
Mixed Order Associative Networks for Function
Approximation, Optimisation and Sampling

Kevin Swingler, Leslie S. Smith

University of Stirling - Computing Science and Mathematics
Stirling, FK9 4LA. Scotland

Abstract. A mixed order associative neural network with n neurons and a modified
Hebbian learning rule can learn any function f : {−1, 1}n → R and reproduce its
output as the network’s energy function. The network weights are equal to Walsh
coefficients, the fixed point attractors are local maxima in the function, and partial
sums across the weights of the network calculate averages for hyperplanes through
the function. If the network is trained on data sampled from a distribution, then
marginal and conditional probability calculations may be made and samples from
the distribution generated from the network. These qualities make the network ideal
for optimisation fitness function modelling and make the relationships amongst
variables explicit in a way that architectures such as the MLP do not.

1 Introduction

Function approximation lies at the heart of much of computational intelligence research.
Many neural networks can be viewed as function approximators. It can be desirable to
build a neural function approximator (NFA) that reproduces the output of any function
and allows a transparent analysis of the weights. Where the function is a probabil-
ity mass function (PMF), it is desirable to have a NFA that allows the calculation of
marginal, joint, disjoint, and conditional probabilities as well as providing a method for
sampling from the underlying joint distribution. Where the NFA is to be used as an aid
to search and optimisation, it is useful if it is capable of producing output values that are
outside the range of its experience and of modelling local optima as fields of attraction.
Let B = {−1, 1}n and f (B)→ R be any function over B. This paper demonstrates how a
mixed order associative network (MOAN) displays all of these qualities for real valued
functions of binary input vectors: f (B).

Hopfield networks [1] are able to store patterns as point attractors in n dimensional
binary space. Patterns are learned using a Hebbian weight update rule and recovered by
settling the network to a stable state. Rather than learning known patterns like a normal
Hopfield network, Swingler, [2] demonstrated a Hopfield network which learns samples
c ∈ B at a variable learning rate determined by f (c). This yields a simple modification
to the Hebbian rule: wi j = wi j + f (c)uiu j where wi j is the weight between neurons i and
j, ui is the output of neuron i and we set ui = ci ∀i.

A MOAN is a Hopfield like network with weights between neuron subsets of mul-
tiple orders. We use variable rate Hebbian learning to train MOANs on samples from
(B, f (B)) and analyse their use. Section 2 describes variable learning rate MOANs, sec-
tion 3 analyses their use as function approximators and section 4 describes their use in
making probability calculations from a PMF.

23

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/42544378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mixed Order Associative Networks

In a standard Hopfield network, connections are between pairs of neurons. Mixed order
associative networks (MOANs) have weighted hyper-synapses (we will just call them
weights) between subsets of zero or more neurons. A fully connected n-neuron MOAN
has weights that connect all subsets of all sizes from 0 to n. The weights have no di-
rection so they have a natural symmetry. First order weights are not self-connections,
but are treated as if they were linked to bias units - they have a constant positive acti-
vation that is not affected by network updates. The single size zero weight calculates
the average of − f (c). Sparse MOANs with far fewer connections may also be built. We
now formally define a fully connected MOAN. Let n be the number of neurons in the
network. The vector of neuron outputs is defined as u = u1, . . . , un, u ∈ B.

Neurons are organised into unique subsets of size 0 . . . n. There are
(

n
k

)
subsets of

each size k. Each subset, Qi has a single associated weight, denoted by Wi. The set of
subsets and the set of weights both have i = 0 . . . 2n − 1. We index both by taking the
integer value of a binary pattern that indicates the presence of a neuron in a subset as
1 and its absence as 0. The least significant bit refers to unit 1 and the most significant
bit refers to unit n. For example, 1010 represents the subset where neurons 2 and 4 are
connected, which makes it W10. Values are set in the MOAN using:

ui = ci ∀i (1)

and patterns can be learned in the same way as a Hopfield network using the weight
update rule Wi = Wi +

∏
u∈Qi

u. A MOAN can also learn a function f (c) using a
modified Hebbian rule. We define the update to the weight connecting the neuron subset
Qi caused by pattern c and function output f (c) as

Wi = Wi +
∏
u∈Qi

u f (c) (2)

In the special case of W0, we use W0 = W0 − f (c). When training is complete, we
divide every weight by the number of training patterns learned, m:

Wi =
Wi

m
i = 0 . . . 2n − 1 (3)

To re-calculate the activation of a neuron, we pick every subset to which the neuron
belongs, that is, every Qk where the binary representation of k has a 1 at the bit position
relating to the chosen neuron. For each Qk in that set, we calculate the product of the
activations of the neurons, excluding the target neuron. This value is then multiplied by
the subset weight Wk and these products are all summed. To calculate the activation, ai

of unit i, let L be the set of indices of subsets that contain ui, and use:

ai =
∑
k∈L

(
Wk

∏
j∈Qk\i

u j

)
(4)

where k enumerates each subset index in L, Wk is the weight associated with neuron
subset Qk and j ∈ Qk \ i indicates the index of every member of Qk, except neuron i
itself. A neuron’s output is then calculated using the threshold function:

24

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

ui =

{
1, if ai > 0
−1, otherwise (5)

A trained MOAN settles to an attractor point by repeated application of the activa-
tion rules 4 and 5, choosing neurons in random order. Any given state of the MOAN
has an associated consistency measure, C, which is the negation of the network energy
level:

C =

2n−1∑
i=0

Wi

∏
u∈Qi

u (6)

3 Analysis

In this section we take a MOAN trained on every pattern c ∈ B and its function out-
put, f (c). This exhaustive training means that the network is not an approximation to
f (c), but a replication of it. A network trained on a less than exhaustive sample would
produce an approximate model. We do so to demonstrate the exact properties of the
network and leave for future work an analysis of approximate models.

3.1 Analysis of the Network Weights

One way to represent functions such as f (B) that has been studied extensively makes
use of Walsh functions [3], [4], which form a basis for functions of binary vectors.
Any function f : {−1, 1}n → R can be represented as a weighted linear sum of Walsh
functions.

A Walsh function carries out a bitwise comparison between two binary strings c
and j, and returns +1 or -1 depending on the parity of the number of 1 bits in shared
positions. Using logical notation, a Walsh function is derived from the result of an XOR
(parity count) of an AND (agreement of bits with a value of 1). The Walsh literature
generally flips the output so that false becomes 1 and true becomes -1, but we will not
take that step and without loss of functionality, we define a Walsh function in logical
notation as ψ j(c) = ⊕l

i=1(ci ∧ ji) where ⊕ is a modified XOR operator, which returns
1 if the argument list contains an even number of 1s and -1 otherwise. The Walsh
transform of an n-bit function, f (c), produces 2n Walsh coefficients, ωc, indexed by the
2n combinations across f (c). Each Walsh coefficient, ωc is calculated by

ωc =
1
2n

2n−1∑
j=0

f (j)ψ j(c) (7)

and any function f (c) can now be restated as a Walsh sum

f (c) =

2n∑
j=0

ω jψ j(c) (8)

Note that equations 7 and 8 both hold true whether we calculate the Walsh coeffi-
cients with the recoding favoured by the literature or leave the result of XOR as true=1

25

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

and false=-1. Using the latter coding, if we index the MOAN weights by the neuron
subset index as described above, we find that the weight values are equal to the Walsh
coefficients of the same index. That is,

Wi = ωi ∀i (9)

Any weights that have a value of zero may be removed from the network as they
have no impact on the energy function or the attractors. This often results in a sparse
network. Clearly, the highest order interaction in a function is defined by the highest
order non-zero weight in the network. Any particular non-zero weight tells us that there
is an interaction between the bit values that are set to 1 in the binary representation of
the weight’s index.

3.2 Calculating Function Output

Setting the outputs of the MOAN to the values of a pattern, c and using the consistency
calculation of equation 6 we can use the network to calculate the value of f (c) directly,
that is:

C(c) = f (c) ∀c (10)

We can also use the weights of the network to calculate schemata average. Let
a schema be h = hi, i = 1 . . . n, hi ∈ {−1, 1, ∗}, where the ∗ is a wildcard, define a
hyperplane. We can take a partial sum of the network weights as determined by the
schema to calculate its average. To determine which weights are included in a partial
sum and whether they are added or subtracted, we use two functions that operate on h.
They are:

α(hi) =

0 if hi = ∗

1 if hi ∈ {−1, 1}
(11)

β(hi) =

−1 if hi ∈ {−1, ∗}
1 if hi = 1

(12)

We write α(h) and β(h) to apply a function to every bit in h. We then use α(h) to
determine which weights to include and ψ(β(h)) to determine addition or subtraction.
We use α(h) to generate the set of strings c ∈ Υ where ci = 0 if α(hi) = 0 and ci ∈ {0, 1}
if α(hi) = 1. These strings are then converted to their integer equivalents to determine
the indices of the weights to include. Let υ be this set of indices and s = |υ| be its size,
then we take the s bits from ψ(β(h)) indexed by each member of υ to determine addition
or subtraction in the partial sum. The sum is defined as

f (h) =
∑
i∈υ

Wiψi(β(h)) (13)

Note that ψi(β(h)) ∈ {−1, 1} so each term in the sum is either Wi or −Wi. Equation
13 allows us to extract the schema average directly from the network weights without
having to calculate the activations of any neurons.

26

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

3.3 Local Maxima and Stored Memories

Input patterns that correspond to local maxima in f (B) are point attractors in the MOAN
and can be found by a local search by applying equations 4 and 5 to update neurons in
random order until no changes to neuron output are produced. The resulting pattern
across the neuron outputs represents a vector, c, which is a local maximum in the out-
put of f (B) and a stored memory in the associative network. Each local maximum
represents a stored pattern in the associative network.

4 Probability Mass Functions

The MOAN may be used as a probability mass function (PMF) for calculating marginal,
joint, disjoint and conditional probabilities. To produce a network with the correct
weights for calculating probabilities, we let P(B) be the PMF of patterns in B and p(c)
be the probability of a particular c. The MOAN is trained on samples from B with a
constant learning rate of 1. When a sufficient number of samples has been learned, we
adjust the weights so that:

Wi =
Wi

sp
∀i (14)

where s is the number of samples learned and p is the number of distinct patterns in
that sample set. To calculate a full joint probability, p(c) from the trained model, we
find that p(c) = C(c) where C(c) is the consistency function defined in 6. To calculate a
joint probability where only a subset of bits are set, we define h, υ, s and β as we did in
section 3.2 and calculate p(h):

p(h) =
1
2d

s−1∑
i=0

υiWυi (β(h)) (15)

We can treat a schema as a set membership definition where a value from {1,-1}
indicates membership and a * indicates non-membership. A union g∪h where g∩h = ∅

is made by keeping a * in bits where both g and h have a * and using the non-* value
from g or h otherwise. For example 1** ∪ **1 = 1*1. From this definition, we can see
that a joint probability is calculated as

p(g ∧ h) = p(h ∪ g) (16)

for example, p(1 ∗ ∗∧∗ ∗ 1) = p(1 ∗ ∗∪∗ ∗ 1) = p(1 ∗ 1). The disjoint probability across
two schemata such as p(1 ∗ ∗ ∨ ∗ ∗ 1) is calculated as

p(g ∨ h) = p(g) + p(h) − p(h ∪ g) (17)

It should be clear how the two-clause examples above extend to m clauses such as
p(1 ∗ ∗ ∧ ∗ ∗ 1 ∧ ∗1∗). Conditional probabilities such as p(1 ∗ 1| ∗ ∗1) can be calculated
as

p(g|h) =
p(h ∪ g)

p(h)
(18)

27

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

4.1 Sampling

Sampling from the learned distribution in the network is quite straightforward. We build
a sample vector one bit at a time, picking bits at random from a reducing list of unset
bits. The sample vector, c starts off with all bits set to *, i.e. c = ∗n. We then pick a
random bit, ci, set it to 1 in c and calculate p(c) using equation 15. ci is left set to 1 with
probability p(c) and flipped to -1 otherwise. Subsequent bits are set based the marginal
p(c ∧ ci = 1|c) where c ∧ ci = 1 indicates a vector made by setting bit i of c to 1. The
marginal probability calculation is repeated for each bit, chosen at random from the list
of unset bits, until all bits are set.

5 Experimental Results

We have carried out a large number of experiments on a range of functions with known
mixed order interactions to verify these results. In all cases, we have found that an ex-
haustively trained MOAN’s weights are equal to the Walsh coefficients of the function
used and that equation 6 reproduces the function output. We have verified the probabil-
ity calculations described in section 4 and found that samples from the network using
the method described above exhibit the same distribution as the original PMF. Analysis
of the network weights confirmed what we knew about the interaction order of each
function learned.

6 Conclusions

Mixed order associative networks can model any f (B). The resulting model makes
linkage analysis easy, which is useful if f (B) is an objective function to be used by an
optimsation method such as a genetic algorithm. Also of use to optimisation algorithms
is a method for sampling from the underlying distribution, which is presented here. We
have not addressed the issue of the exponential growth in network size with the number
of neurons, which is a severe limitation of the work in its current form. We note that the
resulting networks are often sparse but that discovering the correct subset of weights for
any function is an NP problem. This work shows the results of an exhaustive sampling
of noise free data from the function to be learned. Further work will address the task of
learning sparse networks from noisy samples.

References

[1] John J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences USA, 79(8):2554–2558,
April 1982.

[2] Kevin Swingler. On the capacity of Hopfield neural networks as EDAs for solving combina-
torial optimisation problems. In Proc. IJCCI, pages 152–157. SciTePress, 2012.

[3] J.L. Walsh. A closed set of normal orthogonal functions. Amer. J. Math, 45:5–24, 1923.

[4] K.G. Beauchamp. Applications of Walsh and Related Functions. Academic Press, London,
1984.

28

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

