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Abstract 1	  

The present study presents the first "in vivo" evidence of enzymatic activity and 2	  

nutritional regulation of a Δ4-desaturase-dependent DHA synthesis pathway in the 3	  

teleost Solea senegalensis. Juvenile fish were fed diets containing 2 lipid levels (8 and 4	  

18%, LL and HL) with either 100 % fish oil (FO) or 75 % of the FO replaced by 5	  

vegetable oils (VO). Fatty acyl elongation (Elovl5) and desaturation (Δ4Fad) activities 6	  

were measured in isolated enterocytes and hepatocytes incubated with radiolabelled α-7	  

linolenic acid (ALA; 18:3n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Tissue 8	  

distributions of elovl5 and Δ4fad transcripts were also determined, and the 9	  

transcriptional regulation of these genes in liver and intestine was assessed at fasting 10	  

and postprandially. DHA biosynthesis from EPA occurred in both cell types, although 11	  

Elovl5 and Δ4Fad activities tended to be higher in hepatocytes. In contrast, no Δ6Fad 12	  

activity was detected on 14C-ALA, which was only elongated to 20:3n-3. Enzymatic 13	  

activities and gene transcription were modulated by dietary lipid level (LL > HL) and 14	  

fatty acid (FA) composition (VO > FO), more significantly in liver than in intestine, 15	  

which was reflected in tissue FA compositions. Dietary VO induced a significant up-16	  

regulation of Δ4fad transcripts in liver 6 h after feeding, whereas in fasting conditions 17	  

the effect of lipid level possibly prevailed over or interacted with FA composition in 18	  

regulating the expression of elovl5 and Δ4fad, which were down-regulated in liver of 19	  

fish fed the HL diets. Results indicated functionality and biological relevance of the Δ4 20	  

LC-PUFA biosynthesis pathway in S. senegalensis. 21	  

 22	  

Keywords: DHA; polyunsaturated fatty acid synthesis; desaturation and elongation 23	  

activity; nutritional regulation; dietary lipid level; fatty acid composition 24	  

 25	  
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1. Introduction 26	  

Long-chain polyunsaturated fatty acids (LC-PUFA) are essential nutrients with a 27	  

variety of important structural, functional and signaling roles. They are major 28	  

components of biological membranes, particularly of neural tissue and immune cells [1-29	  

3], and are implicated in a vast range of metabolic and immune pathways, either via 30	  

direct activation of transcription of multiple genes, by functioning as secondary 31	  

messengers, or acting as potent bioactive molecules and precursors of eicosanoids with 32	  

pro- or anti-inflammatory properties [4,5]. These roles imply that LC-PUFA are 33	  

critically important in normal development and health and, conversely, they are 34	  

implicated in several disease processes [2,3,6]. Therefore, not surprisingly, the pathway 35	  

of LC-PUFA biosynthesis has been an important topic of research in many organisms, 36	  

from lower eukaryotes to higher vertebrates, for several decades now. 37	  

Polyunsaturated fatty acids (PUFA), such as α-linolenic acid (ALA; 18:3n-3) and 38	  

linoleic acid (LOA; 18:2n-6), are essential dietary nutrients in all vertebrates since they 39	  

cannot be synthesized de novo and hence must be obtained from the diet. Subsequent 40	  

biosynthesis of LC-PUFA such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic 41	  

acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) involves sequential 42	  

desaturation and elongation of precursor PUFA [7]. Within vertebrates, the extent to 43	  

which a species can produce LC-PUFA from C18 PUFA precursors varies greatly, 44	  

depending on their repertoire of fatty acyl elongase (Elovl) and desaturase (Fad) 45	  

enzymes. With respect to the final steps of DHA synthesis, until recently the classic and 46	  

only demonstrated pathway of LC-PUFA biosynthesis in vertebrates was the "Sprecher" 47	  

pathway that involves two sequential elongations of EPA to 24:5n-3 followed by Δ6 48	  

desaturation and one round of peroxisomal β-oxidation [8]. A theoretically simpler and 49	  

more direct pathway for biosynthesis of DHA from EPA would be via one elongation 50	  
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step followed by Δ4 desaturation. However, for many years a Δ4Fad could only be 51	  

found in lower eukaryotes [e.g., 9-12]. This changed recently, when a fad transcript was 52	  

reported in the marine herbivorous fish Siganus canaliculatus that, when functionally 53	  

characterized in yeast, was found to have Δ4 desaturation activity [13]. Shortly after, 54	  

other teleosts such as Solea senegalensis, a marine carnivore, and Chirostoma estor, a 55	  

freshwater carnivore (mostly feeding on zooplankton), were found to have a similar 56	  

gene encoding a protein with Δ4Fad activity in in vitro heterologous expression assays 57	  

[14,15]. However, the in vivo activity and biological relevance of the Δ4 pathway in 58	  

vertebrates remained to be established. 59	  

Senegalese sole, Solea senegalensis, is a species with high aquaculture interest 60	  

whose production has been intensifying in recent years in Southern Europe [16]. One of 61	  

the early identified advantages of this species was its apparently low LC-PUFA 62	  

(particularly DHA) requirements, for a marine teleost, during early larval stages [16]. 63	  

Therefore, the LC-PUFA biosynthesis ability of this species and the degree to which it 64	  

can perform well on diets containing low levels of these nutrients are highly relevant 65	  

issues of academic and commercial interest, and have started being investigated. 66	  

Previous studies on the transcriptional regulation of elovl5 and Δ4fad by dietary DHA 67	  

levels during the larval stage and changes in transcript levels during early ontogeny 68	  

[14,17], in addition to effects of maternal diet on elovl5 and Δ4fad transcription in eggs 69	  

and newly hatched larvae [18], indicated a high degree of regulation of these genes. 70	  

Further interest in this subject is driven by the lack of sufficient and affordable supplies 71	  

of fishmeal (FM) and fish oil (FO) originating from marine fisheries, which were 72	  

classically used to produce fish feeds, to maintain current rates of aquaculture 73	  

production growth, which already provides almost 50 % of global fish supply for human 74	  

consumption [19]. Therefore, replacement of marine ingredients in aquafeed 75	  
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formulations with ingredients from more available plant sources is considered a major 76	  

necessity and one of the factors currently limiting aquaculture sustainability [20]. 77	  

However, although many fish species can perform well on diets with variable inclusions 78	  

of plant ingredients, a major drawback is decreased levels in farmed fish of the health-79	  

beneficial n-3 LC-PUFA, which are not present in vegetable oils (VO) and concurrent 80	  

increased levels of C18 PUFA, ALA and LOA [21]. Recent studies in S. senegalensis 81	  

have shown that considerable levels of FM and FO can be replaced in the diets of this 82	  

species with only a slight reduction in the flesh content of DHA [22-24]. These studies 83	  

suggested that the Δ4Fad pathway was active in vivo and that its activity is 84	  

transcriptionally regulated and possibly sufficient to maintain levels of DHA in the 85	  

muscle when dietary levels are low, although this remained to be proved 86	  

experimentally.  87	  

The primary objective of this study is to test the hypothesis that the Δ4 biosynthetic 88	  

pathway is functionally active in S. senegalensis, producing biologically relevant 89	  

amounts of DHA, and is under nutritional control by dietary lipid content and FA 90	  

composition. To this aim, Senegalese sole juveniles were fed diets containing either FO 91	  

or a VO blend replacing 75% of FO, at two different lipid levels (8 % and 18 %). The 92	  

elongation and desaturation activities were assessed in enterocytes and hepatocytes by 93	  

incubation with radiolabelled FA substrates (ALA and EPA) and determining the 94	  

radioactivity recovered in FA products. The transcriptional regulation of the pathway 95	  

was investigated by determining changes in the levels of the key fatty acyl elongase and 96	  

desaturase genes (elovl5 and Δ4fad, respectively) in the intestine and liver under the 97	  

different dietary conditions. The effect of diet-induced changes in gene expression and 98	  

enzymatic activities was assessed in the FA profile of tissues at the end of the 13-week 99	  
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experimental feeding period. Finally, the tissue expression profile of the two genes is 100	  

also reported. 101	  

 102	  

2. Materials and methods 103	  

 104	  

2.1. Tissue distribution of genes of LC-PUFA biosynthesis 105	  

Tissues were collected from juvenile Senegalese sole (average weight: 251 g) held in 106	  

the experimental culture facilities of IRTA, Center of Sant Carles de la Ràpita (Spain) in 107	  

16 m3 tanks, with natural thermo-photoperiod, a salinity of 36 ppt and fed a standard 108	  

commercial feed (LE-3, Skretting, Burgos, Spain) supplemented twice a week with 109	  

natural feeds (mussels and polychaetes). Fish were fasted for 24 h prior to sampling and 110	  

tissue samples were dissected and immediately frozen in dry ice and stored at -80 ºC. A 111	  

homogeneous sample of about 100 mg of tissue, from the same relative position in all 112	  

animals, was collected from: stomach (Sto), anterior intestine (AI), posterior intestine 113	  

(PL), liver (L), spleen (Spl), anterior kidney (K), heart (H), ventral skin (VS), dorsal 114	  

skin (DS), and ovaries (O). Other tissues including eye (E, closest to mouth), brain (B), 115	  

olfactory rosettes (OR) and one testis (T), were sampled whole, and for gills (G) one gill 116	  

arch was taken from the middle region.    117	  

 118	  

2.2. Dietary experiment and sampling 119	  

Solea senegalensis (Kaup, 1858) with an average body weight (BW) of 5.0 ± 0.1 g 120	  

were distributed into twelve rectangular flat bottom 20 l tanks (containing 50 fish each) 121	  

and cultured in a recirculation system at CCMAR, University of Faro, Portugal, at a 122	  

temperature of 19.3 ± 1.2, salinity of 32, and under a 12-h light/12-h dark photoperiod 123	  

for 13 weeks, to an average final weight of 22.3 ± 2.1 g. Fish were fed the experimental 124	  
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diets using automatic feeders (22 h/day). Given the passive feeding behavior of sole, the 125	  

daily feed ration was reduced by 10% in the case of excess uneaten feed and increased 126	  

by 10% in the absence of uneaten feed. The fish were fed 4 isoproteic 2 mm extruded 127	  

diets (to triplicate tanks) which differed in total lipid level (either low, LL ~8 % or high, 128	  

HL ~18 %) and fatty acid composition. The FLL and FHL diets had 100 % of the lipid 129	  

supplied by FO, while 75 % of the FO in diets VLL and VHL was replaced by a VO 130	  

blend (Table 1). These diets were formulated to meet the nutritional requirements of 131	  

Senegalese sole and were formulated and manufactured by Sparos Lda. (Portugal). 132	  

At the end of the experiment fish were fasted for 24 h (t0) and three individual fish 133	  

per tank were sacrificed with a lethal dose of tricaine methanesulfomnate (MS222; 134	  

Sigma, Sintra, Portugal). Samples of anterior intestine, liver and flesh (muscle) were 135	  

taken, quickly frozen on dry ice and stored at -80 ºC pending FA and gene expression 136	  

analysis. In addition, whole intestines and livers from two fish per tank were collected 137	  

and pooled to immediately perform the fatty acyl elongation and desaturation activity 138	  

assays (see below). Three fish per tank were then force fed 0.15% average BW (10 139	  

pellets) of their respective diets and 6 h after feeding (t6) were sacrificed and samples of 140	  

anterior intestine and liver were excised for gene expression analysis.  141	  

This study was directed by trained researchers (following FELASA category C 142	  

recommendations) and conducted according to the guidelines on the protection of 143	  

animals used for scientific purposes from the European directive 2010/63/UE). 144	  

 145	  

2.3. Determination of enterocyte and hepatocyte fatty acyl elongation/desaturation 146	  

activities 147	  

For assay of LC-PUFA biosynthesis, livers and intestines were carefully dissected 148	  

from six fish (3 pools of 2 fish) to produce three hepatocyte and three enterocyte 149	  
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preparations per treatment. Each pool of tissues was chopped, incubated with 1 % 150	  

collagenase and cells sieved through 100 µm nylon gauze as described in detail 151	  

previously [25]. One hundred µL of each cell preparation was taken for protein 152	  

determination by the method of Lowry et al. [26], following incubation with 1 M 153	  

NaOH/0.25 % (w/v) SDS for 1 h at 60 °C. For each cell preparation, two 5 ml portions 154	  

were dispensed into 25 cm2 tissue culture flasks and incubated at 20 °C for 1 h with 155	  

0.25 µCi (final fatty acid concentration, 2 µM) of either [1-14C]18:3n-3 or [1-14C]20:5n-156	  

3, added as complexes with fatty acid free-bovine serum albumin (BSA) [27]. After  157	  

Table 1 158	  

Formulation and proximate composition of the experimental diets. 159	  

 
Experimental diets 

 
FLL VLL FHL VHL 

Ingredients (%) 
    Fishmeal 70 LT1 22.00 22.00 22.00 22.00 

Fishmeal 602  15.00 15.00 15.00 15.00 
Fish protein hydrolisate3 5.00 5.00 5.00 5.00 
Squid meal4 5.00 5.00 5.00 5.00 
Pea protein concentrate5 4.00 4.00 4.00 4.00 
Soy protein concentrate6 2.00 2.00 2.00 2.00 
Soybean meal 487 9.80 9.80 10.00 10.00 
Wheat gluten8 7.00 7.00 10.10 10.10 
Corn gluten meal9 5.00 5.00 4.50 4.50 
Pea grits10 11.10 11.10 2.50 2.50 
Wheat meal 9.00 9.00 4.80 4.80 
Fish oil11 2.60 0.65 12.60 3.15 
Rapeseed oil12   0.65   3.15 
Soybean oil12   0.65   3.15 
Linseed oil12   0.65   3.15 
Vitamin & Mineral Premix13 1.00 1.00 1.00 1.00 
Binder (guar gum)14 1.00 1.00 1.00 1.00 

     Proximate composition 
    Moisture (%) 5.5 4.6 4.3 4.4 

Crude Protein (% DM) 56.0 56.9 58.0 57.2 
Crude Fat (% DM) 7.9 7.4 17.6 17.4 
Ash (% DM) 10.5 10.7 10.4 10.3 
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     1 Peruvian fishmeal LT: 71% crude protein (CP), 11% crude fat (CF), EXALMAR, Peru. 160	  
2 Fair Average Quality (FAQ) fishmeal: 62% CP, 12%CF, COFACO, Portugal. 161	  
3 CPSP 90: 84% CP, 12% CF, Sopropêche, France. 162	  
4 Super prime squid meal: 80% CP, 3.5% CF, Sopropêche, France. 163	  
5 Lysamine GP: 78% CP, 8% CF, ROQUETTE, France. 164	  
6 Soycomil P: 65% CP, 0.8% CF, ADM, The Netherlands. 165	  
7 Solvent extracted dehulled soybean meal: 47% CP, 2.6% CF, SORGAL SA, Portugal. 166	  
8 VITEN: 85.7% CP, 1.3% CF, ROQUETTE, France. 167	  
9 Corn gluten feed: 61% CP, 6% CF, COPAM, Portugal. 168	  
10 Aquatex G2000: 24% CP, 0.4% CF, SOTEXPRO, France. 169	  
11 COPPENS International, The Netherlands. 170	  
12 Henry Lamotte Oils GmbH, Germany. 171	  
13 Premix for marine fish, PREMIX Lda, Portugal. Vitamins (IU or mg/kg diet): DL-alpha tocopherol acetate, 100 mg; sodium 172	  
menadione bisulphate, 25mg; retinyl acetate, 20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30mg; riboflavin, 30mg; pyridoxine, 173	  
20mg; cyanocobalamin, 0.1mg; nicotinic acid, 200mg; folic acid, 15mg; ascorbic acid, 1000mg; inositol, 500mg; biotin, 3mg; 174	  
calcium panthotenate, 100mg; choline chloride, 1000mg, betaine, 500mg. Minerals (g or mg/kg diet): cobalt carbonate, 0.65mg; 175	  
copper sulphate, 9mg; ferric sulphate, 6mg; potassium iodide, 0.5mg; manganese oxide, 9.6mg; sodium selenite, 0.01mg; zinc 176	  
sulphate,7.5mg; sodium chloride, 400mg; calcium carbonate, 1.86g; excipient wheat middlings. 177	  
14 Guar gum 101 HV- E412, Seah International, France.   178	  
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incubation, cells were harvested, washed and lipid extracted as described previously 179	  

[25]. Total lipid was transmethylated, fatty acid methyl esters (FAME) prepared and 180	  

separated by argentation (silver nitrate) TLC as described previously [28]. 181	  

Radiolabelled FAME were located on TLC plate by autoradiography, and quantified by 182	  

liquid scintillation after scraping from the TLC plates [29].  183	  

  184	  

2.4. Fatty acid composition analysis 185	  

Total lipids of the experimental diets (Table 2) and intestine, liver and muscle from a 186	  

pool of 3 fish per tank (n = 3 per treatment) were extracted by chloroform/methanol 187	  

(2:1, v/v) according to Folch et al. [30] and quantified gravimetrically after evaporation 188	  

of the solvent under nitrogen flow, followed by vacuum desiccation overnight. Total 189	  

lipids were resuspended at 20 mg/ml in chloroform/methanol (2:1) containing 0.01 % 190	  

BHT and 100 µl subjected to acid-catalyzed transesterification with 21:0 internal 191	  

standard [31]. FAME were extracted using isohexane/diethyl ether (1:1, v/v), purified 192	  

by TLC (Silica gel 60, VWR, Lutterworth, UK) and analyzed by gas–liquid 193	  

chromatography on a Thermo Electron-TraceGC (Winsford, UK) instrument fitted with 194	  

a BPX70 capillary column (30 m × 0.25 mm id; SGE, UK), using a two-stage thermal 195	  

gradient initially at 40 °C/min from 50 °C (injection temperature) to 150 °C and then to 196	  

250 °C at 2 ºC/min. Helium (1.2 ml/min constant flow rate) was used as the carrier gas 197	  

and on-column injection and flame ionization detection was performed at 250 °C. Fatty 198	  

acid were identified by comparison with known standards (Supelco Inc., Spain) and a 199	  

well-characterized fish oil (Marinol, Stepan Specialty Products, LLC, USA) and 200	  

quantified using Chrom-card for Windows (TraceGC, Thermo Finnigan, Italy).  201	  

 202	  

 203	  
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Table 2 204	  

Fatty acid composition, expressed as % total FA or µg/mg DW (in brackets), of 205	  

experimental diets  (n = 3). 206	  

 
Experimental diets 

 
FLL VLL FHL VHL 

Total SFA 23.1 (11.1)  20.4 (11.2) 26.1 (26.1) 17.3 (19.9) 
Total MUFA 27.1 (13.0) 29.8 (16.3) 24.8 (24.8) 32.7 (37.5) 
18:2n-6 12.1 (5.8) 17.4 (9.5) 6.7 (6.7) 20.4 (23.4) 
18:3n-3 1.7 (0.8) 5.5 (3.0) 1.3 (1.3) 11.9 (13.7) 
18:4n-3 1.9 (0.9) 1.5 (0.8) 2.3 (2.4) 1.1 (1.3) 
20:4n-6 1.1 (0.5) 0.7 (0.4) 1.2 (1.3) 0.4 (0.5) 
20:4n-3 0.6 (0.3) 0.4 (0.2) 0.8 (0.8) 0.3 (0.3) 
20:5n-3 15.5 (7.5) 11.1 (6.1) 18.3 (18.3) 7.5 (8.6) 
22:5n-3 1.1 (0.5) 0.8 (0.5) 1.5 (1.5) 0.6 (0.7) 
22:6n-3 12.8 (6.2) 9.8 (5.4) 13.0 (13.1) 6.1 (7.0) 
Total PUFA 48.0 (23.1) 48.0 (26.3) 46.7 (46.7) 48.9 (56.1) 
Total n-3 PUFA 34.0 (16.3) 29.3 (16.0) 37.8 (37.8) 27.6 (31.6) 
Total n-6 PUFA 14.0 (6.7) 18.7 (10.2) 8.9 (8.9) 21.3 (24.5) 
n-3/n-6 2.4 1.6 4.2 1.3 
DHA/EPA 0.8 0.9 0.7 0.8 

      207	  

2.5. RNA extraction and real time quantitative PCR (qPCR) 208	  

Total RNA was isolated from anterior intestine and liver of 2 individuals per tank (n 209	  

= 6 per dietary treatment) at t0 and t6, and from a range of tissues from three individuals 210	  

(n = 3). For RNA extraction, samples were homogenized in 1ml of TRIzol (Ambion, 211	  

Life Technologies, Madrid, Spain) with 50 mg of 1mm diameter zirconium glass beads 212	  

(Mini-Beadbeater, Biospec Products Inc., U.S.A.). Solvent extraction was performed 213	  

following manufacturer’s instructions and RNA quality and quantity assessed by gel 214	  

electrophoresis and spectrophotometry (NanoDrop2000, Thermo Fisher Scientific, 215	  

Madrid, Spain). Two micrograms of total RNA per sample were reverse transcribed into 216	  

cDNA using the High-Capacity cDNA RT kit (Applied Biosystems, Life Technologies, 217	  

U.S.A.), following manufacturer’s instructions, but using a mixture of random primers 218	  
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(1.5 µl as supplied) and anchored oligo-dT (0.5 µl at 400 ng/µl, Eurogentec, Cultek, 219	  

S.L., Madrid, Spain). Negative controls (containing no enzyme) were performed to 220	  

check for genomic DNA contamination. A similar amount of cDNA was pooled from 221	  

all samples from the dietary experiment and the remaining cDNA was diluted 60-fold 222	  

with water. The cDNA used for the tissue expression profile was diluted 20-fold.  223	  

Expression of fatty acyl elongase (elovl5) and Δ4-desaturase (Δ4fad) was quantified 224	  

using primers reported previously [14]. Ubiquitin (ubq), 40S ribosomal protein S4 225	  

(rps4) and elongation factor 1 alpha (ef1a1) were used as reference genes to study 226	  

nutritional regulation, and 18S rRNA (18s) to characterize tissue distribution of elovl5 227	  

and Δ4fad transcripts [32] (Table 3). Amplifications were carried out in duplicate on a 228	  

CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Alcobendas, Spain) in a 229	  

final volume of 20 µl containing 5 µl of diluted cDNA (except for 18s, for which 1 µl 230	  

was used), 0.5 µM of each primer and 10 µl of SsoAdvanced Universal SYBR Green 231	  

Supermix (Bio-Rad) and included a systematic negative control (NTC-non template 232	  

control). The qPCR profiles contained an initial activation step at 95 °C for 2 min, 233	  

followed by 35 cycles: 15 s at 95 °C, 1 min at 60 ºC (target genes) or 15 s at 95 °C, 1 234	  

min at 70 °C (reference genes). After the amplification phase, a melt curve was 235	  

performed enabling confirmation of the amplification of a single product in each 236	  

reaction. Non-occurrence of primer-dimer formation in the NTC was also confirmed. 237	  

The amplification efficiency of the primer pairs was assessed by serial dilutions of the 238	  

cDNA pool.   239	  

 240	  

2.6. Statistical analysis 241	  

Elongation and desaturation activities and arcsin-transformed FA percentage 242	  

composition data were analyzed by two-way ANOVA in SPSS v20 (SPSS Inc., 243	  
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Chicago, IL, U.S.A.), to assess significant effects of the factors "lipid level" and "lipid 244	  

source" and their respective interaction, at a significance level of 0.05. Gene expression 245	  

results from the dietary experiment were imported into the software qBase+ 246	  

(Biogazelle,	   Zwijnaarde, Belgium), and normalized relative quantities calculated 247	  

employing target and run-specific amplification efficiencies and using the geometric 248	  

mean of the three reference genes (M values 0.136-0.271 and coefficient of variance, 249	  

CV, 0.055-0.107 depending on tissue and time point) [33]. Furthermore, inter-run 250	  

calibrators were included in all runs to offset differences in expression between time 251	  

points (t0 and t6, which were analyzed in separate runs). The final values obtained 252	  

(calibrated normalized relative quantities, CNRQ) [34] were exported and analyzed by 253	  

two-way ANOVA in SPSS v20. In addition, the expression levels of elovl5 and Δ4fad in 254	  

different tissues were determined using the delta-delta CT method (2-ΔΔCT) describing 255	  

the normalized (by 18s) relative expression (RE) of the target genes in each tissue in 256	  

relation to the average across all tissues [35]. The differential tissue expression of each 257	  

gene was assessed in SPSS v20 using the Welch test, followed by the Games-Howell 258	  

test (both tests not assuming homogeneity of variances) to perform multiple 259	  

comparisons of the RE values across tissues.    260	  

 261	  

Table 3  262	  

Primers used for real-time quantitative PCR (qPCR). Shown are sequence and annealing 263	  

temperature (Ta) of the primer pairs, size of the fragment produced, reaction efficiency 264	  

and accession number of the target and reference genes.  265	  

Transcript Primer sequence Fragment  Ta Efficiency* (%) Accession No. 
Δ4fad  AAGCCTCTGCTGATTGGAGA 131 bp 60 ºC 99.91/102.12 JN673546 

 GGCTGAGCTTGAAACAGACC     
elovl5 TTTCATGTTTTTGCACACTGC 161 bp 60 ºC 100.71/100.42 JN793448 

 GACACCTTTAGGCTCGGTTTT     
ubqa AGCTGGCCCAGAAATATAACTGCGACA 93 bp 70 ºC 100.61/98.82 AB291588 

 ACTTCTTCTTGCGGCAGTTGACAGCAC     
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rps4a GTGAAGAAGCTCCTTGTCGGCACCA 83 bp 70 ºC 99.71/100.12 AB291557 
 AGGGGGTCGGGGTAGCGGATG     

ef1a1a GATTGACCGTCGTTCTGGCAAGAAGC 142 bp 70 ºC 99.61/100.1 AB326302 
 GGCAAAGCGACCAAGGGGAGCAT     

18sb GAATTGACGGAAGGGCACCACCAG 148 bp 70 ºC - AM882675 
 ACTAAGAACGGCCATGCACCACCAC     

a Dietary trial; b Tissue distribution. 266	  

* Average efficiency from 2 qPCR runs (T0 and T6) done in 1anterior intestine and 267	  

2liver. R2 > 0.993 in all runs. 268	  

 269	  

3. Results 270	  

3.1. Tissue distribution of genes of LC-PUFA biosynthesis 271	  

The tissue expression profile was determined by qPCR for both elovl5 and Δ4fad, 272	  

which showed significant differences between tissues (p<0.001 for both genes), with a 273	  

similar pattern of tissue distribution. Both genes showed a predominant expression in 274	  

liver and intestine (equally in the anterior and posterior sections), although the 275	  

individual variation in these organs tended to be high (affecting the statistical analysis 276	  

results), followed by brain (showing much lower individual variability), eye and the 277	  

olfactory rosettes (at least one order of magnitude lower, except for Δ4fad in brain) (Fig. 278	  

1). What differed between the two genes was that elovl5 was also expressed in kidney 279	  

and skin (dorsal and ventral), whereas Δ4fad expression was also found in stomach, 280	  

testis and ovaries.  281	  
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	   282	  

Fig. 1. Tissue distribution of elovl5 (A) and Δ4fad (B) transcripts. Values are 283	  

represented in logarithmic scale and correspond to the normalized (by 18s) relative 284	  

expression (RE) of the target genes in each tissue in relation to the average across all 285	  

tissues, calculated using the delta-delta CT method (2-ΔΔCT). Values are an average of 3 286	  

individuals (n = 3) with standard deviation (SD). B- brain, E- eye, OR- olfactory 287	  

rosettes, G- gills, H- heart, K- kidney, Spl- spleen, L- liver, Sto- stomach, AI- anterior 288	  

intestine, PI- posterior intestine, M- muscle, DS- dorsal skin, VS- ventral skin, T- testis, 289	  

O- ovary. Different letters indicate significant differences between tissues (p<0.05), 290	  

determined by the Games-Howell test (SPSS v20), for each one of the genes. 291	  

 292	  

3.2. Elongation and desaturation activities in enterocytes and hepatocytes 293	  

Assay of fatty acyl elongation and desaturation activities in enterocytes and 294	  

hepatocytes of Senegalese sole showed no apparent ∆6 desaturation of 14C-ALA in 295	  

either cell type with only elongation to 20:3n-3 observed (Table 4). In enterocytes, both 296	  

lipid level and lipid source, as well as the interaction between the two factors, 297	  

significantly affected the elongation activity, which was higher in fish fed the VO and 298	  

HL diets, with a clear synergistic effect. In hepatocytes, on the other hand, only dietary 299	  

lipid level had a significant effect, with higher elongation activity being measured in 300	  
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fish fed the LL diets. Nevertheless, p-values of both lipid source and interaction were 301	  

very close to being significant, which means that with a higher replicate number this 302	  

result could change. However, the elongation activity in fish fed the VHL diet appeared 303	  

to be much lower in the hepatocytes compared to the enterocytes and hence the increase 304	  

in elongation activity in fish fed the VO diets compared to the FO diets was only 305	  

noticeable at a LL level.    306	  

In contrast, substantial amounts of radioactivity from 14C-EPA were recovered in 307	  

22:5n-3, 24:5n-3 and DHA, indicating both elongation and Δ4-desaturation activities in 308	  

enterocytes and hepatocytes, that were significantly affected by both lipid level and 309	  

source, and also showed significant interaction (Table 5). These activities were higher in 310	  

fish fed the VO and LL diets except elongation of EPA to 22:5n-3 in enterocytes, which 311	  

was not affected by dietary lipid level. However, effects of dietary treatments were 312	  

more subtle in the enterocytes compared to the hepatocytes, where a synergistic effect 313	  

was clearly observed in fish fed the VLL diet.  314	  

 315	  

3.3. Nutritional regulation of gene transcription 316	  

The transcriptional regulation of elovl5 and Δ4fad expression in response to dietary 317	  

lipid level and FA profile was investigated by qPCR. Results showed that neither 318	  

dietary factor significantly influenced basal (t0) or postprandial (t6) levels of elovl5 or 319	  
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Table 4  320	  

Elongation of 14C-ALA (pmol/mg protein/h) in Solea senegalensis hepatocytes and enterocytes.  321	  

 Experimental diets  P-value (two-way ANOVA) 
 FLL VLL FHL VHL  Lipid level Lipid source Interaction 
Enterocyte         
20:3n-3 0.3 ± 0.0 (0.9 %) 1.1 ± 0.1 (2.6 %) 0.4 ± 0.0 (1.1 %) 2.8 ± 0.2 (2.4 %)  <0.0001 <0.0001 <0.0001 
         
Hepatocyte         
20:3n-3 0.5 ± 0.2 (1.2 %) 0.8 ± 0.1 (1.8 %) 0.2 ± 0.0 (1.3 %) 0.2 ± 0.0 (0.7 %)  0.0001 0.0543 0.0543 

Results are means ± SD (n = 3). Values in brackets represent the percentage of 14C-ALA elongated. No desaturated products of  322	  
14C-ALA were observed. 323	  
 324	  

Table 5  325	  

Elongation and desaturation (pmol/mg protein/h) of 14C-EPA in Solea senegalensis hepatocytes and enterocytes. 326	  

 Experimental diets  P-value (two-way ANOVA) 
 FLL VLL FHL VHL  Lipid level Lipid source Interaction 
Enterocyte         
22:5n-3 6.8 ± 0.7 (11.7%) 10.5 ± 0.8 (15.7%) 5.7 ± 0.1 (9.0%) 14.6 ± 0.4 (18.1%)  0.002 <0.001 <0.001 
24:5n-3 0.9 ± 0.0 (1.5%) 0.8 ± 0.1 (1.3 %) 0.6 ± 0.0 (0.9%) 0.9 ± 0.0 (1.1%)  0.011 0.011 <0.001 
22:6n-3 1.4 ± 0.1 (2.5%) 1.8 ± 0.1 (3.0%) 1.2 ± 0.1 (1.9%) 1.3 ± 0.1 (1.7%)       <0.001        0.003         0.032 
 
Hepatocyte 

        

22:5n-3 11.1 ± 0.2 (11.7%) 29.3 ± 0.2 (29.0%) 5.4 ± 0.3 (7.1%) 6.4 ± 0.2 (8.2%)  <0.001 <0.001 <0.001 
24:5n-3 1.2 ± 0.0 (1.3%) 2.1 ± 0.0 (2.0%) 0.6 ± 0.0 (0.9%) 0.8 ± 0.0 (1.1%)  <0.001 <0.001 <0.001 
22:6n-3 2.9 ± 0.1 (3.0%) 5.0 ± 0.3 (4.6%) 0.9 ± 0.0 (1.3%) 1.7 ± 0.1 (2.3%)  <0.001 <0.001 0.002 

Results are means ± SD (n = 3). Values in brackets represent the percentage of 14C-EPA desaturated or elongated. 327	  
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Δ4fad transcripts in the intestine (Fig. 2). However, in liver, a significant effect of 328	  

lipid level was observed in the basal (t0) expression of both elovl5 and Δ4fad, with 329	  

significantly higher transcript levels in fish fed the LL diets (Fig. 3). On the other hand, 330	  

6 h after feeding the transcription of Δ4fad was significantly affected by dietary lipid 331	  

source, being up-regulated in fish fed the VO diets, and a similar but non-significant 332	  

trend was observed in elovl5. 333	  

 334	  

 335	  

Fig. 2. Nutritional regulation of elovl5 (A) and Δ4fad (B) gene transcription in intestine 336	  

of Solea senegalensis juveniles after 24h-fasting (t0) and 6h after refeeding (t6). Values 337	  

are calibrated normalized relative quantities (CNRQ) obtained from qBASE+, 338	  

corresponding to an average of 6 individuals (n = 6) with standard deviation (SD). None 339	  

of the observed differences were statistically significant.  340	  
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 342	  

Fig. 3. Nutritional regulation of elovl5 (A) and Δ4fad (B) gene transcription in liver of 343	  

Solea senegalensis juveniles after 24h-fasting (t0) and 6h after refeeding (t6). Values 344	  

are calibrated normalized relative quantities (CNRQ) obtained from qBASE+, 345	  

corresponding to an average of 6 individuals (n = 6) with standard deviation (SD). 346	  

Columns (representing dietary treatments) with different letters within each time point 347	  

are significantly affected by dietary 'lipid level' or 'lipid source' (P<0.05). 348	  

 349	  

3.4. Lipid composition 350	  

The FA composition of the experimental diets reflected the main lipid source used in 351	  

their formulations, with the FLL and FHL diets being richer sources of saturated fatty 352	  

acids (SFA) and LC-PUFA, particularly EPA and DHA, characteristic of FO, while the 353	  

VLL and VHL diets presented higher levels of monounsaturated fatty acids (MUFA), 354	  

LOA and ALA, characteristic of VO (Table 1). In contrast, dietary effects on fish FA 355	  

profiles were diverse and dependent on tissue (Tables 6 - 8). In terms of total lipid 356	  

contents of the tissues, differences were more marked between fish fed HL or LL diets 357	  

than between those fed FO and VO-based diets, but a significant difference related to 358	  

lipid level was only measured in the intestine. 359	  
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Table 6 360	  

Total lipid (% of DW) and fatty acid composition (% total FA) of intestinal tissue.	  361	  

	  362	  

	  363	  

	  364	  

	  365	  

	  366	  

	  367	  

 368	  

Results are means ± SD (n = 3). 1Includes 14:0, 16:0 and 18:0; 2Includes 16:1, 18:1n-9, 18:1n-7, 20:1 and 22:1; 3Includes 18:3n-6, 20:4n-6, 369	  
22:4n-6 and 22:5n-6; 4Includes 18:4n-3, 20:3n-3, 20:4n-3, 21:5n-3 and 22:4n-3. 370	  

	  371	  

	  372	  

	  373	  

	  374	  

 375	  

 376	  

 
Experimental diets 

 
P-value (two-way ANOVA) 

 
FLL VLL FHL VHL 

 
Lipid level Lipid source Interaction 

Total lipids 8.8 ± 1.5 8.7 ± 3.7 12.7 ± 2.7 12.8 ± 1.2 
 

0.026 0.991 0.953 

      
   

Total SFA1 27.7 ± 1.3 26.6 ± 3.2 25.1 ± 3.7 19.2 ± 2.0 
 

0.013 0.058 0.171 
Total MUFA2 24.5 ± 2.6 24.6 ± 3.7 35.7 ± 2.1 39.1 ± 1.9 

 
<0.001 0.284 0.312 

18:2n-6 10.7 ± 0.5 13.7 ± 1.7 7.5 ± 0.3 21.3 ± 1.3 
 

0.009 <0.001 <0.001 
18:3n-3 0.7 ± 0.0 1.6 ± 0.3 1.2 ± 0.2 7.5 ± 0.7 

 
<0.001 <0.001 <0.001 

20:5n-3 1.3 ± 0.2 0.8 ± 0.2 3.1 ± 1.5 1.3 ± 1.3 
 

0.089 0.097 0.275 
22:5n-3 4.9 ± 0.3 3.5 ± 0.7 5.8 ± 1.8 1.5 ± 0.1 

 
0.368 0.001 0.034 

22:6n-3 21.5 ± 1.6 21.0 ± 1.8 14.4 ± 1.1 5.8 ± 0.3 
 

<0.001 <0.001 0.001 
Total n-6 PUFA3 16.2 ± 0.6 18.8 ± 2.2 11.6 ± 0.3 24.0 ± 1.5 

 
0.691 <0.001 <0.001 

Total n-3 PUFA4 29.0 ± 2.3 27.6 ± 1.9 26.3 ± 5.0 16.5 ± 1.0 
 

0.004 0.011 0.041 
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Table 7 377	  

Total lipid (% of DW) and fatty acid composition (% total FA) of liver.	  378	  

	  379	  

	  380	  

	  381	  

	  382	  

	  383	  

	  384	  

 385	  

Results are means ± SD (n = 3). 1Includes 14:0, 16:0 and 18:0; 2Includes 16:1, 18:1n-9, 18:1n-7, 20:1 and 22:1; 3Includes 18:3n-6, 20:3n-6, 386	  
20:4n-6, 22:4n-6 and 22:5n-6; 4Include 18:4n-3, 20:4n-3, 21:5n-3 and 22:4n-3. 387	  

	  388	  

	  389	  

	  390	  

	  391	  

	  392	  

	  393	  

 
Experimental diets 

 
P-value (two-way ANOVA) 

 
FLL VLL FHL VHL 

 
Lipid level Lipid source Interaction 

Total lipids 13.1 ± 2.6 12.5 ± 3.5 15.2 ± 1.8 15.6 ± 5.5 
 

0.279 0.967 0.818 

      
   

Total SFA1 24.7 ± 3.9 22.5 ± 5.7 23.0 ± 1.4 20.0 ± 3.2 
 

0.372 0.278 0.869 
Total MUFA2 26.2 ± 1.1 28.9 ± 3.0 28.0 ± 1.4 29.0 ± 2.1 

 
0.468 0.152 0.501 

18:2n-6 7.2 ± 1.1 15.3 ± 8.9 12.8 ± 2.1 19.0 ± 3.3 
 

0.138 0.034 0.745 
18:3n-3 1.1 ± 0.0 5.3 ± 4.0 1.4 ± 0.3 5.8 ± 3.6 

 
0.835 0.025 0.935 

20:5n-3 9.1 ± 6.2 6.1 ± 8.0 2.2 ± 0.8 1.8 ± 0.3 
 

0.092 0.584 0.670 
22:5n-3 5.6 ± 3.5 2.7 ± 0.9 4.6 ± 0.7 3.6 ± 0.1 

 
0.954 0.100 0.392 

22:6n-3 18.7 ± 4.3 13.6 ± 3.9 21.3 ± 4.5 14.4 ± 4.3 
 

0.502 0.041 0.723 
Total n-6 PUFA3 10.5 ± 2.0 18.1 ± 9.2 16.8 ± 1.5 23.1 ± 2.5 

 
0.083 0.040 0.832 

Total n-3 PUFA4 36.9 ± 1.3 29.3 ± 5.5 30.7 ± 3.7 26.6 ± 1.6 
 

0.057 0.019 0.399 
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Table 8 394	  

Total lipid (% of DW) and fatty acid composition (% total FA) of muscle.	  395	  

	  396	  

	  397	  

	  398	  

	  399	  

	  400	  

	  401	  

 402	  

Results are means ± SD (n = 3). 1Includes 14:0, 16:0 and 18:0; 2Includes 16:1, 18:1n-9, 18:1n-7, 20:1 and 22:1; 3Includes 18:3n-6, 20:3n-6, 403	  
20:4n-6, 22:4n-6 and 22:5n-6; 4Includes 18:4n-3, 20:3n-3, 20:4n-3, 21:5n-3 and 22:4n-3. 404	  

	  405	  

	  406	  

	  
Experimental diets	  

	  
P-value (two-way ANOVA)	  

	  
FLL VLL FHL VHL 

	  
Lipid level Lipid source Interaction 

Total lipids 1.7 ± 0.3 2.3 ± 1.1 2.2 ± 0.4 2.3 ± 0.2 
 

0.461 0.333 0.415 

      
   

Total SFA1 25.6 ± 1.0 23.7 ± 1.1 25.6 ± 1.8 20.3 ± 0.4 
 

0.039 0.001 0.038 
Total MUFA2 22.4 ± 1.3 26.6 ± 5.1 25.7 ± 2.3 24.0 ± 0.4 

 
0.852 0.458 0.112 

18:2n-6 9.6 ± 0.6 13.3 ± 1.6 6.4 ± 0.4 16.2 ± 0.2 
 

0.743 <0.001 <0.001 
18:3n-3 0.8 ± 0.2 2.8 ± 1.3 0.9 ± 0.3 5.9 ± 0.1 

 
0.004 <0.001 0.005 

20:5n-3 2.8 ± 1.3 2.7 ± 0.2 6.7 ± 0.6 2.5 ± 0.1 
 

0.002 0.001 0.001 
22:5n-3 5.3 ± 0.3 4.0 ± 0.4 6.3 ± 0.3 4.0 ± 0.2 

 
0.013 <0.001 0.024 

22:6n-3 27.0 ± 1.4 21.3 ± 5.9 21.6 ± 2.2 21.3 ± 0.8 
 

0.191 0.150 0.183 
Total n-6 PUFA3 13.2 ± 0.3 16.2 ± 1.1 9.6 ± 0.2 19.3 ± 0.4 

 
0.485 <0.001 <0.001 

Total n-3 PUFA4 36.9 ± 1.5 31.8 ± 4.7 37.4 ± 1.7 34.6 ± 1.0 
 

0.305 0.032 0.474 
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In the intestine there were significant effects of dietary lipid level and source, and 407	  

significant interaction between the two factors, on the main FA with the exception of 408	  

EPA (likely due to the high variability in the content of this FA) (Table 6). In addition, 409	  

total SFA and MUFA were only significantly affected by dietary lipid level, while for 410	  

22:5n-3 and total n-6 PUFA there was a significant effect of lipid source and significant 411	  

interaction. Also noteworthy in this tissue was the fact that similar high levels of DHA 412	  

were measured in fish fed the FLL and VLL diets. In liver the FA profile showed less 413	  

significant differences and only the lipid source caused significant changes, with higher 414	  

relative levels of LOA, ALA (and hence total n-6 and n-3 PUFA) and lower contents of 415	  

DHA in fish fed the VO-based diets (Table 7). However, the FA contents in liver, 416	  

particularly of the LC-PUFA, tended to show higher variability, which might have 417	  

contributed to lower differences being found in this organ. In muscle, similar to 418	  

intestine, there were significant effects of either one or both factors as well as 419	  

significant interactions in most of the main FA except for total MUFA, total n-3 PUFA 420	  

and, strikingly, DHA (Table 8). 421	  

 422	  

4. Discussion 423	  

Although the most direct route of DHA biosynthesis involves elongation of EPA to 424	  

22:5n-3 (DPA; docosapentaenoic acid) followed by Δ4 desaturation to DHA, for many 425	  

decades Δ4Fad could only be found in lower eukaryotes [e.g., 9-12] and the only known 426	  

pathway of DHA biosynthesis in vertebrates was the "Sprecher" pathway [8]. However, 427	  

genes with a putative Δ4Fad activity were recently revealed in three teleost species with 428	  

habitats ranging from freshwater to marine and dietary habits from herbivore to 429	  

carnivore [13-15]. In these studies the activity of the Δ4fad transcript was assessed 430	  

using an in vitro heterologous yeast expression assay, and further work was necessary to 431	  
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unequivocally establish that this pathway is active and had physiological relevance in 432	  

vivo, meaning that the species possessing this gene are able to synthesize DHA via a 433	  

Δ4Fad-dependent pathway.   434	  

Previous strong circumstantial evidence of the possible existence of an active LC-435	  

PUFA biosynthesis pathway in Senegalese sole has been unequivocally confirmed in 436	  

the present study in which both enterocytes and hepatocytes were able to produce 437	  

labeled DPA and DHA from 14C-EPA. Although labeled 24:5n-3 was also produced, the 438	  

lack of Δ6 desaturase activity suggested this could not be subsequently desaturated in 439	  

Senegalese sole and that the DHA must have arisen from Δ4 desaturation of DPA. In 440	  

general, activity appeared higher in hepatocytes than in enterocytes, but we can 441	  

conclude that DHA biosynthesis from EPA can occur both in the intestine and in the 442	  

liver. This is not surprising considering that the intestine is not simply a site of 443	  

absorption but also of lipid metabolism, including reacylation and packaging of dietary 444	  

lipids and LC-PUFA biosynthesis activity, as described in salmonid species [36,37]. In 445	  

addition, the results showed that the desaturation and elongation activities in the two 446	  

cell types were influenced by both the FA composition and lipid content of the diet.  447	  

When S. senegalensis were fed VO-based diets containing lower levels of LC-PUFA 448	  

there were significantly higher activities of elongation and desaturation from EPA in the 449	  

enterocytes and hepatocytes. It was shown previously that elongation and desaturation 450	  

(Δ6Fad and Δ5Fad) activities were increased in both enterocytes and hepatocytes of 451	  

salmonid species when VO replaced FO in the diet [27,38]. Furthermore, increased 452	  

DHA production in hepatocytes was associated with a significant up-regulation of 453	  

Δ4fad expression in liver of Senegalese sole that were fed the VO-based diets at 6h after 454	  

feeding. A similar trend was observed with elovl5 expression in the liver postprandially 455	  

but, in this case, changes were non-significant, which is consistent with previous data 456	  
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from sole larvae showing a lower responsiveness of elovl5 than Δ4fad transcription to 457	  

dietary LC-PUFA levels [14,34] and from Atlantic salmon showing lower nutritional 458	  

regulation of fatty acyl elongases compared to desaturases [38,39]. However, in these 459	  

and in most other studies investigating nutritional regulation of elovls and fads in 460	  

response to dietary LC-PUFA contents, samples were generally from unfed or fasted 461	  

fish, whereas in the present study no significant effect of FA composition was observed 462	  

in the liver when juveniles were fasting. This result was therefore unexpected and might 463	  

be explained by the fact that in basal conditions dietary lipid level exerted a strong and 464	  

significant effect, which prevailed over, or interacted with, FA composition. On the 465	  

other hand, the present results suggested that dietary FA composition exerted an 466	  

immediate postprandial effect in the transcriptional regulation of these genes, 467	  

independent of their basal expression levels. 468	  

In enterocytes there was no significant transcriptional regulation of the expression of 469	  

either gene at fasting or postprandially, which was unexpected given the observed 470	  

differences in enzyme activity. Nevertheless, the pattern of expression of Δ4fad at t6 471	  

was comparable to that observed in liver, and therefore the absence of significant 472	  

differences may be due to higher variability and lack of statistical power.  473	  

Dietary lipid level had clear effects on fatty acyl elongase and desaturase activities, 474	  

which were significantly lower in hepatocytes of fish fed HL diets. This correlated with 475	  

the basal expression of both elovl5 and Δ4fad in liver showing a significant down-476	  

regulation in fish fed HL diets. Research in mammals has firmly established that FA 477	  

have key roles in regulating expression of genes involved in lipid metabolism and 478	  

energy homeostasis through activation of nuclear receptors and transcription factors, 479	  

and that not all FA have the same effect. In contrast to PUFA, SFA and MUFA have 480	  

little effect, and within PUFA, LC-PUFA are more potent than C18 PUFA [4]. However, 481	  
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few studies exist on the effect of dietary lipid level on the expression of fatty acyl 482	  

desaturase or elongase genes and they tend to be flawed by an experimental design that 483	  

does not enable discriminating effects of total lipid from FA composition. For instance, 484	  

Cho et al. [40], looking at the nutritional regulation of Δ5fad and Δ6fad in rat liver 485	  

showed that, even though these genes were down-regulated by diets rich in 18:2n-6 486	  

(safflower oil) or n-3 LC-PUFA (FO) compared to rats fed a fat-free diet, no differences 487	  

were found between the latter and those fed triolein (containing 18:1n−9). Hence, the 488	  

authors concluded that it was the FA composition rather than lipid content regulating 489	  

the expression of these genes. Another example was a previous study on rainbow trout 490	  

showing a down-regulation of Δ6fad transcription in liver of fish fed HL diets [41]. In 491	  

this case, the increase in lipid level was achieved by adding FO to the diet, hence raising 492	  

the LC-PUFA content, which would explain the results. On the other hand, Martinez et 493	  

al. [42] also reported a down-regulation of Δ5fad and Δ6fad in salmon liver fed a HL 494	  

diet compared to a LL diet with a similar relative FA composition, which supports the 495	  

results from the present study of an effect caused by changes in dietary lipid content. It 496	  

is however noteworthy that salmon fed the HL diet ingested and accumulated higher 497	  

levels of lipids in the liver, implying that the absolute levels of LC-PUFA were also 498	  

higher in this treatment [42].     499	  

In a study looking at the hepatic transcriptome of lean and fat Atlantic salmon 500	  

families which accumulated higher or lower amounts of LC-PUFA in the muscle when 501	  

fed a similar VO-based diet, an interaction was found between flesh adiposity and n-3 502	  

LC-PUFA levels in the regulation of several lipid metabolism genes, particularly of 503	  

cholesterol metabolism, which are regulated by LC-PUFA levels via srebp2 [43]. These 504	  

were down-regulated by higher LC-PUFA levels but only in the lean family. This had 505	  

also been observed in genes of the LC-PUFA biosynthesis pathway, where a significant 506	  
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up-regulation of Δ5fad, Δ6fad and elovl2 when VO replaced FO in the diet was only 507	  

measured in lean Atlantic salmon families [38]. Based on these results, it was suggested 508	  

that absolute, rather than relative, levels of n-3 LC-PUFA may be the determinant factor 509	  

affecting gene transcription [43]. In the present study, this hypothesis could only 510	  

partially explain the results when animals were fasting given that the HL diets provided 511	  

the highest absolute amounts (as µg/mg DW of diet) of EPA and DHA, with levels in 512	  

the VHL diet being slightly higher than in the FLL diet. However, the fish responded in 513	  

a classic way postprandially, with down-regulation of Δ4fad expression in fish fed both 514	  

diets containing FO. Still, the above-mentioned hypothesis refers to regulation driven by 515	  

the FA deposited in the tissues (liver being the main lipid-containing organ in sole) 516	  

rather than a direct dietary influence, which is also less likely in fasting conditions. 517	  

Therefore, it is also important to consider absolute amounts of FA (presented in 518	  

supplementary files S1-3). Levels of LC-PUFA in the liver, expressed as µg FA/mg 519	  

DW, tended to be higher in both HL diets compared to VLL but not compared to FLL, 520	  

but differences were not significant due to large variability of the FA composition data, 521	  

as was already seen for the relative (%) results (supplementary file S2). This high 522	  

variability affected particularly the liver, where there is higher lipid accumulation, and 523	  

does not enable us to verify this hypothesis at present. Nevertheless, if we consider the 524	  

effect at the level of enzyme activity, which was also measured at fasting, results 525	  

showed that elongation and desaturation of EPA were significantly affected by both 526	  

factors, with significant interaction. Therefore, the present study suggests that there is a 527	  

possible effect of dietary lipid level, independent but interrelated with fatty acid 528	  

composition, in regulating the expression and activity of the LC-PUFA synthesis 529	  

pathway. Further studies are required to uncover the mechanisms explaining these 530	  

results, and future experimental designs should consider possible influences from both 531	  
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dietary and body lipid stores origin, and include a higher number of individuals to 532	  

overcome the limitations of an apparently high individual variation in LC-PUFA 533	  

biosynthesis efficiency and possibly also mobilization/transport and deposition of LC-534	  

PUFA in body tissues. 535	  

In enterocytes a similar effect of dietary lipid level was observed as in hepatocytes in 536	  

terms of desaturase activity, which was also significantly reduced in fish fed the HL 537	  

diets. However, elongation activities from EPA to DPA and then to 24:5n-3 showed 538	  

interaction, given that in fish fed the VO-based diets the elongation activity was similar 539	  

or higher in the VHL compared to the VLL treatment. These results, combined with 540	  

gene expression data, might partly explain the FA compositions of intestine, where 541	  

significant interactions were observed in the levels of several FA (including DHA). 542	  

Muscle tissue was also analyzed given that it is the edible portion of the fish and, 543	  

therefore, its composition is of interest to consumers. It was noteworthy that there were 544	  

no significant differences between fish fed the different diets in terms of flesh DHA, as 545	  

previously reported [22], even if the levels of EPA were affected by both lipid level and 546	  

source.  547	  

A question that remained uncertain until now was the possible existence of a separate 548	  

gene with ∆6/∆5Fad activity, which could not be found in sole, or whether the 549	  

characterized ∆4Fad might also possess residual ∆6/∆5-desaturation activity [34]. In the 550	  

present study, hepatocytes and enterocytes isolated from S. senegalensis and incubated 551	  

with [1-14C]ALA did not show any ∆6-desaturation activity with only elongation to 552	  

20:3n-3 apparent. This suggests that S. senegalensis may be unique amongst teleosts in 553	  

which fads have been cloned and functionally characterized so far, where at least one 554	  

Δ6fad has been found [44,45]. In the case of Atlantic salmon (Salmo salar) two separate 555	  

Δ5 and Δ6 genes exist [46,47], while zebrafish (Danio rerio) has a single bifunctional 556	  
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desaturase with both Δ5 and Δ6 activities [48]. Finally, in the only other two vertebrate 557	  

species where a Δ4Fad has been described until now, a second gene was functionally 558	  

characterized and shown to have Δ6/Δ5 activity in vitro [13,15]. Although it remains to 559	  

be shown that the activity of the two fads transcripts that have been functionally 560	  

characterized in S. canaliculatus and C. estor are indeed of physiological relevance in 561	  

vivo, data suggests that, contrary to S. senegalensis, these two species could have all the 562	  

enzymatic abilities required for DHA biosynthesis from C18 PUFA via Δ4-desaturation 563	  

as well as the "Sprecher" pathway. These results are interesting as they point to the high 564	  

evolutionary plasticity and functional diversification of the LC-PUFA synthesis 565	  

pathway in teleosts, most likely linked to habitat-specific food web structures in 566	  

different environments [49]. As previously noted [14], the unique characteristics of the 567	  

S. senegalensis LC-PUFA synthesis pathway might be related to its natural dietary 568	  

regime, associated to its benthic lifestyle, which differs from other species most 569	  

commonly studied so far, having a diet generally poor in lipid and proportionally high 570	  

in EPA. 571	  

In conclusion, results from the present study confirmed the existence of a 572	  

biologically relevant capacity to synthesize DHA from EPA in Senegalese sole, 573	  

consistent with the previously reported substrate specificities of the LC-PUFA 574	  

biosynthesis enzymes characterized in vitro. Furthermore, results appeared to confirm 575	  

the lack of Δ6Fad activity in sole, demonstrating the high plasticity and functional 576	  

variability of this pathway in teleosts. Both elovl5 and Δ4fad had a similar pattern of 577	  

tissue distribution, with a main expression in nutrition-related tissues (liver and 578	  

intestine), followed by tissues with a neural and sensorial function (mainly brain but 579	  

also eye and olfactory rosettes). Both enterocytes and hepatocytes have the capacity to 580	  

biosynthesize DHA, although fatty acyl elongation and desaturation activities tended to 581	  
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be higher in hepatocytes than in enterocytes. In addition, both enzymatic activities and 582	  

gene transcription rates were modulated by dietary lipid level and FA composition, 583	  

particularly in liver. These data confirm previous studies in which dietary LC-PUFA 584	  

levels, associated with replacement of FO by VO, affected activity and transcriptional 585	  

regulation of this pathway, but further demonstrate that transcriptional regulation also 586	  

occurs postprandially. An effect of dietary lipid level was also observed particularly in 587	  

liver, with HL diets significantly decreasing enzymatic activities and gene expression 588	  

levels in fasting fish. Although the mechanisms are unclear data showed that in basal 589	  

conditions dietary lipid level possibly prevailed over or interacted with FA composition 590	  

in regulating the expression of elovl5 and Δ4fad. Finally, the results showed tissue-591	  

specific differences in the activity and regulation of this pathway, which were reflected 592	  

in the FA compositions of the tissues, indicating both functionality and biological 593	  

relevance of the pathway in S. senegalensis. Independent to this, flesh DHA levels were 594	  

unaffected by diet composition which, with regard to the need to replace FO by VO in 595	  

aquafeeds, highlights the important advantage of this species for aquaculture.  596	  
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