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ABSTRACT

The Vestibulo-Ocular Reflex (VOR) produces compensatory eye movements in response to head
and body rotations movements, over a wide range of frequencies and in a variety of dimensions.
The individual components of the VOR are separated into parallel pathways, each dealing with
rotations or movements in individual planes or axes. The Horizontal VOR (hVOR) compensates
for eye movements in the Horizontal plane, and comprises a linear and non-linear pathway. The
linear pathway of the hVOR provides fast and accurate compensation for rotations, the response
being produced through 3-neuron arc, producing a direct translation of detected head velocity to
compensatory eye velocity. However, single neurons involved in the middle stage of this 3-neuron
arc cannot account for the wide frequency over which the reflex compensates, and the response
is produced through the population response of the Medial Vestibular Nucleus (MVN) neurons
involved.

Population Heterogeneity likely plays a role in the production of high fidelity population
response, especially for high frequency rotations. Here we present evidence that, in populations
of bio-physical compartmental models of the MVN neurons involved, Heterogeneity across the
population, in the form of diverse spontaneous firing rates, improves the response fidelity of the
population over Homogeneous populations. Further, we show that the specific intrinsic membrane
properties that give rise to this Heterogeneity may be the diversity of certain slow voltage activated
Potassium conductances of the neurons. We show that Heterogeneous populations perform
significantly better than Homogeneous populations, for a wide range of input amplitudes and
frequencies, producing a much higher fidelity response. We propose that variance of Potassium
conductances provides a plausible biological means by which Heterogeneity arises, and that the
Heterogeneity plays an important functional role in MVN neuron population responses.

We discuss our findings in relation to the specific mechanism of Desynchronisation through
which the benfits of Heterogeneity may arise, and place those findings in the context of previous
work on Heterogeneity both in general neural processing, and the VOR in particular. Interesting
findings regarding the emergence of phase leads are also discussed, as well as suggestions for

future work, looking further at Heterogeneity of MVN neuron populations.
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INTRODUCTION AND AIMS OF RESEARCH

1.1 INTRODUCTION

The Vestibular system is responsible for the maintenance of head and body posture, as well as
the stabilisation of images in the visual field during motion, and the internal sense of balance
and posture. Head and body movements are detected by sensory organs of the ear, in both
rotational and linear planes, and processed along numerous parallel pathways in order to produce
compensatory neck and eye movements, internal representations of head and neck position and
angle, and to maintain balance [26]. The Vestibular system is considered to be phylogenetically
ancient [33], being found throughout the fossil record largely unchanged [123], including some of
the earliest extant species, such as the myxine and lamprey [63], and is found to be remarkably
similar across species [1]. It has been extensively studied in a wide variety of organisms, and a
vast amount of data and theory has been produced regarding the function and mechanisms by
which it acts.

One component of the Vestibular system is the Vestibulo-Ocular Reflex (VOR), which produces
compensatory eye movements in response to head and body movements, in order to maintain
visual gaze stability, and focus on objects in the visual field during movements [47]. Specifically,
the VOR detects head movements, either rotational or linear, and produces eye movements that
directly compensate for these movements, thus keeping the eyes stable in relation to the head
movements. For example, rotations of the head to the left produce compensatory rotations of the
eye to the right, to maintain focus and stability of gaze. Generally, the VOR is a linear system,
translating sensory input directly to motor output [7]

The VOR is organised into numerous parallel pathways, each acting on separate neuronal arcs,
specialised and optimised to the features of the stimuli they respond to, the linearity of their
response, and the capacity for adaptation of their response [128] [85] [105]. One such pathway is
the linear Horizontal VOR pathway, which translates rotations of the head in the horizontal plane
(left and right) into compensatory eye movements in this plane [98]. This response is achieved over

a relatively simple three-neuron arc involving the neurons of the Medial Vestibular Nucleus (MVN)



as the middle stage of processing [129]. In addition, hVOR has a well characterised anatomy
and physiology [89], therefore presenting it as an ideal system for investigation, particularly in
investigation of the role of variability in neural systems.

The hVOR compensates for a wide range of frequencies of head rotations, producing a fast
and accurate response to these movements. However, individual MVN neurons involved in the
response cannot sufficiently code for wide dynamic range of responses seen, and Homogeneous
populations are unable to account for the response produces. Thus, a population coding strategy
is likely utilised by the system [89], and population Heterogeneity likely plays a role in the
population responses.

Significant neuronal variability (Heterogeneity) is seen among the neurons identified as being
responsible for the hVOR [109], and it is theorised that the variability seen across the populations
is necessary for their dynamic properties [5], and particularly for the precise, wide frequency
response required of the VOR [68]. However, no specific means by which population Heterogeneity
arises, and the particular intrinsic membrane properties involved in this Heterogeneity have not
been found. For true understanding of the coding strategies used in the VOR, and in neural
systems in general, it is important to identify and quantify population Heterogeneity, and to
explore the possible functional role of this Heterogeneity.

Here we investigate the role of population Heterogeneity, in the form of diversity of spontaneous
firing rates across a population, in producing the necessary high fidelity response of the MVN
neuron populations. Specifically, we hypothesise that population Heterogeneity in the form of
the diversity of slow Voltage activated Potassium channel conductances across a population of
MVN Type B neurons, creating a population of neurons with a distributed rate of spontaneous
firing, leads to improved response fidelity of these Heterogeneous populations to high frequency
inputs, over Homogeneous populations. In this way, we investigate and provide a description of
the specific intrinsic membrane properties of MVNB neurons that are required for their observed
functioning. We also look at the possible role of Noise in the response fidelity and performance
of MVN neuron populations.

We approach this through the simulation of bio-physical, compartmental models of MVN
neurons, using a realistic strategy for inducing population Heterogeneity, and compare the
response fidelity of these populations with Homogeneous populations receiving the same inputs.
Although previous research has suggested a functional role for Heterogeneity, both generally [72]

and in the VOR specifically [5], and previous modelling studies have shown a functional role for



diversity of spontaneous firing rates [68], we suggest here for the first time the specific intrinsic
membrane properties (diverse Potassium conductances) that give rise to this Heterogeneity, and
its impact on the high frequency response of the hVOR.

Chapter 2 provides an overview of the Vestibular System, and the Vestibulo-Ocular Reflex in
particular, identifying the pathways involved, and the specific neural populations making up these
pathways. The exact pathway involved in the linear aspect of the hVOR, which we investigate, is
elaborated upon, as well as the necessary understanding still required for describing the function
of this pathway, and the contribution of the research here to this understanding.

We then provide an overview of the role of Variability in neural systems, looking at both the
role of Noise and Heterogeneity, their implications for neural processing, and specific means by
which they may benefit neural processing. Particular attention is given to the role of Heterogeneity,
and the possible mechanism of desynchronisation by which it may improve neural population
responses. This overview is then placed into the context of the hVOR, looking particularly at the
role that ionic channel Heterogeneity, and its possible role in producing the dynamic responses
seen in the populations of neurons involved.

Chapter 2 concludes with a thorough examination of the motivations and aims of the current
research, the usefulness of the modelling approach applied, and the importance of understanding
the area investigated.

Chapter 3 presents a description of the specific neurons modelled in the work presented, along
with the basis by which these neurons have been modelled. We show that the model of the
neurons accurately reproduce behaviour of real MVN neurons, and that they allow for an in
depth exploration of the function of Heterogeneity in these neurons, though the manipulation of
ionic conductances in order to model Heterogeneity plausibly.

Details of the modelling methods, in regards to input and the modelling of Heterogeneity are
then presented, along with a brief overview of the parallelisation method implemented to allow
for the large number of simulations required to be performed. This chapter concludes with an
overview of the analysis methods and performance methods applied to produce results of the
simulations.

Chapter 4 presents the results of our simulations, across several stages, using the various
methods by which inputs have been generated and Heterogeneity has been modelled. We present

results across 3 stages of simulations, looking at a general role for diverse firing rates in response



fidelity, before a more particular investigation of Heterogeneity produced through the variance of
specific slow Potassium conductances is presented.

We then present an analysis of our results, in regards to the response fidelity of populations,
the possible mechanisms by which fidelity is improved, the role of Noise in response fidelity and
its relation to Heterogeneity, and interesting features of our results in regards to the emergence of
a "phase lead" in the response of the Heterogeneous populations we have simulated here, and a
discussion of this phenomenon in regards to phase leads observed in the real VOR response.

Finally, Chapter 5 presents a discussion of the results and analysis presented, outlying the
findings we have made. These findings are placed into the context of other studies looking at
Heterogeneity, both generally and in the VOR in particular. Possible shortcomings, and avenues

for further research are also provided.



BACKGROUND

2.1 VESTIBULAR SYSTEM AND OVERVIEW OF VESTIBULAR REFLEXES

2.1.1  Introduction

The Vestibular system is responsible for the detection of head movements and the generation of
reflexes of crucial importance to the everyday activities of a vast range of organisms , including
the stabilisation of the visual axis (gaze stabilisation, through the Vestibulo-Ocular Reflex, or
VOR), and the maintenance of body and head posture (Vestibulo-Spinal and Vestibulo-Collic
reflexes). Further to this, the Vestibular system provides organisms with their subjective sense
of movement, balance and spatial orientation. The Vestibular system is made up of two types
of inner ear organs that act as the sensors that detect movements, the three semicircular canals
(Horizontal, Anterior, and Posterior), and the otolith organs (Utricle and Saccule). The former are
responsible for the detection of rotational movements, and angular acceleration, while the latter
are responsible for detection of linear acceleration (gravitational and translational movements).
These sensory organs innervate the neural structures responsible for the control of balance, eye
movements, and posture, via the Vestibular nerve fibres and Second order, or Central, Vestibular
nuclei.

These Vestibular Sensory Organs are located in the petrous part of the temporal bone, in the
labyrinth of the inner ear in most mammals, in close proximity to the cochlea (auditory sensory
organ), although the vestibular system is recognised as one separate from the auditory systems of
the inner ear. The Vestibular system is considered to be phylogenetically ancient, as one of the
oldest parts of the inner ear, remaining largely unchanged across the fossil record.

The Vestibular system plays a crucial role in ensuring postural equilibrium, through the
production of appropriate movements during both self generated locomotion and rotations, and
any externally applied forces leading to disturbance of posture or balance. Investigation of the
Vestibular system through behavioural, clinical, neurophysiological, and theoretical studies have
provided a substantial understanding of the function and role of the Vestibular system in many

common activities.



One of the major aspects of the Vestibular system, the Vestibulo-Ocular Reflex (VOR) functions
to stabilise gaze and maintain clear vision and gaze fixation during movement, through the
production of compensatory movements of the eyes. That is, the VOR measures head movements,
through the Vestibular Sensory Organs, and generates eye movements through a compensatory
Oculomotor response, equal in magnitude but opposite in direction to the head movements
compensated for. The relative simplicity of the pathways responsible for mediation of the reflex,
along with the extent to which the reflex has been characterised, have made the VOR an eminent
model system for the investigation of the relationship between neurons, neural circuits or
pathways, and observed behaviour.

This chapter provides background and description of the Vestibular system, the function and
role of the reflexes produced by the system, and the components involved in these reflexes, before
moving on to detail the Vestibulo-Ocular reflex specifically, followed by discussion of the role of

Variability in neural processing and the VOR itself.

2.1.2  The Receptors of the Vestibular Sensory Organs

2.1.2.1  Semi Circular Canals

The three semicircular canals (Horizontal, Anterior®, Posterior) are half circular, interconnected
membranous tubes filled with Endolymphatic fluid, and are able to sense angular accelerations
in the three orthogonal planes. They are sensitive to angular accelerations (rotational movements
of the head) [108], and are organised such that they can detect rotations of the head around
each of the three possible axis of rotation) [56](Figure 2.1). The semicircular canals are made
up of a circular path of continuous fluid terminating at the ampulla by an elastic, water tight
membrane known as the cupula. The sensory epithelium of these semicircular canals is located
on the ampulla, and contains hair cells, each of which projects cillia from their surface, into the
Endolymphatic fluid surrounding them. These hair cells produce a tonic (or constant) release
of neurotransmitter, which in turn produces spontaneous activity in the Vestibular nerve fibres
to which they synapse. They function as the initial sensory apparatus for the Vestibular system
through the detection and transduction of a mechanical force (angular acceleration) into an
electrical signal (excitation and inhibition of Vestibular nerve afferents onto which they synapse).
The tonic release of neurotransmitter, from these hair cells, is mediated and modified by the

extent and direction of deflection of the cupula [52]. Although the stimulus on the semicircular

1 Sometimes referred to as the Superior canal



canals is angular acceleration, the neural output from the sensory cells represents the velocity of
rotation [26]. This is due to the mechanics of the canals (largely the increase in viscosity of the
fluid located in the canal, due to its small diameter), the output of the hair cells is representative
of the velocity of rotation, rather than the acceleration (which serves as the stimulus to the Otolith
organs) [50] [29]. The combination of the input from the three canals serves to produce a three-
dimensional representation of instantaneous velocity of head rotation in space. The semicircular
canals are, therefore, fundamentally angular accelerometers that act as velocity transducers in
the physiological range of sinusoidal rotations. However, the VOR is not a sustained reflex; after

many seconds of steady rotation the stimulus for eye movement will die down [26].

Y

b o

Figure 2.1: 3 Axis of Rotation around the Head. Movement A, around Axis X or the Sagittal Plane. Movement
B, around Axis Y or the Transverse Plane. Movement C, around Axis Z or the Coronal Plane

2.1.2.2  Otolith Organs

Whereas the semicircular canals are sensitive to angular acceleration, or rotational movements,
the Otolith organs, comprising the Utricle and Saccule, are sensitive to linear acceleration. Much
like the semicircular canals, the sensory epithelium of the Utricle and Saccule contain hair cells
which produce a constant release of neurotransmitter, producing spontaneous activity in the

Vestibular-nerve afferents which are innervated by these organs. The deflection/bending of cilia



emerging from the hair cells of the sensory epithelium produces excitation or inhibition of the
hair cells, causing increased or reduced neurotransmitter release, which in turn modifies the
spontaneous activity of the vestibular afferents [43] [44] [45]. The Otolith organs detect both linear

acceleration due to movement, along with the direction and extent of gravity [43] [44] [45].

2.1.2.3 Vestibular Sensory Organ Hair Cells

Two types of hair cells are found in the Vestibular sensory organs, and are the means by which
acceleration and movement are detected and measured, and the spontaneous activity of the
Vestibular afferents is mediated. Flask-shaped Type I haircells are present only in amniotes (birds,
mammals, reptiles), while the Cylindrical Type II haircells are the phylogenetically older of the
two types, and are present in both amniotes and non-amniotes [35]. These two cell types show
distinct and specific properties. As an example, differences between the two cell types include
differing densities of Potassium channels, with larger amounts of Calcium activated Potassium
channels contributing to a greater sensitivity to high frequency stimulation [36] [35] [73] [83]
[136]. As will be shown in the following section (Primary Vestibular Afferents), Type I and Type

II haircells supply inputs to Irregular and Regular vestibular-nerve afferent fibres respectively.

2.1.3 Primary Vestibular Afferents

2.1.3.1 Two Types of Vestibular Afferents: Regular and Irregular

Vestibular-nerve afferents innervate (receive signals from) the Vestibular sensory organs (Type I
and Type II hair cells), and enervate (carry signals to) the Second order, or Central, Vestibular
nuclei. Functional grouping of the Vestibular-nerve afferents, into Regular and Irregular groups,
is based on the regularity of the afferents spontaneous firing rate, or rate of resting discharge,
based on a normalised coefficient of variation (CV* of the Interspike Intervals) [53]. That is,
Regular afferents show little variation in the Interspike Intervals (ISIs) of their resting discharge
rate (CV* of ISIs <o.1), while Irregular afferents show (CV* of ISIs >o0.1) [53] (Figure 2.2, lower
section). Further to this functional grouping, Vestibular-nerve afferents are also distinguished in
that regular and irregular units have distinct morphological, or physical, properties (Figure 2.2,
upper section). In both the otoliths and semicircular canals, Regular afferents are found to have a
smaller axon diamater than Irregular afferents, and are found to provide bouton endings to type
IT haircells located at the periphery of the vestibular neuroepithelium. Further to this, Irregular

units can be divided into two groups: those that provide calyx endings to Type I haircells located



at the center of neuroepithelium (C-irregulars) and the rest provide a mixed innervation of calyx

endings to type I haircells and bouton endings to type II haircells (dimorphic or D-irregulars) [9].
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Figure 2.2: Regular and Irregular Afferents and their ISI Activity. Regular Afferents (Left) are innervated
by Type II Haircells (upper section), and their power spectrum displays peaks at the resting
discharge rate and its harmonic values (lower section). Irregular Afferents are innervated by Type
I Haircells and, as they have an irregular Interspike Interval (ISI), their power spectrum does not
show any definite peaks. Hair cells and their afferents show unique morphology and shape, with
Type I displaying a rounded or flask shaped hair cell, with Calyx endings for the afferents, while
Type II show a longer shape and Bouton endings to their afferents. ISI data reproduced from [26]

2.1.3.2 Signals in Response Movements

Vestibular-nerve afferents innervating the Otolith organs transmit information regarding the linear
acceleration undergone by the Otolith organs, with both gravitational forces and translational
movements, across a wide range of frequencies, eliciting similar responses from the afferents
[43]. While the dynamic response of Otolith afferents is largely in phase with the rotational
acceleration, with increased sensitivity caused by increased frequency of movement [4] [43] [44]
[45], the response of Vestibular-nerve afferents innervating the Semicircular canals is, contrastingly,

largely in phase with the velocity of the rotation imposed upon the Semicircular canals [42] [70]



N

[69] [112]. This difference is largely due to the specific mechanical properties of the Semi-circular
canals.

Experimental studies which have focussed on the Vestibular-nerve afferents innervated by the
Semicircular canals have shown that these Regular and Irregular Semicircular canal afferents
use differing coding strategies for transmitting information regarding the velocity of rotations,
mainly due to the level of variability of resting discharge of these Regular and Irregular afferents
[111]. As the resting discharge variability is greater for Irregular afferents when compared to
Regular afferents, Irregular afferents show a higher power in the power spectrum of their resting
discharge, over physiologically relevant frequencies, resulting in a low signal to noise ratio, and
minimal information in their specific spike timings, especially at lower frequencies [111]. By
contrast, the lower variability of the Interspike intervals of Regular afferents resting discharge
produces a higher signal to noise ratio, and thus a higher level of information in individual spike
times [111]. In light of these differences in the information conveyed by spike timing between
the two groups of Vestibular-nerve afferents, it can be seen that they use different encoding
strategies for transmission of information regarding the velocity of rotation to the Second order, or
Central, Vestibular nuclei [111]. Regular afferents convey the majority of information in their spike
times, utilising a temporal code in order to transfer information about the velocity of rotation
[111]. In comparison, the response of Irregular afferents is thought to be quantified through a
rate coding strategy, with Gain® increases as a function of the frequency of rotation [70] [69]
[112]. Therefore, it can be seen that while Regular afferents provide information about head
movements through the use of a temporal code, Irregular afferents provide information about
head movements (particularly at high velocities) through the use of rate encoding [69] [70].

In line with this, studies have attempted to study the implications of these differing coding
strategies at the level of the Vestibular afferents, and apply this to the processing in the Second
order, or Central, vestibular nuclei level [89]. For example, it was found that through combining
the activities of multiple neurons under investigation, the information transmission of the Second
order neurons was increased [89].

In order to maintain both perceptual and postural stability, and for behaviour to be guided
accurately, it is necessary for the Vestibular signals produced by the external world acting upon
an organism, and those resulting from the organism’s own actions, to be differentiated by the

organism’s nervous system. However, studies have shown that the afferents of the Semi-circular

Where Gain refers to the ratio of the ‘output’ from the afferents and Second order neurons compared to the input provided
to them
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canals, involved in the linear rotational VOR, encode both externally produced movements (i.e.,
passive movements) and self-generated movements (i.e., active movements) in a similar fashion
[28] [112]. As will be discussed in the following section (Second Order, or Central, Vestibular
Neurons) the differentiation of active and passive movements within the Vestibular system begins

to occur at the following level of signal processing, the Vestibular nuclei.

2.1.4 Second Order, or Central, Vestibular Neurons
2.1.4.1 Four Main Nuclei of the Central Vestibular Complex
The Vestibular afferents communicate via the vestibular branch of the eighth cranial nerve with
targets in the brainstem and the cerebellum which are responsible for much of the processing
necessary to compute head position and motion. Specifically, the targets in the brainstem are
collectively known as the Second order, or Central, Vestibular complex or the Vestibular Nuclei.
The Second order, or Central, Vestibular complex comprises four primary nuclei (Figure 2.3): the
Inferior (descending) Vestibular nucleus (IVN), the Lateral Vestibular nucleus (LVN), the Medial
Vestibular nucleus (MVN), and the Superior Vestibular nucleus (SVN) [100] [129]. Although no
absolute segregation of inputs from afferents is evident, the MVN and SVN primarily receive
inputs from the horizontal and superior Semi-circular canals respectively [100] [129]. Utricular
afferents mainly terminate in the IVN, although also send projections to the LVN, MVN, and SVN
[100]. Alongside the direct projections of Vestibular-nerve afferents that converge on the Central
Vestibular nuclei, inputs originating from cerebellar, cortical, and other brainstem structures also
converge on the Central Vestibular nuclei, providing information on visual and somatosensory

inputs, as well as information on eye movements.
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Figure 2.3: Central Vestibular Nuclei and their Vestibular Inputs. Abstraction of the Vestibular nuclei complex,
and the general segregation of areas within them. The Utricular afferents primarily terminate
in the Inferior Vestibular Nuclei (IVN), but also in the Lateral and Medial Vestibular Nuclei
(LVN, MVN). Saccule innervated afferents terminate in the LVN, IVN, and MVN. Superior and
Horizontal Canal afferents terminate mainly in the MVN and SVN

2.1.4.2 Responses to Passive Movements

The sensitivities of neurons in the Central Vestibular nuclei to rotational movements have been
quantified extensively in various subjects, and have been shown to be consistent with the
projections described in the section above (Four Main Nuclei of the Central Vestibular Complex).
Neurons sensitive to horizontal rotations are primarily found in the MVN and LVN [75] [23] [27]
[48] [116]. Neurons sensitive to vertical rotations have been recorded primarily in the SVN and
MVN [32] [131]. Neurons sensitive to rotations in both the horizontal and vertical systems can be
divided into 3 main classes based on their responses to voluntary eye movements and passive
whole-body rotations. These classes being: Position-Vestibular-Pause (PVP) neurons (responsible
for the performance of the Vestibulo-Ocular reflex), Vestibular-Only (VO) neurons (involved in
Vestibulo-Spinal reflexes), and Eye-Head (EH) neurons (involved in smooth pursuit movements

of the eyes).
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2.1.4.3 Vestibular Ocular Reflex

The Vestibulo-Ocular reflex (VOR) effectively stabilises gaze during everyday movements, such as
head or body rotations or locomotion, by moving the eye in the opposite direction to the motion
that occurs, with precisely the same time course [129] [75] [10]. This elementary three-neuron
arc pathway consists of projections from the Vestibular-nerve afferents to neurons in the Central
Vestibular nuclei, which in turn project to the extraocular motoneurons [129] [75] [68]. The relative
simplicity of this three-neuron arc makes the VOR apt for investigation.

In addition, the relative simplicity of the reflex, and three-neuron arc producing it, leads to the
reflex’s fast response time, with compensatory eye movements lagging behind head movements
by 6ms, on average, in primate subjects [74] [98]. Despite the reflex serving to stabilise vision, the
VOR is driven entirely by information regarding head rotation conveyed by the Vestibular system,
and does not depend upon any visual input. Thus, the reflex works in the absence of any visual
input, such as in complete darkness or when the eyes are closed [47].

As the Vestibulo-Ocular Reflex is the main focus of the work being presented, a more complete

exploration and analysis of the reflex shall follow in the section (Section 2.2).

2.1.4.4 Other Vestibular Reflexes

In addition to the role played by the Vestibular system in stabilising gaze through the action
of the VOR, the Vestibular system also plays a significant role in the coordination of postural
reflexes. The Vestibulo-Collic reflex (VCR) works in a similar fashion to the VOR, but serves to
stabilise head and body position in relation to movement, such as locomotion, and is critical
for the maintenance of head and body posture during daily activities [134]. This stabilisation is
achieved through the generation of head movements in the opposite direction to that of current
head velocity in space, mediated by the projection of Vestibular-only (VO) neurons from the
Vestibular Nuclei to the cervical spinal cord [134].

The Vestibular sensory organs (the three approximately orthogonal semicircular canals, (An-
terior, Horizontal, Posterior) and the two otolith organs (Utricle, Saccule)) provide the most
important input for the detection of head movement, the afferents of which serve to evoke the
Vestibulo-Collic reflex (VCR)3 [134]. Specifically, for angular head velocity in space, Vestibular
hair cells located within the Semicircular canals of the inner ear detect head velocity, and in turn

the Vestibular afferent neurons of the vestibular nerve project information regarding this velocity

3 the VCR involves control of neck muscles for correction of the orientation of the head
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to Vestibular-Only (VO) neurons in the Vestibular nuclei, which similarly encode information
regarding head velocity [110]. Further, VO neurons show little sensitivity to eye movements and
are modulated during passive whole body rotational movements [110]. In addition, VO neurons

are likely responsible for the control of Vestibulo-Spinal reflexes* [26] [110].

2.2 THE VESTIBULAR-OCULAR REFLEX

2.2.1 Introduction and Basic Overview of the Vestibulo-Ocular Reflex

The Vestibulo-Ocular reflex (VOR) is a reflexive eye movement that acts to ensure that images
are stabilised on the retina during head movement, via the production of eye rotations that are
compensatory to the detected head movements [49]. That is, in an ideal VOR that compensates
for any arbitrary head movements in 3-Dimensional space, eye rotations are generated in the
opposite direction to, but at the same speed as, the head movements being compensated for. The
result of this compensatory eye movement is that the eye remains stationary in space, relative to
head or body movements, and stabilisation of images on the retina is achieved and maintained
[47]. For example, head rotation to the left (with gaze fixated upon an object or target) produces
eye rotation to the right in order to compensate for that head rotation, and to ensure the focusing
of the image on the fovea of the eye [57].

The VOR acts over both brainstem and cerebellar pathways to generate the necessary compens-
atory eye movements [84] and achieves the necessary compensation through the control of eye
muscles driven by input from the Otolith and Canal structures of the vestibular system [128].
That is, head (or body) movement is detected by the Vestibular apparatus of the ear, it is relayed
to the brainstem and cerebellar interneurons, and it is then used to drive eye movements through
stimulation of the eye muscles [47].

The VOR is of paramount importance to effective and normal functioning of an organism during
everyday movements of the head or body, allowing for gaze fixation and image stabilisation to be
maintained during these activities [56]. That is, for example, the VOR allows predatory organisms
to maintain visual contact with prey organisms and objects or obstacles in their visual field
during hunting movements, or, similarly, allow prey organisms to maintain visual contact with
predatory organisms or obstacles during movements required for evasion. Indeed, as organisms
are almost constantly undergoing head movements, the VOR is necessary for maintaining gaze

fixation during any and all everyday activities [47]. Loss of the VOR function can have severe

4 These reflexes are responsible for maintaining of head and body posture and balance.
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and detrimental consequences for an organism, for example a patient with vestibular damage
finds it difficult or impossible to fixate on visual targets while the head is moving, a condition
called oscillopsia. Such a condition would leave a subject or organism with severe detriments
in activities such as the reading of text, or maintaining gaze fixation on a food source (or other
object of interest) while moving.

The VOR has five main constituent stages of input generation, signal transmission, and
processing. Firstly, head movement is detected by the Vestibular apparatus of the inner ear,
the three Semi-Circular canals and the Otolith organs, which produce inputs to the reflex,
corresponding to head angular velocity, linear acceleration, and orientation of the head with
respect to gravity. Secondly, this activity, the altered neurotransmitter release from the hair cells
of the Vestibular apparatus (through the deflection of the cilia of the hair cells), is transmitted,
via synapses, to the Vestibular afferents of the VIIIth Cranial nerve (Scarpa’s Ganglion, or the
Vestibular Nerve Ganglion). Thirdly, these Vestibular afferents synapse with neurons in the
Central Vestibular Nuclei (of the brainstem) as well as with targets in the Cerebellum (involved in
higher order Vestibular systems). Fourth, the Central Vestibular neurons project to and synapse
with Vestibular efferent targets in the Oculomotor nuclei (as well as the Abducens nuclei), which,
in the fifth stage, synapse with and provide input to the 12 Oculomotor muscles responsible for

eye movements [129] [10] [128] [75]. This general organisation is illustrated in Figure Number 2.4.

Sensory Input Central Processing Motor Qutput
Otolith & .
Oculomoto1
Canal Afferents 4 CVN 4 Neurons

Figure 2.4: Schematic illustration of the major stages of the Vestibulo-Ocular Reflex. Sensory Input from
the Otolith and Canal afferents is sent to the Central Vestibular nuclei (CVN), and then to the
Oculomotor nuclei, to produce motor output

This organisation is sometimes referred to as the Elementary three neuron arc of the VOR [129],
referring to the three stages of neurons involved - Vestibular afferents (located in the VIIIth Cranial
nerve), Central Vestibular Nucleus neurons (located in the brainstem), and the Oculomotor Nuclei

and Vestibular efferents (in the Oculomotor nerve and Abducens nuclei, Illrd and VIth Cranial
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nerves, respectively). This three neuron arc follows the structure of other observed elementary
three neuron arcs, with sensory neurons (Vestibular afferents), interneurons (Central Vestibular
neurons), and motor neurons (Vestibular efferents) [129].

At the gross phenomenological level, the VOR shows two major components, each compensating
for one of two types of movement of the head: the angular or rotational VOR compensates for
rotational movements, is generated by activity arising from the Semi-Circular canals (SCCs),
and is primarily responsible for stabilisation of gaze; and the linear or translational VOR which
compensates for translational movements of the head (for example, during locomotion), and is
generated by activity in the Otolith organs (Utricle and Saccule) and is primarily engaged in
situations when the organism is viewing near objects (due to the relative change in position
on the retina of objects nearby, compared to that of distant objects) [56] [47]. Both rotational
and translational movements activate the VOR (Rotational and Linear VOR). With a rotational
movement, the head can move relative to the body (that is the head rotates while the body does
not, such as when rotating the head around the neck to the left or right), or can move in tandem
with the neck body (such as when the whole upper body is rotated). Translational movements
occur when the entire body (including the head) is moved in tandem (such as when stepping
sideways).

Further to this separation of the VOR into two major components, these components themselves
can be further separated on the basis of the planes of movement and axis of rotation upon for
which they produce compensatory eye movements, and upon the planes and axis upon which the
movements generating them are derived [76] [95]. The rotational VOR can be separated into three
components, each responsible for detecting and compensating for rotations in one of the three
major axis of rotation [76]. The Horizontal Semi-Circular Canals provide inputs regarding the
rotation of the head in the Yaw axis, which drive the Horizontal component of the angular or
rotational VOR (hVOR) [121]. Similarly, the Superior and Posterior Semi-Circular Canals provide
information on, and produce compensatory eye movements for, rotations in the Pitch (Vertical
rotational Vestibulo-Ocular reflex (vVOR)) and Yaw (Torsional rotational Vestibulo-Ocular reflex
(tVOR)) axes [75]. Examples of these three components include: turning the head left or right,
rotating it around the transverse plane (hVOR); nodding, rotating the head around the sagittal
plane (vVOR); and bringing the ear in contact with the shoulder, rotating the head around the

coronal plane (tVOR).
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In these components, the Neural signal generated in the Semi-Circular Canals from rotational
canal stimulation, and transmitted to the cell bodies in the Vestibular Nucleus, closely approxim-
ates the mechanical responses of the Vestibular end organs involved [78]. That is, the velocity of
head rotation is transmitted, via the Vestibular afferents to the Central Vestibular nuclei. From
there, information regarding the velocity of head rotation is transmitted to the Vestibular efferents,
and then to the Oculomotor muscles which generate the required compensatory eye movements
[76].

Similarly to the separation of the rotational VOR into components involved in compensating
for rotation in each of the three axis of rotation, the linear or translational VOR can be separated
into two components, one providing compensation for movements in the horizontal plane of
movement, and the other for movements in the vertical plane [3] [4]. The horizontal linear VOR is
driven by the Utricle, and the vertical linear VOR by the Saccule [129]. In these translational VOR
components, linear movements detected by the Otolith organs are transmitted to the Vestibular
afferents (which generate activity matching linear acceleration), which in turn are transmitted
to the Central Vestibular neurons (which generate activity matching linear velocity) [3] [4]. This
information is then transmitted, via the Vestibular efferents, to the Oculomotor muscles that
generate the necessary compensatory eye movements [76].

Therefore, the VOR is separated into two distinct components, the rotational or angular
VOR and the linear or translational VOR, each dealing with a distinct form of head movement
(rotational movements, and linear movements). Each of these major components can be further
separated into components corresponding to the planes of movement and axis of rotation for
which they compensate, and the Vestibular sensory organs from which the signals transmitting the
velocity of head movement arise (three axis of angular rotation, two planes of linear movement),
to give five distinct components of the VOR.

Further to this functional and anatomical separation of the components of the VOR, it has been
found that the three neuron arcs involved in each of these components of the reflex are composed
of distinct functional subgroups of neurons, with different intrinsic membrane properties and
response dynamics [128].

The existence of functionally distinct parallel pathways is commonly seen in sensory systems
[52], and it has been proposed that the VOR is organised into such parallel pathways, with the
various components of the reflex each arising from separate structures of the labyrinth, separate

structures in the Vestibular nuclei, and, ultimately, stimulating separate extraocular muscles
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[128]. Although not all the details that are seen to characterise the parallel processing of other
sensory systems are to be seen in the VOR, there is organisation of the system into parallel
pathways composed of distinct populations of neurons with different dynamic properties [127].
In addition, it has also been shown that, as well as organisation into distinct populations, these
distinct populations receive distinct inputs [62] [13], and produce distinct outputs [129] [75].
The two components (rotational and translational) act in parallel to each other, and arise from
separate labyrinthine end organs in the ear, with the rotational reflex receiving inputs from the
Semi-circular Canals (which act as angular accelerometers), and the translational reflex receiving
input from the Otolith organs (Utricle and Saccule, which act as linear accelerometers) [63]. For
this reason, the rotational component is sometimes referred to as the Canal-Ocular component,
and the translational component is sometimes referred to as the Otolith-Ocular component [3].
However, some overlap in the pathways may be present, due to the convergent nature of inputs to
the Central Vestibular Nuclei [101]. This convergence may be necessary when, for example, some
involvement of Otolith-Ocular pathways in compensation for head rotation may be apparent in
the Canal-Ocular component when compensation is performed while the head is tilted from the
earth vertical axis [3]. The functional significance of this overlap is still unknown (if it indeed
has any functional significance, as will be discussed when the Pathway model of the VOR is
presented in a following section).

Two features are required of the VOR, and are apparent in its normal functioning, in order for
it to be useful in maintaining gaze stabilisation and object fixation in the visual field. Firstly, it
must be fast. Any significant delay in compensatory eye movements produced by the VOR would
lead to inaccurate visual information and a distortion of the visual field for an organism. This
requirement is met by the organisation of the VOR circuitry into the three neuron arc described
previously, and the direct nature by which the VOR process (generally) occurs. For example,
studies of Squirrel monkey rotational VOR responses, for movements in the horizontal axis, show
an average delay of yms when performed in darkness [98]. Further, this 7yms delay would be
consistent with the delays in processing measured from the individual neural components of the
VOR [98] [10]. The 7ms has been supported with further studies [74]. Similar delays (of 6ms)
have also been found for components of the rotational VOR other than the hVOR [95]. Latency of
the linear or translation VOR have been found to be around 34ms, which, although being greater
than the rotational VOR latency, is still much shorter than the latency of visually guided eye

movements, which is around 8oms [14].
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Secondly, the VOR must be accurate and must derive from Vestibular inputs only (and not
visually guided movements, due to the latency of these as previously mentioned). That is,
compensatory eye movements must be equal in magnitude to head movements, in order for the
reflex to produce clear vision. Evidence of this accuracy, in the absence of visual stimuli (that is,
deriving entirely from Vestibular inputs) can be seen in values of 90% [98] and 80% [7] of head
movement compensated for, by opposite eye movements in the dark. Both of these characteristics
of the reflex must be met by the supporting neuronal circuitry that produces them.

The VOR also presents as an ideal system for investigation for several reasons. Firstly, the
VOR and the vestibular system in general can be considered to be phylogenetically ancient [33].
The development of the Vestibular system was an important evolutionary event, allowing both
vertebrates and invertebrates to maintain posture, balance, equilibrium and spatial orientation, all
while moving within their environments [63]. The Vestibular system evolved in organisms a very
long time ago, and is present across a wide range of the fossil record [123], including some of the
earliest extant species, such as the myxine and lamprey [63]. This is also evidence of remarkably
successful design of the Vestibular system, that has changed little throughout Phylogeny.

As such, the Vestibular system and VOR are present in, and have been studied in, numerous
species, including the Squirrel monkey [97] [98], the Macaque [137], the Mouse [7], the Cat [78],
the Rat [64], the Toad-fish [13], the Guinea Pig [29], the Chinchilla [138], and the Human [29].
Further to this, the Vestibular apparatus and VOR circuitry show remarkable similarities across
species [1]. Due to this, there is a great deal of information that can be used specifically for
theoretical and modelling studies of the Vestibular system and VOR. In addition, the Vestibular
system and VOR have a well characterised anatomy and physiology [89], therefore presenting
it as an ideal system for investigation, particularly in investigation of the role of variability in
neural systems.

Secondly, the relative simplicity of the three neuron arc involved in the VOR, and its direct
nature, makes the reflex an ideal candidate for investigation, especially in regards to the strategies
and mechanisms by which the nervous system codes and transmits information from the sensory
to the motor space. For example, the horizontal rotational VOR transmits sensory input, converting
it to motor output, almost directly and with little to no subsequent processing. That is, the hVOR
has no extensive downstream processing that can be seen in other systems, and the sensory input
is converted to motor output, through only a single layer of interneurons [68]. Generally, the VOR

is a linear system, translating sensory input directly to motor output [7].
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2.2.2  Vestibular Sensory Apparatus and Vestibular Afferents

The Vestibular sensory apparatus includes the bony labyrinth of the ear (which consists of the
Semi-Circular canals (SCCs) and the Otolith organs), and the motion sensors of the Vestibular
system, the hair cells located within the SCCs and Otolith organs. The SCCs are organised almost
orthogonally to each other, such that they can detect head rotation in any of the three planes
of movement. Due to the mechanical forces that act upon the hair cells during angular rotation
they act as angular accelerometers, and work in a push-pull arrangement with the corresponding
labyrinth of the opposite ear. The Horizontal SCCs detect rotation exclusively in the lateral plane,
Anterior SCCs detect forward or downward rotation of the head, and the Posterior detects rotation
when the head tilts backwards. It is generally stated that the Canals work in pairs in order to
detect acceleration and compensate for movement (horizontal SCCs of right and left labyrinth
for horizontal rotations, left and right anterior SCCs for vertical rotations where the head tilts
forward or downward, right and left posterior SCCs for backward or upward head tilting, and
the so-called Left Anterior Right Posterior (LARP) and Right Anterior Left Posterior (RALP)>
movements around the Yaw axis). The planes upon which angular motion is detected by the SCCs
are close to the planes of the extraocular muscles (that cause eye movement) such that relatively
simple neural connections between the sensory neurons and the neurons responsible for motor
output can be traced [12].

One end of each SCC displays a significant widening of diameter, thus forming the ampulla
containing the cupula. Each canal is filled with Endolymphatic fluid. The presence of the cupula
produces a difference in Endolymphatic fluid pressure, due to the physical forces at play during
head motion, which causes movement of the hair cells embedded in the cupula [47]. These
hair cells are specialised biological sensors (which contain many cilia and are embedded in
the gelatinous cupula), which convert the deflection the cilia undergo from fluid displacement,
caused by head motion, into changes in their level of neurotransmitter release. That is, when
hair cells are deflected towards or away from their longest process, the levels of neurotransmitter
released is either increased or decreased respectively, thus producing excitation or inhibition
of the Vestibular afferent cells to which they synapse [50] [42]. This excitation and inhibition in
complimentary hair cells is illustrated in Figure 2.5. It has been hypothesised that canal size of a

species is linked to the form of locomotion most commonly associated with that species [123].

Such as when the head tilts sideways, bringing the ear into contact with the shoulder. This causes excitation and increased
activity from the ipsilateral Anterior canal (due to its downward movement) and the contralateral Posterior canal (due to
its upward movement).
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Thus, primates that exhibit fast and agile locomotion possess larger canals, in relation to body

size, compared to species that exhibit slower and more cautious movements [123].

+— —>
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Figure 2.5: Excitation and Inhibition of Hair Cells, and the Firing Rate Modulation of Vestibular Afferents. A
rotation to the left side causes the hair cells of the Left HSCC to deflect towards their longest
process (longest hair of the cell), thus causing increased neurotransmitter release from the cell,
and excitation in the Vestibular afferent, which shows a greater frequency of firing (spike train
below each illustration). The hair cells of the right HSCC deflect away from their longest process,
thus causing inhibition in the Vestibular afferents of that side, and the reduced frequency of
firing. An undeflected hair cell and its resting discharge is shown for comparison.

The hair cells of the Otolith organs function similarly to those of the SCCs [134]. The hair
cells of the Utricle and Saccule are embedded in the Maculae of the Otolith structures, and the
Otolithic structures contain endolymphatic fluid similar to the structures of the SCCs. However,
the maculae of the Otolithic structures contain calcium carbonate crystals known as ocotonia
which possess significantly more mass than the endolymphatic fluid surrounding them. This
differential in mass causes the maculae to be sensitive to gravity [43] [44] [45]. This is in contrast
to the cupula of the SCCs, which are insensitive to gravity, as they possess the same density as

the endolymphatic fluid that surround them.
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Through the orientation of the SCCs and Otolith organs, these sensory apparatus respond

selectively to head motions in particular directions and axis of rotation.

2.2.3 Second Order Vestibular Neurons and Central Processing

Due to the pairing of the SCCs, there is a push-pull arrangement involved in the changes of
neurotransmitter released, and a subsequent excitatory and inhibitory effect on the firing rate
of the corresponding Vestibular afferents innervated by the SCCs. For example, rotation on the
horizontal axis to the left causes increased neurotransmitter released in the left horizontal SCC,
and an increase in the resting discharge rate of the left Vestibular afferents and the Vestibular
Nucleus neurons, and a reduction of neurotransmitter release and resting discharge of the right
horizontal SCC and the Vestibular afferents and Vestibular Nucleus neurons which they innervate
[103]. That is, increased neurotransmitter release leads to excitation of the ipsilateral (on the same
side) Vestibular afferents and Vestibular Nuclei neurons, and inhibition of the contralateral (the
opposite side) Vestibular afferents and Vestibular Nuclei neurons.

In the horizontal SCCs, ampullopetal flow (deflection of the cupula towards the ampulla) is
excitatory, and ampulloflugal flow (deflection of the cupula away from the ampulla) is inhibitory.
Although it was considered that the inhibitory element of a coplanar pair had a considerable
effect on the VOR, it has since been shown that, under normal circumstances and especially at
high velocities, the inhibitory component may make little contribution to bilaterally generated
VOR components. For example, after unilateral neurectomy, ampullopetal flow and the excitation
arising from it, in a single horizontal SCC (even in the absence of the ampulloflugal flow and
inhibition from the opposite horizontal SCC) generated near normal VOR responses [57].

One way in which the coplanar pairing of the SCCs and their push-pull arrangements may be
of advantage, is the provision of sensory redundancy [47]. If damage or disease affects the SCCs
of one member involved in a pairing, the Central Vestibular nucleus neurons will still receive
information on rotations and their velocity from the contralateral member of the pair. Secondly,
the pairing any changes to neural firing that occur on both sides of the pair, due to changes in
body temperature or chemistry, can be ignored [47].

The Otolith organs also have a similar push-pull arrangement of Vestibular sensors, with a
further feature of the pairing, in that head tilting causes increased afferent discharge from one

part of the macula involved, while reducing afferent discharge from a portion of the same macula

[46].

22



The vestibular afferents project to two main targets, the Vestibular Nuclei complex in the
brainstem, and the cerebellum. The Vestibular nuclei are the primary processors of vestibular
input, and are responsible for implementing the fast, direct connections between the motor output
neurons and the incoming Vestibular afferent information, whereas the cerebellum acts as an
adaptive processor, altering vestibular processing if required for optimal vestibular performance
[47]-

As previously described, the Vestibular complex is composed of four main nuclei: the medial
vestibular nucleus (MVN), the superior vestibular nucleus (SVN), the lateral vestibular nucleus
(LVN), and the inferior (or descending) vestibular nucleus (IVN). While there is no absolute
segregation of inputs from afferents, there is considered to be a separation of function between
the routes taken by or distinct and separate pathways for each component of the VOR [130] (see
discussion on Pathways Model of the VOR). The MVN and SVN receive inputs mostly from
horizontal and vertical semicircular canal pairs respectively [135] [130], and are the main relays
for the VOR, whereas the LVN is the main nucleus involved in the Vestibulo-Spinal Reflex (VSR).
The utricular afferents terminate mainly in the IVN, while also sending projections to the LVN,
MVN, and SVN. Saccule innervated afferents mainly project to the LVN and IVN. In addition to
these direct projections from vestibular afferents, neurons in the vestibular nuclei also receive
inputs from cortical, cerebellar, and other brainstem structures [32].

Specifically for the horizontal rotational VOR, head rotation velocity is transmitted, via Vestibu-
lar afferents, to the MVN neurons. These MVN neurons increase their discharge for ipsilateral
horizontal angular acceleration, and decrease their discharge for contralateral acceleration [103].
That is, the neural signal transmitted to the cells of the MVN, from horizontal rotational canal stim-
ulation, closely resembles the mechanical responses of the Vestibular organs that are stimulated
[78]-

The two sides of the Vestibular Nucleus complex are connected by a series of commissures,
which allow for information to be shared across the two sides of the brainstem, and implements

the push-pull pairing of the Vestibular inputs.

2.2.4 Oculomotor Muscles and Vestibular Efferent System
The VOR output neurons are the motor neurons of the Oculomotor nuclei, which drive the
Extraocular muscles, and generate movements of the eye to compensate for head movement.

The VOR works on all six muscles responsible for eye movement. These six muscles of the eye
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work in pairs, forming three muscle pairs that work together to allow for specific eye movement.
Discharge of the neurons of the Oculomotor nuclei are directly translated into active-state tension
in these muscles, which produces the required compensatory eye movement [10]. For example, in
the hVOR, the lateral and medial rectus muscles work together to respond to and compensate for
left and right head rotation and maintain the direction of gaze, with rotation to one side causing
contraction of the medial rectus muscle of the eye on that side, and the lateral rectus muscle of

the other eye. These Extraocular muscles are shown in Figure 2.6.

Anterior view SR —
of human eye

(right)
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Figure 2.6: Arrangement of Extraocular Muscles of the Eye. This figure shows the arrangement of the 6
Extraocular muscles of a (human) right eye, from the Anterior view. The Medial Rectus (MR)
produces inward movement, the Lateral Rectus (LR) outward movement, Superior Rectus (SR)
and Inferior Rectus (IR) produce upward and downward movements respectively. The Superior
Oblique (SO) produces combined downward and outward movements, and the Inferior Oblique
(IO) produces combined upward and inward movement. Image modified from that appearing at
http:/ /www.rudyard.org/human-eye-muscles/

As stated previously, different regions of the Vestibular nuclei project to the different Oculo-
motor nuclei (cranial nerves III, IV, and VI). Signals from these nuclei then result in contraction

(through excitation) and relaxation (through inhibition) of the appropriate extraocular muscles.
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Excitation of the Anterior canal results in contraction of the ipsilateral Superior Rectus (SR) and
contralateral Inferior Oblique muscles, causing upward eye movements (in response to detected
downward head movements) and relaxation® of the ipsilateral Inferior Rectus (IR) and contralat-
eral Superior Oblique (SO) muscles. Excitation of the Posterior canal results in contraction of the
ipsilateral SO and contralateral IR muscles and relaxation of the ipsilateral IO and contralateral
SR muscles, thus resulting in a downward eye movement (in response to detected upward head
movement). Finally, excitation of the lateral canal results in contraction of the ipsilateral Medial
Rectus (MR) and contralateral Lateral Rectus (LR) muscles and relaxation of the contralateral MR
and LR muscles. This results in a horizontal eye movement toward the ear opposite the excited
canal, and opposite to the direction of head movement [129]. These connections, between the

Semicircular canals and the extraocular muscles are summarised in Table 2.1.

Canal Excitation Inhibition Effect

Horizontal | Ipsi. MR, Contra. | Ipsi. LR, Contra. | Rotation of eye to Contra. side to Head
LR MR Rotation

Anterior Ipsi. SR, Contra. IO | Ipsi. IR, Contra. SO | Upward eye movement

Posterior Ipsi. SO, Contra. IR | Ipsi. IR, Contra. SR | Downward eye movement

Table 2.1: Excitatory and Inhibitory connections between Canal types and Extraocular muscles[129]. Ipsi.
and Contra. refer to Ipsilateral and Contralateral respectively.

One major difference between the torsional and vertical components of the rotational VOR, and
the horizontal component, is in the number of canals involved in these components. During both
head tilts backwards and forwards, and torsional rotations, four canals are stimulated, leading to
their excitation or inhibition. In forward head tilts, both Anterior canals are excited, leading to
upward eye movements, while both Posterior canals are inhibited, leading to relaxation of the
muscles allowing for upward eye movement. This arrangement is reversed for backward head tilts,
with both Posterior canals undergoing excitation, and both Anterior canals undergoing inhibition.
In the torsional movements? the Anterior canal ipsilateral to the head movement, and the Posterior
canal contralateral are excited, and the contralateral Anterior and ipsilateral Posterior canals are
inhibited. In contrast to these movements, purely lateral rotations (evoking the hVOR) involve only

two canals [57], with the ipsilateral Horizontal canal exhibiting excitation, and the contralateral

This relaxation is caused by the inhibition relayed to the contralateral muscles, and allows the eye to move in the required
direction. That is, it relaxes the muscles in opposition to those that contract when the movement occurs.

LARP and RALP movements, such as when rotating the head so that the ear moves towards the shoulder. In this case, the
ear moved towards the shoulder is considered the ipsilateral ear
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Horizontal canal exhibiting inhibition. This difference, and the involvement of different canals
between the tVOR and vVOR, and the hVOR, has lead to differences being recorded between
these two sets of components, with the tVOR and vVOR more closely resembling each other
than they do the hVOR [11]. That is, the vVOR and tVOR show a closer resemblance to canal
characteristics that drive them, than the hVOR. This would be the case if the tVOR and vVOR
components both arise from the same canals, as is the case.

In addition to the motor output of the VOR, Vestibular efferent neurons are found in the
Abducens nucleus (ABN) area of the brainstem, and receive inputs from the Vestibular nuclei,
as well as directly from Vestibular afferent neurons [51]. In addition, excitatory Vestibular
efferent neurons project back to Vestibular sensory organs (hair cells of the Vestibular apparatus),
increasing their resting discharge [51] [61]. Although the exact function of these back projecting
efferent neurons is unknown, particularly in alert primates, it is thought that they may be involved

in increasing the dynamic range of Vestibular afferent responses [26].

2.2.5 Summary and Example of Horizontal Rotational Vestibulo-Ocular Reflex

The rotational VOR works to stabilise images on the retina through the detection of head rotation
and the application of compensatory eye movement, such that the eyes maintain focus on their
target and the visual field remains stable. The VOR works for both angular rotations of the head
around the neck, and linear movements of the whole body. Thus, rotational Vestibulo-ocular
reflex (rotational VOR) responds to angular motion of the head and results from stimulation of
the semicircular canals, whereas the linear Vestibulo-ocular reflex (linear VOR) responds to linear
motion of the head and results from stimulation of the otolith organs. These two components are
further subdivided, on the basis of the planes of movement upon which they act, into five further
components.

As it is the main concern of the rest of the current work, we concentrate now upon the
Horizontal Rotational VOR (hVOR), and provide an overview of the particular activity involved
in the functioning of this aspect of the VOR. As stated previously, the hVOR is generated by
the push pull activity of the two Horizontal semi-circular canals (HSCCs). Rotations in a given
direction cause excitation, and an increased release of neurotransmitter, from the hair cells of
the HSCC on the side rotated towards, and inhibition in the opposite HSCC. This excitation
represents the acceleration of the head, and is transmitted, via the Vestibular afferents, to the

ipsilateral Medial Vestibular nuclei (MVN) of the brainstem. This signal is then transmitted by
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the Position-Vestibular-Pause (PVP) neurons of the MVN to the ipsilateral oculomotor nucleus to
drive contraction in the ipsilateral medial rectus, and to the contralateral Abducens nucleus to
drive the contralateral lateral rectus. The inhibition, from the contralateral HSCC, serves to inhibit
the opposing muscles. Thus, a rotation to the left excites the right HSCC, which, through the 3
neurons, excites the left medial rectus and the right lateral rectus, pulling the eye to the right.

Figure 2.7 shows an overview of this excitatory hVOR pathway.

Left

Figure 2.7: Excitatory Example of Horizontal VOR Activity. Head rotation to the left causes excitation in
the left Horizontal Semi-circular canal, which sends excitatory impulses to the left Vestibular
Nuclei (VN). This excitatory signal causes contraction of the Left Medial Rectus (MR, via the
Oculomotor Nucleus, or Illrd Cranial Nerve) and the Right Lateral Rectus (LR, via the Abducens
Nuclei, or VIth Cranial nerve)

2.2.6  Pathways Model of Vestibulo-Ocular Reflex

From the preceding discussion, it is evident that the VOR can be separated into five major
components, each dealing with head movements around a given axis or along a given plane
(three Canal-Ocular responses, and two Otolith-Ocular responses). Further to this, each of these

responses can be separated on the basis of the direction of movement for which they compensate
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(and not just the plane or axis), the specific Vestibular end organs which drive them, and the
specific Oculomotor muscles upon which they act. For example, the hVOR can be separated
into the response which rotates the eyes to the right in response to head rotations to left, and
the response which moves the eyes to the left in response to head rotations to the right. From
this, we can consider that separate parallel pathways exist, that allow for separate neural coding
of different head motion components [128]. However, studies have shown that this is not the
end of the separation of the VOR responses, and that these individual directional responses can
themselves be separated into multiple channels or pathways, based on evidence regarding the
existence of Linear and non-Linear aspects of the response, and their relation to the adaptation of
the response.

The existence of Linear and non-Linear components for these responses was first proposed by
Minor et al. from a study recording the hVOR response of Squirrel monkeys to high acceleration
rotations [98]. It was found that differences for Gain® and Phase of the hVOR were apparent for
sinusoidal rotations less than and greater than 4Hz, with Gain increasing as the frequency of
rotation increased above 4Hz?, thus suggesting the existence of a Low and High frequency Gain
control element [98]. It has been suggested that, while the Linear component is responsible for the
Linear transfer of Head velocity to compensatory eye movements, that the non-Linear component
is involved with Gain adjustment [24], or the reduction of retinal slip and the smooth pursuit
of targets [130] [95]. This separation has also been suggested to occur in the vVOR and tVOR
components [95].

Although originally it was considered that any adaptive mechanism involved in the VOR arose
from a single Gain altering element, it has since been found that the mechanism of adaptation in
the VOR is more complex than this, and that it most likely involves the presence of frequency
selective adaptive channels [85] [105]. Lisberger et al. studied the effect of spectacle induced
adaptation on VOR response and found that, when adapted towards a Gain of o or 2™ for a given
frequency of passive sinusoidal rotation, the VOR exhibited large changes in gain at the adapted
frequency, but much smaller changes in Gain for frequencies other than that adapted to. That is,
when magnifying or minimising spectacles where used, and a single frequency was then used to
force adaptation, the VOR showed large changes in Gain for that frequency, but much smaller

changes in Gain for adjacent frequencies [85]. However, when adaptation was allowed to occur

8 Gain in this situation refers to the ratio of Eye velocity/Head velocity.
9 For frequencies <4Hz Gain remained constant. Past 4Hz, as the frequency increased, the Gain also increased.
10 Magnifying or minimising spectacles where used to increase or decrease the gain.
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naturally™* significant Gain changes were seen across all frequencies when the VOR was tested
[105].

A directionally differential adaptation was also found in the Squirrel monkey vVOR, in that
the Up and Down components showed different magnitudes of adaptation [65]. In this particular
case, however, the adaptive elements of these two components were not found to be entirely
independent of each other, as a symmetrical adaptation regime (where both the up and down
responses underwent adaptation) showed a greater effect than an asymmetrical adaptation regime
[65].

Further to the frequency selective appearance of adaptation in the VOR, it has also been found
that the non-Linear component shows a greater modification in response to spectacle induced
adaptation than the linear component, suggesting either that the non-Linear channel is more open
to adaptation than the Linear channel, or that the Linear channel is more resistant to adaptation
[24]. Finally, the difference in delay of the modified and unmodified channels, after adaptation,
suggests the existence of separate pathways or channels being involved [106].

Although currently unknown, it has been suggested that the site of adaptation is the Medial
Superior temporal area [130], or possibly the Cerebellar flocculus and Ventral paraflocculus [86],
and that it occurs after the Central Vestibular nuclei stage of Linear pathway [25]. Further, the
direct mechanism of adaptation is currently unknown, though it has been suggested that cerebellar
projections may alter Vestibular afferent synapse activity without altering or compromising the
direct, linear VOR performance [93], although the site of this adaptation has been contradicted,
and it may be that adaptation occurs after the Central Vestibular stage of the reflex pathway
[25]. In support of the latter, it has been found that adaptive changes in the Gain of the VOR are
accompanied by only small changes in Vestibular sensitivity and no changes in the sensitivity of
the MVN neurons [84].

What this suggests, therefore, is that there does exist two parallel pathways for each head motion
component: a Linear transfer function; and a non-Linear gain adjustment [24] (or augmentation
of the Linear to mitigate for retinal slip [95]), and that both components exhibit separate adaptive
aspects'® [25]. Further, these two pathways involve different Central vestibular neurons, with the
Linear component involving the Position-vestibular-Pause neurons of the Vestibular nuclei, and

the non-Linear involving the floccular target cells [105].

11 Through spontaneous natural head movements and not through a regime of adaptation
12 Separate processes drive the adaptation of the Linear and non-Linear pathways, as opposed to a single adaptive process.
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From the above evidence, we can conclude that there does exist a direct, linear component to
the VOR, showing little delay in response, and providing high fidelity compensations for head
rotations. That is, underlying the adapted or modified pathways, or the components involved in
Gain adjustment, or smooth pursuit eye movements, there is a direct, unmodified pathway of
the hVOR"3, which changes sensed angular head rotations into compensatory eye movements,
via the Vestibular afferents, PvP cells of the Medial Vestibular nucleus, and the neurons of
the Oculomotor nucleus [130] [106]. Further, it has been proposed that these separate three
neuron arcs are composed of distinct functional subgroups of neurons, with differing response
dynamics, arising from intrinsic properties, at each synaptic level, and that, specifically the
Central neurons (i.e., MVN PvP neurons) use intrinsic membrane properties (as well as emerging
network properties) in order to transmit the required information for the VOR to be accomplished
[128]. That is, the separate parallel pathways evident, allow for the separate coding of different
components of head motion and the required compensation, and that the different neuronal
elements involved provide a cellular basis for this parallel processing [102]. The role of intrinsic
membrane properties in MVN has been supported in modelling studies of these neurons [5] [68].

This principle, of distinct and discrete channels involved in the processing information in
neural systems, can be seen to follow the principles of Channel theory, which originally emerged
from Communication theory [120], and has had a long and fruitful history of modelling neural

information processing [60].

2.3 VARIATION AND HETEROGENEITY
In this section we look at the sources, effects, and possible benefits of two forms of variability
that are present in Neural systems, Noise and Heterogeneity. We then look at their possible

significance to, and involvement in, the Vestibular-Ocular reflex.

2.3.1 Noise in Neural Systems

Noise is often described as “random or unpredictable fluctuations or disturbances that are not
part of a signal” or “more generally any distortions or additions which interfere with the transfer
of information” [40], or “a signal that varies as a function of time, the value of which at any given
time is drawn randomly from some distribution” [38]. Although we have been aware of sensory

noise for some time, recently attention has been given to the role of cellular and motor noise [40]

13 that is, adaptation of VOR components is thought to occur in a different pathway to the direct and linear response [86].
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[38] and to the role of noise in nervous system functioning [99]. Noise is an inescapable problem
for information processing in neural systems, effecting multiple aspects of neuronal behaviour
[40]. Experimental and computational work has been done recently showing the effects of noise
in neural systems, and the principles by which nervous systems can overcome the detrimental
effects of noise [40]. Further, although noise is often considered as a detriment to information
processing, disrupting patterned activity and causing interference of encoding, recent work has
shown a potentially beneficial and constructive role for noise in neural information processing
[132] [91] [38].

Overtly, noise can be seen in nervous systems through the trial-to-trial variability of neuronal
spike timing [38]. This trial-to-trial variability is the difference between observed spike timing
produced when the same ‘experiment’ or stimulus is repeated with the same neuron [9o]. That
is, between trials, where the same stimulus is applied, and the same overt behaviour or output
is observed, the actual neural processing that occurs may not be identical between trials. As an
example of this noise induced variability, we can imagine a neuron receiving a sub-threshold
input, with noise added — if the amplitude of the noise is sufficient, the sub-threshold input can
be augmented such that it exceeds threshold, and a spike is generated. Similarly, the rate at which
a neuron fires, or its periodicity can also be altered through noise [38].

Noise in a nervous system is inescapable, for example, from stochastic processes in molecular
components, sensors that detect individual quanta, and complex networks of noisy neurons,
and noise has implications for the computational power of the brain. However, despite this
(or, perhaps, because of this) noise, neural systems, and brains, are able to function reliably
and accurately, presumably, because evolution has occurred in the presence of noise, and the
constraints that have arisen due to noise [40]. To function in the presence of noise, nervous
systems have developed various strategies by which to deal with this inherent noisiness [40],

and further, it has been proposed that the noise seen in nervous systems is a benefit to neural

processing [59] [6] [17].

2.3.1.1 Sources of Noise

There are primarily three sources of cellular noise in the nervous system (as categorised by [40]):
Electrical noise; Synaptic noise; and Motor Noise. This review will deal only with Electrical and
Synaptic noise at the cellular level, but not with Motor noise at the cellular level. In addition, it

should be noted that cellular noise is only one of three forms of noise in nervous systems, with
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the others being Sensory and Motor noise. Discussion of these other sources of noise are beyond
the scope of this review, and not directly relevant to the modelling used.

Firstly, electrical noise can have an effect on both local and network computation, as it can cause
fluctuations in both membrane potentials (local) and the timing of Action potentials (network).
The primary cause of electrical noise, is channel noise [115]: Noise, or fluctuations in membrane
potential, caused by electrical currents produced by the random or stochastic opening of voltage or
ligand gated ion channels [40]. These fluctuations can effect both the local computations derived
from ion channel dynamics and local membrane potentials, as well as the timing, initiation and
propagation of Action Potentials. Further causes of electrical noise are: cross talk, or ephaptic
coupling (where communication occurs between neurons when neuronal membranes are closely
apposed but not contiguous); Johnson noise (caused by thermal agitation of charge carriers);and
Shot noise (where finite signal particles give rise to statistical fluctuations in detection) [40].

In experimental studies, it is important to consider electrical noise, as it has tended to be
overlooked, with synaptic noise receiving more attention [40]. As such, it can be largely absent
from many simulation and modelling studies.

Synaptic noise arises at the synapses (the main sites for communication between neurons)
within nervous systems. If a pre-synaptic cell is driven repeatedly, with identical stimuli, there
will be a trial-to-trial variability in the post-synaptic response produced. This variability is due
to the stochastic processes which are involved in signal transmission in nervous systems [40]
[38]. One major phenomena responsible for synaptic noise is the miniature Post-Synaptic Current
(mPSC), which is a fluctuation or change in post-synaptic currents or membrane potentials, seen
in the absence of any pre-synaptic activity. These mPSC’s have been interpreted as being the result
of the spontaneous release of vesicles of neurotransmitter at the synaptic cleft [41]. Although
there are other sources for synaptic fluctuations, they are generally caused by the stochastic
nature of, or random events in, the machinery involved in synaptic transmission: spontaneous
opening of Calcium stores, leading to vesicle release; noise in the Calcium channels; spontaneous
triggering of the vesicle release mechanisms; fusion of the vesicle with the cell membrane [40] [39].
Regardless of the cause, the spontaneous or stochastic release of a vesicle leads to a post-synaptic
current.

In addition to this, there is also a variance in the post-synaptic response to vesicle release due
to variance in the amount of neurotransmitter that can be released. For example, the duration

of calcium channel opening, which drives vesicle release, can vary, leading to a variance in the
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number of vesicles released and the probability of vesicle release (this calcium channel duration
can vary due to Action potential Width, which is affected by axonal noise [39]).

Further, noisy biochemical mechanisms can effect post-synaptic response in several other ways.
Firstly, the mechanisms involved in synaptic communication involve small numbers of molecules,
and are therefore subject to thermodynamic noise. Secondly, variability in neurotransmitter
volume release can vary due to vesicle size differences. Thirdly, there is thermodynamic noise
present in the diffusion of substances across the synaptic cleft, or after uptake by the post-synaptic
cell. Fourthly, the location of vesicle release in the synaptic cleft can cause variance. Fifthly, there is
channel noise (as described above) in post-synaptic receptors. Finally, there is synaptic adaptation

and plasticity, which can lead to changes or variance in the vesicle release probability [39].

2.3.1.2 Strategies For Dealing With Noise

It can be difficult or costly to remove noise once it has been added to a signal (and, a system may
not want to remove noise, for the possible benefits arising from it), and may be unavoidable for a
signal to become noisy [40]. Several strategies, or principles, have been put forward as to how
nervous systems are able to minimise the negative consequences of noise present, two of which
will be dealt with here: Averaging; and the use of prior knowledge.

Averaging can be applied when there is a redundancy of information (where there is superfluous
or duplicate information) across an input, or within some information processing system in a
nervous system. Averaging could be present, particularly, in a system were several "units’ receive
the same signal, but independent sources of noise. In this situation, when the signal + noise
is averaged, the shared or common signal (seen across the inputs) will be predominant in the
processed output, over the independent noise, because the shared /common input will tend to be
amplified or remain stable, while the noise will tend to cancel itself out. In this way, it can be
seen that simple averaging works best when each input or signal is subject to noise that is similar
(in amplitude or spectrum) across each unit [6].

Averaging is perhaps most commonly posited as one of the first steps seen in sensory processing.
For example, in auditory processing, the stereocilia of auditory hair cells, are disturbed by sound
vibrations and open mechanically gated ion channels in response. The random fluctuations in
individual stereocilia movement is averaged across a single hair cell however, because stereocilia
are mechanically coupled, and so move together to a certain extent, and so the random fluctuations

are averaged out across the input [81]. Similarly, in visual systems, we can see that inputs are
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averaged over photo-receptors with adjacent, or overlapping receptive fields [40]. Averaging
can be seen as a viable strategy in both of these systems, because both hair cells, and photo-
receptors are what are called graded-potential neurons, in that they do not use Action Potentials
to communicate, but rather communicate through graded synapses. This graded communication
allows for the largely straightforward averaging and noise ‘removal’ for post-synaptic units
receiving information from the hair cells or photo-receptors.

Prior knowledge can also be used to alleviate the negative consequences of noise in neural
systems. If a system has some 'knowledge’ of the structure of the signals it receives, and/or
the noise which corrupts that signal, this knowledge can be used to distinguish the noise from
the signal. This is commonly known as the matched-filter principle, and can be seen in nervous
systems where units or systems use prior knowledge about their expected inputs to attenuate the
impact of the noise corrupting those signals [40].

Nervous systems would not have to utilise these strategies in isolation, and, indeed, there
is evidence that they are combined, especially when there is a variance in the parameters (the
‘volume’ or amplitude or spectrum) of a corrupting noise signal (as Averaging tends to work best
when there is little variance in the ‘"volume’ of the noise, or noise that comes from independent
sources, but shares similar properties) [40]. Through the combination of the two strategies, prior
knowledge of the "volume’ of the noise signals can be used to improve or facilitate weighted
averaging of the input signals.

These two strategies can also be combined, into a mathematical framework of optimal statistical
estimation and decision theory, known as Bayesian Inference. Bayesian inference involves the
assignation of probabilities to propositions calculated by taking prior knowledge and noisy
observations. In order to make use of sensory information, nervous systems must represent and
use information about uncertainty [8o0]. There is a growing evidence that biological organisms use
Bayes optimal perceptual computation, which leads to the Bayesian Coding hypothesis: nervous
systems represent sensory information in the form of probability distributions [8o]. However,
although there is definite evidence that biological organisms use Bayesian inference to deal with
uncertainty in perception and action [40], and numerous computational theories have been put
forward as to how this may be achieved in neural systems, there currently exists very little

evidence or information on the (possible) neural mechanisms that would be involved [8o].
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2.3.1.3 Benefits of Noise

However, noise is not just a problem that must be attenuated or dealt with by neural systems. It
can also be a benefit to neural processing [90] [38]. As was briefly mentioned previously, noise
can play a part in the reliability of a neurons firing — evoking an Action Potential at a particular
time, either across trials of a single neuron, or across multiple neurons in a population. This is
because the noise can cause a threshold to be reached, even when the input(s) to the neuron is
sub-threshold, and the average noise amplitude is zero. This is especially likely to occur over
multiple trials, either of the same neuron, or across a population, and can elicit a spike pattern
which reflects the bio-physical properties of the neurons involved [38]. Also, when averaging
is applied to such a system, and inputs are averaged over time, the noise helps to produce an
effectively smoothed non-linearity, improving neural network behaviour [40].

Similarly, noise can also lead to an improvement in the periodicity or regularity of neuron
firing, producing a more clock like pattern of spiking (spikes separated by fixed time intervals)
[38]. In a situation were a sub-threshold varying input is subject to noise, the noise could cause
threshold to be reached, and induce firing only during the peak of the signal [38]. This can be
considered an example of Stochastic Resonance.

There is also evidence for the role of noise in neural synchrony. Noise induced synchrony,
however, is highly dependent upon the characteristics and connectivity of the network involved,
as well as the "units’ (neurons) involved [17] [38]. These factors can bias a network towards
synchrony. There is currently growing theoretical and experimental evidence for noise induced
synchrony, and the importance of synchronous firing to performance in some neural systems’4.
For example, it was found, through human Electroencephalogram (EEG) studies, that increases in
synchronous neural activity in different regions of a neural system, were correlated with increased
levels of awareness and attention [96]. Similarly, it was found that decreases or disruptions of
synchronous firing led to a diminished ability for odour discrimination in bees [126].

Finally, no discussion of the constructive role of noise would be complete without at least the
introduction of the phenomena of Stochastic Resonance (SR). A very broad definition of SR states
that it is observed when increases in the levels of unpredictable fluctuations, leads to an increase
in the metric of the quality of signal transmission, rather than a decrease [9o]. However, there is
some argument as to the validity of this definition, as it essentially states that increasing noise

leads to increased performance, without any further elaboration, and such a situation would lack

14 However, neural synchronisation is not always a desired phenomenon, as will be discussed shortly when the possible
benefits of Neural Heterogeneity are introduced
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the properties necessary for a bona-fide ‘resonance’ [9o]. A narrower, but more useful, definition
of SR would be that it is the improvement in detection of a weak, periodic signal, through the
introduction or utilisation of optimal levels of noise [9o]. For example, it was found that Crayfish
use SR to enhance detection of nearby predators — that is, the weak periodic force is the water
vibrations caused by a nearby fish’s tail, the noise is the water turbulence, and Crayfish are able
to detect the vibrations caused by the fish (predator) more easily with the background of water
turbulence [34]. Further, evidence has also been found suggesting the action of SR in human
visual perception [31] [113].

Specifically in regards to the functioning of the VOR, previous modelling work has suggested a

role for Noise in the high fidelity response of MVN neurons to high frequency inputs [68].

2.3.2  Heterogeneity in Neural Systems

2.3.2.1  General Overview of Neural Heterogeneity

Neuronal heterogeneity refers to the variation in any one of a number of a neuron’s parameters
within a population, and is known to increase the information content of a population of neurons
[21] [109]. Neural systems display significant heterogeneity in neuron properties, even among
same class neurons, and this may have substantial implications for the information processing
of those systems. Neurons within the same area of the brain, and of the same qualitative type,
can vary across numerous parameters. Although this cell-to-cell variability, or diversity in neural
populations, was documented by some of the first researchers into the function of variability,
the fact that neurons and populations of neurons are heterogeneous has largely been ignored,
in favour of research on the role of Noise, and it is only recently that the functional role of
heterogeneity has been investigated [72].

For example, it is known that neuronal responses within a cortical area are characterised by
their high degree of heterogeneity, and that even cells within the same functional column are
known to have highly heterogeneous response properties when the same stimulus is presented. It
has been found that the heterogeneity of the neuronal responses is beneficial for sensory coding
of stimuli [21]. In modelling studies, it has been shown that heterogeneity can optimise network
information transmission for temporal or rate coding, even in realistic conditions, and improve
population coding of neural ensembles [92]. It has also been found that heterogeneity in the

intrinsic biophysical properties’> of cochlear nucleus neurons reduces the redundancy involved

15 Heterogeneity of the Neural population’s parameters, rather than just their responses to stimuli
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in their firing patterns, and increases their representation of temporal information [2]. Finally, it
has also been found that diversity or heterogeneity amongst sensory receptors can allow for the

establishment and improvement of population codes [87].

2.3.2.2  Desynchronisation as a Benefit of Heterogeneity

One possible mechanism by which heterogeneity (and noise) may improve neural performance, is
through the desynchronisation of a population’s response to a common input [16] [72]. Although
synchronisation of a population is sometimes of great benefit to the encoding or decoding of
the signals handled by that population [96] [126], this is not always the case. If we consider a
(simulated) population of entirely identical, homogeneous neurons, receiving a common input
with no variation or noise (either in the input or acting upon them), and beginning with the same
initial conditions, it can be seen that, as they function entirely deterministically, such a population
would exhibit entirely synchronised firing patterns. That is, because they start at the same place
in their phase space, and because the input is identical between members, and each member of
the population obeys the same set of differential equations, they will travel on the same trajectory
in their phase space. That is, at any time, every member of the population will be at the same
point in their periodicity, and their spike times will be identical to each other - the population
would be entirely synchronised. This would introduce an immense amount of redundancy in the
information carried by the population, as any information present in the population response
will be present in the response of a single neuron.

Adding independent noise to the common input received by each member of the population
will desynchronise the members, by causing a shift in their individual neuronal phases. That
is, the small changes in the neuron states across the population will produce slight delays or
advancements in the firing of the neurons, and their responses will be, somewhat, out of phase
from one another.

The above example is entirely artificial, and somewhat idealised'®, and in a real (or more
realistically simulated) population, we can imagine small differences in the starting conditions
(and thus the periodicity) of the members would lead to a diminishment of the synchronisation
in the population, as members will not follow precisely the same trajectories in their phase
space. However, this is not the case, as sub-threshold inputs to a group of neurons will force

synchronisation upon them. That is, sub-threshold inputs will force members of the population

In that the neurons are precisely the same, with precisely the same initial conditions, and they receive precisely the same
inputs
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towards a stable equilibrium point, and with the return of a signal above the threshold of the
population, members will begin to fire at approximately the same time, and show approximately
identical responses.

Heterogeneity introduced into the population (for example, in the form of changes to their
firing threshold, the level of input required to cause an action potential) acts to desynchronise
the population and its response [16]. Heterogeneity increases the range of the distribution of the
population’s phases and periodicity, shifting the firing times of each member either forward or
back. That is, neurons with a lower threshold will fire earlier than those with an average threshold,
and those with a higher threshold will fire later, thus causing a desynchronised response from the
population. In this way, heterogeneity encourages desynchronisation, which operates by affecting

the temporal properties of neuronal firing across the population [72].

2.3.2.3 Heterogeneity in the Vestibulo-Ocular Reflex

Heterogeneity has been observed in the populations of neurons involved in the VOR. Although
primarily this has been observed in the Vestibular afferents [109] [37], it has also been found in
the Central Vestibular neurons involved in the reflex [117]. It has been found that the variability of
populations in the Vestibular system, promote the fidelity of its encoding [114]. This variability, or
heterogeneity, has been observed in both the individual responses of neurons in these populations,
as well as in the intrinsic properties of the neurons involved [117]. Further to this, the primary
form of this heterogeneity has been found, in experimental studies, to be in the specifics of the
Potassium (K*) currents involved in the spontaneous activity of these neurons. This has been
supported by findings from modelling work, which found that the timing of repetitive discharge
(of model Vestibular afferent neurons) was governed by a K* conductance [122].

Studies of Vestibular afferent populations have shown that they display diversity in their
responses to inputs [37] [83], and heterogeneity in their K* conductances [109]. It has been
suggested that the diversity of firing patterns observed, reflects the diversity of intrinsic membrane
and ion channel properties of the neurons involved, and that neuron morphology (shape and size
of the neuron) cannot adequately explain the heterogeneity of observed discharge rates [37] [83].
Candidates for the intrinsic membrane or ion channels involved in heterogeneity have largely
been shown to be K* conductances [109]. Further, it has been shown that this diversity is due, not
to the type of conductances involved, but due to the proportion or density of the conductances

and channels producing them [20].
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Vestibular afferents, isolated from bother their peripheral inputs and Central vestibular targets,
showed cell-to-cell variability in the magnitude of their K* conductances, but very little variability
in the magnitude of their Sodium (Na*) conductances'” [109]. Thus it has largely been concluded,
for Vestibular afferents, that a combination of heterogeneous K* conductances, along with a broad
range of hair cell responses, leads to the observed diversity of firing rates seen in the afferents,
and that this diversity is responsible for the wide range of frequencies over which the VOR
functions [109] [83].

Although commonly thought that the wide range of firing responses observed in Central
vestibular neurons to identical inputs arose from the types of inputs which these neurons received
(circuit properties), it has been shown that the intrinsic properties of these neurons plays a
significant role in the diversity of their responses [117]. That is, the diversity of firing dynamics
reflected the heterogeneity of intrinsic membrane conductances, along with differences in synaptic
input. Specifically, it was found that the K* conductances of these neurons played a significant role
in the generation of their diversity of response, and that, rather than a discrete categorisation of
responses being present, a continuous distribution of responses was found [117]. However, due to
the lack of a topographical segregation, and the lack of a specific K* current antagonist'® during

spiking of the neurons, no functional role of the heterogeneity could be definitively assigned

[117].

2.4 MOTIVATIONS OF THE CURRENT WORK

Now that we have identified the channel or pathway responsible for the fast, direct, linear hVOR,
and looked at the possible role of noise and heterogeneity in its functioning, we now look at the
observed characteristics and properties of the neurons involved in this component of the VOR,

before expressing the aims of, and motivation for, the work to be presented.

2.4.1  Segregation and Classification of Vestibular Afferent and Medial Vestibular Nucleus Neurons

A primary function of the nervous system is to transform and relay sensory input to motor
output (as in the case of the Elementary 3 Neuron arc, as well as more complex behaviours),
through the specialised synaptic and cellular processes and structures involved [7]. That is, the

neurons involved are specialised to the behaviours they contribute to. Functionally distinct,

17 Thus eliminating heterogeneity of Sodium conductances as a possible candidate for the cause of diverse firing rates
18 A Potassium current blocker

39



parallel pathways are commonly seen in sensory and sensory-motor systems [60], and so work
has been performed to attempt to uncover such functional segregation in the vestibular system
(i.e. [52] [62] [121]. Although, primarily, this work has concentrated on the segregation of the
afferent neurons (the vestibular nucleus neurons, innervated by the Canal and Otolith organs),
some work has also been performed to categorise, and identify functional segregation, within the
Vestibular nuclei.

The identification and classification of neuron types, within a circuit, is fundamental to the
understanding the relevance of neural circuitry to behaviour, as it is the diversity of neurons
that supports complex processing, with neural types specialised to the finely tuned behaviours
they support [7]. Thus, the identification and classification of neuron types is a critical step in
understanding the behavioural relevance of their connections and cellular properties. In the
case of the Vestibular Nuclei, located in the brainstem, identification of neuron types (and thus
determination of their properties and consequences for behaviour) is hampered by a lack of
a clear anatomical segregation [8]. This has been highlighted as one of the clear limitations of
anatomical studies - that they can only produce positive results when clear segregation of units is
present, with different neuron types projecting to topographically distinct regions [52]. As such,
many studies seeking to identify segregation and classification for the Vestibular system have
made use of electrophysiological techniques, and opportunities to investigate testable hypotheses
through modelling and simulation have arisen. In addition, the neural basis for systems can be
hard to identify and to investigate in in-vivo, and in vitro, and so motivation for modelling is
provided [56].

The primary segregation and categorisation that has been identified, for both afferent and central
neurons (that is, Vestibular Nerve neurons and Vestibular Nuclei neurons), is the segregation into
Regular and Irregular neurons. Shimazu and Precht categorised neurons in the Medial Vestibular
nucleus depending upon the regularity of their discharge to horizontal angular head acceleration
[121]. They identified two neuron types in the MVN: the regular or "tonic’ type; and the irregular
or 'kinetic’ type. Regular, "tonic’ neurons were found to have regular, even spacing between their
action potentials produced by head rotations, whereas the ’kinetic’, irregular neurons showed
irregular spacing between action potentials [121]. In addition, it was noted that Vestibular Nuclei
neuron responses were similar to those of Vestibular afferents.

Similar to Vestibular Nuclei neurons, identification and categorisation of Vestibular afferent

neurons has focussed on the segregation of the neurons into regular and irregular types [52] [62]

40



and the contributions of these types of afferents to the inputs to Vestibular Nucleus neurons [13].
Initially it was found that Vestibular afferents differ in the regularity of their action potentials,
their level of resting activity or spontaneous discharge and their dynamic properties. Primarily,
it has been found that there is some distinction between regular and irregular afferents and the
pathways to which they contribute, and the type of central neurons which they innervate [62].
However, the delineation of afferents to central neurons has not been found to be clear, with most
central Vestibular Nuclei neurons receiving a mix of regular and irregular inputs [62]. Although,
it was found that the net contribution to the VOR central neurons (i.e. MVN neurons) came from
irregular afferents, and a possible relation between regular and irregular afferents and central
neurons (that is, irregular afferents input predominantly to irregular central neurons, and regular
afferents innervate regular central neurons predominantly) was also found.

The identification of the separation of MVN neurons into regular and irregular types was
furthered when evidence was found for further distinctions of irregular and regular MVN neurons,
based primarily on the characteristic action potential shape of the two types of neurons, as well
as further specifics about their dynamics [118] [119]. As well as further identifying the differing
properties and dynamics between regular and irregular MVN neurons, the electrophysiological
and chemical studies performed, and the data gathered from these studies, have formed the basis
for the construction of models of these neurons (as will be shown in the following section, dealing
with the models used for the current work).

It has been shown that MVN neurons possess intrinsic membrane characteristics, which allow
for complex integrative properties, and that they can be typed (in relation to these integrative
properties) into 2 classes of MVN Neuron, differing primarily in the shape and pattern of the
neuron’s “after hyperpolarisation” (AHP. The repolarisation phase seen in neurons following
an action potential, where membrane potential rapidly moves from the high positive value
at the peak of the action potential, to a highly negative value, usually more polarised than
the neuron’s resting potential) [118] [119]. It was found that MVN Type A neurons, matching
the previously categorised regular or tonic MVN neurons, show a deep, single AHP, with the
following depolarisation (return to resting potential after AHP) slowing after an inflexion point.
Irregular MVN neurons were found to match MVN Type B neurons (as they have been classed),
which show, in contrast to the single deep AHP of MVN Type A neurons, a double AHP, consisting
of an initial brief and rapid phase of hyperpolarisation, followed by a brief phase of depolarisation,

followed by a second longer and slower phase of hyperpolarisation [118] [119].

41



In addition, it was also found that the two types of MVN neuron differed in the amplitude
of their AHP (MVNA neurons showing a much greater amplitude than type B), the ‘'width’ of
their Action Potentials (Type A showing longer action potentials than Type B), as well as the
resting (in-vitro) discharge rates of the two types [118] [119]. However, on the subject of resting
discharge rates, it has been shown that in-vitro and in-vivo discharge rates for MVNB neurons
show significant discrepancies, possibly due to the absence of certain conditions in-vitro, which
are present in-vivo (such as synaptic noise) [114], and so, although determining the basis for
spontaneous activity is helpful, the actual discharge rates seen in in-vitro conditions are not a
useful measure in themselves.

Further recordings of MVN neurons, from horizontal preparations of Rat dorsal brainstem,
found a similar classification of MVN neurons, on the basis of their average action potential
shapes [77]. Again, MVN neurons were classified into type A (single deep AHP), and type B
(showing an early, fast AHP, followed by a delayed slow AHP) [77]. In addition to the classification
into the two types of MVN neuron, differences were noted in the number of each type found
(30% Type A, 70% Type B), as well as differences in the active membrane conductances (specifics
of these conductances will be elaborated in the following chapter on the models used for the
current work). These results were in line with previous classifications of MVN neurons. It has
also been suggested that this classification of MVN neurons reflects their functional role in the
VOR, with Type B neurons being responsible for High frequency head movement responses, and
Type A for responses to low frequency head movements [111].

Further to the segregation of MVN neurons by their phenomenological properties, it has
been shown that classification of MVN neuron types can be shown via a molecular framework,
through the use of transgenic mouse lines [8]. Through the fluorescent labelling of neurons in
two transgenic lines, two distinct subset of neurons were found, corresponding to the previous
classification of Type A and Type B MVN neurons, with matching action potential shapes as those
previously seen [8]. In addition, it was found that those neurons corresponding to the MVN Type
B classifications were responsible for the translation of head motion into compensatory motor

behaviour over a large, dynamic operating range [8].

2.4.2  Motivations for and Outline of Current Work
The relative simplicity of the pathways responsible for mediation of the reflex, along with the

extent to which the reflex has been characterised, have made the VOR (and specifically the
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linear components of the VOR) an eminent model system for the investigation of the relationship
between neurons, neural circuits or pathways, and observed behaviour. The VOR also presents as
an ideal system for investigation for several reasons. Firstly, the VOR and the vestibular system in
general can be considered to be phylogenetically ancient [33]. The development of the Vestibular
system was an important evolutionary event, allowing both vertebrates and invertebrates to
maintain posture, balance, equilibrium and spatial orientation, all while moving within their
environments [63]. The Vestibular system evolved in organisms a very long time ago, and is
present across a wide range of the fossil record [123], including some of the earliest extant species,
such as the myxine and lamprey [63]. This is also evidence of remarkably successful design of the
Vestibular system, that has changed little throughout Phylogeny.

As such, the Vestibular system and VOR are present in, and have been studied in, numerous
species, including the Squirrel monkey [97] [98], the Macaque [137], the Mouse [7], the Cat [78],
the Rat [64], the Toad-fish [13], the Guinea Pig [29], the Chinchilla [138], and the Human [29].
Further to this, the Vestibular apparatus and VOR circuitry show remarkable similarities across
species [1]. Due to this, there is a great deal of information that can be used specifically for
theoretical and modelling studies of the Vestibular system and VOR. In addition, the Vestibular
system and VOR have a well characterised anatomy and physiology [89], therefore presenting
it as an ideal system for investigation, particularly in investigation of the role of variability in
neural systems.

Secondly, the relative simplicity of the three neuron arc involved in the VOR, and its direct
nature, makes the reflex an ideal candidate for investigation, especially in regards to the strategies
and mechanisms by which the nervous system codes and transmits information from the sensory
to the motor space. For example, the horizontal rotational VOR transmits sensory input, converting
it to motor output, almost directly and with little to no subsequent processing. That is, the hVOR
has no extensive downstream processing that can be seen in other systems, and the sensory input
is converted to motor output, through only a single layer of interneurons [68]. Generally, the VOR
is a linear system, translating sensory input directly to motor output [7].

However, in addition to identifying the characteristics and properties that can be used to
categorise and identify different neuronal types involved in the Vestibular system, it is also
important to identify the ways in which individual members of a population of a given class
or type of neuron differ, and how that variability can be quantified across populations, and to

identify the role and function of this heterogeneity. That is, significant variability is seen amongst
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populations of identified neuronal types, and is seen amongst populations of MVN Type B (and
MVN Type A) neurons [118] [119] [109], and it is theorised that the variability seen across the
populations is necessary for their dynamic properties [5], and particularly for the precise, wide
frequency response required of the VOR [68]. As such, it is necessary to identify and quantify the
means by which populations of MVNB neurons may vary, and what significance and role such
variance has on performance of the populations.

The fundamental mechanisms of sensory signalling are still largely unknown [109]. Evidence
has been shown that suggests that, along with factors such as neuron morphology and size,
diversity of ion channel expression, and the conductances arising from these channels, are
responsible for heterogeneity in the populations involved [37], and that this heterogeneity is
responsible for the diversity of responses seen [109] [83] [20]. It is still to be determined, however,
which intrinsic membrane properties of the neurons involved in all stages of the VOR allow
for the graded hair cell responses to be encoded into trains of action potentials, which are then
transmitted through the Vestibular afferents, to the Central Vestibular neurons, and then to the
Oculomotor neurons. There is good evidence, however, that the heterogeneity of the Vestibular
afferent populations and their responses is due to the expression of K* conductances, and that
these conductances are expressed heterogeneously across the populations involved [20].

Experimental limitations have precluded a thorough investigation of the role which neural
heterogeneity may play in the performance of the VOR [117] [68], thus a modelling approach,
especially involving models with high bio-physical plausibility such as those used in the current
work, can help to investigate the function and possible benefit of such heterogeneity in the
MVN response of the linear, direct hVOR. For example, the small number of neurons that show
spontaneous discharge in cell cultures has limited such techniques in investigating the cause and
diversity of such discharge [83].

Both modelling and electrophysiological studies of MVN Type B neurons have shown that
single neurons display only a limited range of frequencies for which their response is linear, and
follows the input faithfully [68] [89]. Therefore, single neurons cannot account for the behaviour of
the MVN Type B neurons at this stage of the VOR, and a population response must be considered,
especially for high frequencies.

Thus, we attempt here to investigate the possible role of MVN Type B population heterogeneity
in the high frequency response of the fast, linear, direct and unmodified hVOR, using models

with a high bio-physical plausibility, that allow us to model and manipulate specific ion channel
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properties and parameters of the model neurons. Previous modelling work (i.e., [68] and [72]) has
only made use of simpler models, such as leaky integrate-and-fire, and Fitzhugh Nagamo models
of neurons, which suffer from limitations in the capacity for parameter setting of the model,
the fitting of model behaviour to observed cause of that behaviour, as well as modelling of the
neuron morphology [88]. For example, these simpler models do not allow for the consideration
of the dendritic structure to be modelled as closely as the compartmental nature of the models
used in the present work, thus we can model and distribute synaptic inputs dispersed across
the dendritic tree (Chapter 3, Section 3.2.2), as they would be in the real neuron, or through
the location ionic conductances, including them in some compartments, but not others. Simpler
models of the neuron treat it as a single point in space, and so neglect the possible effects of this
neuron morphology, an element of neuron behaviour that is almost certainly important in its
function [88].

Also, the means by which the conductances of the models used here are modelled allows for
more realistic and focussed representation and manipulation, such as the separation of similar
conductances into their subtypes (i.e., slow or fast voltage activated Potassium conductances,
or Calcium activated Potassium conductances) or through the varying of their activity and via
density, parameters, or specifics of activation and deactivation of the channel. Thus we can
model varying behaviour observed in MVNB populations with observed heterogeneity of the
conductances involved to investigate the functional role of that heterogeneity.

Specifically, we investigate here the role of diverse spontaneous discharge rates across the
population, modelled as an electrical bias supplied to the models in the early stages, and
Heterogeneity in K* currents in latter stages. Along with population Heterogeneity we also
investigate the possible role of noise in the population response. We also model inputs through a

method that allows the dendritic structure of the neuron to be incorporated into the simulations.
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METHODS

3.1 COMPARTMENTAL MODELS OF MEDIAL VESTIBULAR NUCLEUS NEURONS

3.1.1 Introduction

As has been discussed in the preceding chapter, at the level of the central vestibular nucleus
neurons, a sensorimotor transformation occurs, between the sensory space (the semi-circular
canals of the vestibular system) and the motor space (force exerted by the extraocular muscles)
in order for the functioning of the rotational Vestibulo-Ocular Reflex (VOR) to be achieved.
Specifically, when dealing with the horizontal VOR (hVOR), the central vestibular neurons
responsible for this transformation are the Medial Vestibular Nucleus (MVN) neurons. Further,
it has been proposed that this operation relies heavily on the membrane properties of the
neurons involved [128], in addition to the network connectivity [61] and synaptic mechanisms
[62]. However, without access to simultaneous recordings from a large number of Vestibular
neurons, these membrane and network properties are difficult to illuminate.

Computational and modelling methods, however, provide an alternative approach to the
investigation of membrane and network properties, and the extrapolation of these to network
behaviours. That is, through modelling of the MVN neurons, we can investigate and explore
the network and membrane properties involved in the VOR, and how these properties relate
and contribute to the overall behaviour of the reflex, and particularly the high speed/frequency
response of the VOR.

Therefore, in the work being presented, Bio-physically plausible compartmental models of
Guinea Pig Medial Vestibular Nucleus (MVN) neurons, implemented in the NEURON Simulation
environment, were utilised. The parameters and structure of the models were published previously
[104], and were chosen in order to reproduce the behaviour and responses of MVN Type B
neurons reported through electro-physiological recordings [118] [119]. Parameters not constrained
by data obtained through these electro-physiological recordings were, instead, constrained by
data obtained from other recordings, primarily from neurons located in the deep cerebellar nuclei

and hippocampal CA3 pyramidal cells [104].
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Two main considerations underlie the type and construction of model used in the current
work. Firstly, a high level of biological plausibility was required from the mechanics and kinetics
underlying the (membrane properties and their representation within the) model. Voltage gated
ion channels utilised Hodgkin-Huxley Kinetics [67], while Ligand gated ion channels and Calcium
modelling used Michaelis-Menten type Kinetics [94]. A relative advantage of this approach, is
that it allows for the physical structure and parameters of the model to be related to actual electro-
physiological data [104]. In addition, by modelling the individual parameters and variables
of the model independently, it allows for the manipulation of these parameters in a plausible
manner. However, this approach of requiring high biological plausibility in the models, does have
the disadvantage of being computationally expensive, when compared to other, less plausible
modelling methods.

The second consideration of the modelling strategy was the use of actual electro-physiological
data, from previously published intracellular studies [118] [119] to constrain the parameter values
of the models. That is, Hodgkin-Huxley and Michaelis-Menten type kinetics were used to model
the membrane properties of the neurons, with the parameters of the kinetics constrained strictly
by data from intracellular studies of actual Medial Vestibular Nucleus neurons. In addition, any
parameters that were not constrained by data from these studies were constrained instead by data
obtained from electro-physiological studies of other neuronal preparations, particularly neurons
located in the deep cerebellar nuclei and hippocampal CA3 pyramidal cells [104].

One important result of the use of high plausibility modelling techniques, and the constraints to
the parameters and structure applied to the model, is that, under specific conditions, the models
are able to reproduce behaviour observed in electro-physiological studies that were not utilised
during the construction of the models. This can be considered evidence for the predictability of

the models utilised [104].

3.1.2  Morphology

The models used Compartmental modelling principles, in order to more accurately model
the involvement of the neuron’s dendritic structure in the behaviour of the neuron. That is,
the spatial extent and complexity of the neuron’s dendritic structure is modelled as multiple
individual compartments, each of a given diameter and length. The dendritic tree is divided into
cylindrical compartments, each given their own membrane resistance, as well as type and density

of ion channels and other mechanisms. Each compartment is characterized by its capacity and
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transversal conductivity, with adjacent compartments being coupled by the longitudinal resistance
determined by their geometrical properties. This allows for the model to take into account the
uneven distribution of ion channels and other mechanisms across the neuron’s surface.

The Type B MVN neuron models feature 4 proximal dendrites, branching from the soma, each
made up of 3 compartments. Proximal dendrites further split in to 2 distal dendrite branches,
each of which is made up of 6 compartments. This compartmental structure is illustrated in
Figure 3.1. Soma radius was 15.5um, proximal dendrite radius and length 1.5um and 9g9um, and
distal dendrite radius and length o.5um and 198um *. The structure of the dendritic tree was
chosen to match data available on MVNB neurons (including personal communications between

Quadroni & Knopfel and M Serafin).
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Figure 3.1: Compartmental Structure of the MVNB Neuron Models. The models consists of a cell Soma,
with 4 Proximal Dendrites branching from this, which then branch into 2 Distal Dendrites each.
Each Proximal Dendrite is made up of 3 compartments, while Distal Dendrite is made up of 6
compartments.

The shape of the MVNB neuron model, as implemented in the NEURON simulation environ-

ment, is shown in Figure 3.2.

1 These match the values provided by [104]
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Figure 3.2: MVNB Model Shape as Implemented in NEURON. Soma is represented by the large circle at the
top of the image, with Proximal dendrites (Prox.) branching from this. Proximal dendrites then
branch into 2 Distal dendrites each (Dist.).

3.1.3 Active Membrane Conductances
The modelling of active membrane conductances is founded upon the general formalisations
of Hodgkin and Huxley [67], in which each channel is controlled by (at least) one gate, and
is considered activated when all gates are in the open state. The gate states are controlled by
backwards and forwards rate functions, which in turn are dependent upon membrane voltage. In
addition, the Calcium activated Potassium channel rate functions are, in part, dependent upon
internal Calcium concentrations. That is, each channel is controlled by at least one gate, and is
activated when all gates are open, each gate being in one of two states (open or closed), and the
transition between states being determined from the forward and backward rate functions.
Each of the 61 compartments were allowed to contain up to 9 Active conductances. The
characteristics of the modelled conductances were derived from intracellular recordings of MVN
neurons from Guinea-pig brainstem slices, by Serafin and colleagues [118] [119], from which
mathematical models, channel specifics, and rate functions were then formalised by Quadroni

and Knopfel [104]* These models were subsequently implemented in the NEURON simulation

The conductance density, reversal potential, and rate functions of the models implemented in NEURON correspond to
those provided by [104].
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environment, by Tom Morse of Yale.Edu, and made publicly available on the ‘SenseLab” Model

Database.

3.1.3.1  General Observations from Intracellular Recordings

Two studies detailing the intrinsic membrane properties [118], and their ionic basis [119], of
Guinea-pig Medial Vestibular Nucleus neurons were used to constrain the parameters of the
models detailed by Quadroni and Knopfel [104]. Firstly, we provide a general overview of the
findings from these studies, before detailing the Active conductances observed, and the details of
their modelling performed by Quadroni and Knopfel.

Intracellular recordings were taken from 170 neurons of the MVN from brainstem slices of the
Guinea-pig, primarily to identify their intrinsic membrane characteristics. A resting potential of
-5omV, and AP size of 6omV were observed. Two main sub-types of MVN neuron were observed,
largely based on the characteristics of their After-hyperpolarisation (AHP, as discussed in the
previous chapter)3. A small number of neurons tentatively classified as a third group (Type C)
was found also, as a heterogeneous population that showed some, but not all of the characteristics
of the Type A and B classes [118]. However, it is assumed that these neurons were part of the Type
A or B classes, but due to their heterogeneity, they were not clearly classified as either. Further
studies have not identified Type C neurons as separate from Type A or B [77] [8].

Type A neurons were characterised by a deep, single AHP, and, during spontaneous activity,
displayed a slowing of AHP, suggesting the involvement of an active process (possibly an A-Like
Potassium Rectification, causing a change in the depolarisation slope of the AHP, around midway
through, reducing the strength of the AHP [119]) [118].

Type B MVN neurons showed a double, or bi-phasic, AHP (a rapid, brief repolarisation after
an action potential, followed by a longer, slower AHP, or repolarisation, phase). This bi-phasic
AHP was present in all MVN B neurons observed. A mean AHP amplitude of 1omV (both
phases), an action potential duration of 0.29ms, and resting potential of 56.3mV were observed
for MVN B neurons. In comparison, MVN A neurons showed much greater AHP amplitudes
(22.2mV), and significantly longer action potential durations (0.5ms). Type B neurons showed
Subthreshold Plateau potentials, which kept the cells close to their firing threshold. Both Types

showed spontaneous activity, or regular resting discharge [118].

This classification of MVBN neurons into two types is largely in line with previous classifications mentioned previously,
into Tonic and Kinetic, or Regular and Irregular, neurons. We mainly present details of the Type B neurons, as they are
the focus of the current work, but include some discussion of Type A neurons for comparison and completeness.
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Type B neurons had large, high threshold calcium spikes and prolonged calcium dependent
plateau potentials, as well as Calcium dependent AHP and subthreshold persistent Sodium
conductances, and low threshold Calcium spikes, leading to some bursting activity. In contrast,
Type A neurons small, high threshold Calcium spikes (increased by Barium), but shared a Calcium
dependent AHP [119].

Both MVN neuron types showed an anomalous rectification (drop in voltage response after
prolonged Hyper-polarising pulses) blocked by the application of Caesium (K* channel blocker),
along with the reduction of AHP (second phase of Type B) in the presence of both Cadmium and

Cobalt (Ca** channel blockers) suggesting the involvement of Ca** Activated K* in this behaviour

[119].

3.1.3.2 Fast Inactivating Sodium Conductance

The Action Potentials of Type B neurons are seen to be fast ( 0.29ms, as mentioned previously),
suggesting that the Sodium conductance responsible for the initial phase of the Action Potential
possesses both a fast activation and a fast inactivation, thus limiting the size of the outward
current required for repolarisation of the cell. Further, as MVN Type B cells can show maximum
firing rates of 400Hz, a fast recovery from inactivation is suggested in this conductance [118][118].
The rate functions for these channels were adjusted, in order for the shape of action potentials
observed in electrophysiological recordings to be reproduced faithfully and accurately in the

model neurons [104].

3.1.3.3 Persistent Sodium Conductance

This conductance is responsible for the subthreshold plateau potentials, which have been observed
in MVN neurons to resist inactivation during strong depolarisation, and show sensitivity to
QX314 (Bromide, a Na* channel blocker). Further, as long depolarising pulses have been shown
to inactivate and/or block spiking in MVN neurons, but not the persistent Sodium current, it is
suggested that this conductance is not the ‘'window current’ (the small range of voltages where
T-type (Transient) channels can open, but do not inactivate completely) of the Fast Inactivating
Sodium Conductance, but rather this is a current/conductance generated by a separate and distinct
set of channels [104]. This conductance was modelled using data obtained from Hippocampal

Pyramidal cells, and did not include inactivation.
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3.1.3.4 Fast Voltage Activated Potassium Conductance

This conductance is responsible for the initial phase of repolarisation after action potentials,
seen in MVN Type B neurons. The underlying channel responsible for this conductance may
correspond with observed delayed rectification [118], but may also incorporate other channels.
This conductance must feature rapid deactivation at resting potential, in order for the biphasic
after-hyperpolarisation observed in MVN Type B neurons. The shape of the action potentials,
therefore, can be constrained by the rate functions of this conductance, with a fast activation,
combined with a high activation threshold, leading to the very fast action potentials observed in

Type B MVN neurons [104].

3.1.3.5 Calcium Activated Potassium Conductance
The second phase of after-hyper-polarisation seen in Type B MVN neurons is blocked by Apamin,
Cadmium and Cobalt (all of which are Ca** channel blockers). Therefore, it is likely that this
conductance is generated by a current derived from or generated by Ca>* activated or dependent
Potassium channels. A similar current has been seen in other types of neurons, and is not observed
to be Voltage activated. The mathematical expressions used for this conductance are equivalent to
Michaelis-Menten like Kinetics [104]. In addition, this conductance may also involve the dendritic
structure. That is, after the initial, first, rapid phase of after hyper-polarisation the soma is
highly polarised, and negatively charged. Calcium currents from the Dendrites to the Soma are
generated, with Calcium flowing into the Soma, and this positive current influx is responsible
for the brief depolarisation seen between the 2 phases. It has been proposed that this Calcium
flow, from Dendrite to Soma, is responsible for the activation of this Potassium conductance, and
the 2nd phase of MVN Type B after hyper-polarisation. The existence of this conductance and
confirmation of the channel underlying it was also confirmed in electrophysiological studies not
used in the construction or consideration of the model [77].

Modelling studies of MVN neurons* have provided further support for the role of a Calcium

activated Potassium channel in shaping the second phase of AHP [5].

3.1.3.6 Transient Potassium Conductance
This conductance is present only in the Soma of Type B neurons, and is theorised to be similar

to an A-Like conductance (Potassium channel, similar to ‘shal” or ‘shake’ channels [104]). It

4 Using single compartment models, with Hodgkin Huxley and Active conductances
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shows de-inactivation (that is, becomes available for activation) during hyperpolarisation, and
rapidly activates with depolarisation. Additionally, this conductance is confirmed by the selective
means by which it’s blocked in Rat MVNB neurons, from studies not used in the creation or

consideration of the model [77]

3.1.3.7 Slow Relaxing Voltage Activated Potassium Conductance

In cortical neurons, the persistent Sodium conductance is accompanied by a slow activating
outward current. This slow current counteracts development of sub-threshold plateau potentials.
This conductance may partially represent slow depolarisation activated Chlorine currents, elec-
trogenic pumps and exchangers [104]. Slow kinetics are required for this conductance, in order
to replicate Sodium dependent plateau potentials, and to accurately reproduce the relationship

between injected current and firing frequency.

3.1.3.8 Slowly Relaxing Mixed Sodium-Potassium Conductance

Both Type A and Type B MVN neurons showed a ‘sag’ during injection of hyper-polarising current
pulses. This anomalous rectification was eliminated by Caesium (Potassium channel blocker)
[119]. This conductance is similar to conductances seen in cat cortical neurons and cerebellar

purkinje cells [104].

3.1.3.9 High Voltage Activated Calcium Conductance
A high threshold inactivating Calcium (Ca2+) conductance, based on previous experimental
work and models of hippocampal pyramidal cells, with altered time dependence of activation to

recreate behaviour of MVN neurons in electrophysiological studies [104].

3.1.3.10 Low Voltage Activated Calcium Conductance

This conductance is unique to Type B MVN models (not present in pharmacological studies or
models of MVN Type A neurons). Considered to be responsible for burst firing observed in Type
B neurons, and is similar to those seen in thalamic and cerebellar nuclei neurons. The kinetics
of this conductance are based on those described in experimental work and models constructed

from this work [104].
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3.1.4 Model Behaviour

For the work presented here, the mathematical models described in the literature [104] are
incorporated into the NEURON simulation environment, with some slight modification (the
inclusion of an empty ‘dummy current’ in order to avoid problems with numerical integration
that were encountered).

The Quadroni & Knopfel model faithfully reproduces behaviour described by Serafin and
colleagues [118] [119], as far as Action Potential size, length, shape and the specific course and
shape of after-hyperpolarisation (AHP). The implementation of these models used in the current
work also reproduce this behaviour. Figure 3.3 shows the Action potential shape of the model
MVN Type B neurons. Further, the two phase AHP is reproduced through the interaction of
currents generated by the fast voltage activated Potassium conductance (K-Fast) and the Ca>*
activated K* (K-AHP), as well as Calcium currents flowing between the Soma and dendritic
structures. The first component of the AHP is generated, mainly, by K-Fast, and the second by
K-AHP, with the latter activating only after repolarisation, due to the delay of sub-membranous
Calcium concentration compared to voltage. The brief depolarisation seen between the 2 phases
of hyperpolarisation, is seen to be dependent upon the dendritic structure used in the models
(that is, reducing the number of proximal dendrites branching from the soma body can lead to
the elimination of this brief repolarisation, as well as reduction of the 2nd phase of AHP), as is

due to the inward Calcium currents present in the dendritic structure [104].
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Figure 3.3: MVN Type B Action Potential Shape. Voltage trace of model MVN Type B neurons, showing
Action Potential course. Arrows show the start of the second phase of the two phase After-
Hyperpolarisation observed in experimental studies, and produced by the Ca** activated K*.
The Calcium currents activating this Potassium conductance are responsible for the brief period
of depolarisation observed prior to the second phase of AHP.

Several properties of these conductances and the model are required to produce the distinctive
shape of the 2 phase AHP. Firstly, K-Fast must display rapid deactivation, near resting membrane
potential. This must be followed by a rapid repolarisation, in order to induce the large potential
gradient between the soma and dendritic structure, and, thus, the brief depolarisation seen
between the 2 phases of AHP. In addition the morphology of the model/neuron plays a part in
producing the shape of the AHP, as the K-AHP conductance of the 2nd phase is activated by the
Calcium conductances originating in the dendritic structure. Reducing the number of dendrites
increases the spike and AHP amplitude (as there is decreased Calcium based currents flowing
between soma and dendrite), and no dendritic structure leads to mono-phasic AHP.

Both MVN Type A and B neurons display spontaneous firing activity, or regular resting
discharge [118]. This is replicated in the model cells, with standard or default rates of 15Hz (Type
A) and 21Hz (B) (Our implementations show an spontaneous frequency of 20.904Hz for MVNB

models). The persistent Sodium current of the models supports and produces the spontaneous
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activity in Type B MVN neurons, whereas the slow potassium current builds up during long
lasting depolarising current injections and, during spontaneous activity, it regulates activity the of
cell, through opposition of the persistent Sodium current. The transient Potassium conductance
has a low threshold to deactivation, and thus there is no delay to action potential generation after

long lasting hyper-polarisation, as is seen in MVN Type A neurons [104].

3.1.4.1 Induced Rhythmic Bursting Activity
As well as recreating the behaviour observed in [118] and [119], the models of Quadroni and
Knopfel successfully recreated behaviour observed in electro-physiological and pharmacological
studies that were not used to create the model [104]. That is, the models were able to recreate
behaviour seen in studies, the data and observations of which were not used to define the
parameters of the model, or as a target of the model’s behaviour. In studies involving the use of
Apamin, which is known to block certain Calcium activated Potassium channels (SK channels,
such as the K-AHP of the MVNB model), rhythmic bursting activity was observed from MVNB
neurons [30]. In the Quadroni and Knopfel model, this behaviour was successfully induced by the
removal of the K-AHP conductance (thus modelling the blocking action of Apamin on Calcium
activated Potassium channels) [104]. This recreation of behaviour not used in the creation of the
models was considered to be an indication of their validity and possible predictive ability [104].
The models used by the author in the current study also recreate this behaviour, as is seen
in Figure 3.4. Removal of the K-AHP conductance leads to rhythmic bursting activity from the
model, matching that observed in both the modelling work of Quadroni and Knopfel [104], and

the pharmacological studies of de Waele and colleagues [30].
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Figure 3.4: Rhythmic Bursting Activity Induced by K-AHP Removal.

In addition, the introduction of hyper-polarising current to the model and neuron, with K-AHP
removed, reduced the frequency of the rhythmic bursting activity. Again, the models used here

recreate this behaviour faithfully, as shown in Figures 3.6, 3.7, and 3.8.
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Figure 3.5: Effect of Hyper-polarising current injection of -25pA (0.025na) on Rhythmic Burst frequency.
Current injection begins at 300oms
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Figure 3.6: Effect of Hyper-polarising current injection of -50pA (0.05na) on Rhythmic Burst frequency.
Current injection begins at 300ms
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Figure 3.7: Effect of Hyper-polarising current injection of -75pA (o0.075na) on Rhythmic Burst frequency.
Current injection begins at 300ms
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Rhtyhmic burst activity was modified further with hyper-polarising current, in that duration of
the bursting activity decreases with with the inclusion of hyper-polarising current injection. This

is shown in Figure 3.8.

59



40 —

| Time(ms)

1100 1250

T B.
u | Time (ms)
B N

Figure 3.8: Comparison of Rhythmic Burst Length. Rhythmic burst activity, induced by elimination of the
K-AHP conductance, is reduced in duration by hyper-polarising current injection. Top trace
shows rhythmic burst length with current injection of -50pA (0.05na), lower trace shows no
current injection.

The likely cause of this reduction in both rhythmic burst length and frequency is the effect

of the hyper-polarising current in augmenting the already present hyper-polarisation caused
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by the K-Slow channels, which builds up to terminate the burst. With hyper-polarising current
augmenting the hyper-polarisation of the K-Slow channels, bursts are terminated sooner.

Finally, the rhythmic activity of MVNB neurons in SK channel blocking mediums was observed
in other pharmacological studies characterising the ionic conductances of Rat MVN neurons that
were not available during model creation, along with an alteration to the shape of the second
phase of AHP in MVNB neurons, with the second phase eliminated in Apamin medium [77]. The
models used here also recreate this behaviour, as shown in Figure 3.9.

Thus, our models accurately recreate behaviour obtained from studies used to create and
parametrise the models, as well as from studies that were used in proofing, and in separate

studies not used to proof the Quadroni & Knopfel models.

A (B

\

Figure 3.9: Action Potential Shape with eliminated K-AHP conductance (A) and in the standard model (B).
Second phase in the standard simulation is marked (C) and missing from the simulation with
eliminated K-AHP.
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3.1.5 Specific Behaviour of Slow Potassium Conductance

As previously mentioned, it has been suggested that heterogeneity of MVN neuron populations
is, at least in part, responsible for the diverse range of responses seen from MVN neurons [109]
[83] [20], and the wide range of frequencies over which the hVOR operates [68]. We seek to
investigate the implications of this population heterogeneity (for response fidelity), expressed as
diverse spontaneous discharge rates, and firing rates in response to inputs, across a population
of model MVN neurons. Heterogeneity of the Slowly relaxing Voltage Activated Potassium
conductances (K-Slow), across populations, was investigated as the possible cause of the diversity
of spontaneous discharge rates, in the current work.

This conductance was investigated as a possible cause of MVNB spontaneous discharge rate
heterogeneity due the observed action of the conductance, and its relation to the persistent
Sodium conductances present in neurons, and MVN neurons specifically. The persistent, inward
Sodium conductance (NAp) is known to produce the spontaneous activity of MVNB cells [118]
[119], through the generation of the sub-threshold plateau potentials, prolonged or persistent
depolarisations of the cell constantly maintaining membrane voltage near threshold [71], thus
increasing their spontaneous rate of activity [79]. These sub-threshold plateau potentials are
sustained in MVN neurons, due to the persistent nature of NAp, and thus drive the constant
spontaneous depolarisation of the cell responsible for the rate of their rhythmic activity, and
supporting this spontaneous activity of the cell [118]. Therefore, the NAp conductance modulates
and supports the spontaneous activity of model MVNB cells[104]. The K-Slow conductance, on
the other hand, is seen to counteract the development of these sustained plateau potentials in
neurons [124], and MVN (Type A and B) neurons specifically [118]. Thus, during spontaneous
activity in the model cell, this conductance acts to regulate this activity of the cell by opposing
the activity of the NAp conductance [104].

As previously described, Potassium(K") channel heterogeneity has been found to be the cause
of the diverse firing rates seen in both Vestibular afferent neurons, and the MVN neurons
involved in the hVOR. Vestibular afferents showed cell-to-cell variability in the magnitude of
their K* conductances [109], and in Central Vestibular nucleus neurons it was found that the K*
conductances of these neurons played a significant role in the generation of their diversity of
response, and that, rather than a discrete categorisation of responses being present, a continuous
distribution of responses was found, and it was found that, specifically the slow K* conductances

and their continuous distribution affected the repetitive firing seen in populations [117]. However,
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for Vestibular afferent neurons at least, very little variability in the magnitude of their Sodium(Na™*)
conductances were found [109], thus eliminating variability of these Na* conductances as a
possible candidate for the cause of the diverse firing properties of these populations. Therefore,
alteration of the K-Slow conductance, but not the NAp conductance, was investigated as a
possible cause of the diverse firing dynamics of MVNB neurons. Figure 3.10 shows the effects of

manipulation of K-Slow conductances on the spontaneous activity of MVNB neurons.
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Figure 3.10: Comparison of spontaneous activity in MVNB Cells with altered K-Slow conductances. Voltage
traces of simulated MVNB neurons, showing the effect of decreased K-Slow density (top trace,
A., increasing firing frequency), unaltered (B.), and increased (C., decreased frequency of firing)
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That is, the persistent inward Sodium conductance (NAp) acts to depolarise the cell constantly,
supporting its rhythmic, spontaneous activity, whereas the outward slow Potassium conductance
(K-Slow) hyper-polarises the cell, driving it away from threshold. Increasing the density or
magnitude of K-Slow leads to greater hyperpolarisation, countering the depolarisation caused by
NAp more strongly, thus decreasing the spontaneous activity of the cell. Similarly, decreasing the
density of K-Slow causes less hyperpolarisation to oppose the depolarisation of NAp, increasing

the spontaneous firing rate of the model cell.

3.2 METHODS OF HETEROGENEITY AND INPUT SIMULATION
Here we present the methods used in the work presented for the modelling and simulation of

population heterogeneity, input to the cells, and noise present in the simulations.

3.2.1 Population Heterogeneity Modelling

3.2.1.1 Bias Current

The first method of simulating population heterogeneity, in the form of varied spontaneous firing
rates, was the use of ‘bias’ added to the model, through current injection, in order to increase or
decrease the spontaneous rate of fire. This method has been used previously, to investigate the role
of heterogeneity in model MVNB neurons (using simpler, leaky-integrate-and-fire models) [68],
as well as the general benefits and effects of population heterogeneity on information processing
(with Fitzhugh-Nagamo neuron models) [72].

Hyper-polarising current injection to the cell model Soma serves to decrease spontaneous firing
activity, counteracting the conductances that depolarise the neuron naturally and persistently.
Thus, the effect of the persistent Sodium current NAp, which drives constant depolarisation of
the neuron towards and past threshold for spiking, is reduced through the hyper-polarisation
of the injected current. Similarly, the natural depolarisation is augmented by the injection of
depolarising current, increasing the spontaneous rate of fire. The effect of this current injection is
shown in Figure 3.11. To take account of any initial but transitory effect on the model from the
current injection (it was observed that neurons showed a changing ISI rate while they "settled
in" to the level of current injection provided) simulations using this method were allowed 500
milliseconds, until ISIs were constant, before any experimental input was provided. This was

similar to an initial delay used in previous work[68].
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Figure 3.11: Comparison of Current Injection Bias Effect on MVNB Spontaneous Discharge Rate. Voltage
traces of Model MVNB neurons receiving the depolarising and hyper-polarising current inject
used as a bias to simulate firing rate heterogeneity. Top trace shows depolarising current of
50pA (0.05nA), middle trace shows no current, bottom trace shows hyper-polarising current of
-50pA.

For our simulations, the relationship between amplitude of current injection and spontaneous
firing rate was found, such a population of neurons could be simulated, with a chosen distribution
of firing rates, and the required current required to the individual members of the population.
Figure 3.12 shows the distribution of firing rates of a population of neurons with rates chosen

from a normal (or gaussian) distribution (mean = 1, variance = 0.02778) using this bias current
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injection method. This population was found to be normally distributed (Chi square goodness of

fit test p = 0.0626) around a mean of 20.881Hz.
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Figure 3.12: Actual Firing Rate Histogram of MVNB Population with rates chosen from Normal or Gaussian
distribution, mean = 1, var = 0.02778, using the bias current injection method. This population
is normally distributed, around the mean rate of 20.881Hz

3.2.1.2  Conductance Manipulation

As previously discussed, manipulation the slow Potassium conductance (K-Slow) effects the
spontaneous firing rate of the neuron model. Increasing the density of the conductance, in both
the Soma and Proximal dendrite compartments, decreases the spontaneous firing rate, while
decreasing the conductance density increases spontaneous activity. Firing rate diversity of a
population can effectively be modelled as diversity in these conductance densities.

Prior to actual experimental simulations, the exact relationship between the density of the K-
Slow conductance and the resting/spontaneous discharge rate of the model was determined, such
that the density of K-Slow conductances (in both the Soma and Proximal dendrite compartments
of the model neuron), for a chosen resting discharge rate (for an individual member of the
population of simulated neurons), can be determined. That is, as we are seeking to investigate
the implications of MVN neuron population heterogeneity (in the form of a diverse spontaneous
discharge rates across the population, with that diversity arising from K-Slow conductance
heterogeneity), it is necessary for the relation between density of the K-Slow conductances of
the models, and the spontaneous discharge rate to be determined. Once this relationship was
known, the required density of K-Slow conductances (in both the Soma and Proximal dendrite

compartments of the model) could be derived, in order to produce the required spontaneous

67



discharge rate for that member of the population. This relationship is shown in Figure 3.13, for

both Soma and Proximal dendrite compartments.
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Figure 3.13: Relation between K-Slow Density and Spontaneous Discharge in MVN Type B Neuron Models.
Density of K-Slow conductance, in Proximal Dendrite (top) and Soma (bottom) compartments,
increases from left to right. Spontaneous discharge of the model is shown as a proportion of the
default rate of discharge.

This data was obtained through manipulating the density of the K-Slow conductances for a
number (104) of small populations of neurons (n=10), multiplying this density by factors between
0.025 and 2.6, the same factor being used to alter the Soma K-Slow density and the Proximal
dendrite K-Slow density. This produced a range of populations with average firing rates (derived
from their average instantaneous frequencies over 3 seconds of simulation, after 1.2 seconds
settling, to forget initial conditions, and a further 3 seconds of simulation with inputs) between

10 and 33Hz (MVNB default spontaneous rate of fire = 20.904Hz).
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From this data® it was found that the relationship between Density of K-Slow conductances
and discharge rate could be expressed through the following equation: Channel Density =
(log(Firing Rate/a))/b. For values of a and b listed in Table 3.1, for both Soma and Proximal
Dendrite compartments. This equation could then be used to determine the required channel
density, for both the Soma and the Proximal dendrites, for a given firing rate. That is, prior to
simulation, each member of the population can be assigned a firing rate (for example, from a
normal distribution) which can be used in the equation to determine the required densities of the
K-Slow conductance in both proximal dendrite and Soma compartments, which can then be set
in the model prior to simulation. There was a negligible error in the equation and procedure, in
that actual spontaneous firing rate differed from the chosen rate by up to 1% due to the minor

deviation from a perfect exponential relationship.

Compartment | a b

Soma 1.56951 | -884.46640

Prox. Dendrite | 1.56957 | -1130.68968

Table 3.1: Channel Density of K-Slow Equation Values. Values for a and b used to determine channel density
required to produce a given spontaneous discharge rate.

Simulating a population (n=5000) of MVNB neurons with firing rates chosen from a normal
distribution (mean = 1, variance = 0.02778) produces the distribution of firing rates shown in
Figure 3.14. This distribution is indeed normally distributed (Chi square goodness of fit test p
= 0.074) around a mean of 21.059Hz, as expected, confirming the validity of the rate/density
procedure, Again, 1.2 seconds of delay was allowed before the data used to obtain this distribution
was collected. This delay was used across all simulations using this method of conductance

manipulation.

5 Using Least Squares method of Exponential regression
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Figure 3.14: Actual Firing Rate Histogram of MVNB Population with rates chosen from Normal distribution,
mean = 1, var = 0.02778 using the K-Slow manipulation method. This population is normally
distributed, around the mean rate of 21.059Hz

3.2.2  Input Simulation

Input for our simulated populations took the form of sinusoidal waves of frequencies 8Hz, 12Hz,
16Hz, and 20Hz, matching the ‘medium’ to "high” range of frequencies seen in the real VOR
and Vestibular system [98]. In addition, as single neurons of the MVN involved in the VOR
display only a limited range of frequencies for which their response is linear, and follows the
input faithfully (up to 10Hz) [68] [89], this range of frequencies would allow us to investigate the
ability of a population response (through the population’s rate encoding of the inputs) for the
VOR’s high frequency response range. Use of sinusoidal abstractions for the input to Vestibular

nucleus neurons is common throughout the literature [68] [114].

3.2.2.1  Input through Current Injection
The initial method of input simulation was the use of current injection. Input to the cells was
approximated as a sinusoidal wave of one of the given experimental target frequencies (8Hz,

12Hz, 16Hz & 20Hz), and simulated as direct current, injected into the Soma of the model cell,
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using a modified form of the NEURON simulation environment’s Current Clamp point process
(with the current injected following the required sinusoidal wave).

This method of input allowed us to easily control the mean and amplitude of the current injected
into the cell, as well as allowing us provide independent noise to the input of each member of
the population. That is, although the common input was identical across the population (as the
current from each individual point process was identical across the population, as it followed the
same equation), it was produced by individual processes attached to individual cells which could
be modified, through the addition of Gaussian noise, across the population. This noise could be
controlled (across the population as a whole or for individual members) in regards to its mean,
amplitude and time constant. The NEURON simulation environment’s Event delivery system
was used to control the time constant of the noise, and ensure this did indeed remain constant.

Increased amplitude of the input signal represents an increased velocity of the movements

being compensated for in the model VOR.

3.2.2.2  Synaptic Spike Train Input

The second method of input was through the use of simulated exponential synapses, producing
excitatory input to the cells, following pre-generated spike trains. Excitatory, exponential synapses
were distributed uniformly across the model cell’s dendritic structure (Proximal and Distal dend-
rite compartments), with their excitatory events following pre-generated spike times produced
to approximate a distributed sinusoidal input. That is, each model synapse produced excitatory
inputs to the cell following separate spike trains, each synapse being assigned a spike train prior
to simulation, from a large set of pre-generated spike trains. Thus, the input provided and the
timing of the excitatory input events was not identical across the synapses of an individual cell,
or across the population of cells as a whole. The distribution of synapses could be controlled in
regards to their number and the weight of their excitatory conductances.

The synapse type used was the NEURON environment’s Exp2Syn object, a 2 state kinetic
scheme synapse described by a rise time (0.5ms), and decay time constant (3ms), which produces
a synaptic current with an alpha function like conductance. These were activated by ‘events’
delivered through the NEURON environment’s NetCon object, which was driven by pre-generated
spike trains. That is, each synapse was activated at event times supplied by the NetCon object,

and each NetCon object was provided with times from individual pre-generated trains read in to
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the object prior to simulation beginning. Each Synapse was provided a random train chosen from
a set shared across the population.

The spike trains provided to the populations were produced through a poisson process, using
a thinning algorithm to give the exact spike times (were random spike times are produced, and
discarded if they do not match the required frequency of the spike train at that time, to produce
the required spike trains, and kept if they do match the required frequency closely enough). This
process produced imhomogeneous poisson distributed spike trains, approximating the distributed
input signal produced by Vestibular afferents, following a sine wave of one of the experimental
target frequencies. These spike trains could be controlled in regards to their mean frequency,
amplitude, as well as the inclusion of a refractory period, thus allowing us to pre-generate a
range of spike train sets to investigate the effect of these factors on the population output, along
with factors such as the number of synapses and their relative weight.

Figures 3.15, and 3.16 show the characteristics of the 3 spike train parameters used, at 8Hz and
16Hz, to demonstrate the process which the spike trains follow. Spike train inputs oscillate in the
frequency of their spikes®, by a given amplitude and around a given mean, with the oscillation
following the target frequency of the input (the frequencies we expect our simulated populations
to follow). Input train set Ao1 has a mean of 50Hz, and amplitude of 25Hz, thus simulating a
Vestibular afferent population providing input at a mean rate of 50 spikes per second, and an
amplitude of 25 spikes per second (50+/-25). Input Aoz has a mean of 75Hz and amplitude of
25Hz (75+/-25). Input Ao3 a mean of 35Hz and amplitude of 20Hz (35+/-20). These distributions
were chosen to roughly approximate those seen in the literature [82]. Differences in the mean and
amplitude of these input spike trains represent differences in the velocity of the rotations being
compensated for in our model VOR response, with increases in mean/amplitude representing an

increased velocity of rotation.

6 Not to be confused with the Target frequency at which the spike trains oscillate
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Input Spike Train Characteristics (8Hz Input Frequency)
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Figure 3.15: Input Train Characteristics for 8Hz Target Frequency. Ao1 had a mean frequency of 50Hz and
and amplitude of 25Hz. Aoz 75 +/-25. Ao3 35 +/-20

Input Spike Train Characteristics (16Hz Input Fregquency)
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Figure 3.16: Input Train Characteristics 8Hz. Means and amplitudes are the same for those of the 8Hz trains.

These input sets (Ao1, Aoz, Ao3) were generated for all 4 target frequencies (8Hz, 12Hz, 16Hz,

20Hz). Spike train sets were generated using MATLAB.

3.3 IMPLEMENTATION OF MODELS AND PARALLEL SIMULATIONS
The models used in this study are implemented in the NEURON simulation environment, from

the data previously published by Quadroni and Knopfel”. These models were implemented in the

7 Implemented by Tom Morse at Yale.Edu.
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NEURON environment and were available through the SenseLab Model Database. The models
used in the current work were largely unchanged from this model, aside from the inclusion of a
‘"dummy’ current in certain of the mechanisms used, in order to avoid problems with numerical
integration that were encountered early in the work.

We also make use of NEURON's inbuilt parallel functions to implement a parallelised Bulletin-
Board (or BlackBoard) system (BBS). This BBS can be seen as analogous to the LINDA model of
coordination and communication. This allowed the efficient and (relatively) speedy simulation of
the large number of populations simulated, as well as the large number of conditions modelled,
used both for testing and for the results presented.

LINDA is a coordination language, a model of coordination and communication among
several parallel processes, that implements the “tuple space’” paradigm [18] [19]. In turn the
"tuple space’ paradigm is an implementation of the associative memory paradigm for parallel or
distributed processing [18] [19]. Essentially, it's a simple model for the implementation of trivial
or embarrassingly parallel problems, ideal for our work as there is no dependency between the
parallel tasks performed in our simulations.

The LINDA coordination language embodies the "tuple space” model of parallel programming,
consisting of a small number of operations for interaction with the tuple space, and a shared
memory that composes the tuple space [19]. The LINDA system differs from other parallel
approaches, and bears little resemblance to models which deal with message-passing, concurrent
logic or concurrent object orientation [19]. In addition, it is a much simpler language/implement-
ation than many others available [18] which has always contributed to its attractiveness [133], in
addition to its orthogonality [19].

The LINDA system is based on generative communication — processes communicate with each
other through the creation of data objects (tuples) by the data producing process, which are added
to tuple space and then accessed by the receiver process [19]. Similarly, to create new processes,
a currently running process (that requires some concurrent process) adds a ‘live tuple’ to tuple
space, which will, in turn, spawn the new process.

Originally LINDA was intended for the implementation of BlackBoard systems (where tuple
space is iteratively updated by a collection of diverse specialist knowledge sources, or experts,
starting with a problem specification and ending with a solution, with each host updating

with partial solutions) [18] [19]. However, our implementation would be better described as a
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BulletinBoard system, as we do not implement a diverse collection of experts, and are not working
through from specification to solution with partial solutions.

Our implementation involved each host that is being used being implemented with the
necessary context to run a simulation with the required model (for the given stage of simulations).
At initialisation, the BulletinBoard or tuple space is populated with calls to run a simulation,
equal in number to the number of simulations required in the batch and containing any required
parameters (such as seeds for random streams, initial voltage, spontaneous discharge rates).
While there are still calls for simulations to be run, a host (if not already running a simulation)
will remove a call from the tuple space and begin execution of that simulation, with its specific
parameters. When a simulation is completed, the host "packs’ the results, and adds a new object
to tuple space, signifying the results and a call to collect and collate these. This second task
(collection of data) is special, in that it can only be executed by hosto, and only when it is not
currently running a simulation. What this means is, at initialisation, tasks are added to the
BulletinBoard, and then removed and executed by the hosts. When a simulation completes, a
host returns the output data to the tuple space, and then removes another task, and continues
with simulation. Whenever hosto finishes a simulation, it checks the tuple space for data that
is ready to be collected, collects it if available, and then, if no more data is ready for collection,
chooses another simulation task, and continues with simulation. When there are no tasks left to
be completed (either simulations, or data collection), the final data set is organised and written to
a file, and the batch is completed.

This separation, or disconnection, between data submission and data collection (with data
being submitted to tuple space, rather than to a host) allows hosts to continue with simulation
very shortly after completion of a previous task, rather than having hosts wait to submit data to
hosto (or any other central or specific host). That is, our hosts do not have to wait to submit their
data after a completed simulation, which could lead to inefficiency and wasted time (as hosts
would not be executing simulations while waiting to submit data), and can instead begin with a
new simulation, while data waits in tuple space to be collected.

From this, it can be seen that our implementation is still, technically, an implementation of a
BlackBoard system — the specification added to the tuple space at initialisation is to complete a
simulation, which involves running the simulation (part1) and collection of data (part2), so we
can still see that running of the simulation is partial completion, and adding data to tuple space

is still submission of a partial solution. However, as our implementation lacks a truly diverse
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collection of "experts", with hosto the only real expert (all hosts run simulations, hosto is an
‘expert’ in that it is the only host to collect and collate data). Further, our task cannot really be
seen as a collection of partial solutions making up a complete solution, as the only substantial

part of the solution is the simulation itself.

3.4 ANALYSIS METHODS
Before we present results, the methods used for analysing the output of the simulations are

presented.

3.4.1 Response Fidelity Measure

Response fidelity is measured as 1 - the mean difference of the normalised population Peri-
Stimulus Time Histogram (PSTH) with the corresponding input histogram. For each member of
the population, the output spike train was ‘binned’ into fixed width bins (5ms) over the simulation
duration (ignoring the initial settling period were input was not provided, and the population
was allowed to forget initial conditions), with each spike being added to the corresponding bin.
Thus, iterating over all members of the population, the population’s PSTH is produced, showing
the relative intensity of population spike activity for each bin interval. This was then normalised
through the use of standardised Z-scores, such that the output response is centred to have a
mean of o, and is scaled to have a standard deviation of 1. Similarly, a set of input bins was
also produced, at the corresponding input frequency, and standardised in the same way as the
responses, to be centred around a mean of o, and have a standard deviation of 1.

The response fidelity score, for a population, was taken to be equal to 1 minus the mean of
the square-roots of the squares of (or absolute difference between) the input bins minus the
corresponding output bins. Or, rather, 1 minus the mean error between input and output signals,
over the simulation period, with a score of 1 being a perfect match between input and output
bins. In this way, we essentially calculate the Pearson Correlation of the Output produced to the
Input provided.

This population measure is considered accurate and appropriate for the VOR pathway, as there
are no further inter-neuron layers, and so no complex population codes need be encoded [68]. The
sms bin interval was chosen to reflect typical post-synaptic integration time. The final response

fidelity measure was taken to be the mean of the response fidelity of 10 populations.
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Example Peri-Stimulus Time Histograms are shown in Figure 3.17. These show the population
activity of MVNB neurons receiving an 8Hz signal through synaptic input, with heterogeneity

modelled through the K-Slow conductance manipulation method.

Amplitude

Figure 3.17: Example Peri-Stimulus Time Histogram. Taken from a Heterogeneous population, distributed
normally, using the K-Slow conductance manipulation method, receiving an 8Hz current
injection input with no noise.

3.4.2  Measure of Output Frequency Components

An alternative measure of the sinusoidal signals used for the current work was also implemented,
in order to evaluate results in situations were the output signal is out of phase (or has a distorted
gain) compared with the input signal. For this measure, a Discrete Fourier Transform (DFT)
was performed (sampling frequency = 200Hz, corresponding to bin size chosen for the PSTH
from which the output signal is taken) on the output signal of a number of populations, and the
(single sided) amplitude spectrum of the output was produced. From this was found the relative
amplitude of the population’s response to the frequency of the input, along with a visualisation
of the other component frequencies. That is, for an 8Hz input signal, we take the amplitude of
the output’s response for the 8Hz frequency component, and it's amplitude relative to other
frequencies present in the output. Figures 3.18 and 3.19 show examples of the obtained amplitude

spectrum for populations responding to 8 and 20Hz inputs.
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Figure 3.18: Example Amplitude Spectrum of Output to 8Hz Frequency Input. Shows the amplitude of the
frequency components of an output signal generated from an 8Hz input. Note the peaks at 8Hz
and the harmonic 16Hz. The amplitude value at this target/input frequency is the value we
take from this analysis.
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Figure 3.19: Example Amplitude Spectrum of Output to 20Hz Frequency Input. Shows the amplitude of the
frequency components of an output signal generated from an 20Hz input. Note the peaks at
20Hz and the harmonic 40Hz. The amplitude value at this target/input frequency is the value
we take from this analysis.

We take the amplitude of the input frequency component of the output signal. This measure
allows us to obtain a reasonable value (the amplitude of the output’s frequency component,
corresponding to the input frequency) for comparison of responses when the output is significantly
out of phase to the input, as well as providing an additional measure of performance for situations
where no phase difference is found between input and output.

Essentially, this method converts the output of the population from the time domain, to the
frequency domain, providing information on the periodicity of the output, and the relative
strength of the target frequency (i.e., the frequency of the input signal that we wish the population
to match) in the population’s output. This method is similar to a method suggested for improved

response estimation using digital filtering techniques [22].
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RESULTS

4.1 INTRODUCTION

In this Chapter we present the results of three stages of simulation, using the different methods
for input generation and simulating population heterogeneity as outlined in the previous Chapter
(Chapter 3, Section 3.2). In the first stage of simulations, inputs to the populations were simulated
as current injection to the cell model Soma, and heterogeneity was simulated through the
introduction of a bias current into the Soma. In the second stage of simulation, population
heterogeneity was modelled through the variance of density of the Calcium activated Potassium
channels (K-Slow) present in the Soma and Proximal Dendrites. Input was simulated via current
injection for this stage. In the third and final stage, heterogeneity was modelled through the
manipulation of K-Slow conductance densities, and input was simulated through the delivery of
excitatory synaptic events, following pre-generated spike trains.

In addition, at initialisation each member of the population was given an initial membrane
potential from a normal distribution of mean -65 millivolts (mV) (normal resting potential of the
model) and a variance of 1omV, such that population members did not begin perfectly in phase
with each other. In order to allow the population to settle into this initial condition, along with
the other conditions altering the simulation, a period of time at the start of each simulation was
provided (based on the length of time required for a model to produce stable ISIs).

In all cases, results were obtained using the NEURON Simulation environment® running under
UNIX, utilising Parallel NEURON through the Message Passing Interface (MPI) to permit the
parallel processing of simulations. Simulations were performed on both the Stirling University
Division of Computing Science and Mathematics cluster, and the EPSRC funded "ARCHIE-WeSt’
High Performance Computer.

All simulations were performed using a constant time step method, with a time constant of
o.01 milliseconds, such that there were 100 time steps per millisecond (dT = 0.01, steps per ms =

1/dT). Output generated was the spike times of each member of the population.

1 Versions 7.1, 7.2, & 7.3
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4.2 STAGE 1

Simulations for stage 1 involved inputs modelled as direct current injection of a sinusoid signal
at the frequencies 8, 12, 16, and 20Hz, into the Soma of our cell models. That is, input was
approximated and simulated as a direct current injection of a sinusoidal wave at one of the
given experimental frequencies. Current injection had a mean of o, and an amplitude of 50pA
(picoamps). Noise (in the inputs) was modelled as Gaussian white noise added to the current
injection, with a mean of o, a variance of 60pA, and a time constant of 2ms, matching that used in
prior modelling studies of implications of noise in MVN neuron response fidelity [68].

Population heterogeneity was modelled as a bias current, injected into the Soma of our model
cells. At this stage, for each member of a heterogeneous population, a firing rate was chosen,
from a normal distribution of mean 1, and variance of 0.02778. These values gave us (using the 3
Sigma, or 68-95-99.7 rule, that states that 99.7% of the values chosen from a normal distribution
are within 3*Sigma, or square root of the variance, from the mean, or 3 standard deviations from
the mean) a normal distribution of biases, (between -50pA and 50pA), values which produce
firing rates equal to 0.5* and 1.5* the standard spontaneous firing rate (20.904Hz) of the MVNB
models. Thus, heterogeneous populations in this stage had a normally distributed spontaneous
firing rate (largely) between 11hz and 33hz, and a mean of 20.881hz (as previously illustrated in
Section 3.2.1. This distribution was chosen to approximate the distribution of real MVNB neuron
firing rates in electrophysiological studies [77]).

Our 4 experimental conditions for this stage, therefore, were: mo = Homogeneous population
(no bias) & clean input (no noise added); m1 = Homogeneous population & Noisy input; m2 =
Heterogeneous population & clean input; and m3 = Heterogeneous population & Noisy input.
These conditions were simulated with input signals at each of the 4 input frequencies (8, 12, 16,
20Hz). Figure 4.1 shows the overall setup for this stage of simulations. Noise and bias, applied
to the common input signal each cell receives, were optional, depending on the model being

simulated.
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Stage 1 Simulation setup.

Input

Figure 4.1: Stage 1 Simulation Setup. Common input, in the form of a current injection sinusoidal wave of a
given frequency, is provided to each cell of population. Independent noise and bias current (b)
was added to the signal, with the bias chosen from the rate distribution, and noise following a
time constant of 2ms.

For all conditions and input frequencies, 10 populations of 500 neurons were simulated, thus
allowing us to take the mean of the response fidelity of 10 populations for each of the conditions
(populations of n=500 were chosen in order to replicate the population sizes used in previous
work looking at Heterogeneity in the VOR[68]). The initial delay (prior to current injection input
began, but not bias injection®) was 500ms, and the stimulation time of the simulations was 3000ms

(we therefore simulate 3.5 seconds of activity, but ignore the initial 50oms for analysis purposes).

2 We wish for the model to “settle in” to the bias current, and for it to achieve stable ISIs at the expected spontaneous firing
rate
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Figure 4.2 shows the response fidelity scores (mean of 10 populations response fidelity scores)

for all 4 experimental conditions, at all 4 input frequencies.

Population Amplitude at Input Frequency
All models & Frequencies
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Figure 4.2: Stage 1 Response Fidelity Scores for all experimental conditions, and all input frequencies. mo =
Homogeneous population & Clean input, m1 = Homogeneous population & Noisy input, m2
= Heterogeneous population & Clean Input, m3 = Heterogeneous population & Noisy input.
Response fidelity is the mean of the fidelity scores of 10 population’s responses. Variance was
extremely minor (<0.002) and so is not shown in figure

Models m1, m2, and m3 all perform significantly better than model mo. That is, there is a
significant increase in response fidelity scores for noisy, heterogeneous, and combined populations,
for all input frequencies (p<o0.005, two-tailed t-test, equal variance assumed).

Population heterogeneity alone (m2) performed significantly better than noisy input alone
(m1) for the 8 and 12Hz frequencies (p<o.05), but performed significantly worse than the noisy
condition at 16Hz (p<o.05), and slightly worse at 20Hz (not significantly so, p = 0.06).

The combined heterogeneous and noisy condition (m3) performed significantly better (p<o.05)
than noise alone (m1) for all input frequencies other than 16Hz, at which the homogeneous
population with noisy inputs performed significantly better (p<o.05). Combining heterogeneity
and noise improved response fidelity significantly (p« 0.05) over heterogeneity alone for all
frequencies.

Figure 4.3 shows the amplitude of the input frequency component of the output, taken from the

FFT spectral analysis. From these values, we can see that the amplitude of the target frequency
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component, in the output signal, is improved over homogeneous populations by the inclusion of

noise, heterogeneity, and combined noise & heterogeneity for all frequencies.
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Figure 4.3: Input Component Frequency Values of Output Signals, for all conditions of stage 1. Shows the
amplitude of the target frequency (8, 12, 16, or 20Hz) component of the average of the output of
10 population. mo = Homogeneous population & Clean input, m1 = Homogeneous population &
Noisy input, m2 = Heterogeneous population & Clean Input, m3 = Heterogeneous population &
Noisy input.

To summarise these results, response fidelity scores show a significant improvement when
variation, either as noisy inputs or population heterogeneity, are included in the population
simulations. Generally, heterogeneity alone improves response fidelity more significantly than
noise alone, while combining the two generally improves response fidelity further. The input
frequency component of the population output is improved for all forms of variance, for all
frequencies other than 8Hz.

Figure 4.4, 4.5, 4.6, and 4.7 show (a section of) the peri-stimulus time histogram of the response

of populations for all 4 models used in stage 1, for an 8Hz input.
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Figure 4.4: Example Peri-Stimulus Time Histogram of Model o Response Fidelity. Homogeneous population
performance, receiving 8Hz input signal with no noise. Bars represent the amplitude of the popu-
lation response over time (350ms). The input provided to the population is the line superimposed

over the output.
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Figure 4.5: Example Peri-Stimulus Time Histogram of Model 1 Response Fidelity. Homogeneous population
performance, receiving 8Hz noisy input signal with. Bars represent the amplitude of the popula-
tion response over time (350ms). The input provided to the population is the line superimposed

over the output.
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Figure 4.6: Example Peri-Stimulus Time Histogram of Model 2 Response Fidelity. Heterogeneous population
performance, receiving 8Hz input signal with no noise.
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Figure 4.7: Example Peri-Stimulus Time Histogram of Model 3 Response Fidelity. Heterogeneous population
performance, receiving 8Hz noisy input signal.

4.3 STAGE 2

In stage 2, the use of a bias current to alter spontaneous firing rate of members of the population
was replaced with manipulation of the slowly relaxing voltage activated K* (K-Slow) conductance
density. Spontaneous firing rate values were chosen from a normal distribution (mean = o,
variance 0.0277) for each population member, the densities of K-Slow required to produce this
firing rate were calculated, and these densities were applied to the neuron prior to simulation (as
described in Chapter 3, section 3.2.2). Similar to the distribution of firing rates in the previous
stage, the values chosen for the normal distribution produced populations with firing rates
normally distributed between 0.5 and 1.5* the standard firing rate of the MVNB model (21.059Hz.
As already described, populations with this methods were normally distributed around 20.881Hz,
largely between 11Hz and 33Hz). This distribution was chosen to approximate the distribution of
real MVNB neuron firing rates in electrophysiological studies [77]. No homogeneous populations
were simulated at this stage of simulation, and all populations had a normally distributed range

of spontaneous firing rates.
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Inputs were modelled as direct current injection (as in previous stage). In this stage inputs were
simulated at 3 different levels of amplitude and mean. These were: amplitude & mean = 50pA;
amplitude & mean = 75pA; amplitude & mean = 100pA. This allows us to evaluate the effect of
input strength on the population response fidelity, and other measures. In addition to a clean
input condition (m1), two volumes of noise were simulated (variance of 60opA and 20pA) both
modelled in the same way as the previous stage of simulations, as Gaussian noise added to the
current injection input. Again, as in the previous stage, the Gaussian noise had a time constant of
2ms. Again, inputs were sinusoidal waves at 8, 12, 16 and 20Hz.

Thus, we have 9 conditions in this stage of simulations: 3 input values with different means
and amplitudes (50/50, 75/75, 100/100), and 3 models of noise (m1 = no noise, m2 = "high” noise
60pA variance, m3 = 'low’ noise 20pA variance). These g conditions were simulated with input
frequencies of 8, 12, 16, & 20Hz. Initial delay was set to 1200ms (time required for MVNB model
to regain stable ISIs after manipulation of K-Slow density for the range of values possible), and
stimulation periods of simulations were 3000ms (total time of 4.2seconds). For all conditions and
input frequencies, 10 populations of 500 neurons were simulated. Figure 4.8 shows the overall
setup for this stage of simulations. Noise, applied to the common input signal each cell receives,

was optional, depending on the model being simulated.
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Stage 2 setup.

C1

Firing Rate
Distribution

C =Cell
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D = Densities

Figure 4.8: Stage 2 Simulation Setup. Common input, in the form of a current injection sinusoidal wave of
a given frequency, is provided to each cell of population. Independent noise was added to the
signal, following a time constant of 2ms. Firing rates (FR), chosen from a given distribution, were
used to determine the required densities of K-Slow conductances (D), which were then applied
to the cell, prior to simulation.

Figures 4.9, 4.10, and 4.11 show the effect of noisy inputs on population response fidelity, for

all input frequencies and for each of the input amplitude/mean conditions.
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Effect of Noise on Output Frequency
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Figure 4.9: Effect of noise on population response fidelity measure, for all input frequencies, and input
amplitude of 50pA and mean of 50pA. The low variance (20pA) noise (m3) is on the right of the
cluster, the high variance (60opA) noise (m2) are black bars in the middle. Clean input (m1) is on
the left. Variance was extremely minor (<0.002) and so is not shown in figure
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Figure 4.10: Effect of noise on population response fidelity measure, for all input frequencies, and input
amplitude of 75pA and mean of 75pA. The low variance (20pA) noise (m3) is on the right of the
cluster, the high variance (6opA) noise (m2) are black bars in the middle. Clean input (m1) is on
the left. Variance was extremely minor (<0.002) and so is not shown in figure
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Figure 4.11: Effect of noise on population response fidelity measure, for all input frequencies, and input
amplitude of 100pA and mean of 100pA. The low variance (20pA) noise (m3) is on the right of
the cluster, the high variance (6opA) noise (m2) are black bars in the middle. Clean input (m1)

is on the left. Variance was extremely minor (<0.002) and so is not shown in figure

For all input frequencies and for all input values, noise added to the current injection input

had a significant detrimental effect on the population response fidelity measure. That is, the

heterogeneous populations receiving clean (no noise) input (m1) performed significantly better

for all frequencies, and across all input amplitudes, than both the high and low variance noise

models (all p<o.005). For 16 and 20Hz input frequencies, the detrimental effect of low volume

noise (m3), compared to clean input (m1) was small, but still significant, especially for the 100pA

input amplitude and mean conditions (Figure 4.11). Similarly the low variance noise model (m3)

performed significantly better than the high variance noise model (mz2) for all input parameters

and frequencies (all p<0.005).
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Effect of Input Amplitude and Mean
Model 1, Clean Input

080000
070000
080000

050000 B 50pa
W 75pe

B 100pa

040000

Amplitude

0.30000
020000

010000
0.00000 A k % & A k

g8Hz 12Hz 168Hz 20Hz
Input Frequency

Figure 4.12: Effect of Input Amplitude and Mean on Response Fidelity on model receiving clean input, at all
frequencies. Variance was extremely minor (<0.001) and so is not shown in figure

Figure 4.12 shows the effect of the different values of input amplitude and mean on the
population response fidelity for heterogeneous populations receiving clean input. Increasing
input mean/amplitude, had no significant effect for 8Hz inputs, caused a significant decrease in
response fidelity for 12 and 20Hz inputs (p<o.01), and caused significant increase in performance

for 16Hz (p<o.01).
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Figure 4.13: Effect of Input Amplitude and Mean on Response Fidelity on model receiving inputs with high
variance noise (6opA), at all frequencies. Variance was extremely minor (<0.002) and so is not
shown in figure
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Figure 4.13 shows the effect of input parameters on the response fidelity of populations
receiving inputs with high variance noise. Increasing amplitudes and means of input caused
a significant improvement in response fidelity measures for 8Hz, 12Hz and 16Hz inputs. No
significant improvements were seen between the 50pA and 75pA inputs at 20Hz, while the 100pA

condition performed significantly better than the 50pA condition (p<o0.001).

Effect of Input Amplitude and Mean
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Figure 4.14: Effect of Input Amplitude and Mean on Response Fidelity on model receiving inputs with low
variance noise (20pA), at all frequencies. Variance was extremely minor (<0.002) and so is not
shown in figure

The effect of input parameters on models receiving low variance noise is shown in Figure 4.14
Increasing input amplitude and mean caused an improvement in response fidelity for 8 and 16Hz
input frequencies, and caused a decrease in performance at 20Hz (p<o.001). No Significant effect

was seen for the 12Hz input.

4.4 STAGE 3

In stage 3, population heterogeneity was modelled through the use of the K-Slow conductance
manipulation method used for stage 2. As in the previous stage, spontaneous firing rates of the
populations simulated were normally distributed between 0.5 and 1.5* the standard firing rate
of the MVNB model (21.059Hz). Along with these heterogeneous populations, homogeneous
populations, with no change to the spontaneous firing rates, were also simulated, for all conditions

used at this stage.
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This stage used the Synaptic Spike Train method, as described in Chapter 3, section 3.2.2, for
the generation and simulation of inputs through excitatory exponential synapses. Synapses were
distributed uniformly over the dendritic structure (both Proximal and Distal dendrite compart-
ments), and provided a spike train (of input spike times) prior to simulation. During simulation,
these spike times were delivered as excitatory inputs using the NEURON environment’s NetCon
object. These synapse inputs work to produce excitatory post synaptic current events in the
dendritic structure of the cell. This method of input, via excitatory synaptic events, provides a
more realistic approximation of true synaptic events.

Spike trains at the 4 target frequencies (8, 12, 16, 20Hz) were generated and used, with 3 separate
parameter sets, in order to reflect a range of possible Afferent neuron properties. Examples of
these are shown in Figure 4.15 and Figure 4.16, for 8Hz and 16Hz target frequencies. Input set
Ao1 had a mean of 50Hz, and amplitude of 25Hz (50+/-25 spikes per second). Input Aoz a mean
of 75Hz and amplitude of 25Hz (75+/-25). Input Ao3 a mean of 35Hz and amplitude of 20Hz
(35+/-20). As the mean and amplitude frequencies of the input trains reflects the relative intensity
of the "input populations’, we thus have "low" (Ao03), "medium" (Ao1), and "high" (Ao2) input
intensity conditions, for all 4 target frequencies (8Hz, 12Hz, 16Hz, 20Hz), where it is the target
frequency of the input that we intend to be recreated in the output of the MVNB model cells.
As the input mean and amplitude represent the velocity of the head rotations compensated for
(higher mean/amplitude = higher velocity rotation), this would allow us to investigate any effects

of the speed of the head rotations on the model VOR response.

Input Spike Train Characteristics (8Hz Input Frequency)
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Figure 4.15: Input Train Characteristics for 8Hz Target Frequency. Ao1 had a mean frequency of 50Hz and

Amplitude of 25Hz. Ao2 a mean of 75Hz and amplitude of 25Hz, and Ao3 a mean of 35Hz and
amplitude of 20Hz.
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Input Spike Train Characteristics (16Hz Input Frequency)
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Figure 4.16: Input Train Characteristics 8Hz

Figures 4.17 and 4.18 show examples of the input spike trains used to drive synaptic input,
normalised and compared to the sine waves (8Hz (500ms) and 16Hz (250ms)) which were used to

generate them.
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Figure 4.17: Example of Collected Input Spike Train Activity for 8Hz input. 500oms of input spike trains, at
8Hz, normalised and compared to the sine wave they follow
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Figure 4.18: Example of Collected Input Spike Train Activity for 16Hz input. 250ms of input spike trains, at
16Hz, normalised and compared to the sine wave they follow

These three input parameter sets, for all 4 target frequencies, were used to simulate populations
of 500 MVNB neurons (with 10 populations being used to give an indication of average perform-
ance), with varying numbers of synapses distributed uniformly across the dendritic structure
(nsyn = 20, 40, 60), at various synaptic weights (w = 0.1, 0.5, 1.0), for both Heterogeneous and

Homogeneous populations. The overall simulation setup for this stage is illustrated in Figure

4.19.
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Figure 4.19: General Overview of Simulation Setup for Stage 3. Inputs are pre-generated into large sets.
Each synapse, of each member of the population, is provided input spike time events, chosen
randomly from the pre-generated set. These spike times trigger excitatory synaptic inputs at the
corresponding times. Population heterogeneity is simulated via the setting of K-Slow densities
in order to achieve the required firing rate chosen from the required distribution.

Initial response fidelity scores obtained from the outputs produced by heterogeneous pop-
ulations were somewhat poor for certain conditions, performing not much better than the
homogeneous populations receiving the same input, and with the same input parameters. How-
ever, this poor performance seen in some Heterogeneous populations was found to be due the
introduction of slight "phase lead" in the output of these Heterogeneous populations. That is, the
output of the populations leads the input signal provided, thus the fidelity response measure
became distorted, and did not accurately represent the ability of the Heterogeneous populations
to reproduce the input signal.

Phase lead is an observed phenomenon in the real VOR, seen in the output of both the Central
Vestibular neurons [32] [70], and the Vestibular afferents [69], as well as being predicted in

modelling of Central Vestibular neurons [117]. As such, measures were implemented to estimate
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and correct for the phase lead of Heterogeneous populations, in order to obtain more useful
response fidelity measures. Figure 4.20 and 4.21 show an example of the original phase lead in
the population, and the response fidelity when phase lead was measured and accommodated for

in a Heterogeneous population receiving an 16Hz input signal.

Amplitude

Time (ms)

Figure 4.20: Uncorrected Population Output Showing Phase Lead of Heterogeneous Population for 16Hz
Input, with Input Parameters Ao2, number of synapses = 60, synpase weight = 1.0. Shows a
Phase lead of 1oms compared to the Input signal
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Figure 4.21: Corrected Population Output Showing Phase Lead of Heterogeneous Population for 16Hz Input,
with Input Parameters Aoz, number of synapses = 60, synpase weight = 1.0. Phase lead of 10ms

was corrected from the original response.

Figures 4.22 and 4.23 show a further example of the original output, uncorrected for phase

lead, and the corrected output accommodating for the estimated phase lead, in a Heterogeneous

population receiving an 8Hz input signal.
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Figure 4.22: Uncorrected Population Output Showing Phase Lead of Heterogeneous Population for 16Hz

Input, with Input Parameters Ao1, number of synapses = 60, synpase weight = 0.1. Shows a
Phase lead of 5ms compared to the Input signal
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Figure 4.23: Corrected Population Output Showing Phase Lead of Heterogeneous Population for 8Hz Input,
with Input Parameters Ao1, number of synapses = 60, synpase weight = 0.1. Phase lead of 5ms
was corrected from the original response.

Phase lead was estimated and accommodated for through the best-fit alignment of the popu-
lation outputs with the input signal, the time difference between the two (original and best fit)
being taken as the estimate of phase lead present. Phase leads, when present, were found to be
constant across the entire simulation duration. Estimated phase leads, for the Heterogeneous
populations, are shown in Figure 4.24. Phase leads increase as the velocity of the inputs increases
(thus Aoz shows the smallest phase leads, and Aoz the largest), and increase as the number of
synapses and synapse weight increase. No such phase accommodation could be performed on

the Homogeneous population responses.
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Phase Lead Estimates for All Heterogeneous Populations.
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Figure 4.24: Phase Leads Estimated for All Heterogeneous Populations. Note that input sets are placed in
order of their amplitudes/means, to show the general trend for increased phase lead as the
amplitude/mean of the input increases. nSyn is synapse number, w is weight of synapses.

Once phase lead was estimated and accommodated for, response fidelity scores for Heterogen-
eous populations was significantly better than comparable Homogeneous populations, across all
frequencies, and for all input parameters (all p <o0.05, two-tailed t-test, equal variance assumed).
Comparisons of these scores are shown in Figures 4.25, 4.26, 4.27, and 4.28, for input parameters
Ao1 (mean 50Hz, amplitude 25Hz). Those for input parameters Aoz and Ao3 are shown in
Appendix A. Variance of population response fidelities was universally small (variance <0.002)

and so are not shown.
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Response Fidelity Scores for 8Hz Input

Input Parameters A0 for all Synapse Numbers (n) and Weights (w)
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Figure 4.25: Stage 3 Response Fidelity Comparison for 8Hz Input, Heterogeneous vs Homogeneous Pop-
ulations. For Ao1 Input set, across all synapse numbers and weights. Variance was extremely
minor (<0.002) and so is not shown in figure

Response Fidelity Scores for 12Hz Input
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Figure 4.26: Stage 3 Response Fidelity Comparison for 12Hz Input, Heterogeneous vs Homogeneous Pop-
ulations. For Ao1 Input set, across all synapse numbers and weights. Variance was extremely
minor (<0.002) and so is not shown in figure
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Response Fidelity Scores for 16Hz Input
Input Parameters AQ1 for all Synapse Numbers (n) and Weights (w)
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Figure 4.27: Stage 3 Response Fidelity Comparison for 16Hz Input, Heterogeneous vs Homogeneous Pop-
ulations. For Ao1 Input set, across all synapse numbers and weights. Variance was extremely
minor (<0.002) and so is not shown in figure

Response Fidelity Scores for 20Hz Input
Input Parameters A1 for all Synapse Mumbers (n) and Weights (w)
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Figure 4.28: Stage 3 Response Fidelity Comparison for 20Hz Input, Heterogeneous vs Homogeneous Pop-
ulations. For Ao1 Input set, across all synapse numbers and weights. Variance was extremely
minor (<0.002) and so is not shown in figure

Comparison of responses to 8Hz inputs for all synapse parameters, for the 3 input sets are
shown in Figure 4.29. A general trend, for inputs Aot and Ao3, of reduced scores as synapse

number increases can be seen. As well, for conditions with 20 and 60 synapses, we generally see a
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decrease in performance as synapse weight increases for input sets Aot and Aos3, but an increase

in performance for input set Ao2.

Fesponse Fidelity of Heterogeneous Populations, BHz Input
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Figure 4.29: Heterogeneous Population Response Fidelity Scores for 8Hz Inputs Across all Input Sets and

Synapse Paramaters.

Figure 4.30 shows a comparison of response fidelity scores for Heterogeneous populations

receiving 12Hz inputs, across all input sets and synapse parameters. Again, the general trend of

decreased response fidelity as both synapse numbers and synapse weights increase can be seen.
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Response Fidelity of Heterogeneous Fopulations, 12Hz Input
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Figure 4.30: Heterogeneous Population Response Fidelity Scores for 12Hz Inputs Across all Input Sets and
Synapse Paramaters.

Figure 4.31 shows comparison of fidelity scores for Heterogeneous populations receiving 16Hz
inputs, across all conditions. Again, although not a universal trend for all conditions, increases in

synapse numbers and synapse weights reduces the response fidelity scores for the population.
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Response Fidelity of Heterogeneous Populations, 16Hz Input
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Figure 4.31: Heterogeneous Population Response Fidelity Scores for 16Hz Inputs Across all Input Sets and
Synapse Paramaters.

Comparison of response fidelity scores for 20Hz inputs are shown in Figure 4.32. The trend of
increasing synapse numbers and synapse weight reducing the response fidelity scores is perhaps
most clearly shown in this comparison. Aside from input sets Ao1 and Ao3 (with the nSyn =
20 w = 0.1 parameters), increasing synapse numbers and weight decreases response fidelity

significantly.
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Response Fidelity of Heterogeneous Populations, 20Hz Input
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Figure 4.32: Heterogeneous Population Response Fidelity Scores for 20Hz Inputs Across all Input Sets and
Synapse Paramaters.

Generally then, we see reduced response fidelity scores for increased synapse parameters, with
performance decreasing as synapse numbers and weights increase independently, as well as in
combination. However, this trend is not universal, especially for the 8Hz target frequency inputs.

In addition to the response fidelity scores, Heterogeneous populations produced outputs
with significantly larger target frequency components than Homogeneous populations when
the frequency spectrum of the outputs was analysed. Comparisons of these target frequency
component amplitudes are shown in !Figures 4.33, 4.34, and 4.35 for the Ao1 input set, across all

Synapse numbers and weights for all frequencies.
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Population Output's Amplitude @ Input Frequency
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Figure 4.33: Amplitude of Target Frequency Component in Population Output for 20 Synapse Conditions.
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Figure 4.34: Amplitude of Target Frequency Component in Population Output for 20 Synapse Conditions.
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Population Output's Amplitude @ Input Frequency
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Figure 4.35: Amplitude of Target Frequency Component in Population Output for 20 Synapse Conditions.

4.5 ANALYSIS

4.5.1  Effect of Population Heterogeneity on Response Fidelity

Results from stages 1 and 3 allow us to compare the performance of Heterogeneous populations
of model MVNB neurons against the performance of Homogeneous populations, receiving the
same high frequency inputs. Across all conditions and in both stages, Heterogeneity of the
population improved the response fidelity of the output significantly. This was the case when the
Heterogeneity was modelled as distributed spontaneous firing rates of the population arising
from the introduction of a bias current (stage 1) or through the altered distribution of slow
Potassium conductances (K-Slow conductances, stage 3). Performance was improved significantly
for all four target frequencies used for the inputs (8Hz, 12Hz, 16Hz, 20Hz) and for numerous
input parameters.

Comparing the Peri-stimulus Time Histograms (PSTH) from two populations, one Heterogen-
eous and the other Homogeneous, can illustrate how this improved response fidelity has been
achieved. Figures 4.26 and 4.37 show sample PSTH’s for Heterogeneous (response fidelity = 0.739)
and Homogeneous (response fidelity = 0.51) populations from stage 3 of the simulations, receiving

an 8Hz input signal (Ao1, 20 synapses of weight 0.1). The Heterogeneous population follows the
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periodicity of the input signal impressively, and shows adequate gain (how well the amplitude of
the output matches the amplitude of the input). The Homogeneous population, in comparison,
shows a poorer periodicity, with output amplitude crossing the mean (o amplitude) repeatedly in
a given cycle, and reduced gain throughout the sample. The Heterogeneous population smoothly
matches the shape and frequency of the input signal, although not matching gain exactly through-
out, while the Homogeneous population produces of distorted output, not matching the input
wave smoothly (there are periods where amplitude drops significantly towards the mean of o
between bins, when it should be smoothly away from the mean, and increasing in amplitude),

regardless of gain, especially in the upper half of the PSTH.

Amplitude

Figure 4.36: Response Fidelity of Heterogeneous Population Receiving 8Hz Input, from Stage 3, using Input
Set Ao1, with 20 Synapses of weight o.1. Input signal is the black line overlayed atop the output
response bars.
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Figure 4.37: Response Fidelity of Homogeneous Population Receiving 8Hz Input, from Stage 3, using Input
Set Ao1, with 20 Synapses of weight o.1. Input signal is the black line overlayed atop the output
response bars.

Figures 4.38 and 4.39 show a similar comparison for Heterogeneous (response fidelity = 0.776)
and Homogeneous (response fidelity = 0.55) populations receiving 16Hz inputs (input Ao1, 20
Synapses of weight 0.1). Again, the Heterogeneous population shows impressive periodicity, in
line with that of the input signal, along with adequate gain matching between the output and the
input throughout each cycle, while the Homogeneous population shows a poorer match between

input and output gain, and a poorer match for the periodicity of the input signal.
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Figure 4.38: Response Fidelity of Heterogeneous Population Receiving 16Hz Input, from Stage 3, using
Input Set Ao1, with 20 Synapses of weight o.1. Input signal is the black line overlayed atop the
output response bars.
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Figure 4.39: Response Fidelity of Homogeneous Population Receiving 16Hz Input, from Stage 3, using Input
Set Ao1, with 20 Synapses of weight o.1. Input signal is the black line overlayed atop the output
response bars.

Heterogeneity allows the population to more smoothly and accurately match the input signal,
maintaining a consistent periodicity and adequate gain against the input signal, even for the high
frequency inputs, improving response fidelity score and the amplitude of the target frequency in

the frequency spectrum of the output signal.

4.5.2  Desynchronisation of Output Populations

One readily apparent means by which Heterogeneity improves population response fidelity,
is through the desynchronisation of the population response to the common input provided.
Desynchronisation across a population of neurons provides them with a better temporal basis
for the representation of the signals they deal with, as each neuron is able to fire independently
and code for a different temporal component of the signal. In synchronised populations the
temporal basis for representation is reduced for that population, becoming a single "cluster"

state of neurons, were the firing patterns of the neurons become identical [54] [58], due to the
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synchronising effect of the common input received by the neurons, and the effects subthreshold
input has on the the timing of neuronal firing, driving a population towards near threshold, before
an input sufficient to elicit a spike arrives [72]. Even minor commonality of input in Homogeneous
populations impedes those population’s ability to representation information [139].

Although no specific measure of population synchrony was used in the current work, the extent
to which Homogeneous populations become synchronised, and the impact of this synchrony on
the population response can be seen by comparing the response of Homogeneous populations
receiving an input with no noise, with the response of populations with Heterogeneity or those
receiving noisy input. Figure 4.40 shows the response of a Homogeneous population receiving a
current injection input with no noise added, at 12Hz target frequency (mo output from stage 1.
The amplitude of the output and the input has been normalised using standardisation through
Z-Scores (as previously described), but with a mean of 1, rather than o, in order to illustrate the
synchronisation more clearly). Large peaks in the output response are seen during the cycles,
followed by periods of response with gain matching the input poorly, showing large numbers of

individual neurons of the population firing within the same 5ms of each other.

Iy = Output

—y=hput
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Figure 4.40: Illustration of Synchronisation in Homogeneous Population Receiving 12Hz Current Injection
Input (No Noise). Example of PSTH normalised with mean 1, for 350ms of simulation.

In comparison to the above, Figures 4.41 and 4.42 show the responses of a Homogeneous
population receiving a noisy input (12Hz, m1 from stage 1), and a Heterogeneous population
receiving a input with no noise (12Hz, m2 from stage 1). The diversity of response (elicited either
through the added Gaussian noise of the input, or the diverse spontaneous firing rates of the

population members) leads to an increased desynchronisation in the response of the population.
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Peaks are still apparent in the response, but they are not as severe as those seen in the more
synchronised population above. The populations do not produce spikes within the same 5ms,
and instead their spikes are spread out to the adjacent bins, reducing the relative magnitude
of the peaks, and improving the gain of the response for each cycle. That is, the population is
not synchronised to the common input signal, with the desynchronisation produced by noise or

heterogeneity allowing a smoother response, matched more closely to the input signal.

Amplitude

Figure 4.41: Illustration of Synchronisation in Homogeneous Population Receiving 12Hz Current Injection
Input, with Added Gaussian Noise. Example of PSTH normalised with mean 1, for 350ms of
simulation.

Amplitude

Figure 4.42: Illustration of Synchronisation in Heterogeneous Population Receiving 12Hz Current Injection
Input (No Noise). Example of PSTH normalised with mean of 1, for 350ms of simulation.
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Figure 4.43 shows the response of a population of model MVNB neurons with both Heterogen-
eity and receiving a noisy input (12Hz). The population shows very little synchrony (aside from
the single peak in each cycle that would be expected from a close reproduction of the input signal)
with the response of the population spread out across the duration of each cycle. Again, this

smooths the population response, allowing it to more closely match the input signal provided.

Amplitude

Figure 4.43: Illustration of Synchronisation in Heterogeneous Population Receiving 12Hz Current Injection
Input, with Added Gaussian Noise. Example of PSTH normalised with mean of 1, for 350ms of
simulation.

The desynchronisation of Heterogeneous populations is repeated in those simulated in stage 3
(and stage 2, although no Homogeneous populations were simulated in this stage), although the
synchronisation of Homogeneous populations is not as apparent in these simulations, most likely
due to the inhomogeneous input spike trains that were used in this stage of simulations. That is,
the common input signal received by each member of the Homogeneous population is slightly
varied, due to the variance present in each spike train adding variance to the population response.
However, this variance was not enough to remove the synchronisation of the population entirely,
as we still see large peaks of response amplitude surrounded by lower amplitude response bins,

showing a lack of smooth response to the input signal.

4.5.3 Effect of Noise on Response Fidelity
Results from stage 1 of simulations showed that, when population heterogeneity was simulated
through the addition of a bias current to individual cells, thus varying their spontaneous firing

rates, the addition of noise to the input signal (current injection) led to a significant improvement
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of response fidelity scores over those of Heterogeneous populations receiving an input signal with
no added noise. However, in the second stage of simulations, in which population heterogeneity
was modelled through the manipulation of K-Slow conductances, the addition of Gaussian noise
to the input current injection led to a significant decrease in response fidelity, for both high
and low volume noise. This significant decrease in response fidelity was seen across all input
amplitude/means used in this stage, and all target frequencies used by the inputs.

Due a lack of direct control in the noise inherent in the spike train inputs used in stage 3 (and
the lack of inputs with absolutely no 'noise’), no benefit or detriment from noise in those results
can be seen. However, as the Heterogeneous and Homogeneous populations shared the same
input generation methods, and effectively used the same input spike trains to drive their synaptic
inputs, we can assume that any differences seen in the performance between Heterogeneous and
Homogeneous populations were not due to any noise introduced by the inputs (that is, any noise
in the input trains is shared between the two conditions).

Why the introduction of noise into the inputs of Heterogeneous populations may lead to a
significant decrease in response fidelity, when previous studies on model MVN neurons have
shown an improvement from combined noise and heterogeneity [68] may be due to the competing
effects of noise and heterogeneity [72], or the specific means by which Heterogeneity has been
modelled in our simulations.

In support of the idea that competing benefits of noise and heterogeneity may be at play, it has
been found (using leaky integrate-and-fire and FitzHugh-Nagamo models of neurons) that the
addition of noise to a Heterogeneous population of neurons reduces the information capacity of
that population, degrading the performance of that population [72]. This is possibly due to the
shared mechanisms by which the benefits of Noise and Heterogeneity arise.

Alternatively, the detriment to response fidelity from noise may be due to the volume of the
noise used in stage 2 of simulations, compared to the strength of the input currents used at this
stage. Lower volume noise caused less of a performance decrease to the population outputs (as
measured by response fidelity) than high volume noise. Or, rather, the higher the volume of noise,
the greater the impact on response fidelity from the populations. Further to this, if we compare
the effect of noise to response fidelity by the magnitudes of the input currents used in this stage,
we see that, as the input magnitude (amplitude/mean) increases (and the ratio between the noise
added and the signal increases), the detriment to response fidelity reduces. These comparisons

are shown in Figures 4.44 and 4.45. For all input frequencies used (except 20Hz with 20pA noise
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condition), as the input magnitude increases, while noise volume remains constant, performance

increases significantly (p <o0.05) except for the 5opA and 75pA input conditions (increase in

response fidelity is seen, but not significantly so). This could reflect the fact that we have chosen

non-optimal volumes of noise, compared to the magnitude of the input currents used, and that

perhaps lower volumes of noise than 20pA, maybe improve response fidelity over simulations

with no noise included in the input currents.
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Figure 4.44: Comparison of the Effect of 20pA Noise on Response Fidelity with Input Magnitude. Variance
was extremely minor (<0.001) and so is not shown in figure
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Figure 4.45: Comparison of the Effect of 20pA Noise on Response Fidelity with Input Magnitude. Variance
was extremely minor (<0.001) and so is not shown in figure

4.5.4 Phase Leads in Stage 3 Heterogeneous Populations

Although initially the response fidelity scores of some Heterogeneous populations in stage 3 were
found to be significantly lower than those for comparable Homogeneous populations, once the
presence of phase lead in these Heterogeneous populations was estimated and accounted for, the
response fidelity of these populations was seen to be significantly greater than the Homogeneous
populations. The presence of phase leads in all stages of the Vestibulo-Ocular Reflex is proposed
from the literature, both in the real system [98] [32] [69] [70] [74] [106], and in model VOR systems
[117], especially in response to High frequency inputs, such as those that have been investigated
in the current work. Investigation of the phase lead present in the VOR is important not only to
understanding of the normal VOR function, but also to the clinical investigation of the deficient
VOR [66].

Firstly, during high frequency rotations (up to 15Hz) some phase lag would be expected from
the response, due to an estimated 7ms delay in the response from the three neuron arc which
produces it [98]. However, for these rotations it was found that phase lag was reduced from the
expected values, thus suggesting the presence of phase lead effects in the individual stages of
neural processing to compensate for the lag that would arise naturally from the delay [98]. This

was supported in further studies of VOR response dynamics, showing a near phase response for
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high frequency rotations, up to 15Hz [74]. Thus, the phase lag arising from the inevitable delay
involved in the neural processing of the VOR response is almost certainly compensated for by the
involvement of phase lead somewhere in the individual stages involved in the processing.

Recordings of MVN neurons in response to rotations (up to 4Hz) in the alert monkey, showed
a significant phase lead in their responses, of up to 30 degrees relative to head velocity [32].
This phase lead aspect reflected a similar phase lead seen in irregular vestibular afferents [32].
However, a lack of correspondence between the input signals used in our work, and the actual
head velocities they would represent, does not allow us to compare the magnitudes of lead seen in
our models, with that present in the real system. Integrate-and-Fire modelling studies of irregular
Central Vestibular Nucleus neurons reproduced this observed phase lead [117]. Interestingly, it
was suggested from these modelling studies, that the phase lead of the model CVN neurons
was due to the heterogeneity of modelled neuron’s firing dynamics, arising from their intrinsic
membrane properties.

Similarly to the phase lead present in Central Vestibular neurons, phase lead has been observed
in the other stages of the VOR’s neural circuitry. Regular afferents showed increasing phase lead
for rotational frequencies up to 20Hz [69]. However, while we see reduction of phase lead as input
frequency increases, this likely reflects our modelling of the irregular MVN neurons, and some
differences between the pathways of the VOR which the two types of neurons (irregular/regular)
are involved (linear/non-adaptive vs non-linear/adaptive). Recordings of Vestibular afferents and
neurons of the Abducens Nuclei (the third stage of the VOR, after the Central Vestibular Nucleus
neurons) showed equal phase for low frequencies (<4Hz), with significant and increasing phase
leads as rotation frequency increased (up to 50Hz) [106].

Accommodation of phase lead is therefore justifiable for the results presented here. Phase
lead must be present in the individual components, to account for the phase lag introduced
by delay of the neural components of the circuit involved. Our finding of phase lead in some
simulation conditions in response to inputs representing high frequency rotations is in line with
experimental findings, as well as predictions from alternative modelling of the neurons involved.
In addition, although we have not concretely tied the velocity of head rotations represented by
our input signals, increased mean and amplitude of the spike trains does, broadly, represent
increased velocity of these rotations (thus input set Ao3 represents the lowest velocity of the
rotational movements, and Aoz the highest velocity), and as such we see more phase lead present

with the Aoz input set, and less with the Ao3 input set. Recordings of Vestibular afferent neurons
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involved in the rotational VOR of the Chinchilla showed phase leads for high frequency rotations,
with increasing phase lead as rotational velocity increased [70]. Our results generally match this
relation, with the inputs representing higher velocity rotations causing increased phase lead,
compared to the inputs representing lower velocities.

That the observed phase shift (when observed) is a genuine phase lead, and not a phase lag, is
shown in Figure 4.46 below, which shows the initial response of a Heterogeneous population,
from the very first cycle of the input, for an 8Hz input using input set Ao1 with 60 synapses of
weight 1.0. This population showed a phase lead of 10ms occurring with the first cycle of the

input, and continuing throughout the duration of the simulation.
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Figure 4.46: Initial response of a Heterogeneous population to the first cycle of an 8Hz input. This illustrates
that the initial response shows a phase lead which continues for the duration of the simulation,

and not a phase lag.

The cause of the apparent phase lead seen in the results presented here is largely down to
the population response rising in volume slightly faster than the corresponding synaptic input
provided for the latter half of the up-cycle, reaching its peak earlier than the corresponding input,

and decreasing earlier and significantly faster in the first half of the down-cycle than the input. In
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effect, this shifts the peak volume of the output to an earlier time than the corresponding input,
essentially causing the output wave to lead the input wave, and to appear narrower for the upper
half of the cycle. This is shown in Figure 4.47, which shows the corrected response (1oms) for
a Heterogeneous population receiving an 8Hz input. Apparent is the slightly steeper increase
in response for the latter half of the up-cycle (output increases slightly faster than input above
the mean of 0) and the significantly steeper decrease of the output compared to the input for the
first half of the down-cycle (large gaps between the output and input above the mean of o). This
faster increase, and earlier and faster decrease in response for the upper half essentially skews

the uncorrected response to the left, causing an apparent phase lead from the population.

25 T T T T T T T

Amplitude

] 50 100 150 200 250 300 350 400 450 500
Time (ms)

Figure 4.47: Phase corrected response of Heterogeneous population receiving 8Hz input. Corrected for
10oms phase lead. This illustrates the slightly faster increase, and significantly faster decrease of
population output response compared to the input, for the upper half (above mean o) of the
population response.

The skewing caused by the non-linear response is more apparent in Figure 4.48, which shows

the uncorrected response of the same population as in Figure 4.47 above. The faster, non-linear
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rise and decline in population output essentially shifts the response to the left, causing it to lead

the input provided.
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Figure 4.48: Uncorrected response of Heterogeneous population receiving 8Hz input. This illustrates the
slightly faster increase, and significantly faster decrease of population output response compared
to the input, for the upper half (above mean o) of the population response.

This slightly non-linear increase and decrease in output response is largely due to the nature
of the synaptic mechanisms implemented in the simulations, with increased input leading to
saturation of the population, and the corresponding non-linear decrease in population output.
This would explain why, with larger input amplitudes (i.e. input set Aoz) and with increased
synapse numbers and weight, we see more and larger phase leads.

Interestingly, the phase leads apparent in these results are not present in the input trains driving
the population response, possibly suggesting that it arises from the intrinsic properties of the
neurons simulated, rather than the properties of the inputs driving them. Finally, it should be
noted that the precision of the phase lead estimates we have made is hampered by the resolution
of our analysis, in that we only estimate the phase lead within 5ms, tied to the bin size chosen for

our response fidelity analysis.
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4.5.5 Accounting for Random Errors

Although the results presented thus far have been the mean response fidelity scores of 10
populations of 500 neurons each (n=500), in order to ascertain any possible effects of Random
Error (introduced from the random selection of neuron firing rates across a population), and to
isolate those Random Errors from any Systematic Errors present (introduced by the simulation
methods used), further simulations were conducted such that average response fidelities could be
calculated over larger number of neurons.

For this, response fidelities were calculated for 10 populations of 1000 and 5000 MVNB neurons,
using the Stage 3 experimental setup, across all conditions present in Stage 3. That is, Stage 3
simulations were replicated with these increased population sizes (n=1000 and n=5000). Any
Random Error, if it were present, would thus be reduced in the larger populations. This process, of
investigating the presence of Random Error in populations of different size, is somewhat similar
to the process used in previous work examining performance of feedback networks of Artificial
Neuron models, using delta-rule learning, between populations of size n=100 and n=1000 [107].

However, in the work presented here, the response fidelity scores, and the variance across the
10 populations, for populations of 1000 and 5000 neurons were found to be almost identical to
those found for populations of 500 neurons. That is, both the average response fidelity scores
of 10 populations, and the variance of scores across these 10 populations were found to be near
identical to those found in Stage 3 previously. Where a difference was found (as in the case of
Figure 4.48 below) the difference was negligible, and far from being significant. As with previous
results, only minor variance (<0.001) was observed in the response fidelity scores across the 10
populations. Figures 4.49, 4.50, and 4.51 show the response fidelity scores for all input frequencies,
using input parameters Ao1, Ao2, and Ao3, with synapse weight 0.1 and 20 synapses. Other
parameter sets showed similar results, in that there was no significant change in response fidelity

or variance found.
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Figure 4.49: Comparison of the Effect of Population Size on the Response Fidelity of Stage 3 simulations.
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Average response fidelity scores for populations of 500, 1000, and 5000 MVNB Neurons simu-
lated with the Stage 3 experimental setup, for input set Ao1, with synapse weight o.1 and 20
synapses. No significant differences were found for the increased population sizes. Variance
was extremely minor (<0.001) and so is not shown in figure
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Figure 4.50: Comparison of the Effect of Population Size on the Response Fidelity of Stage 3 simulations.

Average response fidelity scores for populations of 500, 1000, and 5000 MVNB Neurons simu-
lated with the Stage 3 experimental setup, for input set Aoz, with synapse weight 0.1 and 20
synapses. No differences were found for the increased population sizes. Variance was extremely
minor (<0.001) and so is not shown if figure
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Figure 4.51: Comparison of the Effect of Population Size on the Response Fidelity of Stage 3 simulations.
Average response fidelity scores for populations of 500, 1000, and 5000 MVNB Neurons simu-
lated with the Stage 3 experimental setup, for input set Aoz, with synapse weight 0.1 and 20
synapses. No differences were found for the increased population sizes. Variance was extremely
minor (<0.001) and so is not shown if figure

Therefore, as no significant difference in either response fidelity scores, or the variance of
response fidelity scores across 10 populations, was seen with increased population sizes, it can be
concluded that any Random Error present in the simulations performed are already eliminated
or mitigated by the population size (n=500) and number of populations (10) used throughout the
work presented. This would be in line with previous work on the implications of Heterogeneity in
the Vestibulo-Ocular Reflex (using leaky integrate-and-fire models, work which we have largely
replicated using the more biophysically complete Compartmental neuron models), which found
that a population of size n=500 was sufficient to convey the population response to sinusoidal

inputs of varying frequency, over a subset of these populations (n=10)[68].

4.5.6  Performance to Arbitrary Input Amplitudes and Frequencies

The results presented thus far have been obtained through the simulation of populations to
each input frequency and amplitude independently. In order to ascertain the performance of a
population with the same settings of parameters (K-Slow densities and initial membrane voltages
across the population) to input of arbitrary amplitude and frequency, further simulations were

performed and analysed, using arbitrarily chosen input conditions, in which the setup parameters
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of the populations were maintained across simulations. In effect, this simulated the performance
of the same population in transmitting arbitrarily chosen input frequencies and amplitudes.

Initially two recurring populations (Population 1 and Population 2) were simulated across all
four input frequencies (8, 12, 16, and 20Hz), maintaining the parameters of the two populations
across each of the simulations (in effect simulating the performance of the same population to
all four, or arbitrary, input frequencies) with arbitrarily chosen synapse weights and numbers3
using the Aoz input set (input mean of 50Hz and amplitude of 25Hz). As the input set used
was constant across the simulations, this only investigated the ability of a given population to
transmit an input of arbitrary frequency, but not amplitude.

The performance of these two populations was compared against the results for the given input
parameters from Stage 3, to ascertain if there was any difference in performance between the two
sets of results (that is, does a single population perform the same, and transmit the same arbitrary
signal frequency, as the independent populations). Performance (response fidelity score) was
near identical to performance seen in the main Stage 3 results (that is, there were no significant
differences in response fidelity scores for the single recurring, or constant, populations compared
to the independent populations. Differences in response fidelity score were, at most, 0.01). The
results for populations 1 and 2, compared to the performance of the Stage 3 populations are
shown in Figures 4.52 and 4.53 below. From this, it can be concluded that the same population
(with the same setup parameters of K-Slow densities and initial membrane voltage) can transmit

inputs of arbitrary frequency.

3 Synapse weights and numbers for the 2 sets of simulations were as follows: Population 1 - 8Hz number of synapses = 20,
weight = 1.0; 12Hz, nsyn=40, w=o0.5; 16Hz, nsyn=40, w=0.5; 20Hz, nsyn=20, w=0.1. Population 2 - 8Hz, nsyn=60, w=o0.5;
16Hz, nsyn=40, w=0.1; 20Hz, nsyn=20, w=0.5.
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Figure 4.52: Comparison of performance for recurring Population 1 against performance from the inde-
pendently chosen populations used in Stage 3. No significant differences in performance were
found.
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Figure 4.53: Comparison of performance for recurring Population 2 against performance from the inde-
pendently chosen populations used in Stage 3. No significant differences in performance were
found.

Further to these, in order to determine the ability of a recurring population to transmit an input
of both arbitrary input frequency and amplitude, a third population was simulated (Population 3)
across all 4 input frequencies, and across all 3 input sets (therefore, all 4 input frequencies across

all 3 input amplitudes and means. In effect simulating the performance of the same population to
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all four, or arbitrary, input frequencies, and all 3, or arbitrary input amplitudes) with arbitrarily
chosen synapse numbers and weights*. As the same recurring population was simulated with
both different input frequencies and input amplitudes, this investigated the ability of a given
population to transmit an input of arbitrary frequency and amplitude.

The performance of this recurring population was compared against that of independent
populations simulated in Stage 3 of the work presented. Performance of the recurring population
was found to be near identical to the performance of the independent populations. The results
for Population 3, compared with those of the independent populations of Stage 3 are shown, for
each input set, are shown in Figures 4.54, 4.55, and 4.56 below. From this, it can be concluded that
the same population (with the same setup parameters of K-Slow densities and initial membrane

voltage) can sufficiently transmit inputs of arbitrary frequency and amplitude.
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Figure 4.54: Comparison of performance for recurring Population 3 against performance from the independ-
ently chosen populations used in Stage 3, for input set Ao1 (mean of 50Hz, amplitude of 25Hz).
No significant differences in performance were found.

4 Synapse numbers and weights were as follows: Population 3 - 8Hz, nsyn=40, w=o0.1; 12Hz, nsyn=60, w=o0.5; 16Hz, nsyn=20,
w=0.1; 20Hz, nsyn=40, w=1.0.
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Figure 4.55: Comparison of performance for recurring Population 3 against performance from the independ-
ently chosen populations used in Stage 3, for input set Aoz (mean of 75Hz, amplitude of 25Hz).
No significant differences in performance were found.
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Figure 4.56: Comparison of performance for recurring Population 3 against performance from the independ-
ently chosen populations used in Stage 3, for input set Ao3 (mean of 35Hz, amplitude of 20Hz).
No significant differences in performance were found.
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DISCUSSION

5.1 DISCUSSION

Here we have presented work investigating the functional role of population heterogeneity in
the fidelity of response from neuron populations. That is, we have investigated the functional
role of population heterogeneity, in the form of diverse spontaneous firing rates, on the ability of
that population to faithfully transmit high frequency inputs, using bio-physical models of MVN
neurons involved in the linear Horizontal Vestibulo-Ocular reflex (hVOR) response. We have
compared the performance of Heterogeneous populations with that of Homogeneous populations
of the same (model) neurons, to the same inputs, to judge the effect of the Heterogeneity on a given
response fidelity measure. Thus, we have investigated the role of the intrinsic membrane properties
on the ability of neurons to produce a wide and dynamic range responses, rather than the circuit
properties of the population. More so, we have investigated the specific means of diversity by
which this population heterogeneity may arise, in the form of varied density of certain Ion
channels of the neurons involved. Specifically, we have asked whether population heterogeneity
in the form of the diversity of slow Voltage activated Potassium channel conductances across a
population of MVN Type B neurons, creating a population of neurons with a distributed rate of
spontaneous firing, leads to improved response fidelity of these Heterogeneous populations to
high frequency inputs, over Homogeneous populations.

We have approached this through the simulating of the response of populations of model MVN
Type B neurons involved in the hVOR, to high frequency inputs, across a range of input frequencies
incorporating the high physical range of head rotations that these neurons are known to respond
to faithfully and accurately to produce compensatory eye movement. We have measured the
response fidelity of Heterogeneous and Homogeneous populations, to frequencies ranging from 8
to 20Hz, for input parameters representing various head velocities, and using various methods of
both modelling the Heterogeneity of the populations, and the inputs provided to the populations.

In this way we have evaluated the importance of the diverse intrinsic membrane properties
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(conductance densities) in producing Heterogeneity (spontaneous firing rate) of model MVNB
neurons, rather than the circuit properties (inputs).

The results presented in this work consistently show that Heterogeneous populations of model
MVN Type B neurons, when that Heterogeneity takes the form of diverse spontaneous firing
rates across the population, reproduce high frequency input signals significantly and consistently
better than comparable Homogeneous populations. More, we have shown that, when the diversity
of firing rates arises from Heterogeneous slow Potassium conductances across the population,
the performance of Heterogeneous populations is significantly better than that of Homogeneous
populations, suggesting that Heterogeneity of these Potassium conductances provides a specific
means by which these populations are Heterogeneous, and a functional role for this Heterogeneity.
Therefore, the results here indicate that population Heterogeneity in the form of the diversity
of slow Voltage activated Potassium channel conductances across a population of MVN Type B
neurons, creating a population of neurons with a distributed rate of spontaneous firing, does
indeed lead to improved response fidelity of these Heterogeneous populations, over Homogeneous
populations.

We have shown that the improvement to response fidelity from Heterogeneity is robust across
a range of frequencies representing the high physical range the real VOR deals with, and
that the improvement is consistent for a range of input magnitudes. More, the comparison of
Homogeneous and Heterogeneous populations have shown that the circuit properties alone of the
population cannot adequately explain the high frequency response of the MVN B populations, and
that the intrinsic membrane properties of the neurons play an important role in their functioning.
Further, we have shown that populations simulated here are capable of conveying inputs of
arbitrary input frequency and amplitude, as well as demonstrating that the population size chosen
for simulation are robust in regards to the mitigation or elimination of random errors.

Previous work has suggested a functional role for population Heterogeneity [72] [92], and
shown a role for this Heterogeneity specifically in the high frequency response of the VOR
[68] [5]. The work presented has confirmed the role of Heterogeneity in MVN B neurons for
their processing high frequency responses, as well as suggesting a specific biological means by
which the Heterogeneity of these populations is embodied, in the diversity of slow Potassium
conductances. In addition, we have obtained these results using bio-physical, compartmental
models of MVNB neurons, with a high-predictive value [104]. This is, to the author’s knowledge,

the first time a specific biological means for the functional population Heterogeneity of MVNB
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neurons has been shown, and the first time this has been shown using bio-physical, compartmental
models of MVNB neurons.

Neural Heterogeneity is a fact, with individual neurons, even within the same class, showing a
wide range of diverse responses to the same stimuli [21]. Evidence has shown that diversity of
ion channel expression, and the conductances arising from these channels, are responsible for
Heterogeneity in the populations involved [37], and that this Heterogeneity is responsible for the
diversity of responses seen in the neurons involved in the hVOR [109] [83] [20]. The work here is
in line with these findings, showing that the diversity of response, and accuracy of population
responses, may be achieved through the diversity of specific Potassium conductances in MVNB
neurons.

Experimental [2] and theoretical work has shown a functional role of Heterogeneity in neural
processing, both for general populations [72] [92], and in the neural processing of the VOR spe-
cifically [68] [5]. Particularly, the effect of desynchronisation on a population has been suggested
as a functional role for Heterogeneity [54] [58]. Again, the results presented here support the idea
of Heterogeneity (and the desynchronisation arising from this) as a means by which accurate
population response fidelity is achieved in the MVNB neurons of the VOR, with Homogen-
eous populations showing highly synchronised responses, leading to poor response fidelity, and
Heterogeneous populations showing less synchronisation and significantly improved response
fidelity.

As discussed, the likely mechanism by which the population Heterogeneity modelled here
improves the response fidelity of our populations is through the desynchronisation of the
population response, producing a greater temporal basis over which the individual members of
the population are able to respond [72]. Heterogeneous populations show little of the clustering
of response (said clustering indicating synchrony) that is seen in comparable Homogeneous
populations [54] [58], and show improved fidelity in their reproduction of high frequency inputs.

Interestingly, we found somewhat mixed results for a possible role of Noise in the improvement
of response fidelity in our models. A beneficial role for noise has long been suggested in neural
systems [17] [90] [91], in sensory-motor systems (such as the VOR) [125], and has specifically
been suggested as a means by which VOR response fidelity may be improved [68]. Although we
found a beneficial impact for noise in Homogeneous populations, the results of our simulations
have shown a detrimental impact on Heterogeneous population’s response fidelity when noise

is introduced into the signals they process. Although the reason for this detrimental effect was
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not investigated, it is suggested that this may be due to the competing benefits to processing
provided by noise and Heterogeneity [72]. That is, both noise and Heterogeneity benefit neural
processing through the same mechanisms (i.e., desynchronisation), and that, through combining
the two, the benefits of both may be lost. Indeed, theoretical studies have shown a detriment to
response performance when noise is added to Heterogeneous populations [72].

Another finding of interest from the results presented, is the emergence of phase lead in
the population responses of Heterogeneous neurons for certain experimental conditions. The
presence of phase leads (where the response shows a lead in time against the stimuli producing
the response) in all stages of the Vestibulo-Ocular Reflex is apparent from the literature, both
in the real system [98] [32] [69] [70] [74] [106], and in model VOR systems [117], especially in
response to high frequency inputs, such as those that have been investigated in the current work.
In order for the VOR to provide a fast and accurate compensatory movement to head movements,
phase lead must be introduced in the response in order to counter the inevitable delay that arises
from the neural processing across the three stages of the response arc. Although phase lead was
not observed across all experimental conditions, we have shown the emergence of phase lead in
the responses of model MVNB neurons to certain conditions, primarily increased input volume
and synapse numbers and weight. Further, the phase lead evident in our results emerged not
from the inputs driving the response (as there is no phase lead in the input), and may instead
emerge from the intrinsic membrane properties of the population.

Although our results have shown a significant improvement to response fidelity from popula-
tion Heterogeneity (and thus a significant role of Potassium channel diversity in that response), it
has not shown that the Heterogeneity modelled here is the complete story, as far as the population
response is concerned. Heterogeneous populations have shown a consistent improvement over
Homogeneous populations, but have not shown a perfect translation of inputs in our popula-
tion outputs (response fidelity scores approaching 0.9, comparable to findings that the VOR
compensates for between 90% [98] and 80% [7] of head rotations in the dark).

This deficiency may arise from the response fidelity measure that has been implemented. Al-
though robust in comparing the performance of Heterogeneous populations with Homogeneous
populations, we may lose some of the true response accuracy present in the outputs of our
populations, due to assumptions made in choosing the bin size for our analysis, and in the gain
representation due to the normalisation of our population responses. The PSTH method used

makes assumptions regarding bin size, disregards variations in firing within bin periods, and
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shows possible errors in the localisation of spikes near bin edges [22]. However, the implementa-
tion of our second measure, looking at the magnitude of the target frequency component in the
output of our populations, similar to methods suggested as an alternative to the PSTH method
[22], and the results from this measure, go a long way to supporting the findings stated, and the
satisfactory nature of the PSTH measure.

Another possibility for the deficiency in population response that we see may be the assump-
tions that we have made in regards to aspects other than the Heterogeneity of slow Potassium
conductances in our models. It is unlikely that functional Heterogeneity in populations of MVNB
neurons is limited to diversity of slow Potassium conductances alone, and differences in cell
morphology (Soma size, dendritic structure and shape, number of dendritic branches) or Hetero-
geneity in other conductances may play a role in producing the real MVNB population response.
In addition, the distribution of firing rates that we have used for our Heterogeneous populations
may not match the distribution of real populations, which may be optimised for a more accurate
reproduction of the signals they receive.

As such, one possible avenue for further research into the MVNB population response could be
to look at different distributions of firing rates across the population, and their effect on response
fidelity. Alternatively, the inclusion of known MVNB subtypes, exhibiting low voltage activated
spike bursting arising from increased density of the low Voltage activated Calcium channels [118]
[119] may be a possible means for improving the population response further.

Another possibility for future research could be the investigation of, and quantification of, the
synchrony of our simulated populations, thus confirming the mechanism of desynchronisation
in the improved response of the populations. Methods for the analysis and quantification are
available in the literature [15], and could be applied, with some modification, to the models
simulated in the present study.

Finally, the role of the inhibitory aspects of the hVOR response could be investigated, looking
at the response of MVN populations in the context of the commissural inhibitory system [55] and

the effects of the push-pull combination of Horizontal Semi-Circular Canals.
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APPENDIX A

Response Fidelity Scores for 8Hz Input

Input Parameters A02 for all Synapse Numbers (n) and Weights (w)
0.8
0.7
06
0.5 B Heterogensous
0.4 B Homegeneous
0.3
02
0.1

0

Response Fidelity Score

n20 wi.5 n40 wi.1 n40 w0 ngl wi.5
n20 wi.1 n20 wi.0 nd0 wi.5 nG0 wi.1 nG0 w10

Figure A.1: Stage 3 Response Fidelity Comparison for 8Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Aoz Input set, across all synapse numbers and weights



Response Fidelity Scores for 8Hz Input

Input Parameters AD3 for all Synapse Numbers (n) and Weights (w)

0.9
0.8
07
06
05
0.4
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02
0.1
0

B Heterogeneous
Homogeneous

Response Fidelity Score

n40 wi.1 n40 w1.0 nGl wi.5
n20 wi.1 n20 wi.0 n40 wi.5 n&0 wi.1 n&s0 w1.0

Figure A.2: Stage 3 Response Fidelity Comparison for 8Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Ao3 Input set, across all synapse numbers and weights

Response Fidelity Scores for 12Hz Input

Input Parameters AD2 for all Synapse Numbers (n) and Weights (w)
0.8
0.7
0.6
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0.3
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0

Response Fidelity Scare
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nZ0 wi.1 n20 w1.0 n4l wi.5 ng w1 ng0 w1.0

Figure A.3: Stage 3 Response Fidelity Comparison for 12Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Aoz Input set, across all synapse numbers and weights



Response Fidelity Scores for 12Hz Input

Input Parameters A03 for all Synapse Numbers (n) and Weights (w)

0.9
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Figure A.4: Stage 3 Response Fidelity Comparison for 12Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Ao3 Input set, across all synapse numbers and weights

Response Fidelity Scores for 16Hz Input

Input Parameters A1 for all Synapse Numbers (n) and Weights (w)
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Figure A.5: Stage 3 Response Fidelity Comparison for 16Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Aoz Input set, across all synapse numbers and weights



Response Fidelity Scores for 16Hz Input

Input Parameters A1 for all Synapse Numbers (n) and Weights (w)
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Figure A.6: Stage 3 Response Fidelity Comparison for 16Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Ao3 Input set, across all synapse numbers and weights

Response Fidelity Scores for 20Hz Input

Input Parameters A01 for all Synapse Numbers (n) and Weights (w)
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Figure A.7: Stage 3 Response Fidelity Comparison for 20Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Aoz Input set, across all synapse numbers and weights



Response Fidelity Scores for 20Hz Input

Input Parameters A01 for all Synapse Numbers (n) and Weights (w)
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Figure A.8: Stage 3 Response Fidelity Comparison for 20Hz Input, Heterogeneous vs Homogeneous Popula-
tions. For Ao3 Input set, across all synapse numbers and weights
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