR  55.461 -4.625 Perennial -- Ayr, Ayrshire, Scotland 

DBL  56.197 -3.965 Perennial -- Dunblane, Perthshire, Scotland 

TOM  57.255 -3.368 Perennial -- Tomintoul, Moray, Scotland 

PAC  57.355 -3.336 Perennial -- Packhorse Bridge, Speyside, Scotland 

QUA  60.105 -1.227 Perennial -- Quarff, Shetland Islands 

Outgroups      

SF M. nasutus 45.635 -120.914 Annual Inland Sherars Falls, Wasco Co., OR 

MCN M. cupriphilus 37.912 -120.724 Annual Inland McNulty Mine, Calaveras, Co., CA 

CVP M. platycalyx 38.372 -123.055 Annual Inland/Coastal Coleman Valley Road, Sonoma Co., CA 

EBR M. micranthus 39.631 -123.532 Annual Inland Branscomb, Mendocino Co., CA 

DENT M. dentilobus NA NA -- -- NA 

       

 717 
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FIGURES 718 

Figure 1. Location of the 22 Mimulus guttatus populations sampled in the native range in North 719 

America (left-hand side panel), and in the introduced range the United Kingdom (right-hand side 720 

panel). Notice the different scales in the two maps. The colour of the symbols corresponds to 721 

the clades shown in the neighbour joining tree in Fig. 2. 722 

Figure 2. Relationships between native (North America) and introduced (United Kingdom) 723 

populations of Mimulus guttatus inferred from 1,400,000 SNPs, sampled at a density of 100,000 724 

SNPs per chromosome. The neighbour joining tree was built from a matrix of pairwise genetic 725 

distance (p-distance) of 30 individuals of M. guttatus, four related taxa, and rooted with M. 726 

dentilobus. Branches leading to introduced populations are shown in purple. The two clades 727 

containing native M. guttatus in the North and South groups (see Results) are shown in blue and 728 

red, respectively. All nodes at the population level have a 100/100 bootstrap support. 729 

Population names as in Table 1. 730 

Figure 3. Principal component analysis of twelve native (North America) and ten introduced 731 

(United Kingdom) populations of Mimulus guttatus. Introduced populations cluster in the lower 732 

left quadrat. Only one individual of the Iron Mountain (IM) population was included in this 733 

analysis. Colours denote values at first two principal component (PC) axes. Population names as 734 

in Table 1. 735 

Figure 4. Evidence of hard selective sweeps within UK M. guttatus was found on 5 of the 14 736 

linkage groups using SweepFinder (Nielsen et al. 2005). The figure shows selective sweeps after 737 
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masking for shared sweeps between native and introduced populations (see Methods). Dashed 738 

line indicates genome-wide 1% outlier cutoff based on the composite likelihood ratio (CLR) 739 

statistic.  Only linkage groups with sweeps exceeding 1% outlier cutoff are shown here; CLR 740 

profiles for all linkage groups are shown for both native and introduced populations in the 741 

supplementary materials.742 
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SUPPLEMENTARY MATERIAL 743 

Figure S1. Distribution of genome-wide pairwise nucleotide diversity (i.e., the average number 744 

of nucleotide differences per site between two sequences, π) in native and introduced 745 

populations of the yellow monkeyflower, Mimulus guttatus. The left-hand side panel shows 746 

nucleotide diversity of 10 introduced populations in the United Kingdom, and the right-hand 747 

side panel shows nucleotide diversity for 10 native populations in North America (same 10 used 748 

in sweep analysis). Nucleotide diversity was calculated using windows of 50,000 genotyped base 749 

pairs (bp) and 1,000 bp overlapping steps. 750 

Figure S2. Genome-wide pattern of pairwise nucleotide diversity (π) in 10 introduced 751 

populations of Mimulus guttatus in the United Kingdom. Each row represents one of the 14 752 

major linkage groups (scaffolds). Nucleotide diversity was calculated using windows of 50,000 753 

genotyped base pairs (bp) and 1,000 bp overlapping steps. The x-axis indicates the midpoint 754 

position of each window with respect to the M. guttatus v 2.0 reference genome 755 

(www.phytozome.org). 756 

Figure S3. Genome-wide of pairwise nucleotide diversity (π) in 10 native populations of Mimulus 757 

guttatus in North America (AHQ, BOG, DUN, IM, LMC, MAR, PED, SWB, TSG, YJS). Each row 758 

represents one of the 14 major linkage groups (scaffolds). Nucleotide diversity was calculated 759 

using windows of 50,000 genotyped base pairs (bp) and 1,000 bp overlapping steps. The x-axis 760 

indicates the midpoint position of each window with respect to the M. guttatus v 2.0 reference 761 
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genome (www.phytozome.org). 762 

Figure S4. Distribution of non-synonymous (πnon-syn) and synonymous (πsyn) pairwise nucleotide 763 

diversity in 10 introduced (left-hand side panels; United Kingdom), and in 10 native populations 764 

(right-hand side panels; North America) of Mimulus guttatus.  765 

Figure S5. Selective sweeps identified in introduced populations (United Kingdom) of the yellow 766 

monkeyflower, Mimulus guttatus, across the 14 major linkage groups (scaffolds) in this species. 767 

The composite likelihood ratio (CLR) measures departures in the site frequency spectrum from 768 

background levels observed within linkage groups, and provide evidence of selective sweeps 769 

(Nielsen et al. 2005). Black dots indicate CLR scores above the 1% outlier cutoff, after masking 770 

(omitting) regions with significant CLR scores in North American samples. The x-axis indicates 771 

the position in base pairs with respect to the M. guttatus v 2.0 reference genome 772 

(www.phytozome.org). For full details of the analysis see Methods section. 773 

Figure S6. Evidence for reduced pairwise nucleotide diversity (π and πsyn) in genes located 774 

within (sweep) vs. outside selective sweeps (no sweep) of introduced populations of Mimulus 775 

guttatus in the United Kingdom. The left-hand side panel shows pairwise nucleotide diversity 776 

across all sites within a gene (π), and the left-hand side panel shows pairwise nucleotide 777 

diversity in synonymous sites only (πsyn). For the left panel, nucleotide diversity was calculated 778 

using windows of 50,000 genotyped base pairs (bp) and 1,000 bp overlapping steps. 779 

Synonymous site nucleotide diversity was calculated for all genes within swept region.  Boxplots 780 

show the median (horizontal line), 1
st

 and 3
rd

 quartiles (top and bottom of the box), and the 1.5 781 
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interquartile range (whiskers). 782 

Figure S7. Genome-wide distribution of genotyped base pairs per individual across ten 783 

individuals from ten introduced populations of Mimulus guttatus in the United Kingdom (UK). 784 

The chart shows, for instance, that nine out of ten individuals were successfully genotyped at 785 

more than 18 million base pairs. 786 

Figure S8. Principal component analysis (PCA) of 30 individuals of Mimulus guttatus from both 787 

native and introduced ranges, including multiple individuals of the Iron Mountain (IM) 788 

population. This PCA was based on 10,000 SNPs per linkage group for a total of 140,000 SNPs 789 

across the genome. Introduced populations fall in the bottom left quadrat. Population codes are 790 

defined in Table 1. 791 

Table S1. Annotated list of 299 genes located within the selective sweeps identified in 792 

introduced populations of the yellow monkeyflower, Mimulus guttatus, in the United Kingdom. 793 

The location of each gene (start and end), and of the selective sweep that contains it, is given in 794 

base pairs (bp) with respect to the M. guttatus v. 2.0 reference genome (www.phytozome.org).  795 

Table S2. Annotated list of a subset of 28 genes within the selective sweeps described in Table 796 

S1 that display reduced synonymous diversity (πsyn < 0.01).  797 

Supplementary File: Bioinformatics. Commands used for sequence analysis, quality control, and 798 

genotyping. 799 
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