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Abstract. Music genres can be seen as categorical descriptions used to classify 
music basing on various characteristics such as instrumentation, pitch, rhythmic 
structure, and harmonic contents. Automatic music genre classification is im-
portant for music retrieval in large music collections on the web. We build a 
classifier that learns from very few labeled examples plus a large quantity of 
unlabeled data, and show that our methodology outperforms existing supervised 
and unsupervised approaches. We also identify salient features useful for music 
genre classification. We achieve 97.1% accuracy of 10-way classification on 
real-world audio collections. 

1 Introduction 

Downloading and purchasing music from online music collections has become part of 
the daily life of probably the majority of people in the world, and quality of music 
recommendation affects quality of life of billions of people. The users often formulate 
their preferences in terms of genre, such as jazz or disco. However, many tracks in 
existing collections are not classified by genre, or a genre is specified for an artist or 
an album but not for a particular track. Given huge size of existing collections, auto-
matic genre classification is crucial for organization, search, retrieval, and recommen-
dation of music. 

While huge amount of unlabeled data is readily available, labeled data—tracks 
with the genre reliably assigned by human annotators—are scarce. In this paper we 
propose to use for genre classification a methodology that was proven to work well in 
a similar situation: affective labeling of words in natural language texts, where, simi-
larly, unlabeled texts abound but few words have a manually assigned affective label 
[1]. For brevity we refer to this methodology as semi-supervised learning, to empha-
size that it uses two kinds of data: few labeled examples and a large quantity of unla-
beled data; however, internally our two-step procedure works differently from a typi-
cal semi-supervised learner. We show that this methodology outperforms a number of 
standard supervised learning techniques, such as Support Vector Machine (SVM) and 
k-Nearest Neighbor (kNN). 
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In addition, we present several features salient for the genre classification task. Ac-
cording to Lee et al. [3], musical features can be divided into three categories: short-
time features, long-time features, and beat features. We show that long-term features 
are more salient for music genre classification than short-time ones, though using 
features of both types together gives best results. We explore various feature combi-
nations and identify those that perform best on our task. 

The rest of the paper is organized as follows: Section 2 describes related work. 
Section 3 gives an overview of our method. Section 4 presents the dataset and the 
features used in our experiments. Sections 5, 6, and 7 describe the three main steps of 
our algorithm: fuzzy clustering, mapping of the obtained clusters to labels, and the 
final hard categorization. Section 8 gives the experimental results and evaluation. 
Finally, Section 9 presents conclusions and future work. 

2 Related Work 

The state-of-the-art music genre classification systems can be classified into those 
based on supervised or unsupervised approach [4]. 

Unsupervised Approaches   These approaches mainly concern with determination of 
a genre taxonomy. Music files are clustered basing on an objective function to dy-
namically build a taxonomy depending on the clustering outcome. Shao et al. [5] used 
Agglomerative Hierarchical Clustering. 

The main drawback of unsupervised methods is that the clusters are not labeled 
and the boundaries between clusters are not reliably defined. In this paper, we rely on 
a genre taxonomy well-defined by music experts and well-known to the users, which 
suggest using a supervised approach. 

Supervised Approaches   Pampalk et al. [7] used a kNN classifier; Mandel et al. 
[10], Lidy et al. [11], and Scaringella et al. [12] obtained good results with SVM. 
 
Semi-Supervised Approaches   Xu et al. [23] used co-training based semi-
supervised classifier based on some novel “multi-view” [23] features. Yaslan et al. 
[24] stated how Random Subspace Method for Co-training [24] can help the genre 
classification process. 
     Our approach is a bit different from existing semi-supervised approaches in a 
manner that we used fuzzy for training supervised classifier in order to map a 10-way 
classification problem to 2-way or 3-way classification problem. 

Feature Selection   Proper feature selection is crucial for classification. For this, a 
segment of audio is represented by numerical values of several audio features. Peet-
ers [14] proposed a variety of features to characterize the timbre of instruments. These 
features are called low level features [15] because they usually describe sound on 
small scale, such as slices of 10 to 60 seconds. Spectral features have been used to 
distinguish between speech and music [4] and to identify isolated sounds [16] and 
instruments [17]. Rauber et al. [6] used psychoacoustic features of music to determine 
similarities between music files. The importance of the size of texture window for 
extracting timbral features has been explored by Meng et al. [18], who stated that 



texture window of 1 sec. works best for music retrieval task and there is no significant 
gain in increasing the size of the texture window, while the accuracy decreases with 
smaller window size. 

Tzanetakis [19] designed a basic music genre classification system based upon 
timbral, temporal, and beat features with 61% accuracy, outperformed by Lee et al. 
[3] with a spectral modulation-based approach.  

While we work with a conventional genre classification, we explore the perform-
ance of different features and feature combinations, achieving 97.1% accuracy. 

3 Overview of the Procedure 

We followed a procedure suggested in [1] for a quite different task: effective 
classification of words [2]. The procedure consists in the following steps: 

− Feature extraction: the real-world data, both labelled and unlabelled, are repre-
sented by numerical vectors, which then are used for classification. 

− Fuzzy clustering: the whole available dataset, including both labelled and unla-
belled data (the labels are ignored even when available), is clustered in unsuper-
vised manner into the number c of clusters corresponding to the number of target 
categories (in our case, c = 10 music genres), in hope that the found clusters 
would roughly correspond to the target categories. Fuzziness accounts for uncer-
tainty: a data point can be assigned more than one label, with a different degree. 
This ambiguity is resolved at the last step.  

− Mapping: the obtained fuzzy clusters are one-to-one identified with the c target 
categories. The classes are identified through a majority voting technique, per-
formed within each of the clusters. In our case we have all annotated music sam-
ples but for that situation when we have maximum number of unlabeled data and 
much lower number of labelled data we can still carry out our method by taking 
all of those unlabeled and labelled data for clustering and determine the fuzzy 
classes of the clusters through the majority voting with the help of available la-
belled data taking part in the clustering step. 

− Hard clustering: the ambiguity of the fuzzy assignment of category labels to data 
items is resolved, leaving each data item assigned to exactly one category using a 
supervised technique. 

4 Dataset and Features 

As a dataset for the music genre classification task, we used the one presented by 
Tzanetakis [19]. The dataset is publicly available for research purposes.1 It consists of 
1000 audio tracks, each being 30 sec. long, classified into 10 genres: BLUES, 
CLASSICAL, HIPHOP, COUNTRY, DISCO, POP, ROCK, JAZZ, METAL and REGGAE. Each 
genre is represented by 100 tracks. We followed this taxonomy for our classification. 

                                                           
1 http://opihi.cs.uvic.ca/sound/genres.tar.gz 



All tracks are 22,050 Hz mono 16-bit audio files in .wav format, collected in 2000–
2001 from a variety of sources including personal CDs, radio, and microphone re-
cordings, in order for a variety of recording conditions to be represented. 

For feature extraction, we used the Jaudio toolkit [20], a music feature extraction 
toolkit written in Java, freely available for research purposes.2 As we have mentioned, 
we used the following three kinds of features: short-time features, long-time features, 
and beat features. 

Short-time features are mainly used to distinguish the timbral characteristics of 
music and are usually extracted independently from each short time window (frame) 
during which the audio signal is assumed to be stationary. We used the following 
features [3, 20]: mel-frequency cepstral coefficients (MFCC; Jaudio gives first five 
coefficients of 13, and [3] states that these five coefficients give best classification 
result), spectral centroid, spectral roll-off, spectral flux, root mean square, compact-
ness, and time domain zero crossing;  

Long-time features can be obtained by aggregating the short-term features ex-
tracted from several consecutive frames within a time window. We have used deri-
vate, standard deviation, running mean, derivative of running mean, and standard 
derivative of running mean as the aggregation methods of short-time features. 

Beat features give meanings to audio signals in human-recognizable terms which 
generally reveal the human interpretation or perception of certain audio properties 
such as mood, emotion, tempo, genre, etc. We used the following four main beat fea-
tures: beat histogram, beats per minute, beat sum, and strongest beat in the audio sig-
nal. 

5 Fuzzy Clustering 

The first step in our process is unsupervised: we cluster the music files into 10 catego-
ries, given that we consider 10 genres. On output, we define for each music file and 
each of the ten classes the membership value between 0 and 1 with which the given 
music file belong to the given class. 

Fuzzy C-means Clustering Algorithm   For fuzzy clustering, we used the fuzzy c-
means clustering algorithm [21] with a modified objective function as described in 
Section 5.2 below. 

The well-known fuzzy c-means clustering algorithm takes as input a set of N data 
points x1, x1, ..., xN described via their coordinates in a P-dimensional feature space: 
xk = (xk1, xk2,..., xkP). As output, it constructs two sets: a set of c centroids v1, v2, ..., vc, 
points in the same feature space, that represent the constructed c clusters, and a set of 
cN membership values µik, i = 1, ..., c; k = 1, ..., N, which represent the degree of 
membership of a point xk in a class ci, such that 0 ≤ µik ≤ 1 and the values sum up to a 
unity for each point: 
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2 http://sourceforge.net/projects/jmir/files/ 



To find the optimal distribution of points by clusters and optimal placement of the 
centroids, it uses an given objective function J, which is minimized when the distribu-
tion is optimal: (µ0 ,v0) = arg min J (µ ,v), where µ  = {µik} and v = {vi} represent the 
sets of the variables to be found and µ0 ,v0 are the optimal solutions. An expression 
often used for J is 
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where the power p > 1 is a given parameter that controls the degree of fuzziness of the 
obtained clusters  (we used p = 2). The optimal solution of a constraint optimization 
problem defined by (1) and (2) is given [1] by 
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A stationary point (µ0 ,v0) of the system (3), which is the desired result of the algo-
rithm, was found iteratively: 

− Assigning random values to all µik, normalized to satisfy the constraints (1); 
− Iteratively re-calculate the values for all vi and then all µik according to (3); 
− Stop when the objective function J changes from the previous iteration less than 

by a small number ε, a given parameter (we used ε = 0.01). 

Modified Objective Function   To achieve more compact clusters in which the most 
similar elements are clustered together, we incorporated an additional term in the 
original objective function (2): 
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where the parameter ρ is intended to control the effect of the new term (we used 
ρ = 1) and Nk is the set constructed in the following way: 

− For each data point x, we identified the nearest centroid 

 ||||minarg)( xvxv ii −=  (5) 

(in case of a tie an arbitrary one was chosen); 
− Now, )}()(|{ kk xvxvxN ==  is the set of all data points with the same nearest 

centroid as xk. 

This additional term forces the algorithm to increase the membership of a data 
point in the cluster with the nearest centroid, grouping similar points together. 

In our implementation we constructed these sets on the fly while re-calculating the 
positions of the centroids according to (6) below, which is a modification of (3). I.e., 
when re-calculating v2, we considered in (5) already re-calculated value for v1. 



The change of the objective function required modification of the formulas (3): 
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the derivation can be found in [1]. 

6 Mapping Fuzzy Classes to Music Genre Labels 

After the fuzzy clustering process had been completed, we identified which one of the 
c = 10 classes corresponded to which one of the ten music genre labels. For this, first 
we converted the fuzzy clustering into hard clustering; in our implementation we 
chose for each data point xk a cluster ikikxC µmaxarg)( =  (in case of a tie, arbitrary 

class was chosen). Now, the music genre label for each hard cluster was chosen by 
majority voting. 

Such procedure does not guarantee for a hard cluster to be non-empty, for the ma-
jority voting not to result in a tie, or for two clusters not to share the same genre label, 
in which case some labels would not be assigned at all. However, this is low probable 
and did not happen in our experiments. Moreover, correctness of the obtained map-
ping of the classes to genre labels is confirmed by the fact that we obtained over 90% 
accuracy of the final results, which is not possible with incorrectly mapped labels. 

7 Hard Clustering 

In our evaluation, we consider a label to be assigned correctly if the evaluation dataset 
assigns this label to the music file. To choose only one class for a token under classi-
fication, we used a two-step process. 

Reducing the Confusion Set   For each data point, we chose K classes for which the 
fuzzy clustering gave the highest value of the membership function. The hard cluster-
ing technique used afterwards was only allowed to choose between those K labels pre-
selected for a given music file. 

In case of K = 1 no further processing is needed and the final result is determined 
by the greatest membership value of the fuzzy clustering. The case of K = 10 means 
no reducing of the confusion set. In case of K = 2 or K = 3—the values we experi-
mented with—the confusion set is reduced to 2 or 3 options, correspondingly. We 
show in Section 8 that reducing the confusion set to 2 candidates increased the accu-
racy. However, selection of the proper size of confusion set depends to the problem: 
on another task a confusion set of, say, 3 might result in better accuracy. 



Final Hard Categorization   Given the K options left after reducing the confusion 

set, we trained different classifiers for each of the 
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combinations of K genre labels: for example, with K = 3, a separate classifier was 
trained for choosing between BLUE, METAL, and COUNTRY, another one to choose 
between JAZZ, METAL, and ROCK, etc. For K = 3, therefore, 120 different classifiers 
were trained; for K = 2, 45 different classifiers were trained. To assign a label to data 
point, the K genre labels for the point are selected as explained above, and then the 
corresponding classifier is used. 

For training, we have taken care of all training music files in ten genre lists of our 
dataset, i.e., we used 60 music files of each 10 genres lists for training. For example, 
to train a classifier for the confusion set {BLUE, METAL}, all music files extracted from 
the lists and have their either the label BLUE or the label METAL were used. 

As features, we used the same feature vectors as for fuzzy clustering, extended 
by 10 extra dimensions: the membership values generated by the fuzzy classifier for 
the 10 genre labels, except the experiments where the fuzzy clustering was not used. 
As classes, the K selected labels were used for each classifier; in case of K = 2 the 
classification was binary, for K = 3 the classification is ternary. 

As a hard clustering algorithm, we used the SVM framework. Specifically, we 
used the libsvm library of the WEKA toolset [22], which, for the case of K > 2, 
provides an implementation of a multiclass SVM. As a result, we obtained one music 
genre label for each music file in the test dataset. 

8 Evaluation  

Impact of different feature combinations   Table I shows that we obtained better 
accuracy when we used long-time features than using short-time features. However, a 
much lower accuracy was obtained when we used only beat features. The highest 
accuracy was obtained when we used all three types of features: long-time, short-
time, and beat features. 

TABLE I. Accuracy with different feature combinations and different classifier combinations 

Feature Combination Fuzzy SVM Fuzzy + SVM 
Long-time features 59.12% 61.20% 63.25% 
Short-time features 42.54% 44.15% 48.92% 
Long-time + short-time features 68.21% 71.24% 75.34% 
Beat features 39.15% 39.46% 41.27% 
Long-time + short-time + semantic 76.33% 87.45% 96.23% 
Long-time + beat features 68.67% 72.35% 76.25% 
Long + short + semantic +  fuzzy vector 79.21% — 97.10% 

We have done the evaluation in two ways. In one experiment we performed tenfold 
cross-validation on each of the 120 and 45 classifiers mentioned in Section 7.2 using 
all 1000 music files. The result and the corresponding confusion sets are given in 



Section 8. Using all three feature sets along with fuzzy membership vector as a fea-
ture, we obtained 97.10% accuracy. 

In another experiment we split our dataset into 60% training and 40% test data. Us-
ing 60% training data we trained our 60 or 45 classifiers correspondingly, depending 
on the value of K, and tested them on the unseen test data. With this, we obtained 
91.50% accuracy, which is probably explained by smaller size of the training data. 

In particular, we observed that spectral centroid and MFCC are the most important 
features, because removing these two features significantly decreases accuracy.  

Impact of the fuzzy clustering and hard categorization   In addition to the data 
presented in Table I for fuzzy-only and hard-only classifiers, we experimented with 
different values of K: the size of the confusion set after reduction based on the result 
of fuzzy clustering; see Table II:  

− K = 1 means that the final classification is made basing on the results of the fuzzy 
clustering and no further hard clustering is necessary;  

− K = 2 means that the hard classification has to do only binary choices;  
− K = 3 reduces the confusion set for the hard classification to three options; 
− K = 10 means no reduction of the confusion set. It is not the same as not to use 

the fuzzy clustering phase at all, because the fuzzy clustering results are still used 
as additional features for final categorization. 

We can see that SVM performed better on choosing between the category with the 
highest membership value and that of the second highest one. Here, we used all fea-
tures, which corresponds to the last row of Table I. 

Comparing with other classifiers   We tried several classifiers, such as Multi-Layer 
Perception (MLP), Naïve Bayes, and kNN. While MLP performed better than Naïve 
Bayes and kNN, none of them outperformed our two-stage procedure; see Table III. 

Confusion matrices   The confusion matrices obtained with our procedure are shown 
in Table IV. We can observe that misclassification problems are very rare, and quite 
similar in both cases. 

9 Conclusions and Future Work 

We have proposed a method of music genre classification in a large music dataset 
using a two-stage classification methodology. The methodology consists in fuzzy 

TABLE II.  Impact of the selection 
of most likely fuzzy cluster 

K Accuracy 
1 76.33% 
2 97.10% 
3 79.38% 
4 77.51% 

10 67.45%  

        TABLE III.  Accuracy obtained 
using different classifiers 

Classifier Accuracy 
KNN 54.21% 
Naïve Bayes 65.88% 
MLP 74.23% 
Our procedure 97.10%  



clustering followed by disambiguation using a hard classifier. As features of musical 
data, we used the values obtained with the Jaudio toolkit.  
    Soon, we plan to expand the classification tool on a different level by taking into 
account also lyrics associated with music tracks. In particular, we will extract concep-
tual and affective information associated with songs by means of semantic multi-
dimensional scaling [25] and, hence, add these as additional semantic and sentic [26] 
features for classification. 
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