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THESIS SUMMARY 

 

The accurate assessment of forest persistence under environmental change is dependent on 

the fundamental understanding of the genetic consequences of human intervention and its 

comparison to that of natural processes, as declines in genetic diversity and changes in its 

structuring can compromise the adaptive ability of a population. The European beech, Fagus 

sylvatica, has experienced prolonged human impact over its 14 million ha range with 

contemporary forests harbouring high ecological, economic, and cultural value.  

 

Historical traditional management practices, such as coppicing and pollarding, have impacted 

a large portion of Europe’s forests. This form of management encouraged vegetative 

regeneration, prolonging the longevity of individual trees. In several cases, the structure and 

function of managed trees and their associated ecosystems were significantly altered. 

Specifically, coppiced beech forests in Europe displayed significantly larger extents of spatial 

genetic structuring compared to their natural counterparts, revealing a change in the genetic 

composition of the population due to decades of management. 

 

Humans have also aided in the dispersal of beech within and outside of its natural range. In 

Great Britain, the putative native range retained signals of past colonisation dynamics. 

However, these signals were obscured by the wide-spread translocation of the species 

throughout the country. Evidence of post-glacial colonisation dynamics can be found in 

Sweden as well. In contrast to Britain, the structure of this natural leading range edge displays 

a gradual reduction in population size where isolation was found to have acted as an effective 

barrier to gene flow reducing the genetic diversity of populations.  
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Chapter 1 

INTRODUCTION 

 

1.1 The importance of forests and genetic diversity 

Forests extend over 31% (i.e. 4,033 million hectares) of global land area (FRA 2010) and are 

fundamental to ecosystem processes, biodiversity, and human livelihoods. This enormous 

distribution extends its influence into biogeophysical, hydrological, and atmospheric 

processes, presenting a potential resource that can be used in the mitigation of climate 

change (Bonan 2008). The recognition of forests as vital carbon stocks, storing an estimated 

total of 289 gigatonnes of carbon in biomass (FRA 2010), has prompted a move towards 

sustainable forestry practices aiming to reduce deforestation. Since 2000, there has been a 

reduction in the rate of deforestation, although it remains high with a loss of 13 million 

hectares per year (FRA 2010). Anthropogenic impacts remain the leading cause of 

deforestation, with changes in land use being the primary driver. The increasingly appreciated 

value of forests has led to a drive to understand how to encourage ecosystem resilience and 

ensure their persistence under expected climate change. 

 

Conserving forest genetic resources is a key strategy in improving forest resilience to 

environmental change. The International Union for Conservation of Nature (IUCN) recognised 

genetic diversity as one of three forms of biodiversity (McNeely et al. 1990). Genetic diversity 

and its spatial distribution are primarily influenced by gene flow, genetic drift, and selection, 

which differ in strength according to effective population size (Loveless and Hamrick 1984). A 

reduction in genetic diversity can lead to inbreeding and a reduction in fitness associated with 

the loss of adaptive potential (Keller and Waller 2002, Jump et al. 2009). Inbreeding 

depression can manifest as reduced growth and higher extinction rates in plant populations 

(Ellstrand and Elam 1993, Keller and Waller 2002).  Effective genetic resource management 
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requires an understanding of the factors influencing genetic diversity to identify circumstances 

that can lead to negative consequences and how these might be avoided or alleviated. It is 

essential to consider the spatial distribution of genetic diversity, as complex familial 

structuring driven by pollen and seed dispersal (Sokal et al. 1989) will influence the suitability 

of management strategies (this will be discussed further in Chapter 3). 

 

Recent advancements in molecular technology has seen an increase in processing power 

allowing the cost-effective analysis of molecular markers such as microsatellites (viz. simple 

sequence repeats (SSRs)) (Selkoe and Toonen 2006). Polymorphic, selectively neutral, nuclear 

microsatellites typically display a large amount of variation that can be used to answer 

questions on parentage and population history (Beaumont and Bruford 1999, Hancock 1999). 

Due to the lack of recombination in the chloroplast genome, chloroplast microsatellites are 

less polymorphic, with haplotypic distributions often reflecting ancient colonisation processes 

derived from seed dispersal (Provan et al. 2001) in angiosperms, due to its maternal 

inheritance (Reboud and Zeyl 1994). The highly polymorphic nuclear markers can provide 

information on contemporary phylogeographic events. Advancements in technology have 

increased the potential of population genetic studies with research applied worldwide on 

several tree species. The next section focuses on the study species, the beech tree, Fagus 

sylvatica, and its range in Europe which has been under human influence since its Holocene 

migration after the last glacial maximum. 

 

1.2 An overview of the European beech - Fagus sylvatica 

The European beech, F. sylvatica, is a monoecious, deciduous broadleaf tree in the Fagaceae 

family. There are currently 11 recognised species in the Fagus genus. The exact number of 

species in the genus has been debated, primarily due to the low number of unique alleles in 

some alleged species (Shen 1992, Denk et al. 2002). Fagus is distributed throughout the 
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northern hemisphere with species within the genus displaying similar ecological traits such as 

shade-tolerance, masting, and sensitivity to frost and drought (Wagner et al. 2010).  Three 

common species in the genus include Fagus crenata, native to Japan, Fagus grandifolia, native 

to North America, and Fagus orientalis, native to eastern Europe and Western Asia. Where the 

distribution of F. sylvatica and F. orientalis meet in the Rhodope Mountains, extensive 

hybridisation zones exist. However, as range overlap is limited introgression rarely occurs in 

the core range. 

 

Fagus sylvatica is a keystone species defining a habitat known for its high floral and faunal 

diversity. It has a typical lifespan of 300 years, which can be extended through management 

(Read 2006). Beech is primarily outcrossing, with flowering and seed, also known as beech 

mast, produced after 40 years of age, typical for wind-pollinated trees (Wagner et al. 2010), 

and following an inherent biennial masting rhythm with intervals of up to 15 years (Hilton and 

Packham 2003, Packham et al. 2012).  Successful cross-pollination leading to fruit set is 

dependent on the density of reproductive trees, as small stands of beech have been found to 

produce a higher proportion of empty seed coats. This varies between mast and non-mast 

years, with the latter showing a lower rate of successful fruit set (Nilsson and Wästljung 1987). 

The masting phenomenon in Beech is essential for regeneration as it satiates seed predators 

(Watt 1925) and controls predator abundance through starvation in non-mast years 

(Silvertown 1980). Predators of beech mast, such as the European Jay (Garrulus glandarius) 

(Nilsson 1985) and the nuthatch (Sitta europaea) (Perea et al. 2011), are also important seed 

dispersers. 

 

The species distribution extends over an estimated 14 million ha (Figure 1.1). In its core range, 

beech is a strong competitor, being highly shade tolerant and growing on well-drained soils 

ranging from acidic to calcareous substrates (Packham et al. 2012). However, at the southern 
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range edge, its sensitivity to drought poses a risk for its persistence under predicted climate 

change (Jump et al. 2006, Geßler et al. 2007). F. sylvatica is considered a valuable model to use 

for examining patterns of post-glacial migration (Widmer and Lexer 2001). It has a wealth of 

paleobotanical evidence describing the Quaternary history of the species and its closest 

relative, Fagus orientalis, occurs in Asia Minor with minimal overlap between the species’ 

ranges, minimising introgression. 

 

Magri et al. (2006) presents the benchmark study for the Holocene history of beech in Europe 

and its migration route into the contemporary range for the species. Significant beech refugia 

and post-glacial spread are evaluated using a combination of paleobotanical and 

phylogeographical evidence. Magri et al. (2006) used a combination of nuclear isozyme 

 

 

 

 

 

 

Fig. 1.1 EUFORGEN (2009) natural distribution of beech.  Shaded areas show 

natural distribution of beech. 

 

markers, chloroplast microsatellite markers, and chloroplast restriction fragment length 

markers to map genetic variation in Europe, confirming the presence of glacial refugia. Beech 

did not experience major range contractions during its Holocene spread, and therefore 
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contemporary forests are likely to be direct descendants of the populations that first colonised 

those areas. Paleobotanical data indicate that most of Europe was colonised from principal 

refugia in southern France, eastern Alps-Slovenia-Isteria, with potential refugia in Moravia and 

southern Bohemia. With beech in the classic southern refugia (i.e. the Iberian, Italian and 

Balkan peninsulas) expanding relatively late and thus not contributing to the colonisation of 

central and northern Europe. Southern and western populations displayed a complex 

distribution of genetic variation, indicating the presence of genetically differentiated 

populations in southern France and in the Iberian, Italian, and Balkan Peninsulas. The 

remaining beech distribution in central, eastern, and northern Europe were relatively 

homogenous in genetic structure. Contrary to several plant and animal species (Taberlet et al. 

1998), mountain ranges did not present a significant barrier to the post-glacial migration of 

beech, which instead expanded along slopes of prominent mountain chains, such as the Alps.  

Recent palynological evidence suggests that small populations of temperate trees, including 

beech, established ahead of the main colonisation front through long distance dispersal events 

tracking suitable climatic conditions and habitats (Overballe-Petersen et al. 2013). 

 

The range of beech at a regional scale is believed to be under broad climatic control (Huntley 

et al. 1989), with sensitivity to drought and late frosts generally limiting the southern and 

northern distribution, respectively. However, due to the late arrival of beech in Great Britain 

and its translocation throughout the country, the extent of its native range remains uncertain 

(this will be discussed further in chapter 4). Birks (1989) presents the most comprehensive 

palynological work on temperate tree migrations into the British Isles during the Holocene. 

Palynological data indicate that beech arrived in Great Britain relatively late, about 3000 BP, 

and the width of the isochrones indicate that it maintained a constant rate of spread. Its 

widespread natural regeneration throughout the country has led to speculations that it may 

not have reached its climatic limit before human intervention (Packham et al. 2012). Pollen 
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records have found an association with beech colonisation and human activity which may be 

influencing the patchy dynamic colonisation front seen in some regions, such as southern 

Sweden (Björkman 1997, Küster 1997, Bradshaw and Lindbladh 2005) (this will be discussed 

further in chapter 5). However, it has been argued that patterns of colonisation dynamics may 

primarily be a product of the ecological traits of this late successional tree, displaying inherent 

slow migration and establishment rates, which has resulted in its spread coinciding with 

anthropogenic activity (Gardner and Willis 1999, Giesecke et al. 2007). 

 

Fig. 1.2 Examples of different forms of beech forest. LEFT: Semi-natural beech forest - Spessart 

Mountain Range, Germany. MIDDLE: Ancient Beech Coppice - Montage de Lure, France. RIGHT: Wood 

pasturage with Pollards - New Forest, United Kingdom. [Photographs by M. J. Sjölund] 

 

The majority of forests in Europe today are classed as semi-natural (FOREST EUROPE and 

UN/ECE-FAO 2011) with many experiencing prolonged traditional management (an in-depth 

review on these practices is given in Chapter 2). Traditional management practices include 

coppicing and pollarding, both of which exploit the vegetative regeneration of an individual 

tree through the repeated cutting of stems (Evans 1992). Managed trees could be found in 

cultural landscapes such as wood pasture, where farm animals grazed and fed on the beech 

mast crop (Figure 1.2). Long-term management has often resulted in habitats with high 

structural complexity that have been recognised for their conservation value (Fuller and 

Warren 1993). Beech trees were widely coppiced throughout Europe in the past, maintaining 

populations primarily through vegetative regeneration and using harvested stems as a source 
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of fuel and building materials (Nocentini 2009, Read et al. 2010, Packham et al. 2012) (the 

genetic consequences of coppicing will be discussed further in Chapter 3).   

1.3 Thesis outline 

Improving future beech forest persistence rests on having an understanding of how past and 

current forest management practices affect the genetic diversity and the spatial genetic 

structuring at stand to regional levels, as a loss in genetic diversity and changes in genetic 

structure can compromise the ability of beech to persist under changing environmental 

conditions. Natural systems can provide insight into studies on anthropogenic impacts as they 

act as controls, providing useful comparisons to managed systems. The research presented in 

this thesis forms part of a larger, interdisciplinary, EU-wide project called Beech Forests for the 

Future (BEFOFU) that aims to synthesise information on the ecological, economic, and policy 

aspects of beech forest protection in Europe. BEFOFU focuses on beech forests which form 

part of a network of protected areas, the Natura 2000 network, designated under the EU 

Habitats and Birds directives. Chapters 2 to 5 present research undertaken in this thesis, which 

encompass various spatial scales, exploring stands with natural and human influenced 

histories to understand the factors shaping the forests in Europe, with specific focus on the 

population genetics of beech.  

 

I will now present an outline for each chapter. Details of each chapter and a summary of 

research outcomes and implications are given in Table 1.1 at the end of the introduction. 

Chapters are presented in manuscript format; chapters 2 and 3 are published in scientific 

journals, with the intention to publish chapters 4 and 5 in the near future. 
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1.3.1 An in-depth review of traditional management in Europe  

Chapter 2 gives a review of the literature on traditional forest management practices that 

exploit vegetative regeneration, with particular focus on European forests. Practices, such as 

coppicing and pollarding (see section 1.2) were historically common, suffering declines in the 

nineteenth century due to socio-economic changes, such as decreases in the demand of 

fuelwood commonly produced through coppicing (Evans 1992). Coppiced trees were cut at 

ground level or head height to produce shoots harvested for several uses (Harmer and Howe 

2003). The habitats created from traditional management are now recognised as areas of high 

conservation value being rich in biodiversity as a result of their high structural complexity 

(Rackham 2008). Research on these widespread historical forest systems was surprisingly 

sparse and the review presents the first in-depth study considering the benefits and 

implications of these historically pervasive practices. Information from molecular to ecosystem 

level was synthesised, drawing on research and historical knowledge to assess the viability of 

vegetative regeneration as a tool for improving forest persistence in unfavourable 

environmental conditions. Management recommendations and suggestions for future 

research are given. 

 

1.3.2 Genetic impacts of maintaining vegetative regeneration 

Chapter 3 reveals the effects of coppicing on the spatial genetic structure and diversity in 

beech. Despite the widespread management of beech forests as coppices in Europe, research 

exploring the consequences of maintaining these forests through prolonged vegetative 

regeneration was severely lacking. As coppicing alters the primary regeneration pathway 

within a stand, it is expected to alter the level and structuring of genetic diversity within 

populations. This research differed from other studies in the past as it employed pairwise 

comparisons, isolating the effects of coppice management by comparison with nearby 

unmanaged stands. Coppice beech forests were found to be as rich in genetic diversity as their 



 

9 
 

high forest counterparts. However, spatial genetic structure extended up to 10m - 20m further 

in coppiced stands. While relatively small in magnitude, these differences indicate that 

local-scale patterns of geneflow were significantly altered by generations of forest 

management. The outcome of this research has implications for genetic resource 

management on a spatial scale and provides information that is particularly useful to those 

who manage the large fraction of previously coppiced semi-natural forests in Europe. 

 

1.3.3 Exploring the impact of historic anthropogenic translocations 

Chapter 4 reveals the genetic impacts of historic translocations of beech throughout Great 

Britain. British beech forests are particularly interesting as they grow further north than their 

putative native range, which is commonly thought to be restricted to the south-east of Britain 

(Figure 1.1). Genetic studies on the regional range of beech in Britain are lacking and the 

genealogical histories of contemporary populations are generally uncertain.  By grouping sites 

using a priori stand origins (based on pollen data and written forest history), potential native 

sites revealed the persistence of cryptic signals of population colonisation such as the 

presence of isolation-by-distance and high haplotype richness in the south-east. Extensive 

planting and movement of plant material had diminished this signal in the non-native range. 

Gene flow between sites has resulted in cryptic genetic structuring following a distinct regional 

trend that approximately adheres to isochrone borders. South-westerly populations displayed 

similar clustering patterns to the native range, indicating significant gene flow between these 

regions. The genetic aspect of this research complements palynological evidence for the 

Holocene migration of beech into Britain (Birks 1989) and historical evidence indicating the 

existence of potential native forests (Rackham 1980). The research suggests that boundaries 

between the native and non-native range are not as clear as previously thought, having 

several implications for the future management of beech. 
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1.3.4 Long-term isolation at the range edge of the species 

Chapter 5 reveals the interacting effects of colonisation dynamics and persistent isolation on 

beech forests. Southern Sweden presents a natural gradient of isolation at the northern range 

edge of the species. Several studies on fragmentation and isolation lack biologically 

meaningful measurements of isolation. An accurate index of isolation was obtained for this 

study by georeferencing an exceptionally detailed historical map of Swedish beech 

distributions (Lindquist 1931), allowing the isolation levels of different study sites to be 

defined using both area- and distance-based measures. Past colonisation dynamics, as well as 

founder effects and genetic drift in small, isolated, marginal populations led to a general 

decrease in genetic diversity and distinct clustering of populations. A south-westerly cluster 

was found to be concomitant with the initial expansion of beech into Sweden as defined by 

palynological evidence (Bradshaw and Lindbladh 2005). Further sub-structuring was found in 

the north-eastern clusters which were colonised later, compared to the south-westerly 

population, and displayed higher levels of isolation. A reduction in genetic diversity and gene 

flow between isolated sites was supported by the reduced levels of external pollen dispersal in 

isolated populations, which we suggest is due to lower densities of surrounding forest patches 

and hence lower density pollen clouds surrounding isolated sites. The results agree with 

theoretical predictions of the effects of isolation on genetic diversity and builds upon 

palynological evidence for Holocene beech migration into Sweden.  

 

1.4 Summary 

Many European forests have been shaped by humans for prolonged periods of time. The 

European beech tree has been a part of human livelihoods since its post-glacial migration 

during the Holocene due to its many uses and its subsequent frequency throughout the 

continent, creating a species rich in cultural, economic, and ecological value. The semi-natural 

range of beech presents several possibilities to study the impacts of natural processes and 
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human activities on population genetics. These impacts shape genetic variation at local to 

regional scales. The thesis is structured to present local scale effects first, focussing on stand 

management, followed by regional trends in beech forest. The next chapter will explore the 

long history of traditional management of forests, providing information on how historic 

silvicultural practices could be used to reduce the impacts of increased drought at the 

southern-range edge of a species.
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Chapter 2 

THE BENEFITS AND HAZARDS OF EXPLOITING VEGETATIVE REGENERATION FOR FOREST 

CONSERVATION MANAGEMENT IN A WARMING WORLD 

 

Authors: M. Jennifer Sjölund & Alistair S. Jump 

Published 2013 in Forestry - DOI: 10.1093/forestry/cpt030 

 

2.1 Abstract 

Forest management practices in European temperate and Mediterranean regions have 

frequently exploited coppicing and pollarding - two silvicultural techniques that promote 

vegetative regeneration. These practices were historically very common with trees being cut at 

ground level or above the level of browsing to produce shoots that were harvested for a 

variety of uses. Many habitats created from such traditional management are now recognised 

as areas of high conservation value, being rich in biodiversity. Yet their persistence has been 

under threat after these practices suffered a decline in the 19th century. The focus of this 

review is to synthesise information on coppicing and pollarding from the ecosystem to the 

molecular level and to highlight characteristics that may help or hinder climate adaptation. 

Understanding the benefits and hazards of exploiting vegetative regeneration is the first step 

in assessing whether promoting this means of reproduction could be exploited for 

conservation by increasing forest persistence in unfavourable future climate conditions. 

Practical management recommendations are given and suggestions are made for future 

research. 
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2.2 Introduction 

Climate change brings about a new impetus to understanding the consequences of different 

forest management practices for forest persistence (IPCC 2001, Millar et al. 2007). Promoting 

forest persistence, in this review, is defined as encouraging the presence of an adaptable 

forested system and avoiding major changes in species composition instigated by climate 

change. There is a need to encourage forest resilience both for benefit of reliable resource 

provision and for conservation and society (Bonan 2008, Allen et al. 2010). Knowledge on the 

ways in which management affects forests from the molecular level to the ecosystem level is 

essential to allow reliable risk assessment and to plan appropriate adaptation strategies. This 

is of particular importance to European forests, many of which have been subjected to 

profound and long-term anthropogenic intervention (Bradshaw 2004) inevitably altering the 

ecological and genetic composition of forests and creating a cultural landscape, rich in 

heritage value. In the temperate and Mediterranean regions, past forest management has 

been highly reliant on coppicing and pollarding, two forest systems dependent on vegetative 

regeneration. 

 

Repeatedly coppicing or pollarding a tree, if performed correctly, can result in trees having a 

significantly longer lifespan than their naturally grown counterparts as trees are kept in a 

partially juvenile state (Blake 1980) (Table 2.1). For example, Rackham (1986) described 

ancient Fraxinus excelsior L. (European ash) coppice stools (the regenerating stump which 

gives rise to shoots) occurring on waterlogged sites which were found to be thousands of 

years old, in contrast to the normal lifespan of F. excelsior which is around 200 years. Whilst, 

Read (2006) reported the presence of pollarded Fagus sylvatica L. (European beech) over 500 

years, living twice as long as maiden trees that have a lifespan of 200-250 years. These forms 

of management provided materials which were suited to past social and economic needs but 

also encouraged the coexistence of early and late successional species. Long-rotation coppice 
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systems and pollarding in wood-pasture (an open forest structure with a grazed understory) 

were historically common and shoots were harvested on a rotational basis for uses including 

fuel wood, animal fodder, crafts, and building materials (Read 2000). Although there are still 

areas, mainly in Southern Europe, where these traditions remain alive, many have suffered a 

decline during the 19th century, primarily due to changes in market demand for forestry 

products posing a threat to the existence of these habitats (Agnoletti and Paci 1998, Watkins 

and Kirby 1998, Bürgi 1999, Harmer and Howe 2003, Petit and Watkins 2003, Hopkins and 

Kirby 2007, Rackham 2008). When actively managed, a variety of associated species often 

benefit from the  high level of habitat heterogeneity arising from the contiguous panels 

(sections of a coppice that differ in their stages of succession), age since last cutting, and 

vegetation height (Evans and Barkham 1992, Fuller and Warren 1993). Consequently, many 

coppiced and pollarded habitats have been recognised as areas of high conservation value, 

prompting a call for the revival of traditional management today (Rackham 1980, Peterken 

1992, 1993, Harmer and Howe 2003). The value of cultural landscapes in terms of their 

biodiversity, genetic resource value, historical, and aesthetic value needs to be identified 

before they are lost, considering that the economic implications of re-introducing traditional 

management is a major barrier to their conservation, which may only be achievable for high 

priority populations where costs can be subsidised (Jump et al. 2010). 

 

Considerable evidence links contemporary climate change to recent range shifts in species 

distributions (Parmesan and Yohe 2003).  While warmer temperatures are allowing expansion 

of tree populations upwards in mountain regions and towards the poles, higher temperatures 

and increased drought stress can lead to the disappearance of low-latitude, rear-edge 

populations (Allen et al. 2010). Populations which persist at the rear-edge include relict 

populations and those which occurred in or around glacial refugia (Bennett et al. 1991). These 

populations are highly important reservoirs of intraspecific diversity, often being unique in  
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terms of genotypic composition and/or diversity (Petit et al. 2003, Hewitt 2004, Hampe and 

Petit 2005, Magri et al. 2006, Hampe and Jump 2011).  

 

Increased drought in the low latitude range edge of a species has been shown to have a 

negative effect on seedling survival as well as adult growth (e.g. in Quercus ilex L. (holm oak) 

(Perez-Ramos et al. 2010), F. sylvatica (Jump et al. 2006, Silva et al. 2012), and Phillyrea 

latifolia L. (Lloret et al. 2004)) further threatening the persistence of such populations under 

climate change (Jump et al. 2010). A significant proportion of these range edge populations  

have experienced prolonged and widespread coppicing in the past (Nocentini 2009). The 2000 

Global Forest Resource Assessment reported approximately 25 million hectares (14% of total 

forested area) of coppice in Europe (excluding the Russian Federation) (UN/ECE-FAO 2000). 

This estimate includes all forests composed of stool-shoots or root suckers with or without 

standard trees. However, the State of Europe’s Forest 2011 reported a much lower area of 

approximately 2.9 million hectares (FOREST EUROPE2011). It should be noted that this latter 

figure refers to the forest undergoing active coppice regeneration, and therefore does not 

include areas of historically managed forest that are no longer under active coppice 

management that are included in the earlier estimate. Both reports agree that coppice is most 

common in Southern and Central Europe. Research into the persistence of stable rear-edge 

populations through means other than recruitment, such as through longevity, clonal growth, 

and persistent seed banks is essential for their conservation (Hampe and Petit 2005). The long-

term survival of plant populations can be greatly determined by their ability to employ traits 

conferring longevity and/or vegetative reproduction in unfavourable environments (Bond and 

Midgley 2003). For example,  Populus tremula L. (common aspen)  has been observed 

regenerating through purely vegetative means on the Dutch Wadden island of Treschelling 

where harsh sea winds inhibits vertical growth and germination (Koop 1987). This response to 

disturbance and site productivity has been subsequently found in several other forest systems 
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(Kennard et al. 2002, García and Zamora 2003, Bellingham and Sparrow 2009, Papalexandris 

and Milios 2010, Nzunda and Lawes 2011). 

 

Vegetative regeneration presents an alternative regeneration pathway that can be used to 

maintain existing trees in a forest, facilitating the adaptation of associated species by avoiding 

substantial changes in species composition, and therefore promoting current forest 

persistence. Traditional management techniques, such as coppicing, can be used to increase 

forest persistence in unfavourable climatic conditions, where mature trees are being lost 

faster than they can be replaced by natural regeneration, as forest cover can be maintained, 

thereby maximising the chance that new individuals can establish before existing adult trees 

are lost. It should be stressed that the suitability of a given management strategy will differ 

with local climate. For example, in areas which are more likely to be affected by drought, 

keeping an overstorey of high forest and promoting a coppice understorey would provide 

canopy cover and soil cover. Consequently, the coppice selection system (Table 2.1) was 

developed in Southern Europe since it maintains canopy cover and hence protects the soil 

from excessive heat exposure (Coppini and Hermanin 2007), whereas rotational coppice 

systems which would open up large areas of the canopy and hence expose the soil would be 

less suitable.  

 

Vegetative sprouts have competitive advantages over seedlings originating from seed mainly 

due to their access to an established root system and hence greater water and nutrient 

availability (Lloret et al. 2004, Zhu et al. 2012). The survival benefits of sprouting in trees has 

been increasingly recognised in natural systems (Pigott 1992, Bond and Midgley 2001, Lawes 

and Clarke 2011, Zywiec and Holeksa 2012, Clarke et al. 2013) but research exploring the 

contribution of vegetative reproduction in traditional management is still scarce (see Milios 

(2010) for information on exploiting sprouting in traditional shelterwood systems). In cultural 
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landscapes, sprouting ability is maintained through regular management; therefore the 

dynamics of vegetative regeneration are different to that of a natural unmanaged population 

of the same species.  

 

The focus of this review is to synthesise available information on coppicing and pollarding and 

to explore how traditional forest management practices in Europe might be exploited for 

conservation purposes in a changing environment. Understanding the benefits and hazards of 

exploiting vegetative regeneration is the first step in assessing whether promoting this means 

of reproduction could be used to increase forest persistence in less favourable future climate 

conditions. The effects of forest management systems that exploit vegetative reproduction are 

considered from the ecosystem to the molecular level and characteristics that may help or 

hinder climate adaptation are highlighted.  

 

2.3 Biodiversity in traditionally managed forests 

Habitat heterogeneity in coppice and pollard systems is a key factor promoting high floral and 

faunal diversity. However, the success of an associated species can vary depending on the 

characteristics of the site including the tree species and management system. Coppice or 

pollard management of individual trees increases the structural complexity of trees and hence 

shapes the structure of the habitat as a whole. The biodiversity of coppice and pollard systems 

has been well-studied and numerous taxa, including small mammals, breeding birds, 

understorey plants, saproxylic invertebrates and epiphytes, have been reported to benefit 

from the abundance of microhabitats arising from the multi-stemmed growth form of the 

trees and the continuity of ages within an area (Mitchell 1992).  

 

Many wood-pasture habitats are known for their diversity of plants, lichens, birds, beetles, 

and snails (Tucker and Evans 1997, Bergmeier et al. 2010). Slow-colonizing epiphytes are able 
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to exploit the minute changes in aspect and moisture gradients on the aged bark surface of 

pollards (Moe and Botnen 1997, Fay 2004). Microhabitats in the rotten heartwood of ancient 

pollards support several saproxylic beetles (Kirby et al. 1995, Desender et al. 1999, Taboada et 

al. 2006, Dubois et al. 2009). In contrast, coppice systems have a lower volume of deadwood 

and here, late successional species will benefit from more mature trees and deadwood as 

found in abandoned coppice (Greatorex-Davies and Marrs 1992). However, it should be noted 

that it can take several decades to develop the continuity of deadwood required for a rich 

deadwood fauna (Kirby 1992, Peterken 1992).  

 

Regular but low-level disturbance in coppice and pollard systems, such as the creation of gaps 

in the forest structure and soil disturbance from harvesting stems, generate potential 

colonization sites (Evans and Barkham 1992) and prevent the dominance of a few shade-

tolerant plant species which would otherwise dominate under non-intervention (Barkham 

1992, Baeten et al. 2010). In regions prone to drought, however, heat exposure in canopy gaps 

and hence an increase of temperature at ground level can be detrimental to plant 

germination. Management systems, such as selective coppicing, exist which have been 

adapted to this climate (Coppini and Hermanin 2007). Jacquemyn et al. (2009) found that 

canopy closure and changes in disturbance regime after the conversion of coppice to high 

forest can affect the genetic diversity of an associated species, Orchis mascula L. (early-purple 

orchid), by reducing population sizes and increasing fragmentation. 

 

The diversity of ground flora in coppice is mainly driven by the rotational cutting of stands 

which provide cyclic variations in light, moisture, and nutrient content (Kirby 1990). A rich 

mosaic of stem age classes in actively managed coppice can benefit early, as well as late, 

successional species. Butterflies generally prefer the clearings provided by young coppice 

panels and rides where larval-food plants are able to grow. Melitaea athalia Rott. (heath 
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fritillary butterfly) in Britain has become highly associated with coppice after centuries of 

management and population declines have coincided with the decline in coppicing (Warren 

and Thomas 1992, Hopkins and Kirby 2007). Rotation length has been found to influence bird 

and small mammal diversity by altering structural habitat components such as undergrowth 

development in coppice (Fuller 1992, Fuller and Henderson 1992, Gurnell et al. 1992, Fuller 

and Green 1998). However, structural components which increase certain bird species can 

differ according to region (Quine et al. 2007). Fruit and seed from standard trees are likely to 

be an important source of food for birds and small mammals, and can therefore influence 

species richness and diversity between different coppice management systems (Gurnell et al. 

1992). 

 

2.4 Impacts on tree growth and survival 

Determining what changes occur in the physiology, anatomy, and morphology of managed 

trees can shed light on their potential to endure environmental change. Changes in tree 

growth due to a response to management can be seen at two stages after coppicing or 

pollarding; (1) shortly after cutting, where changes are observed in the shoot regrowth; or (2) 

after a prolonged period post-cutting, where the regrowth has aged considerably, in which 

case the combination of management followed by abandonment brings about growth 

changes.  

 

Direct impacts on tree physiology (changes occurring shortly after cutting) have been detected 

in in situ and ex situ experiments on coppice. An experimental study which simulated a 15% 

reduction in rainfall in thinned and unmanaged Mediterranean mixed coppice of Q. ilex and 

Quercus cerrioides Willk. & Costa in Spain, found species specific differences in response to 

drought (Cotillas et al. 2009). Thinning essentially involved the re-introduction of the coppice 

selection system, which was historically common in the area. Only the deciduous Q. cerrioides 
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suffered decreases in relative height growth rate with reduced rainfall. This was mainly 

attributed to differences in leaf habit allowing sclerophyllous evergreen oaks such as Q. ilex to 

reduce overall water losses. Other studies on Q. ilex have also reported the benefits of 

thinning on stem and stool survival as competition is reduced, hence improving growth 

(Ducrey and Toth 1992, Mayor and Rodà 1993, Cañellas et al. 2004). Cotillas et al. (2009) also 

found that thinned plots had higher soil moisture levels compared to unmanaged plots, 

possibly due to diminished rain interception and canopy transpiration. Although this study 

revealed many positive effects of thinning on stools, the magnitude of these effects 

diminished over the three-year experimental period due to increasing competition for below-

ground resources resulting from vigorous re-sprouting of shoots after thinning. Observations 

that soil water content increased after coppicing, in a coppice-with-standards system, were 

reported by Salisbury (1924). A similar interaction between drought and coppicing on soil 

water content was found in Swanton Great Wood, an ancient forest in the UK dominated by 

Tilia cordata Mill. (small leaved lime) and Corylus avellana L. (European hazel) historically 

managed as a coppice-with-standards (Cummings and Cook 1992). Cummings and Cook’s 

(1992) study revealed similar results to that of Cotillas et al. (2009); only in dry years was soil 

water content significantly higher under recently coppiced plots (cut 3 to 5 years prior to the 

study) compared to older plots (cut 9 to 11 years before). In addition, surface soil water 

content depleted faster under higher densities of stools (approx. < 2000 stools/ha) before 

canopy closure. In systems where water is limited, thinning out the stems on stools could be 

used as a conservation measure to improve the survival rate of coppiced trees. However, long-

term benefits can diminish in species which are vigorous sprouters and occur in high density 

populations. Potentially, controlled grazing may be able to substitute the effects of thinning as 

it limits inter-stem competition (Tanentzap et al. 2012). While tree species’ characteristics and 

forest structure will affect how a particular forest responds to management, economic factors 

such as the demand for coppice products, viability of grazing, and availability of skilled labour 
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will have a major influence on whether re-introducing traditional management will be 

sustainable in the long term.  

 

Several studies conducted on traditional coppice systems provide an insight into the changes 

in structure and function of over-mature coppice (where management has ceased and the 

coppice has been left to mature beyond its regular cycle) (see ‘Stored Coppice’ in Table 2.1). 

Observations that droughts in the Mediterranean basin seem to affect over-mature, 

abandoned coppice stands disproportionately has sparked research into the effects of climatic 

stress on these forests (Corcuera et al. 2006, Di Filippo et al. 2010). Age dependent responses 

to climatic stress which altered the wood anatomy and survival of Quercus pyrenaica Willd. 

(Pyrenean oak) coppiced trees in the Mediterranean were found by Corcuera et al. (2006). 

Stems of ageing coppiced trees had tree rings with proportionally more earlywood and 

consequently less latewood compared to that of unmanaged trees. The coppice stems 

produced very narrow tree rings, typically composed of earlywood vessels which were a single 

cell thick. Their production increased exponentially with age, reducing radial growth and 

leading to a minimal increase in stem perimeter. Over-mature coppice was therefore more 

vulnerable to climatic stress and xylem cavitation due to the lower proportion of latewood 

vessels, known to be less vulnerable to embolism. This greater drought susceptibility is 

reflected in the reports of P. deltoides - SRC’s grown under elevated CO2 conditions which 

were also more susceptible to xylem cavitation, displaying lower wood densities coupled with 

high stomatal densities (Bobich et al. 2010). However, it should be noted that the intensive 

management of SRCs differs significantly to that of traditional coppice (for more information 

on SRCs see Oliver et al. (2009)). 

 

Further studies on the interaction of elevated CO2 with stand management in species such as 

Q. pyrenaica are crucial, especially if stands have a predisposition to increased xylem 
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cavitation due to their maturity (Corcuera et al. 2006, Bobich et al. 2010). As earlywood 

vessels are linked to hydraulic conductivity, a decrease in their number will reduce carbon 

assimilation and hence growth. Since earlywood vessels form around the perimeter of the 

previous tree ring this decrease results in a reduction in latewood width and tree ring 

perimeter in over-mature trees, which are subsequently unable to augment the number of 

earlywood vessels produced during the growing season (Corcuera et al. 2006). Over-mature 

coppice stems, like those in younger coppice (Cotillas et al. 2009), have been shown to have 

increased radial growth after thinning (Ciancio et al. 2006, Corcuera et al. 2006). However, this 

growth increase was found to be dependent on site differences with changes being more 

pronounced in the mesic site where thinned trees formed more latewood and multiseriate 

tree-rings than over-mature trees. Tanentzap et al. (2012) found that the growth and survival 

of C. avellana, Crataegus laevigata Poir. (midland hawthorn), and Crataegus monogyna Jacq. 

(common hawthorn) increased in multi-stem growth forms. However, under conditions of high 

inter-specific competition, i.e. after a reduction in grazing pressure, stem survival declined as 

the number of stems increased within a multi-stemmed tree due to high intra-stem 

competition for resources, indicating that resources do not increase linearly with stem 

number. Continued management or thinning out the stems of stools could be used as a means 

to decrease over-mature coppice or pollard susceptibility to drought. However, the age and 

species of the stand should be carefully assessed as some stands may contain trees which will 

not respond positively to resuming management. If the time since the last cut is unknown, a 

trial cut should be performed to assess responsiveness to management re-introduction. 

 

Continued management of coppiced and pollarded trees is essential to ensure their long-term 

survival. Panaïotis et al. (1997) found age-related trends in survival in over-mature Q.ilex 

coppice  where the senescence of the original stump led to the death of the whole tree. The 

rate of re-sprouting arising naturally, not from management, was found to be too low 
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compared to the rate of stool deterioration to guarantee the persistence of the forest without 

a re-introduction in management. Furthermore, many naturally arising stems had well 

developed rot in the heartwood. The area where sprouts originate from on a stool determines 

whether the shoots will suffer from heart rot. Re-introducing management and cutting close 

to the ground layer will encourage re-sprouting at the collar of the stool, thus reducing heart 

rot and stem loss (Tredici 2001, Harmer and Howe 2003). Bacilieri et al. (1994) have reported 

that present day Q.ilex coppice in Southern France is also under threat of disappearing without 

management re-introduction, as they are being recolonized by the naturally occurring Quercus 

pubescens Willd. (downy oak). Abandoned coppice stands were characterised by improved 

germination rates for Q. pubescens, which indicated the start of succession towards naturally 

dominant Q. pubescens forest. In these areas, reproducing past anthropogenic activities, such 

as clear-cutting and fires increased the resilience of Q.ilex coppice.  

 

Leaving a coppiced tree or pollard to over-mature is generally known to be detrimental to 

their health and a decrease in survival rate as time since management increases has been 

reported in the literature (Mountford et al. 1999, Read 2000, Fay 2002, Harmer and Howe 

2003). With the establishment of restoration programs for abandoned coppice and pollards, it 

has become increasingly recognised that re-sprouting ability of an abandoned tree declines 

with age since the last cutting (Read 2000, Coppini and Hermanin 2007). Tree species and site 

fertility may influence re-sprouting ability; however empirical evidence which identifies the 

physiological or anatomical reasons for this decline in responsiveness to management is 

scarce. Unmanaged pollards are more vulnerable to crown collapse and crown die back which 

is likely due to the excessive weight from the overgrown poles and can lead to tree death (Fay 

2002, Rozas 2004, Rozas 2005, Read 2006, Read et al. 2010). In Britain, Burnham Beeches - a 

site of high conservation value derived from its wealth of ancient pollards, pollards were being 

lost at a rate of 10 trees per year, which would have rendered the population of 574 pollards 
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extinct in 57 years without intervention (Read et al. 2010). Rates of tree loss from mechanical 

failure in other forests in Britain have been reported at 5-10% per annum (Fay 2002). 

Significant damage to pollards by the invasive Sciurus carolinensis Gmelin 1788 (grey squirrel) 

has become a problem in certain forests of high conservation value in Britain (Mountford et al. 

1999, Read et al. 2010). It has been suggested that pollards are less susceptible to pathogenic 

agents or decay fungi as the production of multiple branches and swelling around the top of 

the bolling (the ageing main stem which remains after cutting) limit the spread of infection 

(Read 2000). Since the tradition of pollarding has largely declined, so have studies on the 

effects of pollarding, making it difficult to determine any causal relationships. Responses to a 

re-introduction of pollarding will likely differ between species and sites, therefore information 

from research trials is essential for the construction of effective management guidelines. 

 

Pressures that limit germination and regeneration in coppice and pollard systems include 

intense grazing and canopy closure (Ratcliffe 1992). Rozas (2004) found that a combination of 

these two factors significantly decreased regeneration in  abandoned pollarded Quercus robur 

L. (pedunculate oak) forests in La Isla park of Tragamón in Northern Spain . Decreased 

reproduction was attributed to a lack of temporal and spatial variation of grazing pressures. A 

similar reduction in regeneration due to heavy grazing and browsing has been reported in the 

New Forest in Britain by Mountford et al. (1999). Whilst damage by the invasive Muntiacus 

reevesi Ogilby, 1839 (muntjac deer) to coppice regrowth in Monks Wood in Britain have been 

reported by Cooke and Lakhani (1996).  

 

2.5 Impacts on population genetic structure and diversity 

Inter or intra specific diversity can potentially have profound effects on ecosystem resilience 

and health as it can alter the functional diversity which influences ecosystem processes 

(Peterson et al. 1998, Chapin III et al. 2000). As with maintaining high levels of species and 
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functional diversity, maintaining high levels of genetic diversity can maximise the potential for 

a population to adapt and persist during periods of environmental change and improve long-

term population health (Schaberg et al. 2008). When considered from the viewpoint of 

community genetics, the genotypic diversity of structurally important organisms such as trees, 

can also influence ecosystem function through interactions with species survival, which in turn 

shape biodiversity and hence functional diversity (Booy et al. 2000, Whitham et al. 2010).  

 

There is evidence that in some species-poor ecosystems, high genetic diversity can augment 

low species diversity, buffering the effect of environmental perturbations (Reusch et al. 2005). 

In addition to selection, genotypic diversity does not only allow populations to endure 

environmental stress by ensuring the survival of some individuals but can act through forces 

such as facilitation or niche differentiation where all genotypes, rather than one robust 

genotype, provide a collective benefit to the community. This is of particular relevance to 

European temperate forests, many of which have just one or two dominant tree species and 

may, therefore, be more susceptible to substantial reductions in genetic diversity in the 

dominant species.  

 

Genetic diversity can be measured in several ways including the number of alleles in a 

population, the frequency of those alleles in a population, and the number of rare or unique 

alleles to a population (private alleles). The benefits of avoiding a reduction in the genetic 

diversity of populations will be influenced by its spatial distribution, which is fundamentally 

affected by local patterns of geneflow (Sokal et al. 1989). Seed and pollen flow, together with 

selection and genetic drift, are the driving forces behind the formation of spatial genetic 

structure in populations (SGS) (Loveless and Hamrick 1984). Environmental and demographic 

events which alter gene flow, particularly via seed and pollen dispersal, can lead to significant 

alteration of genetic structuring (Heuertz et al. 2003, Vekemans and Hardy 2004). Given that 
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management practices alter these processes it is likely that practices will differ in their genetic 

consequences.  

 

Practices which encourage vegetative regeneration can alter genetic diversity and structure by 

modifying plant breeding systems and promoting clonal expansion. These two factors can 

affect geneflow, selection, and drift and can directly limit the effective population size. 

Although management which alters the regeneration mechanism in a stand is expected to 

have genetic consequences, there is little research in this area. To date, only five studies 

consider the genetic consequences of coppicing with only four (Aravanopoulos et al. 2001, 

Mattioni et al. 2008, Valbuena-Carabaña et al. 2008, Dostálek et al. 2011) of those studies 

designed to explicitly explore this issue.  

 

2.5.1 Altering plant breeding systems 

An adequate level of gene flow is essential for maintaining genetic diversity within a stand. 

Limiting breeding systems through management can affect gene flow via pollen and seed and 

could therefore alter genetic diversity and its spatial distribution within a stand. These 

limitations are relevant to areas where natural regeneration is encouraged as it will affect the 

gene pool of the next generation of seedlings arising from sexual reproduction.  

 

Depending on the management system, the ability of a coppice to regenerate, vegetatively or 

by seed, can be compromised by management cessation. Q. pyrenaica in Spain is commonly 

worked on a simple coppice (Table 2.1) (Serrada et al. 1994). Núñez et al. (2012) examined an 

abandoned coppice stand of Q. pyrenaica protected for biodiversity conservation. Its 

persistence was threatened by a lack of sexual reproduction due to the age structure of the 

forest. The area had been intensively managed until the 1980s, after which fuelwood 

extraction was halted but grazing continued. Because the trees had been managed as a simple 
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coppice, there was no variation in the age of stems and there was an absence of acorns since 

stems had not reached a sufficient age for fruiting. Heavy grazing also reduced the amount of 

natural regeneration. As stems are reverted back to a juvenile state when coppicing (Blake 

1980), it can take decades for fruiting to occur, and in an abandoned simple coppice the lack of 

age variation can undermine the continuity of the habitat and threaten the persistence of the 

forests under non-intervention. Observations in another Q. pyrenaica coppice forest have 

noted a general lack of acorns, possibly due to the high shoot densities that intensify 

competition for light, water and nutrients and reduce allocation of resources to flowering and 

fruiting (Serrada et al. 2008). The genetic diversity of establishing seedlings will be heavily 

influenced by the number and identity of those individuals with the highest fecundity, which 

will be influenced by environmental factors and the management system. Changes to pollen 

and seed production are known to alter gene flow and therefore significant genetic structuring 

is likely to occur in the next generation (Vekemans and Hardy 2004). Another example of a  

limitation to gene flow in managed coppice is the harvesting of stems before fruiting is 

achieved (Cottrell et al. 2003).  

 

2.5.2 Altering clonal expansion 

Exploiting vegetative reproduction of individuals in a population can essentially ‘fix’ its genetic 

characteristics in time. Cottrell et al. (2003) found higher allelic diversity in an abandoned 

mixed coppice of Quercus petraea (Matt.) Liebl. (sessile oak) and Q. robur, in Britain when 

compared with a natural stand, in France from a previous study (Streiff et al. 1998). Although 

the abandoned coppice population harboured high genetic diversity, it displayed an 

unexpected excess of homozygotes, usually a sign of inbreeding. Here it was suggested that 

coppicing had ‘fixed’ genetic variation in the past and that the lack of genetic equilibrium in 

the abandoned coppice was likely a remnant of past colonisation dynamics instead of resulting 

from inbreeding (Cottrell et al. 2003). The time period in which the forest had been managed 
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as a coppice was 300 years, approximately 6% of the time the forest has been in existence 

given its establishment some 5000 years BP. This would suggest that the genetic 

consequences of coppicing may be more significant for populations which have been under 

traditional management regimes for longer periods of time. In this case, ‘fixing’ the genetic 

pattern of a coppice population in time made the abandoned coppice population distinct from 

surrounding unmanaged forests. Genetic divergence may be increased between coppice and 

unmanaged natural forests that are undergoing processes of drift and selection, thereby 

creating unique populations that are valuable candidates for gene reserve forests. However, 

research on the genetic resource value of coppice and pollard systems is lacking and there is 

currently no evidence of how genotypes retained through coppicing might impact a 

population’s response to environmental change. 

 

Further consequences of the ‘fixing’ of population genetic variation over time in coppiced 

stands was found by Mattioni et al. (2008). The study, which examined orchards, coppice, and 

naturalized stands of Castanea sativa Mill. (sweet chestnut), suggested that the decay of 

linkage disequilibrium (overall allelic correlations between loci) was reduced in stands that 

were maintained through clonal  reproduction. Since coppicing exploits vegetative 

regeneration, sexual reproduction and hence recombination ceases in coppiced stands and the 

genetically effective population size is reduced (Hill 1981). Mattioni et al. (2008) identified that 

sexual reproduction in the naturalized stand led to the decay of linkage disequilibrium, such 

that linkage disequilibrium in naturally regenerated stands was significantly lower than in 

coppiced stands. 

 

During the establishment phase, seedlings may have to compete with vegetative regrowth 

from stools. Species specific vegetative traits, such as primarily producing root-suckers (e.g. in 

Q. pyrenaica (Valbuena-Carabaña et al. 2008)) or shoots, (e.g. in F. sylvatica  (Coppini and 
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Hermanin 2007)), will affect the clonal expansion abilities in genets (a group of genetically 

identical individuals). Depending on the extent of clonal expansion, it is intuitive to think that 

genetic diversity could be affected by the reduction of newly established individuals within a 

given area. However, studies on coppice systems differ in their results for  their measures of 

genetic diversity (e.g. allelic richness, allelic frequency, clonal diversity) and certain studies find 

increases in genetic diversity (e.g. Cottrell et al. 2003, Valbuena-Carabaña et al. 2008)  whilst 

others do not differ significantly from levels in natural populations (Aravanopoulos et al. 2001, 

Mattioni et al. 2008, Dostálek et al. 2011).  

 

Interestingly, Valbuena-Carabaña et al. (2008) reported lower clonality levels in Q. pyrenaica 

coppice compared to a nearby natural stand as a result of high shoot competition in the 

coppice (Valbuena-Carabaña et al. 2008). Genetic diversity was preserved in small clonal 

assemblies which were 4.6-fold smaller than the mean extension covered by a genet in the 

natural forest (52.4 m2) where shoot competition was lower due to the absence of profuse 

sprouting after cutting. Research on the clonality levels in Q.ilex  by Ortego et al. (2010) 

suggests that clonality levels increase in more open habitats where competition is reduced. 

Q.ilex stools growing in habitats with different degrees of fragmentation; 1) a natural Q.ilex 

forest, 2) a pasture with some scattered trees, 3) an extensively cultivated area with highly 

isolated trees. It was found that clonal expansion, measured in distances between ramets 

(individual units of a clone – e.g. individual stems all belonging to the same genetic individual) 

generally increased with higher levels of fragmentation. The high clonality levels in trees 

growing in extensively cultivated areas were thought to be due to their coppice-like 

management which encouraged elevated shoot production. This management form, together 

with the lack of competition is likely to have promoted extensive clonal propagation. The 

importance of competition should be considered in coppice forests with species, which display 

vigorous sprouting ability as reducing the density of the stand by indiscriminate thinning may 



 

35 
 

actually remove small but unique clonal assemblies and decrease overall genetic diversity, 

potentially increasing disease susceptibility (Valbuena-Carabaña et al. 2008). 

 

It has been argued that plants with natural sprouting ability are able to buffer the detrimental 

genetic effects of small population size and a reduction in pollination or dispersal due to the 

increased longevity of individual genets (Bond and Midgley 2001). A study by Acosta et al. 

(2012) suggested that this could be the case for a naturally sprouting species, Nothofagus 

antarctica Forst. (Antarctic beech), which displayed higher levels of genet diversity than their 

non-sprouting counterpart Nothofagus pumilio Poepp. & Endl. (lenga beech).  A previous study 

by Premoli and Steinke (2008) also suggested that there were genetic benefits to sprouting in 

N. Antarctica, which occurs in high disturbance, fire-prone, environments. It should be noted 

that in traditionally managed stands, trees are artificially induced to sprout, and therefore 

species sprouting traits will be influenced by management technique and may differ in their 

genetic composition when compared to their natural, unmanaged counterpart.  

 

Observations from a management re-introduction programme in Burnham Beeches forest in 

Britain indicate that F. sylvatica trees displaying epicormic growth responded better to 

pollarding in terms of shoot production (Read et al. 2010). Phenotypic observations in the 

same stand suggested the presence of genotypes adapted to coppice or pollard management. 

Previous studies have suggested that epicormic shoot formation may be partly genetically 

determined in some species (Ward 1966, Bryan and Lanner 1981, Jensen 2000, Nicolini et al. 

2001) although research investigating the genetic basis of epicormic shoot formation in 

traditionally managed stands is absent. The ability to identify individuals which are most 

responsive to coppicing or pollarding would be invaluable for conservation plans which aim to 

re-introduce management in abandoned systems. 
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2.6 Recommendations for management and future research 

2.6.1 Considerations for future genetic research  

Although the majority of studies on coppices have reported little or no differences in 

population genetic parameters when compared to natural forest, observations such as the 

restriction of sexual reproduction make these results counter-intuitive and debate is still 

ongoing. Our understanding of the genetic consequences of exploiting vegetative 

reproduction using traditional practices is limited and mainly based on a few studies which 

report small but significant differences in other genetic parameters, such as the extent of 

linkage disequilibrium (Mattioni et al. 2008) and the fixation index (Cottrell et al. 2003). 

Further research is required to determine whether genetic differences found between 

managed and unmanaged stands are widespread. It is therefore essential that future research 

employs a level of resolution strong enough, in terms of the numbers of molecular markers or 

samples, to detect small but significant differences. The few studies which focus on genetic 

effects have primarily been conducted on coppice systems and comparability is limited by 

differences in study species, molecular markers, and sampling design. The applicability of the 

research, in terms of geographical scale, varies, with only one study covering a European-wide 

scale (i.e. Mattioni et al.  (2008)). Future studies should exploit highly polymorphic co-

dominant molecular markers in order to adequately estimate population genetic parameters 

in these systems (Nybom 2004). 

 

2.6.2 Management re-introduction 

One of the key findings of this review is that continued management of coppice forests and 

pollards in Europe is essential to ensure their long-term survival. Over-mature coppiced trees 

and pollards suffer from detrimental physiological changes, a reduction in re-sprouting ability, 

and increased mechanical failure which substantially decreases their longevity. Further 

research investigating the causes of this degeneration and the effects of management 
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reintroduction is needed to ensure the success of future conservation programs. It should be 

noted that while this review focuses mainly on Europe, much of the information here is 

relevant to other regions with similar climatic conditions. However, it essential that 

management at the site scale is based on a thorough consideration of local environmental 

conditions. 

 

Shoot-density dependent effects will be more likely in species, such as Q. pyrenaica (Valbuena-

Carabaña et al. 2008), compared to species which do not produce root suckers and have 

relatively lower shoot production. Thinning the stems on stools can be an effective method to 

reduce the negative effects experienced by some abandoned coppice, such as the increased 

risk of xylem cavitation (Corcuera et al. 2006) and reduction in soil moisture levels (Cotillas et 

al. 2009). In some areas, thinning out stems or stools can reduce drought stress on trees by 

weakening competition for resources (Ruiz-Benito et al. 2013). However, the long lasting 

benefits of this management intervention are dependent on species sprouting ability, 

economic support, and labour availability as species which re-sprout vigorously will need 

frequent and continuous management (Valbuena-Carabaña et al. 2008, Cotillas et al. 2009). 

Nevertheless, thinning could be a valuable tool for improving stool survival rate in abandoned 

coppice forests consisting of species with a relatively low sprouting ability, such as F. sylvatica.  

 

Reducing the density of stools can reduce clonal reproduction in over-mature coppiced trees, 

promoting opportunities for sexual reproduction and hence promoting the decay of linkage 

disequilibrium (Mattioni et al. 2008). Thinning out the stems on a stool or controlled grazing 

can also be used to promote stem production and stool survival (Cotillas et al. 2009, Núñez et 

al. 2012, Tanentzap et al. 2012). Though grazing is likely to be negative for seedling 

establishment if temporal and spatial variation in grazing pressures are absent (Rozas 2004). 

The success of these methods will again be dependent on species sprouting ability and 
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indiscriminate thinning should be avoided as it could be detrimental to genetic diversity in 

certain stands (Valbuena-Carabaña et al. 2008). Leaving log piles derived from thinning would 

be an ideal method for encouraging more dead wood production for conservation purposes as 

it would promote the diversity of both early and late successional invertebrate species (Kirby 

1992).When considering the conversion of coppice to high forest, the amount of flowering and 

fruiting should be examined. In some stands, coppicing may be linked to a reduction in 

flowering and fruiting (Cañellas et al. 2004, Núñez et al. 2012). Trees which are reproductively 

active should be protected from heavy thinning, to increase the number of individuals which 

can contribute natural regeneration. 

 

Responses may differ by genotype and species (Montes et al. 2004, Cotillas et al. 2009), and 

conservation management would benefit if individuals which are likely to respond positively to 

coppicing or pollarding can be distinguished beforehand by genetic or morphological 

assessment. Stands which have been managed for longer time periods may harbour unique 

genotypes or population characteristics that differ significantly from the natural population 

(Streiff et al. 1998, Mattioni et al. 2008, Dostálek et al. 2011).  

 

2.6.3 Management of biodiversity 

The effects of traditional management on biodiversity have been widely recognised and 

exploiting vegetative regeneration has become a valuable conservation tool, essentially 

providing more flexibility to managers in manipulating microclimates. Certain variables 

including rotation length, size and distribution of panels, density of stools and standards, and 

species composition can be altered to improve habitat heterogeneity and hence biodiversity. 

However, species requirements will differ and may conflict with each other and therefore 

management objectives need to be made explicit beforehand. 
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Previous work has identified the need for multiple age classes in coppice forests and that a 

combination of short and long rotation management can create a rich diversity of habitats 

(Fuller 1992, Mitchell 1992, Fuller and Warren 1993). In coppice, the rides between panels can 

provide a linear feature within the habitat which promote connectivity and allow the dispersal 

of certain taxa, such as butterflies (Warren and Thomas 1992). Whilst standard trees and log 

piles can be used to create microhabitats associated with deadwood and aged bark surfaces 

which coppice forests often lack but are abundant in pollarded habitats (Kirby et al. 1995, Moe 

and Botnen 1997, Desender et al. 1999, Fay 2004, Taboada et al. 2006, Dubois et al. 2009). In 

general, improving habitat heterogeneity will improve species diversity as early, as well as late 

successional species, will be supported. 

 

2.7 Conclusion 

Habitat heterogeneity in forests historically shaped by coppicing and pollarding can 

significantly affect the structure and function of populations from the genotype to the 

ecosystem. It should be noted that management impacts on biodiversity, tree physiology, and 

genetic diversity are not mutually exclusive. For example, genetics can influence tree 

physiology, forest structure and even associated biodiversity (Booy et al. 2000, Whitham et al. 

2010), and therefore a holistic approach should be considered when constructing 

management plans. The cultural landscapes found in Europe that have been created from 

centuries of traditional management are becoming increasingly recognised as having high 

conservation value, yet their current conservation value often derives from an interaction of 

their past management and present neglect.  

 

Whether traditional management techniques could be used as a tool to improve forest 

persistence under climate change remains unexplored and future research into this subject is 

required to discern its practicality. However, the increasing awareness of the decline in growth 
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and natural regeneration in high forests due to increased drought is highlighting the need for 

novel adaptive strategies, which in some cases could draw upon knowledge from historic 

management practices. Practices developed in regions prone to drought have been designed 

to deal with the problem of soil exposure from management. These locally adapted 

management systems should be carefully considered if vegetative regeneration is to be 

exploited to improve forest persistence.  Considering species and site specific characteristics is 

necessary to maximise the success of management which, together with future research, 

should enable vegetative regeneration to become a valuable tool for improving forest 

persistence under climate change. 
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3.1 Abstract 

Coppice management of forests was historically common in Europe. Actively managed coppice 

persists through vegetative regeneration prolonging the lifespan of trees and reducing 

flowering, seed production, and establishment. As coppicing alters the primary regeneration 

pathway within a stand, it is expected to alter the level and structuring of genetic diversity 

within populations. The study species, European beech (Fagus sylvatica L.), has historically 

experienced widespread coppicing throughout the range of the species. Genetic material was 

obtained from paired coppiced and high forest stands, in each of three study sites across 

Europe located in Germany, France, and Italy. Trees were genotyped at 11 microsatellite loci. 

Estimates of genetic diversity were found to be equally high as those found in natural forests. 

Significant spatial genetic structure of coppice stands extended 10m to 20m further than their 

paired high forest indicating that local-scale patterns of gene flow have been significantly 

altered by generations of forest management in the coppice stands. Understanding the 

implications of such changes for the structure and level of diversity within traditionally 

managed populations can assist with management planning for conservation and resource use 

into the future. 
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3.2 Introduction 

Much of Europe’s forest has been subject to human intervention for millennia, with 

approximately 70% of all forests in Europe being classed as semi-natural (FOREST FOREST 

EUROPE and UN/ECE-FAO 2011). Prolonged management has shaped their distributions and 

changed the pattern of genetic diversity within and amongst populations (Bradshaw 2004, 

Schaberg et al. 2008, Piotti et al. 2013, Sjölund and Jump 2013). Maintaining genetic diversity 

can retain the adaptive potential of a population in response to environmental change (Jump 

et al. 2009). Furthermore, levels of genetic diversity in dominant species can profoundly 

influence ecosystem functioning (Christensen et al. 1996, Peterson et al. 1998, Booy et al. 

2000, Reusch et al. 2005, Whitham et al. 2010). This effect is particularly relevant to many 

European forests which are often comprised of a few dominant tree species (EEA 2007). 

Therefore the adaptive management of Europe’s semi-natural forests is dependent on 

understanding how prolonged management has shaped forest genetic resources (Lefèvre 

2004). 

 

Traditional coppice management was historically common in Europe and was sustained by the 

demand for shoots and poles which were used for fuelwood, animal fodder, crafts, and 

building materials (Read 2000). Coppice products were derived by cutting the main stem of a 

tree at ground level leaving a stump, called a stool, which subsequently produces a re-growth 

of shoots that are harvested at different intervals (Evans 1992, Harmer and Howe 2003). At 

least 25 million ha of forested areas in Europe (excluding the Russian Federation) have been 

managed as coppice in the past (UN/ECE-FAO 2000), with only 2.9 million ha remaining under 

active coppice regeneration in 2011 (FOREST EUROPE and UN/ECE-FAO 2011).  

 

Continued coppice management often increases the longevity of the tree allowing it to persist 

as long as vegetative regeneration is exploited (Blake 1980). One of the oldest coppice stools 
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found was a European Ash (Fraxinus excelsior L.) and was thought to be thousands of years 

old, much older than their unmanaged counterparts, which  have a typical lifespan of ~200  

years (Rackham 1986). The resulting microhabitat complexity supports a wide range of species 

and creates cultural landscapes that are recognised for their heritage and ecological value 

(Rackham 1980, Peterken 1992, Fuller and Warren 1993, Peterken 1993, Harmer and Howe 

2003). Traditional coppice practices suffered a decline during the nineteenth century primarily 

due to socio-economic changes. The ecological value and persistence of many previously 

coppiced forests has declined owing to cessation of management or the conversion of coppice 

to high forest for timber production (Bacilieri et al. 1994, Panaïotis et al. 1997, Watkins and 

Kirby 1998, Harmer and Howe 2003, Nocentini 2009).  

 

Forest management practices, such as coppicing, which alter the primary regeneration 

pathway within a stand, are expected to have significant effects on the structuring of genetic 

diversity within populations (Loveless and Hamrick 1984, Heuertz et al. 2003, Vekemans and 

Hardy 2004). Appropriate management of forest genetic resources requires an understanding 

of the spatial structuring of genetic diversity within populations. Significant structuring within 

a population can influence local breeding and evolution (Smouse and Peakall 1999). Gene 

flow, genetic drift, and selection are the main processes that shape spatial genetic structure 

(SGS) (Loveless and Hamrick 1984). In plant populations, the effects of gene flow on SGS are 

largely driven by pollen and seed dispersal (Sokal et al. 1989), but can also be influenced by 

clonal propagation depending on the regeneration pathway, i.e. natural vs. vegetative 

regeneration (Sjölund and Jump 2013). Coppicing limits the effective population size by 

reducing flowering and encouraging clonal expansion that can restrict gene flow. Such changes 

influence the structuring of genetic diversity within a population. It is therefore necessary to 

assess whether coppicing, a management practice which was historically widespread and 

long-standing, has altered the genetic diversity and structure of these semi-natural forests.  
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This study focuses on the European beech (Fagus sylvatica L.) which forms the dominant 

forest type over much of Western and Central Europe and extends into the Mediterranean at 

higher altitudes. Coppice management was historically widespread throughout the range of 

the species despite the fact that beech rarely reproduces vegetatively under natural conditions 

and is therefore one of the less responsive species to coppice management (Packham et al. 

2012). A variety of systems have been used, including the coppice-with-standards system, 

common in the northern and core range of beech and the coppice selection system, which 

maintains canopy cover and thus is widespread in the drought prone southern range edge 

(Harmer and Howe 2003, Coppini and Hermanin 2007, Nocentini 2009, Wagner et al. 2010). In 

addition, trees were sometimes coppiced in silvopastoral systems (Read 2006, Read et al. 

2010). Traditional coppice systems were managed on long rotation cycles that led to a 

substantial increase in the longevity of individual plants but reduced opportunities for 

establishment from seed when compared with their high forest counterparts.  

 

Research on the genetic effects of coppicing has been carried out on a few species, (e.g. Beech 

(Paffetti et al. 2012, Piotti et al. 2013), Pyrenean oak (Quercus pyrenaica Willd. (Pyrenean oak) 

(Valbuena-Carabaña et al. 2008), pedunculate oak (Q. robur L.)(Cottrell et al. 2003), sessile oak 

(Q. petraea Matt. Liebl.) (Cottrell et al. 2003, Dostálek et al. 2011), and sweet chestnut 

(Castanea sativa Mill.) (Aravanopoulos et al. 2001, Mattioni et al. 2008)). However, it is 

difficult to draw general conclusions from these studies due to the lack of paired plots, their 

limited geographic spread, and the low number of molecular markers used in some studies. 

Our study differs from previous studies as it employs extensive sampling within paired stands, 

focusing on the effects of coppice management by comparing those stands with nearby, 

unmanaged stands in the same forest. In the present work, we were able to determine the 

effects of promoting vegetative regeneration through traditional coppice management on the 
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amount and structuring of genetic diversity within populations of European beech using a 

paired plot design in three regions. We hypothesised that prolonged vegetative reproduction 

should decrease genetic diversity and increase spatial genetic structure due to the reduced 

probability of establishment from seed. Such information will be useful for the managers of 

the large fraction of semi-natural forests that have experienced coppicing in the past. 

Furthermore, understanding the spatial genetic structure of populations will have 

consequences for genetic resource management on a spatial scale, for example the collection 

of seed for gene banks or silviculture. 

 

3.3 Materials and methods 

3.3.1 Study species 

The wind-pollinated European beech is a broadleaved, monoecious tree that is highly 

outcrossing, with large seeds (beech mast) that are mainly dispersed by animals and gravity 

(Packham et al. 2012). With a range of roughly 14 million ha, it commonly forms near 

monospecific stands but is also a major component of many mixed forests. The lifespan of 

unmanaged beech is typically between 150 and 300 years and rarely exceeds 300 (Packham et 

al. 2012). Traditional management has been reported to increase the longevity of trees due, in 

part, to their persistence in a partially juvenile state (Blake 1980), although coppicing success 

is variable (Harmer and Howe 2003). Beech has a shallow root system which makes it 

particularly vulnerable to wind-throw and drought. All parts of the tree and seedlings are 

susceptible to frost. Flowering can begin between the age of 40 to 80 years depending on the 

density of the stand, however coppice management can restrict flowering as stems are not 

allowed to reach maturity (Blake 1980). 

 

3.3.2 Study sites 

Three study sites were selected across Europe (Germany, France, and Italy) to attain broad 
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coverage of the species range (Table 3.1). In each site, two paired plots were sampled, a 

coppice and a high forest stand. Paired stands were no further than 10km apart to maintain 

comparable colonisation history. High forest stands were defined as having little or no historic 

or contemporary management and originated from seed primarily through natural 

regeneration. Coppiced stands were defined as stands with either a history of coppice 

management which has ceased, or is currently under active coppice management. The primary 

regeneration pathway is natural in the former and vegetative in the latter. Both stand types 

originate from native forest with a continuous history. Stand codes are used to refer to stands 

in this paper, and were derived from the first letter of the country (G = Germany, F = France, 

I = Italy) and the management history of the stand (H = high forest stand, C = coppice stand).  

Table 3.1 Details of study sites 

Country Site Stand code Stand management N Latitude Longitude Elevation 

Germany Spessart GH High forest  168 N50.0412 E9.5521 495 

  GC Converted coppice 170 N49.9600 E9.5451 486 

France Mt Lure FH High forest 112 N44.1246 E5.8257 1307 

  FC Abandoned coppice 170 N44.1224 E5.8340 1177 

Italy Mt Gelbison IH High forest 100 N40.2167 E15.3383 1521 

  IC Abandoned coppice 170 N40.2078 E15.3494 1352 

Stand codes were derived from the first letter of the country (G = Germany, F = France, I = Italy) and the 

management history of the stand (H = high forest stand, C = coppice stand). Latitude and longitude are 

presented in decimal degrees and elevation in metres. 

Sampling was carried out on the original coppiced trees which were the dominant form in the 

stands and could be easily identified. GC was managed as a simple coppice, after which it was 

converted to high forest (pers. comm. R. Herrmann). FC is a neglected coppice that occurs in 

an area of Montagne de Lure which has a history of coppicing dating back at least to the 

beginning of the 19th century with beech coppice managed on a long rotation coppice system 

(Simon et al. 2007). IC was managed in the past as a coppice-with-standards system (pers. 
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comm. F. Bottalico), which now experiences low-level harvesting of stems by local residents 

(pers. obs.). It should be noted that the German high forest (GH) was managed as a 

shelterwood system up until 1988 (pers. comm. R. Herrmann). Although there has been 

intermittent low intensity harvesting of trees for timber in each of the high forest stands, the 

three high forest stands differ from the coppice stands in terms of the primary regeneration 

pathway.  

  

3.3.3 Sample collection and microsatellite analysis 

To account for short distance classes and hence allow the detection of fine-scale SGS, trees 

were sampled on a grid (approximately 150m x150m in size) with points at every ~10m. An 

additional 20 trees were sampled along a 100m transect extending out of the grid to extend 

the spatial range covered (not implemented in IH site as it was not possible due to topographic 

restrictions) (see supplementary material S3.1 for diagram of sampling design). Sample size 

ranged from 100 to 170 samples (Table 3.1). Geographic coordinates were recorded for each 

tree sampled using a GARMIN 62s handheld GPS. As beech typically produces shoots 

originating from the stool, instead of roots in response to coppicing (Coppini and Hermanin 

2007), individuals can be easily distinguished and the sampling of clones avoided and 

confirmed from genetic data. 

 

Genomic DNA was obtained from leaf or cambium samples (Colpaert et al. 2005). Samples 

were dried in silica gel and DNA was isolated using BIOLINE Isolate Plant Kit and QIAGEN 96 

Plant Kit according to the manufacturer’s instructions. A total of 812 individuals (Table 3.1) 

were genotyped at 13 polymorphic SSRs (fs1-03, fs1-15, fs3-04, fs4-46, fcm5 (Pastorelli et al. 

2003), mfc7 (Tanaka et al. 1999), mfs11 (Vornam et al. 2004), sfc0007-2, sfc0018, 

sfc0036,sfc1143, sfc1061, sfc1063 (Asuka et al. 2004)) in three multiplexes designed for this 

study; FSNplex1, FSNplex2, and FSNplex3. Multiplex PCR was carried out using 10ng of 
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template DNA and the QIAGEN Type-it Microsatellite PCR Kit with the following combinations 

for primer mixes. FSNplex1 consisted of primers fs3-04, sfc1143, mfc7, and fs4-46 at 

concentrations of 1µM, 3µM, 1µM, and 2µM respectively. FSNplex2 consisted of primers 

sfc0007-2, fs1-15, sfc1063, sfc1061, fcm5 at a concentration of 0.5µM, 1µM, 2µM, 0.5µM, and 

3µM respectively. FSNplex3 consisted of primers sfc0036, sfc0018, fs1-03, mfs11 at a 

concentration of 3µM, 1µM, 1µM, and 2µM. Annealing temperature for each multiplex was 

60C, 58C, and 60C respectively. The total PCR reaction volume was 10µl. Fragment analysis 

was performed using an ABI 3730 DNA Analyzer (Applied Biosystems). 

 

The presence of genotyping errors and null alleles were checked using MICRO-CHECKER (Van 

Oosterhout et al. 2004). Repeated sampling of null genotypes and significant deviations from 

Hardy-Weinberg equilibrium suggested that there was a significant proportion of null alleles in 

fs4-46 and fcm5 in more than half of the stands in this study. Analyses presented exclude  

fs4-46 and fcm5 and use a total of 11 loci. However, similar results in genetic diversity 

estimates and SGS were obtained when performing analysis on all 13 loci (data not shown). 

Pairs of loci were checked for gametic disequilibrium. Analysis was performed using FSTAT 

2.9.3.2 (Goudet 1995), with significant associations identified by randomly associating 

genotypes at pairs of loci 1100 times and using a 5% nominal level after Bonferonni correction. 

 

3.3.4 Genetic diversity and spatial genetic structure 

We obtained general multilocus estimates of genetic diversity within stands on SPAGeDi  1.4b 

(Hardy and Vekemans 2002). We used ADZE 1.0 to obtain mean private allelic richness  (AP) 

(Szpiech et al. 2008). Because of the definition of private alleles, i.e. unique to a single 

population, analysis was performed within sites to compare differences between treatments. 

The minimum number of gene copies used for allelic richness and private allelic richness was 

198. We tested differences in allelic richness (AR), unbiased gene diversity (HS), and the 
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inbreeding coefficient (FIS) among groups of coppiced stands and high forest stands using 

FSTAT 2.9.3.2 (Goudet 1995). Groups are compared, by calculating the average of the desired 

estimator (x) over all samples and loci for each group to obtain an observed statistic (OSx). OSx 

is obtained from the difference between the estimators of the two groups, OSx = x1 - x2 . 

10000 permutations were performed between the groups to obtain a randomised dataset 

from which the statistic Sx can be calculated. P-values for the tests are interpreted as the 

proportion of randomised datasets with Sx > OSx. 

 

Analysis of fine-scale SGS was performed in SPAGeDi 1.4b (Hardy and Vekemans 2002). 

Pairwise comparisons between individuals within each stand were used to compute a 

codominant estimator of the kinship coefficient (Fij) as reported by Loiselle et al. (1995). The 

kinship coefficient can be described as Fij = (Qij - Qm)/(1 - Qm)  , where Qij is the probability of 

identity by state for random genes coming from two individuals i and j, and Qm is the average 

probability of identity by state for gene copies coming from a reference population of random 

individuals (Hardy and Vekemans 2002). SPAGeDi 1.4b performs a Mantel test to test for 

statistically significant structuring within a stand. The observed regression slope, bF, of Fij on 

the natural logarithm of the distance, ln(rij), was compared to the expected estimate after 

permuting locations among individuals 10000 times, also used to attain upper and lower 95% 

confidence intervals. Standard errors and mean multilocus Fij estimates within each distance 

class, F(d), were obtained through jackknifing over loci following Sokal and Rohlf (1995). 

Analyses were performed using 17 even distance classes of 10m, ranging from 0 to 170m. 

 

To allow comparisons in the intensity of SGS between stands we used the Sp statistic  

(Vekemans and Hardy 2004, Piotti et al. 2013). The Sp statistic quantifies SGS by the ratio  

-bF/(1 - F(1)), where bF  is the regression slope of Fij on the natural logarithm of the distance, r, 

between individuals i and j, ln(rij), and F(1) is the mean Fij belonging to the individuals of the 
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first distance class (0-10m) which includes all pairs of neighbours. The variability of the Sp 

statistic is expressed in the standard error of bF, which is calculated by jackknifing over loci 

(Hardy et al. 2006). 

Table 3.2 Summary of forest inventory plots within each stand 

 GH GC FH FC IH IC 

Proportion of multi-stemmed trees 0.000 0.565*** 0.241 0.446*** 0.056 0.346** 

Mean largest stem DBH [Range] (cm) 32 35 7 9** 28 22 

Density adults/ha 35.0 28.6 316.3 218.8 97.5 45.0 

Density saplings/ha 85.0 2.5 120.0 93.8 21.3 0.0 

Significant P-values for differences between the proportion of  multi-stemmed trees and the mean largest DBH 

in high forest and coppice stands (i.e. GH vs. GC; FH vs. FC; and IH vs. IC) are indicated next to the coppice stand 

values as *P <0.05; **P<0.01; ***P<0.001. 

Summary forest inventory data were recorded in two 20m x 20m plots of each site (Table 3.2). 

Data from both plots were combined to give a summary in Table 3.2. The diameter at breast 

height (DBH) for all species of adult trees (i.e. height > 140cm) was recorded.  All saplings, 

defined as trees between 10cm and 140cm in height, were counted. A chi-square test for 

independence was used to determine the differences between paired stands in the 

proportions of multi-stemmed vs. single stemmed trees. Differences in the largest stem DBH 

between paired stands were tested using Welch’s t-test. 

 

3.4 Results 

Across the 11 loci investigated here, the maximum number of alleles ranged from 6 to 40 per 

locus, with a multilocus average of 17.91 in all populations combined. All pairs of 

microsatellite loci were in gametic equilibrium considering a 5% nominal level after Bonferroni 

correction. Multilocus estimates of allelic richness, AR, were high, ranging from 9.58 to 14.34, 

with little difference in allelic richness between paired stands. For unbiased gene diversity, HS, 

multilocus estimates ranged from 0.695 to 0.788. Positive FIS values indicated a significant 
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departure from Hardy-Weinberg genotypic proportions in three stands GC, IH, and IC 

presenting an excess of homozygotes (Table 3.3). Permutation tests on genetic estimators 

revealed no significant differences in AR, HS, and FIS when stands of coppice and stands of high 

forest were analysed as groups; AR: High Forest 11.38, Coppice 11.40 (P = 1.00), HS: High Forest 

0.72, Coppice 0.74 (P = 0.50), and FIS: High Forest 0.024, Coppice 0.043 (P = 0.47). No 

consistent pattern in private allelic richness, AP, was found between coppice and high forest 

stands (Table 3.3). 

Table 3.3 Summary of multilocus genetic diversity estimators and SGS coefficients 

Terms for genetic diversity estimators are as follows; AR, allelic richness (Petit et al. 1998); AP, private allelic 

richness (Szpiech et al. 2008);  HS, unbiased gene diversity (Nei 1978); FIS, inbreeding coefficient (Weir and 

Cockerham 1984). The minimum number of gene copies (k) used for rarefication analysis of AR and AP is 198.   

P-values for FIS are obtained after 10000 permutations of gene copies within individuals of each stand. Terms 

for SGS parameters are as follows; F(1), kinship coefficient for first distance class (i.e. 0-10m); SGSMAX, the 

greatest distance at which the mean kinship coefficient within a given distance class, F(d), becomes significant to 

P < 0.05; Sp  SE, Sp statistic  standard error. Significant P-values are indicated as *P <0.05; **P <0.01; *** 

P<0.001.  2-sided P-values are presented for FIS with 1-sided P-values presented for F(1) and SGSMAX. 

We found differences in the fine-scale spatial genetic structure between paired high forest and 

coppice stands. SGSMAX, defined by Jump et al. (2012) as the greatest distance at which the 

mean kinship coefficient within a given distance class, F(d), becomes significant to P < 0.05, 

revealed significant structuring in coppices that consistently extended 10-20m further than in 

its high forest counterpart (Figure 3.1 and Table 3.3). This relationship between the extent of 

SGS and management was not reflected in the maximum intensity of SGS by the Sp  statistic, 

 Genetic diversity estimators SGS parameters 

Stand code AR AP HS FIS F(1)  SGSMAX (m) Sp  SE 

GH 10.12 1.51 0.695 0.019 0.0277*** 20 0.0037  0.0008 

GC 10.45 1.94 0.722 0.044*** 0.0122* 30 0.0032  0.0014 

FH 9.69 1.34 0.704 0.022 0.0231* 40 0.0088  0.0019 

FC 9.58 1.28 0.731 0.013 0.0563*** 60 0.0114  0.0019 

IH 14.34 2.36 0.788 0.034** 0.0127 30 0.0062  0.0018 

IC 14.17 1.95 0.780 0.071*** 0.0186** 40 0.0040  0.0013 
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which showed little difference within sites (Table 3.3). Notably, spatial genetic structuring 

extended up to a maximum distance of 60m in the coppice stand of the French site, FC. This 

stand also exhibited the strongest kinship coefficient in the first distance class, F(1), as well as 

Sp statistic (Table 3.3). 
 
F(1) for IH was not statistically significant partly because of the reduced 

number of pairs of neighbours (N = 61) within that distance class which also contributed to the 

large standard errors. The remaining stands had a minimum number of 89 pairs for each 

distance class, with the exception of FH where N = 60  in the first distance class. 

Fig. 3.1 Spatial autocorrelograms for each stand using the kinship coefficient (Fij) as described in 

Loiselle et al. (1995) and consecutive 10m distance classes. Upper and lower 95% confident intervals 

derived from 10000 location permutations are indicated by shaded areas. Black bars around mean Fij 

values represent standard errors obtained through jackknifing over loci following Sokal and Rohlf (1995) 

to obtain multilocus estimates.  
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Descriptive data obtained from the forest inventory plots revealed a high proportion of 

multi-stemmed trees in coppice stands, with a significantly higher proportion of 

multi-stemmed trees in the coppice plots when compared to their high forest counterpart 

(Germany X2 (2, N = 51) = 18.37, P>0.001; France X2 (2, N = 428) = 19.65, P>0.001; Italy X2 (2, N 

= 114) = 9.49, P>0.01) (Table 3.2). A significantly higher largest stem DBH (t(361) = 2.99, P>0.01) 

was found in FC compared to FH. However, no significant differences were found between the 

stands in the German site (t(44) = 0.78, P=0.44)  and the Italian site (t(43) = 1.41, P=0.17) (Table 

3.2). Higher densities of adult trees and saplings were found in the high forest stands than in 

the coppice stands (Table 3.2).  

 

3.5 Discussion 

There were no statistically significant differences in genetic diversity between coppice and 

high forest stands. However, consistent differences in the spatial structuring of genetic 

diversity were found between paired stands. An increase of 10-20m in SGSMAX was found in 

coppice stands when compared to their paired high forest stand. Beech coppices experience a 

reduction in sexual reproduction which is evident by the lower sapling densities found in the 

coppice stands. The increase in SGSMAX might be the reflection of extended seed shadows that 

can result from rare establishment events, which occur over the long generation times 

experienced in coppices. As management removes trees from the breeding population 

through the cutting of stems, the dispersal of pollen and seed, two vectors that shape genetic 

structure, become less frequent in coppices. The long generation times coupled with rare 

establishment events in coppice stands, differ from the more frequent establishment of 

seedlings under high competition pressures in unmanaged populations that can lead to the 

break-down of spatial genetic structure (Loveless and Hamrick 1984).  

 

The Sp statistic ranged from 0.0032 to 0.0114, which is within the range for that found in the 
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literature for beech (Jump and Peñuelas 2007, Chybicki et al. 2009, Jump et al. 2012, Piotti et 

al. 2013) and is typical for other outcrossing, gravity dispersed, and wind pollinated trees 

(Vekemans and Hardy 2004). Extensive spatial genetic structure was found in the French 

coppice site (SGSMAX = 60m, Sp = 0.0114) with an SGSMAX that exceeded the generally accepted 

maximum of 30-40m for European beech in the literature, when obtained from SSR markers 

(Vornam et al. 2004, Chybicki et al. 2009, Oddou-Muratorio et al. 2010, Piotti et al. 2013). The 

remaining stands in our study display clustering of related individuals up to a typical distance 

of 40m found with SSR markers. Jump et al. (2007) compare differences in SGSMAX using 

varying numbers of SSR markers (NMAX = 6) and samples (NMAX  = 200) and caution against using 

less than 6 SSR markers to detect SGS. The greater number of SSR markers used in this study 

(N = 11) could have contributed to the finding of an SGSMAX of 60m in the French coppice 

stand. However, as the SGSMAX of the remaining sites did not extend over the commonly 

reported SGSMAX of 40m, it could be argued that this unusually high value for the French 

coppice stand is a reflection of site characteristics as opposed to the power of our markers.  

 

Previous studies have found limited differences in genetic diversity between coppice and 

unmanaged stands (Aravanopoulos et al. 2001, Mattioni et al. 2008, Dostálek et al. 2011). 

However, some report trends found in coppices that are absent in natural stands, such as an 

increased level of linkage disequilibrium (Mattioni et al. 2008) and a higher fixation index 

(Cottrell et al. 2003). Increases in clonal diversity has been reported by Valbuena-Carabaña et 

al. (2008). Genotypic diversity was maintained by coppice management as it promoted the 

persistence of small clonal assemblages owing to the high shoot competition in coppices, 

which limited the spatial spread of clones. A two-fold increase in the spatial extent of clones 

was reported in nearby open oak woodland managed as high forest. The effect of coppicing on 

genetic diversity will be largely influenced by the primary regeneration strategy of the 

managed species.  Valbuena-Carabaña et al. (2008) investigated Pyrenean oak (Q. pyrenaica) -
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a highly clonal tree that naturally spreads through root-suckers. Therefore it is likely that the 

impact of coppicing on clonal diversity is reduced in species, such as beech, which primarily 

regenerates naturally and does not produce root-suckers (Coppini and Hermanin 2007). Clonal 

plant populations can have a similar level of genetic diversity to that found in outcrossing 

species (Hamrick and Godt 1996). The maintenance of genetic diversity in clonal populations is 

promoted by their longevity  (Booy et al. 2000). Since coppice populations display similar traits 

to clonal populations, genetic diversity could be maintained though similar mechanisms, as 

genotypes and their alleles persist in the population for longer, therefore increasing their 

potential to spread through infrequent events of natural regeneration. Cottrell et al. (2003) 

examined the genetic diversity in mixed forest of pedunculate oak (Quercus robur) and sessile 

oak (Q. petraea), both species with similar pollen and seed dispersal mechanisms to beech. 

The site had been coppiced for at least 300 years and little difference was found in the spatial 

structuring of genetic diversity when comparing the site to an unmanaged native forest. 

However, the coppiced site had higher levels of genetic diversity as well as a significant 

heterozygote deficit. The authors hypothesise that the significant heterozygote deficit was 

thought to be a remnant of past population dynamics. The site occurred at the range edge 

where heterozygote deficits are likely to occur due to the mixing of populations from different 

refugia causing a Wahlund effect which has persisted as genetic variation has become fixed in 

time through management. 

 

Historic coppice management can alter the structuring of genetic diversity but have no effect 

on the amount of genetic diversity within an area (Paffetti et al. 2012, Piotti et al. 2013). In 

contrast to our study, Paffetti et al. (2012) and Piotti et al. (2013) found a decrease in 

structuring in stands that have historically been under coppice management. However, it 

should be noted that the coppice stand examined in both studies had been converted to 

shelterwood systems by regeneration felling. Work by Rajendra et al. (2014) comparing 
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unmanaged beech stands to stands under various management systems in Germany found 

similar results to Paffetti et al.(2012) and Piotti et al. (2013)., although it is not clear if 

coppiced stands were included in this study. The reduction in the maximum extent of SGS 

(SGSMAX) in managed stands was attributed to the removal of trees, through practices such as 

thinning, leading to the break-down of familial structures that would otherwise arise through 

the mating of adjacent, related individuals and the ineffective dispersal of beech mast. 

Although trees are removed from the reproductive cohort in coppices, they are not physically 

removed from the population, thereby preserving the familial structures that have developed 

prior to management. Such familial structuring can thus be extended when rare establishment 

events occur, leading to a consequent increase in SGS extent. In contrast, re-establishing 

thinning and logging in order to convert coppices to other management systems, such as the 

conversion to shelterwood in Paffetti et al.(2012) and Piotti et al. (2013), could rapidly reduce 

the extent of SGS by breaking up established family structures. Spatial genetic structure in 

beech stands is, therefore, likely to be particularly sensitive to the management type in 

practice.  

 

3.6 Conclusion 

This study demonstrates the importance of considering the spatial component of genetic 

diversity and the findings have wide reaching implications as many beech forests in Europe 

have experienced coppice management in the past. Coppice forests can be as rich in genetic 

diversity as natural forests. However, consistent differences in the extent of spatial genetic 

structuring in these populations, while relatively small in their magnitude, indicate that 

local-scale patterns of geneflow have been significantly altered by generations of forest 

management in the coppice stands.  Understanding the implications of such changes for the 

structure and level of diversity within traditionally managed populations can assist with 

management planning for conservation and resource use into the future. 
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3.9 Supplementary Material 

 

S3.1 Map of sampling design at each site. Trees (grey circles) are sampled on a grid, with transects 

projecting from the main sampling area. Exceptions include FH that did not have a continuous transect, 

and IH that did not include a transect, due to access limitations dictated by topography. 
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Chapter 4 

CRYPTIC GENETIC STRUCTURE PERSISTS IN BRITAIN’S NATIVE FAGUS SYLVATICA L. 

KUHN FOREST DESPITE A PROLONGED HISTORY OF HUMAN TRANSLOCATIONS 

 

Authors: M. Jennifer Sjölund, Jose J. Moreno-Villena, Patricia González-Díaz, & Alistair S. Jump 

 

4.1 Abstract 

Species ranges have been shaped by human impacts throughout the Holocene. The late arrival 

of beech in Britain coupled with historic translocations of plant material by humans has 

blurred the boundaries between the native and non-native range. Using a combination of 

nuclear and chloroplast microsatellite markers, genetic patterns driven by natural colonisation 

were found to persist in putative native sites, with higher nuclear gene diversity within groups 

of native sites. This pattern was not reflected in rarefied allelic richness which, unlike gene 

diversity, was lower than continental estimates, potentially decreasing the differences 

between the ranges. Chloroplast diversity revealed high haplotypic diversity near the 

purported entry point of beech into Britain. When considered country-wide, genetic variation 

was found to be structured regionally, driven by high gene flow between sites, diminishing the 

boundary of the putative native and non-native range of beech in Britain.  

 

4.2 Introduction 

An understanding of the factors that shape species distributions is needed to accurately 

estimate past species ranges and gain insight into their potential future distributions. The 

beginning of the Holocene marked the start of the migration of species into their 

contemporary ranges (Taberlet et al. 1998) and coincided with growing human impact (Kalis et 

al. 2003). Historic range limits have been examined from an ecological perspective and 
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post-glacial plant migrations from a phylogeographic perspective (Comes and Kadereit 1998, 

Hewitt 2000, Jump et al. 2010, Magri 2010). However, many natural systems have been under 

profound and persistent anthropogenic influence, shaping species distributions and the 

genetic composition of their component populations (Bradshaw 2004, Alessa and Chapin Iii 

2008, Schaberg et al. 2008).  

 

The influence of forest management, through the selective removal of genotypes and the 

translocation of plant material, can impact genetic diversity and its spatial distribution within 

populations and across regions (Savolainen and Kärkkäinen 1992, Bradshaw 2004, Schaberg et 

al. 2008). The translocation of locally adapted material by humans to areas within and outside 

of species ranges is likely to have an influence on the organisms’ response to environmental 

change (Savolainen et al. 2007). The impacts of translocations have long been studied through 

the use of provenance trials which monitor adaptive responses of trees to varying climatic 

conditions (Konnert and Ruetz 2001, Hubert and Cundall 2006). Using information from 

provenance trials, tree species and provenances that may best adapt to specific environmental 

conditions can be identified (Bolte et al. 2009). Recent concerns on the mitigation of climate 

change impacts have called for the planting of species outside of historic ranges to assist 

species migrations, a proposal that has been a topic of much debate (Ricciardi and Simberloff 

2009, Schlaepfer et al. 2009, Vitt et al. 2010, Hewitt et al. 2011). Arguments against assisted 

migration are centred on the difficulty of assessing potential risks of species introductions over 

time, which can ultimately result in the damage and extinction of co-occurring native species 

(Ricciardi and Simberloff 2009). The European beech, Fagus sylvatica, provides a valuable case 

study to assess potential long term impacts of assisted migration as it has experienced 

wide-scale translocations outside of its native range in the past. 

 



 

73 
 

Having many uses, including timber, fuel and fodder, the European beech experienced 

prolonged traditional management in the past (Nocentini 2009, Read et al. 2010, Packham et 

al. 2012). In Britain, there is a current uncertainty surrounding the limits of the natural range 

of beech, as it was planted extensively throughout the country. There has been some 

anecdotal historical evidence and palynological evidence that the native range of beech was 

limited to south-east England (see Rackham (1980), Pott (2000), Packham (2012)). Despite the 

commonly held view that beech is native to south-east England, it is classified as native all 

over the country in the New Atlas of the British & Irish Flora, which argued that there was 

insufficient evidence to define an exact native range in Britain (Preston et al. 2002). At the 

regional scale, the species range is believed to be under broad climatic control (Huntley et al. 

1989). However, the distribution of beech in Great Britain is unique because it grows further 

north than its presumed native range in the south-east of the country and has become 

naturalised in areas where it has been planted (Watt 1931a, Dierschke 1985). It also grows at 

higher latitudes in Sweden (Lindquist 1931) when compared with Great Britain, indicating that 

the historic limits of beech in Britain might not be climatically determined. There have been 

suggestions that human intervention might have manipulated the species range before it 

reached its climatic range limit (Watt 1931b, Packham et al. 2012).  

 

Previous paleoecological research has suggested a link between anthropogenic disturbance 

and beech establishment (Küster 1997, Bradshaw and Lindbladh 2005, Bolte et al. 2007). 

Although, Gardner and Willis (1999) argue that ecological traits of beech, such as its inherent 

slow migration and establishment rates, may be the main drivers of migration which occurred 

parallel to anthropogenic activity. Despite anthropogenic influences, many native forests are 

expected to retain genetic signals arising from natural processes from the natural regeneration 

of local stock (Bradshaw 2004) allowing the detection of natural ranges. Therefore, the 

indistinct native and non-native range of beech in Great Britain could be genetically 
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distinguished, providing insight into the effects of anthropogenic influence on the genetic 

structure and diversity of a species. 

 

Paleobotanical and genetic data indicate central and northern European populations were 

colonised from source populations in southern France, eastern Alps-Slovenia-Isteria and 

potentially Moravia and southern Bohemia (Magri et al. 2006). Residual populations in classic 

southern refugia (i.e. the Iberian, Italian and Balkan peninsulas) expanded relatively late and 

did not significantly contribute to the colonisation of central and northern Europe. Recent 

evidence found in Denmark suggests that post-glacial colonisation was aided by occasional 

long-distance dispersal events, leading to the establishment of beech and other temperate 

tree species ahead of their main colonisation fronts (Overballe-Petersen et al. 2013) and might 

have contributed significantly to the observed rates of spread of the species (Feurdean et al. 

2013). Pollen records from Great Britain indicate that beech migrated into the south-east, with 

its first establishment in Kent just before 3000 BP and maintained a steady rate of spread of 

100-200 m per year, whereas the majority of other tree species displayed a decrease in the 

rate of spread. The relatively constant rate of spread suggests that beech had not reached its 

natural climatic limit by 1000 BP (Birks 1989). Historical evidence has suggested the existence 

of potential native populations  which occur further north (Rackham 1980) than the predicted 

range as suggested by pollen evidence. Confirmation of species presence in the pollen record 

does not directly translate to the confirmation of the forests which exists today as native. 

Therefore, the genetic aspect of the study aims to add genetic information of contemporary 

populations to build upon current palynological and historical information. 

 

We sought to determine the interacting effects of past anthropogenic impacts and past 

migration on the current genetic structure and diversity of beech by identifying the 

phylogeographic signal of natural colonisation, which may persist in its native range. We used 
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a combination of highly variable nuclear markers and conservative, maternally-inherited 

chloroplast markers (Reboud and Zeyl 1994, Magri et al. 2006) to explore regional trends in 

genetic variation. Extensive sampling was carried out in both the native and non-native range 

across Great Britain. Population structure and admixture levels of beech throughout the 

country were analysed using Bayesian assignment methods. The output of this research 

provides direct information on extant forests, reconciling the genetic, paleoecological, and 

historical evidence of the native range of beech in Britain. This information can be used to 

optimise conservation plans and can indicate avenues for future research, for example, in 

examining the impacts of translocation on local adaptation through the assessment of 

phenotypic variation. 

 

4.3 Materials and methods 

4.3.1 Study species 

The broadleaf tree species, F. sylvatica, covers approximately 14 million ha forming the 

dominant forest type in much of mainland Europe. With the exception of Great Britain, the 

distribution of beech is primarily climatically limited owing to the species’ drought 

susceptibility (Peterken and Mountford 1996) and frost sensitivity (Watt 1923). Beech trees 

can reach approximately 300 years of age with flowering beginning between 40 to 80 years, 

depending on the density of the stand (Firbas and Losert 1949). Beech is a monoecious, 

primarily outcrossing species, with pollen dispersed by wind and seeds dispersed by gravity 

and animals (Wagner et al. 2010, Packham et al. 2012). 

 

4.3.2 Study sites 

A total of 42 populations were sampled across Great Britain, covering the putative native and 

the non-native range of beech (Table 4.1; Figure 4.1). Using a combination of historical 

records, palynological, and anecdotal evidence, study sites were designated a priori stand 



 

76 
 

origins of native or non-native (see supplementary material S4.1, S4.2, and S4.3 for summary 

of evidence). In each site, leaf samples were collected from 20 mature trees within a 10ha 

area, preferentially sampling the oldest trees determined by using diameter at breast height 

(DBH) as a proxy for age. Trees were sampled no closer than 10m to each other to avoid 

sampling possible ramets and all samples were geo-referenced using a GARMIN 62s handheld 

GPS. 

 

4.3.3 Molecular analysis 

DNA was obtained from the leaf samples, dried in silica gel. DNA isolation was performed 

using the QIAGEN DNeasy 96 Plant Kit (QIAGEN, Netherlands) according to manufacturers’ 

instructions. Out of a total of 840 samples, 837 individuals were successfully genotyped using 

13 nuclear, microsatellite (viz. simple-sequence repeats (SSR)) markers  (fs1-03, fs1-15, fs3-04, 

fs4-46, fcm5 (Pastorelli et al. 2003), mfc7 (Tanaka et al. 1999), mfs11 (Vornam et al. 2004), 

sfc0007-2, sfc0018, sfc0036,sfc1143, sfc1061, sfc1063 (Asuka et al. 2004)) processed in three 

multiplexes as detailed in Sjölund and Jump (2015). 802 individuals were successfully 

genotyped using four Chloroplast DNA (CpDNA) SSR markers (ccmp4, ccmp7 (Weising and 

Gardner 1999), cmcs3, and cmcs12 (Sebastiani et al. 2004)). Chloroplast SSRs were combined 

in one PCR multiplex, FSCplex, using 10ng of template DNA and the QIAGEN Type-it 

Microsatellite PCR Kit with the following primer concentrations, ccmp4 at 0.5 µM, ccmp7 at 

0.5µM, cmcs3 at 3µM, and cmcs12 at 3µM. Annealing temperature was set to 55C, with a 

total PCR reaction volume of 10µl. Fragment analysis was performed on an ABI 3730 (Applied 

Biosystems) and allele scoring on GENEMARKER 2.4.0 (SoftGenetics). 

 

Scoring errors and null alleles in nuclear loci were checked using MICRO-CHECKER (Van 

Oosterhout et al. 2004). Null alleles were identified by repeated sampling of null genotypes 

and significant deviations from Hardy-Weinberg equilibrium. Significant proportions of null
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Table 4.1 The 42 study sites in Great Britain grouped by potential stand origins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sites are grouped into potential 

native and non-native sites and 

ordered alphabetically within group. 

Stand codes are derived from the 

first three letters of the site name, 

with the exception of Cwm Clydach 

east, denoted CWe, and Cwm 

Clydach west, denoted CWw. 

Code Site name Latitude Longitude 

Native 
BED Bedford Purleius N52.5899 W0.4646 

BLE Blean Woods N51.3068 E1.0284 

BUC Buckholt Wood N51.8166 W2.1560 

BUR Burnham Beeches N51.5604 W0.6238 

CWe Cwm Clydach (east) N51.8060 W3.1280 

CWw Cwm Clydach (west) N51.7403 W3.9094 

DEN Denny Wood N50.8563 W1.5250 

FEL Felbrigg Great Wood N52.9138 E1.2612 

FRI Friary Wood N51.3302 W2.3124 

GRE Greenfield Copse N51.6247 W0.9764 

LAD Lady Park Wood N51.8254 W2.6541 

LUL Lullington Country Park N51.3545 E0.1817 

MON Monk Wood N51.6632 E0.0547 

SAV Savernake Forest N51.4121 W1.7163 

SEC Seckley Wood N52.4033 W2.3413 

WEA Wealden Edge Hangars N51.0504 W0.9637 

WYC Wychwood (Conbury Park) N51.8590 W1.5131 

Non-native 

APP Applecross Wood N57.4328 W5.8105 

BAR Baron's Haugh N55.7741 W3.9716 

BEE Beech Hill Wood N54.3225 W2.9390 

BRI Bridford Wood N50.6792 W3.7009 

CAR Carstramon Wood N54.9113 W4.1974 

CLE Clerkhill Wood N57.1983 W2.1566 

CRA Craig Wood N57.5777 W4.1435 

DEV Devachoys Wood N50.1966 W5.1229 

DRU Drumneil House N56.5480 W5.4003 

DUN Dunnottar Wood N56.9601 W2.2197 

ECC Ecclesall Woods N53.3366 W1.5167 

GEL Gelt Wood N54.9089 W2.7311 

GOL Golitha Wood N50.4931 W4.4997 

HEM Hembury Wood N50.5002 W3.8046 

KIN Kinnoul Hill Woodland Park N56.3891 W3.3993 

MAB Mabie Forest N55.0226 W3.6461 

PLO Plora Wood N55.6191 W3.0342 

STR Strid Wood N54.0030 W1.9037 

TAL Talhenbont N52.9304 W4.2910 

TAN Tan-y-Coed N52.6323 W3.8415 

TON Tongue Wood N58.4989 W4.4091 

TWO Two Mile Bottom N52.4576 E0.7191 

WAL Wallington East Woods N55.1533 W1.9506 

WYT Wytham Wood N51.7720 W1.3368 

YEL Yellowcraig Wood N56.0617 W2.7793 
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Fig. 4.1 Map of study sites in relation to Birks’ (1989) isochrones including continental sites. Sites are 

labelled with site codes and possible native sites are indicated by white circles. Birks’ (1989) isochrones 

for F. sylvatica have been redrawn on the map, labelled in years BP. The location of continental sites in 

relation to sites in Britain are indicated by black circles in the top right hand corner.  
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alleles were found in fs4-46, fcm5, and fs1-15. Analyses presented exclude fs4-46, fcm5, and 

fs1-15 and use a total of 10 nuclear SSR loci. A total of three chloroplast SSR loci were used, 

excluding cmc12 as it was monomorphic. We tested for gametic disequilibrium between 

nuclear loci pairs on FSTAT 2.9.3.2 (Goudet 1995), identifying significant associations between 

loci by randomly associating genotypes at pairs of loci 1100 times, using a 5% nominal level 

after Bonferonni correction. The multilocus average error rates were 0.4% for the 10 nuclear 

loci included in analysis, and 0.0% for the 3 chloroplast loci. The error rate per locus was 

calculated as the number of erroneously assigned loci over 45 repeated samples. 

 

4.3.4 Analysing population clusters  

Individual-based Bayesian assignment methods were performed using data from nuclear loci 

in STRUCTURE 2.3.4.(Pritchard et al. 2000). No stand origin was included a priori in cluster 

analysis. To examine relationships between British samples and source populations in Europe, 

we included a subset of 150 samples collected from native beech forests in France, Germany 

and Italy as detailed in Sjölund and Jump (2015). Analysis without continental samples 

revealed a similar structure in Britain to that found with continental samples, therefore we 

present the data including continental samples to set the results in context. The STRUCTURE 

model employed the correlated allele frequency model (Falush et al. 2003) and the admixture 

ancestry model. We included the site location a priori (LOCPRIOR option) to improve the 

detection of weak population structure (Hubisz et al. 2009). K was set from 1 to 20, with 10 

runs performed for each number of K. Runs consisted of 500,000 Markov Chain Monte Carlo 

(MCMC) iterations with a burn-in period of 100,000. To determine the number of clusters in 

the data, we plotted the log probability of the data (LnP(D)), identifying the point where log 

likelihood values ceased to converge. Individual Q-matrices were computed in CLUMPP 1.1.2 

(Jakobsson and Rosenberg 2007), with graphics created in DISTRUCT 1.1 (Rosenberg 2004). 

Q-matrices presented are ordered according to Birks’ isochrones following an approximate 
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geographical gradient. As results indicated cryptic genetic structure in the native range (see 

section 4.4.3), we performed a subsequent analysis on a subset of the 17 potential native sites 

(i.e. using the stand origin a priori) under the same conditions as the main model and 

excluding continental samples to test for further population sub-structure. 

 

We present data in supplementary material S4.4 using a second cluster assignment program to 

explore the samples further as recommended by Guillot et al. (2009). Partitioning of the data 

into clusters was performed using discriminant analysis of principle components (DAPC), a 

multivariate statistics based method executed in the adegenet (Jombart 2008) package in R 

3.0.2 (R Development Core Team 2012). 

 

4.3.5 Measuring genetic diversity and structure using nuclear and chloroplast markers 

To distinguish estimates of genetic diversity we have prefixed estimators with ‘n’ for nuclear 

and ‘c’ for chloroplast. Nuclear genetic diversity was measured in rarefied allelic richness (nAR) 

(Petit et al. 1998), gene diversity corrected for sample size (nHS) (Nei 1978), and the inbreeding 

coefficient (nFIS) (Weir and Cockerham 1984), calculated in SPAGeDi 1.4b (Hardy and 

Vekemans 2002), and rarefied private allelic richness (nAP) calculated in ADZE 1.0  (Szpiech et 

al. 2008). For the purpose of mapping genetic differentiation, for each site we calculated the 

percentage of total sites that it was significantly differentiated to (i.e. percentage of 

differentiated sites, nDS (%)), based on nFST values (Weir and Cockerham 1984). nFST values 

were obtained from pairwise tests of genetic differentiation not assuming Hardy-Weinberg , 

with significances determined for a 5% nominal level after Bonferonni correction in FSTAT 

2.9.3.2 (Goudet 1995). Chloroplast haplotypic diversity was measured as the number of 

haplotypes (cHN) and the number of private haplotypes (cHP). Multilocus estimates of genotypic 

and haplotypic diversity were mapped in ARCMAP 10 (ESRI software) against the redrawn 

isochrones lines from Birks’ (1989) Holocene isochrone map for the rational limit of beech 
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pollen. 

 

To test for differences of nuclear-based measurements, nAR, nHS, nFIS and nFST among groups 

of native and non-native sites, we performed permutation tests using FSTAT 2.9.3.2 (Goudet 

1995). The desired estimator (x) over all sites and loci for groups of native and non-native sites 

was calculated to obtain an observed statistic (OSx), which is the difference between the 

estimators of the two groups, i.e. OSx = x1 - x2. Individuals were permuted 10,000 times 

between groups to obtain a randomised dataset from which the statistic Sx is calculated. 

P-values signify the proportion of randomised datasets where Sx > OSx. The difference between 

native and non-native groups in the remaining estimators nAP and cNH were tested using the 

non-parametric Mann-Whitney U test. We tested for genetic structure amongst native and 

non-native sites, using both chloroplast and nuclear markers  in a hierarchical analysis of 

molecular variance (AMOVA) performed in ARLEQUIN 3.5.1.2 (Excoffier and Lischer 2010).  

 

4.3.6 Measuring geographic patterns in genetic structure 

Subsets of sites with potential native and non-native origin were tested for 

isolation-by-distance (IBD) in the British dataset using nuclear markers. IBD was analysed with 

and without the continental datasets to check whether a geographical cline in allelic 

frequencies could be influencing clustering (Guillot et al. 2009). Following Rousset (1997), we 

used the FST /(1- FST ) ratio as a measure of genetic distance as it is expected to vary linearly 

with the natural log of the geographical distance. The significance of IBD was determined by 

permuting site locations among individuals 10,000 times. To test for geographic gradients in 

genetic diversity we performed non-parametric corrected Spearman’s Rank tests on all genetic 

diversity estimators and all sites, including separate tests on subsets of native and non-native 

sites.
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Table 4.2 Genetic diversity estimates obtained from nuclear (n) and chloroplast (c) markers 

Sites nN nAR nAP nHS nFIS nDS (%) cN cHN 

Native 340 6.220.13 0.0530.13 0.7070.006* 0.0220.010 46.16.4 321 1.50.2 

BED 20 5.95 0.025 0.722 0.059 17.1 18 1 

BLE 20 6.82 0.027 0.721 0.030 24.4 18 4† 

BUC 20 5.33 0.000 0.682 0.010 87.8 20 1 

BUR 20 6.80 0.109 0.713 -0.003 22.0 19 2 

CWe 20 6.64 0.146 0.750 0.055 85.4 20 1 

CWw 20 6.00 0.000 0.710 -0.037 85.4 20 1 

DEN 20 5.97 0.024 0.706 0.031 58.5 20 1 

FEL 20 5.17 0.095 0.651 0.057 75.6 17 2 

FRI 20 6.51 0.087 0.679 0.007 26.8 20 1 

GRE 20 5.98 0.004 0.712 0.038 26.8 20 1 

LAD 20 6.72 0.110 0.736 0.033 22.0 20 1 

LUL 20 6.09 0.020 0.727 -0.054 29.3 17 3 

MON 20 6.71 0.156 0.716 -0.013 56.1 19 1 

SAV 20 6.09 0.001 0.687 0.041 43.9 16 1 

SEC 20 6.06 0.008 0.717 -0.040 56.1 17 1 

WEA 20 5.86 0.007 0.703 0.070 56.1 20 2 

WYC 20 7.12 0.077 0.694 0.088* 9.8 20 1 

Non-native 497 6.250.11 0.0370.008 0.6900.006* -0.0060.010 32.94.5 481 1.40.1 

APP 19 6.68 0.065 0.682 0.004 14.6 19 2 

BAR 19 6.50 0.001 0.702 -0.012 17.1 19 2 

BEE 20 4.58 0.000 0.606 -0.152*** 95.1 19 2 

BRI 20 6.21 0.080 0.663 -0.065 58.5 20 1 

CAR 19 5.92 0.000 0.685 0.057 26.8 18 1 

CLE 20 6.30 0.014 0.695 0.014 17.1 20 1 

CRA 20 5.29 0.000 0.706 -0.086* 75.6 20 1 

DEV 20 6.30 0.038 0.691 -0.066 22.0 16 2† 

DRU 20 6.44 0.042 0.692 -0.012 39.0 20 1 

DUN 20 7.16 0.103 0.684 0.005 24.4 19 2 

ECC 20 6.32 0.025 0.700 0.036 56.1 20 2 

GEL 20 6.32 0.013 0.700 0.014 17.1 20 1 

GOL 20 5.49 0.048 0.672 0.034 36.6 20 1 

HEM 20 5.86 0.001 0.672 -0.042 70.7 20 1 

KIN 20 5.87 0.013 0.675 -0.005 34.1 20 1 

MAB 20 6.14 0.011 0.701 0.089* 9.8 20 1 

PLO 20 6.04 0.013 0.693 0.019 24.4 17 2 

STR 20 6.67 0.099 0.692 -0.012 12.2 20 1 

TAL 20 6.28 0.122 0.667 0.018 17.1 15 2 

TAN 20 7.19 0.077 0.747 0.065 51.2 20 1 

TON 20 6.23 0.000 0.680 0.023 24.4 20 1 

TWO 20 6.33 0.014 0.717 0.003 39.0 20 1 

WAL 20 6.52 0.033 0.708 -0.069 7.3 20 1 

WYT 20 6.79 0.103 0.700 -0.005 4.9 20 2 

YEL 20 6.84 0.000 0.722 -0.012 26.8 19 1 

Total 837 6.250.08 0.0440.007 0.6960.004 0.0040.008 38.73.8 802 1.40.1 
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Table 4.2 (continued): 

Prefixes of ‘n’ for nuclear markers and ‘c’ for chloroplast marker are given to distinguish the markers 

used per estimate. Terms are as follows; nN, number of samples used in nuclear analysis; nAR, nuclear 

rarefied allelic richness; nAP, nuclear rarefied private allelic richness; nHS, nuclear gene diversity; nFIS, 

nuclear inbreeding coefficient; nDS%, percentage of significantly differentiated sites; cN, number of 

samples used in chloroplast analysis; cHN, number of haplotypes with † indicating the occurrence of two 

individuals with a private haplotype (cHP) in separate sites. The minimum number of gene copies (k) 

used for rarefication analysis of nAR and nAP is 38.  

For each group (Native, Non-native) and all sites (Total), the mean  standard error are given for genetic 

diversity estimators, with the sum for the number of samples (nN, nC). P-values for FIS within sites are 

obtained after 10,000 permutations of gene copies within individuals per site. Significant P-values for 

groups of native and non-native sites represent results from permutation tests for nAR, nHS, nFIS, and for 

nDS%(using nFST), and a Mann-Whitney U test for nAP, cNH. Significant P-values are indicated as * P < 

0.05, *** P < 0.001.  

 

4.4 Results 

4.4.1 General estimates of nuclear genetic diversity 

Multilocus estimates of genetic diversity were obtained for 10 nuclear loci, with an average 

number of 13.3 alleles, and a maximum number of 5 to 30 alleles depending on the locus 

(Table 4.2 and Figure 4.2). Rarefied allelic richness (nAR) varied from 4.58 to 7.19 with rarefied 

private allelic richness (nAP) ranging from 0 to 0.156. Gene diversity estimates ranged from 

0.606 to 0.750. Potential native site WYC and non-native MAB displayed a significant 

homozygote excess (WYC nFIS = 0.088, P < 0.05; MAB nFIS = 0.089, P < 0.05), whilst a 

heterozygote excess was found in sites BEE and CRA, both non-native sites (BEE nFIS = -0.152, P 

< 0.001; CRA nFIS = -0.086, P < 0.05). Genetic differentiation varied greatly between sites, with 

percentage differentiation per site ranging from 4.9% to 95.1% of all sites. All nuclear loci were 

under gametic equilibrium considering a 5% nominal level after Bonferroni correction.  

 

4.4.2 Detection of cryptic population structure 

Mean log-likelihood values for each of the STRUCTURE runs on samples from Britain including 

the continental samples, gradually ceased to converge after K = 2, after which they began to 

plateau (Figure 4.3). Examination of Q-matrices indicated that K = 3 provided meaningful 
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Fig. 4.2 Maps of estimators of nuclear genetic diversity. Estimators include rarefied allelic richness 

(nAR), rarefied private allelic richness (nAP), gene diversity (nHS), and the inbreeding coefficient 

(nFIS)(Weir and Cockerham 1984)(Weir and Cockerham 1984)(Weir and Cockerham 1984)(Weir and 

Cockerham 1984). For every given site we present the percentage of significantly differentiated sites 

(i.e. nDS%), based on FST values that were obtained from pairwise tests of genetic differentiation not 

assuming Hardy-Weinberg. Sites with possible native origin are outlined. Birks’ (1989) isochrones for F. 

sylvatica have been redrawn. 
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Fig. 4.3 Log-likelihood values for the 

number of clusters in the data. The 

number of clusters (K) is plotted 

against the log probability of the 

data (Ln P(D)) for each of the 10 runs 

per K value.  

 

 

 

 

 

biological clusters that followed a regional distribution (Figure 4.4). Although values of Ln P(D) 

for K = 3 varied more than K = 2, assignment of individuals to clusters were congruent between 

runs (see supplementary material S4.5 for Q-matrices for per run). 

 

Several sites throughout Britain contained highly admixed individuals. Individuals from 

continental sites displayed homogenous levels of admixture within site. Organising the 

Q-matrix according to Birks’ (1989) isochrones in approximate geographic order revealed 

some consistency in cluster assignment between neighbouring sites (Figure 4.4). The 

predominant cluster in the continental subset changed from the blue cluster in ITA, to the grey 

cluster in FRA and GER, with the introduction of the red cluster in GER. Individuals from Great 

Britain were predominantly assigned to the grey and red clusters, with the red cluster being 

relatively distinct to the country. There were no clear differences between the sites with 

potential native and non-native origins. However, the red cluster appeared to be associated 

with sites within the putative native range and the non-native sites in the south-west (DEV, 

GOL, HEM, and BRI). Similar patterns were observed for K = 2 and K = 3 when analysing a 

subset of British samples alone and a subset of potential native sites, both revealing no further 

population sub-structuring (see supplementary material S4.3 and S4.7).  Population structure
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Fig. 4.4 Regional genetic structure in Britain. Three clusters are 

shown in blue, red, and grey. Each horizontal bar represents an 

individual with the proportions of its genetic make-up assigned 

probabilistically to each of the three clusters. The STRUCTURE 

Q-matrix is calculated using the average assignment probabilities 

over 10 consecutive runs. Sites are ordered on an approximate 

geographical gradient by ordering sites following Birks’ (1989) 

isochrones to reflect the migration route of Beech into Britain. 

Continental samples are based at the bottom of the graph, with a 

general northward trend to the top of the graph. Stand history of 

the sites are indicated on the right of the Q-matrix, with 

continental sites labelled C, native sites N, and non-native sites 

left blank. Approximate borders of the isochrones are indicated 

by a dashed line with years in BP, with site codes on the left. 
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was less differentiated in DAPC with a weaker regional signal compared to STRUCTURE. 

Increasing the number of clusters indicated complex and biologically uninformative 

structuring. 

Fig. 4.5 Comparison of 

isolation-by-distance analyses. 

Black lines represent the slope 

of the regression of the natural 

log of the linear spatial distance 

(Ln(Spatial Distance (km)) 

against FST/(1-FST) after 10,000 

permutations of sites among 

locations. Sites included in the 

analysis are as follows; A) British 

sites only (slope=0.0011, 

R
2
<0.01); B) British and 

continental sites (slope=0.0032, 

R
2
=0.03); C) native sites 

(slope=0.0085*, R
2
=0.10)); D) 

non-native sites (slope= 0.0030, 

R
2
=0.02). 

 

4.4.3 Geographic trends in genetic diversity between native and non-native sites 

Significant IBD was found in British sites with potential native history (refer to Figure 4.5C: 

slope = 0.0085, R2 = 0.10, P < 0.05). IBD was not significant in sites with non-native stand 

origins, nor was it significant in all sites in Britain with and without the continental subset 

(refer to Figure 4.5, A: British sites only (slope = 0.0011, R2 < 0.01, P = 0.223), B: British and 

continental sites (slope = 0.0032, R2 = 0.03, P = 0.056), D: non-native sites (slope = 0.0030, R2 = 

0.02, P = 0.088). Within the native sites, there was a significant reduction in haplotype number 

following an east to west gradient (rho = 0.70, P < 0.01; Figure 6). This effect disappeared 

when all sites were analysed together (rho = 0.18, P = 0.241), and was not found in non-native 

sites alone (rho = -0.02, P = 0.900). It should be noted that some differences between native 

and non-native groups could be due to geographical distribution as native sites occur further 

F
S

T
/(

1
-F

S
T
)

Ln(Spatial Distance (km))

A B

C D



 

88 
 

east and non-native sites occur further west (U(40) = 358, Z = 3.72, P < 0.001). 

 

Significantly higher levels of gene diversity (nHS) were found in native sites, compared to 

non-native sites; HS: Native 0.708, Non-native 0.690 (P < 0.05) (Table 4.2). The general trend of 

lower gene diversity in sites outside of the native range can be seen in the map for gene 

diversity in Figure 4.2. No significant differences were found for other estimators; nAR: Native 

6.225, Non-native 6.252 (P = 0.874), nAP: Native 0.053, Non-native 0.037 (U(40) = 245, Z = 

0.84, P = 0.411), nFIS: Native 0.022, Non-native -0.005 (P = 0.073), nFST: Native 0.024, 

Non-native 0.021(P = 0.5919), and cNH: Native 1.5, Non-native 1.4 (U(40) = 208, Z = -0.155, 

P = 0.89). No significant correlations were found in the nuclear genetic diversity estimators 

and geographic variables, latitude and longitude, overall sites and within subsets of native and 

non-native sites (data not shown). 

 

Three variants were detected for each locus, ccmp4, ccmp7 and cmcs3. The number of 

haplotypes (cHN) within sites ranged from 1 to 4, with a total of 7 haplotypes recorded (Table 

4.2, Figure 4.6). One haplotype (A) was present in all sites and was the dominant haplotype 

within sites. Haplotype diversity was highest in site BLE (cHN  = 5), the most south-easterly 

British site, with its neighbouring site attaining the second highest measure of diversity 

(cHN = 3). Both BLE and LUL have potential native origins. Two private haplotypes, F and G, 

were present in sites BLE and DEV, respectively. The AMOVA revealed that there was 

significant genetic structuring in chloroplast and nuclear allelic variation between sites, 

although no significant difference was found between groups, with the remaining variation 

present within individuals (Table 4.4). 
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Fig. 4.6 Map of chloroplast 

haplotypic diversity. A total of 

seven haplotypes are displayed. 

Birks’ (1989) isochrones have 

been redrawn on the map. Sites 

with possible native origin are 

outlined in bold. 

 

 

 

 

 

 

 

Table 4.3 Allelic composition for 

each haplotype (Hap) at three 

loci (ccmp4, ccmp7, and cmcs3) 

 

 

Table 4.4 Hierarchical analysis of molecular variance (AMOVA) for chloroplast and nuclear markers 

Sites are grouped into potential stand origin, native or non-native. The degrees of freedom (df), 

percentage of variation explained by each level (Variation (%)), and the relevant F-statistic are 

presented with significant P-values indicated as *** P < 0.001. 

Hap ccmp4 ccmp7 cmcs3 

A 115 144 170 

B 115 145 170 

C 115 144 171 

D 115 143 170 

E 114 144 170 

F 115 143 171 

G 115 144 169 

 Chloroplast Nuclear 

Levels df Variation (%) F-statistic df Variation (%) F-statistic 

Among groups 1 0.00 0.000 1 0.01 0.000 

Among sites 
within groups 

40 12.59 0.124*** 40 2.25 0.022*** 

Within sites 760 87.63 0.126*** 795 97.74 0.023*** 
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4.5 Discussion 

4.5.1 Genetic diversity of beech in Britain 

Nuclear markers indicated average levels of rarefied allelic richness in Britain (nAR = 6.250.08) 

were lower than those reported in studies using some of the same microsatellite markers, 

approximately ranging from 8.2 to 18.2 in other studies (Jump and Peñuelas 2006, Buiteveld et 

al. 2007, Sjölund and Jump 2015). Sites in Britain also displayed lower levels of rarefied private 

allelic richness (nAP = 0.0440.007) compared to Sjölund and Jump (2015) where values for nAP 

ranged between 1.51 and 2.36. Other studies on beech do not employ rarefied private allelic 

richness and therefore cannot be compared. Overall levels of gene diversity were similar to 

that found in other studies (nHs = 0.6960.004) (Jump and Peñuelas 2006, Buiteveld et al. 

2007, Oddou-Muratorio et al. 2009, Sjölund and Jump 2015). 

 

We found high levels of chloroplast diversity for the three microsatellite loci with a total of 

seven haplotypes (cHN) (Table 4.3), although all sites were dominated by one haplotype (A). 

The high number of haplotypes is in contrast to that found by Magri et al. (2006) who report 

one haplotype throughout Britain. However, restricting analysis to two of the three loci used 

by Magri et al. (2006), ccmp4 and ccmp7, gives a total of four haplotypes with no more than 3 

haplotypes in any one site (data not shown). The regional trend using a subset of two loci 

closely matches the trend seen with all three loci (Figure 4.6), with sites LUL and BLE again 

displaying the highest number of haplotypes. It is possible that the larger sample size used in 

our study significantly increased the potential of detecting rarer haplotypes as the AMOVA on 

chloroplast allelic variation revealed significant partitioning between sites (Table 4.4). The 

large haplotype diversity found in our study is likely a consequence of polymorphism in locus 

cmcs3, the use of a large number samples and sites, and the inclusion of several planted sites 

that could have originated from continental stock and thus may harbour rarer haplotypes. 
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4.5.2 Regional patterns of postglacial migration of beech into Britain  

Within Britain, neighbouring sites displayed congruent levels of admixture with lower levels of 

admixture in northern, non-native sites (Figure 4.4). A gradient of admixture marked the 

transition of continental regions to Britain, with continental sites assigned predominantly to 

the blue and grey cluster. Individuals from the south of Britain displayed a relatively higher 

probability of assignment to the red cluster, which was generally associated with the native 

range, in addition to the south-west region, including non-native sites DEV, GOL, HEM, and 

BRI. This suggests significant gene flow between sites in the native range and sites in the 

south-western peninsula. DEV also displayed a private haplotype adding to the distinctiveness 

of the south-westerly beech forests. 

 

There appeared to be a transition between the assignment of individuals to the red and grey 

cluster which occurred in proximity to the border for the 1000 BP isochrone, with a tendency 

towards assigning individuals to the red cluster in regions pre-1000 BP. Only one potential 

native site, CWw, occurred outside of the border of the 1000 BP limit and was predominantly 

assigned to the red cluster. CWw is less than 15km away from the 1000 BP isochrone and 

borders can only be determined in relation to the original study sites used in Birks (1989) of 

which there were relatively few with reliable records for beech. Therefore small errors in the 

geographical position of boundaries are probable and CWw may still be within regional 

palynological boundaries.  

 

Population structure identified using DAPC was weaker and did not display as strong regional 

trends as those found in STRUCTURE. DAPC is based on fewer assumptions than STRUCTURE 

(Jombart et al. 2010). The detection of cryptic population structure in Britain was likely aided 

by the use of sample group information as location priors, and the incorporation of 

assumptions on admixture and allele frequencies in STRUCTURE (Hubisz et al. 2009). This is in 
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agreement with preliminary analysis, as the detection of structure in Britain was found to be 

sensitive to changes in model assumptions, as no patterns of genetic structure was found 

when using the independent allele frequency model in STRUCTURE (data not shown). 

STRUCTURE has been successfully used to detect genetic structure at low FST levels (Latch et al. 

2006). Although the regional trend was not detected in DAPC, it was reproducible when using 

the same model parameters in STRUCTURE for a subset of sites with possible native origin and 

a subset of sites in Britain, highlighting the existence of a repeatable trend. 

 

The distribution of chloroplast haplotypes in Britain matches the expected phylogeographic 

signal of postglacial colonisation with the highest number of haplotypes found in 

south-eastern sites, LUL and BLE,  (Figure 4.6) in close proximity to the purported entry point 

of beech migration into Britain (Birks 1989). Site BLE also displayed one of the two private 

haplotypes found in Britain. The chloroplast genome in beech is maternally inherited (Magri et 

al. 2006), therefore, patterns of initial beech migration into Britain were driven by significant 

seed movement into the south-east as high diversity exists in these sites. The gradual loss of 

haplotype diversity may be a result of a founder effect induced by the progressive movement 

of the migration front in the native range (Excoffier et al. 2009), and the artificial creation of 

stands through sowing or planting by humans in the non-native range (Lefèvre 2004). 

 

4.5.3 Genetic variation between groups of different a priori stand origins 

Although Britain’s semi-natural forests have been influenced by humans for prolonged periods 

of time (Rackham 1980), historic patterns of genetic variation may persist in populations that 

arise from the natural regeneration of local stock (Bradshaw 2004). Isolation-by-distance (IBD) 

occurs when the genetic differentiation between individuals or populations increases with 

geographic distance (Wright 1940). In plants, this is primarily a consequence of restricted gene 

flow via seed or pollen (Loveless and Hamrick 1984). Although beech is assumed to show high 
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levels of gene flow as a wind-pollinated tree, it has been found to display significant 

structuring at local (Chybicki et al. 2009, Jump et al. 2012, Piotti et al. 2013, Sjölund and Jump 

2015) and regional scales (Jump and Peñuelas 2006, de Lafontaine et al. 2013). In agreement 

with the significant genetic structuring found in natural populations of beech, the potential 

native sites in Britain displayed a weak but significant trend of IBD. This pattern was not found 

in a subset of sites with non-native origins and their inclusion in the analysis using all sites 

obscured the IBD signal of the native range (Figure 4.5). A study on populations of beech in 

France with relatively recent colonisation histories displayed stronger IBD compared to 

southern refugial populations in France (de Lafontaine et al. 2013). As beech only arrived in 

Britain around 3000 BP (Birks 1989), IBD in the native range is likely driven by relatively recent 

colonisation dynamics. In contrast, widespread translocations are likely to have prevented the 

development of IBD between non-native populations due to the anthropic movement of plant 

material throughout the country. Similar effects on IBD were found in the winter annual, 

Arabidopsis thaliana, which displayed weaker IBD in the introduced range in Europe compared 

to populations within its native range in Asia (Beck et al. 2008). Human-mediated dispersal 

was suggested as a potential cause of reduced IBD as it promoted long distance dispersal in a 

species with fairly restricted natural dispersal. Contrary to beech, the spread of A. thaliana 

was not driven by economic interests and human-mediated dispersal was unintentional (Beck 

et al. 2008), suggesting that a significant amount of dispersal within its introduced range was 

through subsequent natural dispersal, therefore enabling a weak signal of IBD to develop. 

Whereas beech is of high economic value, and was extensively translocated throughout Britain 

by humans (Dierschke 1985). 

 

Studies that aim to determine the ‘native status’ of a species in a particular region have 

hypothesised that introduced populations are genetically depauperate as they originate from 

a limited amount of source propagules (Fuentes-Utrilla et al. (Stone and Sunnucks 1993, 
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Fuentes-Utrilla et al. 2014). We found a significant decrease in gene diversity (nHS) in 

non-native sites, suggesting a reduction in genetic diversity due to founder effects. However, 

no significant difference was found for rarefied allelic richness between sites of different 

origins. Allelic richness is expected to be more sensitive to reductions in effective population 

sizes, as rare alleles, which do not contribute considerably to gene diversity, are more likely to 

be lost first (Nei et al. 1975). Low levels of allelic richness throughout Britain (see section 4.5.1) 

suggest a significant proportion was lost during post-glacial colonisation, probably due to a 

founder effect. The lack of a pattern in allelic richness between native and non-native sites 

may be due to a lack of sensitivity of the analysis arising from the comparison of two already 

limited gene pools. In agreement with theoretical predictions, gene diversity throughout 

Britain displayed similarly high levels to that found on the continent (Jump and Peñuelas 2006, 

Buiteveld et al. 2007, Oddou-Muratorio et al. 2009, Sjölund and Jump 2015).  

 

There are incongruences in some sites between levels of gene diversity and allelic richness. 

Outliers such as the planted site, DUN, which has one of the highest levels of allelic richness 

(nAR = 7.16) but a below average gene diversity (HS = 0.684) might have contributed to 

increasing overall allelic richness in the non-native range (Table 4.2). Non-native sites with 

high genetic diversity can arise from the planting of seeds from differentiated stocks or 

specific management methods such as the equalisation of parental contributions to seed 

typically employed in seed orchards (Lefèvre 2004). Site BEE is a particularly interesting 

outlier, displaying low nuclear genetic diversity and high differentiation. The minority 

haplotype (B) reaches 35% which is the highest proportion for any minority haplotype. The 

high ratio of minority haplotypes may indicate that this stand originated from stock taken from 

a limited number of individuals. The collection of several seeds from an individual for planting 

would result in all seeds displaying the same maternal haplotype, which could skew the 

proportion of haplotypes within a site. Although native sites displayed the highest average 
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private allelic richness (nAP), this difference was not statistically significant. 

 

4.5.4 A note on assigning a native status to beech stands in Great Britain 

The dynamic nature of species ranges makes the justification for assigning a putative native 

range to beech within Britain seem overly simplistic and ecologically flawed (Brown 1997, 

Warren 2007). As the species naturally regenerates throughout Great Britain, it is likely that 

without human intervention, beech would have eventually spread throughout the country. 

Northern beech stands in Britain have also been found to develop typical plant communities 

that are valued for conservation in the south-eastern beech stands (Wesche et al. 2006). 

 

Although this study uses the terms native and non-native to assign sites for analytical purposes 

and clarity, it is inadvisable to take it as precedent. When considering the individual 

assignment of sites as native or non-native, it should be noted that even though the sites 

allocated as native display differences as a group and display the genetic signal of natural 

expansion, it does not imply the precise assignment of sites as native since the inclusion of a 

few wrongly assigned sites might not be enough to diminish the genetic signal of the natural 

range. Therefore, our results should be interpreted as evidence for the persistence of signals 

of the natural colonisation of beech in Britain despite wide-scale translocations. Overall, the 

current species range has experienced high gene flow between sites, leading to the creation of 

a regional trend in Britain with significant gene flow between native and non-native sites.  

 

In the light of climate change, and species range shifts, growing conditions for beech in Britain 

are expected to decline at southerly latitudes, and improve in northerly regions 

(Broadmeadow et al. 2005, Kramer et al. 2010). Future research on phenotypic variation 

unique to the native range may identify potential local provenances. However, the high level 

of gene flow throughout the country suggests that any locally adapted genes from the native 
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range are likely to spread naturally into northerly stands over time.  

 

4.6 Conclusion 

With knowledge of palynology and history, we were able to identify the signature of 

post-glacial migration of the species, contributing information on contemporary beech forests 

in Britain that builds upon current palynological and historical evidence. Although cryptic 

genetic signals of population expansion remain in the native range of beech, we caution 

against using this as a means to classify stand origins, as gene flow between neighbouring 

regions essentially blur the borders of the native range. There is evidence of gene flow 

between native and non-native regions, in particular non-native sites in the south-west 

peninsula, which may be leading to the ‘naturalisation’ of non-native populations. The natural 

range of beech presents a source of genetic diversity and potential locally adapted genotypes. 

It is paramount that climate-induced range shifts are considered in management plans, as 

many northerly non-native populations may be more productive than those in the native 

range in the future. Overall, our research shows that although patterns of past colonisation 

dynamics persist in the native range, high gene flow between native and non-native 

populations are blurring the boundaries between them, agreeing with New atlas of the British 

& Irish flora (Preston et al. 2002) classification of beech as native throughout Britain. 
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4.9 Supplementary material 

S4.1 Key references used for stand origins of native sites 

Key references for palynological, historical, and anecdotal evidence used to assign a priori stand 

histories to sites are given. These include the site’s position on Birks’ (1989) Holocene isochrone map 

(Isochrone range), with positions given in years BP. The approximate position based on Rackham’s 

(1980) range (Historical range) is indicated. Sites are identified as in or out of an approximate 

boundary surrounding areas with potential surviving native populations, including outlier populations, 

and where beech was recorded but was presumed extinct during the middle-ages. Other forms of 

evidence are summarised (Other sources) with appropriate references listed in S4.3. 

 

 

 

 

 

 

Code 
Isochrone 
range 

Historic 
range 

Other sources 

BED 1000 In Defined as native (Rackham 1980). 

BLE 3000 In Defined as native woodland [1,2]. 

BUC 2000 In Part of Cotswold, defined as wildwood remnant (NATURAL 
ENGLAND 2012). 

BUR 3000 In Unknown origins (pers. comm. H. Read), but exists at core of 
putative native range. 

CWe 1000 In Defined as native [3]. 

CWw 0 In Unknown origins (pers. comm. D. Anning) but exists on boundary 
of putative native range, near to native site CWw. 

DEN 2000 In Defined as native (Rackham 1980). 

FEL 1000 In Defined as native (Rackham 1980). Designated SSSI described as 
having potential native origins [4]. 

FRI 2000 In  Unknown origins, exists within putative native range, several 
ancient beech trees present (pers. obs.). 

GRE 2000 In Part of Chilterns, defined as native [5]. 

LAD 1000 In Ancient woodland (Peterken and Jones 1987, 1989, Peterken and 
Mountford 1996). 

LUL 3000 In Part of medieval deer park [6](KENT COUNTY COUNCIL 2010). 

MON 3000 In Designated SSSI described as defined as remnant native [7]. 

SAV 2000 In Relicts of ancient pasture woodland with some planting of beech 
during 18

th
, 19

th
, and 20

th
 centuries [8]. Attempted to sample 

veteran trees, likely to have originated from the ancient wood 
pasture, therefore considered to harbour potential native beech. 

SEC 1000 Out Part of Wyre Forest, defined as native woodland remnant [9]. 

WEA 2000 In Designated SSSI, defined as natural chalk beech woodland [10]. 

WYC 2000 In Part of royal hunting forest, evidence of presence up to Roman 
times [11]. 
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S4.2 Key references used for stand origins of non-native sites 

Key references for palynological, historical, and anecdotal evidence used to assign a priori stand 

histories to sites are given. These include the site’s position on Birks’ (1989) Holocene isochrone map 

(Isochrone range), with positions given in years BP. The approximate position based on Rackham’s 

(1980) range (Historical range) is indicated. Sites are identified as in or out of an approximate 

boundary surrounding areas with potential surviving native populations, including outlier populations, 

and where beech was recorded but was presumed extinct during the middle-ages. Other forms of 

evidence are summarised (Other sources) with appropriate references listed in S4.3. 

 

Code 
Isochrone 
range 

Historic 
range 

Other sources 

APP 0 Out Planted beech woodlands [12]. 

BAR 0 Out Extensive landscaping and planting of ornamental gardens during 
1700  [13], sampled beech grew amongst gardens [pers. obs.]. 

BEE 0 Out Beech defined as non-native in management plan (WOODLAND 
TRUST 2010a). 

BRI 1000 Out Unknown origins (pers. comm. M. Jones), exists on border of 
putative native range, but near planted site HEM. 

CAR 0 Out Unknown origins (WOODLAND TRUST 2008) but occurs far north 
of putative native range. 

CLE 0 Out Unknown origins, exists far north of putative native range. 

CRA 0 Out Planted mid 1800s (pers. comm. M. Carter). 

DEV 0 Out Beech described as non-native on-site signage (pers. obs) and 
website [14]. Spatial organisation of sampled beech in rows 
suggests it was planted (pers. obs). 

DRU 0 Out Spatial organisation suggests it was planted (pers. obs), exists far 
north of putative native range. 

DUN 0 Out Woods created in the 1800s [15]. 

ECC 1000 Out Beech planted in mid 1800s (Jones and Jones 2008, SHEFFIELD 
CITY COUNCIL 2012). 

GEL 0 Out Designated SSSI report states beech was planted [16]. 

GOL 0 Out Spatial organisation, avenue formation, suggests it was planted 
(pers. obs).  

HEM 1000 Out Planted beech (pers. comm. M. Jones). The sampled beech trees 
near the river Dart were reported as planted for ornamental 
purposes in 1800s [17]. 

KIN 0 Out History of planting as arboretum [18]. 

MAB 0 Out Planted, beech described as non-native (Norman 2009). 

PLO 0 Out Beech planted in mid 1800s (WOODLAND TRUST 2010b). 

STR 0 Out Beech originated from planted and natural regeneration [19]. 

TAL 0 Out Unknown origins, structure of forest suggests landscaped and 
planted (pers. obs.).  

TAN 1000 Out Planted 1944 (pers. comm. D. Farmery). 

TON 0 Out Occurs far north of putative native range. 

TWO 2000 In Structure strongly indicative of plantation (pers. obs.). 

WAL 0 Out Woods planted during mid 1700s [20]. 

WYT 2000 In Beech planted in the 1800s (Butt et al. 2009). 

YEL 0 Out Woods planted in 1800s [21]. 
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S4.3 Reference list for tables S4.1 and S4.2 
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S4.4 DAPC output for K = 3. The DAPC output of membership probabilities 

of each individual for each cluster, shown in orange, green, and white, 

which is based on the retained discriminant functions. Although this plot is 

not the equivalent of the STRUCTURE ancestry coefficients, it can be 

interpreted as the proximity of individuals to each cluster. Site order and 

labelling corresponds to that in the STRUCTURE Q-matrix in Figure 4.4.    
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S4.5 Individual Q-matrices for 10 

conservative runs in STRUCTURE. 

Three clusters are shown in blue, 

red, and grey. Site order and 

labelling corresponds to that in the 

STRUCTURE Q-matrix in Figure 4.4. 
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S4.6 Individual Q-matrix for solely British samples using STRUCTURE for K = 2. Site 

order and labelling corresponds to that in the STRUCTURE Q-matrix in Figure 4.4, 

excluding continental sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S4.7 Individual Q-matrix for a subset of 

samples with potential native origins. Mean 

Q-matrices are calculated for nine runs, 

exlcuding one run as it was an outlier for 

log-likelihood values. Sites are ordered on an 

approximate geographical gradient by 

ordering sites following Birks’ (1989) 

isochrones. 
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Chapter 5 

GENE FLOW AT THE LEADING RANGE EDGE - THE LONG-TERM CONSEQUENCES OF ISOLATION 

IN EUROPEAN BEECH (FAGUS SYLVATICA L. KUHN) 

 

Authors: M. Jennifer Sjölund, Jose J. Moreno-Villena, & Alistair S. Jump 

 

5.1 Abstract 

Theory predicts a negative impact of isolation on populations due to a reduction in effective 

population size and gene flow, which exacerbate the effects of genetic drift. Beech in southern 

Sweden presents a gradient of isolation towards the leading range edge of the species. Using 

historical sources, we attained area- and distance-based measures of isolation. Long-term 

isolation generally had a negative impact on genetic diversity. Bayesian cluster analysis 

revealed that isolation was also acting as a barrier to gene flow in the north-eastern 

distribution of beech.  Results are discussed in light of palynological evidence of post-glacial 

migration of beech into Sweden. 

 

5.2 Introduction 

The isolation of predominantly outcrossing plant species can lead to a reduction in external 

gene flow and the loss of genetic diversity through inbreeding and genetic drift (Willi and 

Fischer 2005, Jump and Peñuelas 2006, Pickup and Young 2007). Isolation can be the result of 

contemporary anthropogenic impacts, such as deforestation, or colonisation dynamics that 

occur at the range edge of a species distribution (Hamrick 2004, Hampe and Petit 2005). 

Populations at the leading edge are important for species migration, population growth, and 

persistence, considering that current range shifts are driven by contemporary climate change 

(Walther et al. 2002, Parmesan and Yohe 2003).  
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Peripheral populations frequently display decreasing density as environmental conditions 

depart from the optimum (Brown 1984) and hence the range edge of a species often presents 

a matrix of increasingly naturally isolated populations the further they exist from the core 

species distribution. Fundamental processes shaping the genetic structure of leading edge 

populations include founder events, long distance dispersal, population growth and migration  

(Hampe and Petit 2005). Highly fragmented migration fronts consisting of isolated populations 

are shaped by founder effects, which can produce correlative reductions in allelic number and 

heterozygosity that can result in lower genetic diversity and genetic bottlenecks (Nei et al. 

1975, Young et al. 1996, Comps et al. 2001, Eckert et al. 2008). These processes generally have 

greater consequences in small, isolated populations, which are vulnerable to the stochastic 

process of genetic drift (Ellstrand and Elam 1993). The effects of genetic drift increase 

temporally if migration and hence gene flow is persistently reduced, increasing the risk of 

inbreeding depression within populations, in addition to creating highly differentiated outlier 

populations (Ellstrand and Elam 1993, Ouborg et al. 2006, Eckert et al. 2008). A reduction in 

gene flow and genetic diversity can compromise the adaptability of a species and the 

resilience of populations to environmental change (Jump and Peñuelas 2005, Willi and Fischer 

2005). Outcrossing trees may be disproportionately sensitive to a reduction in pollen-

mediated gene flow owing to their often high levels of heterozygosity that may mask 

deleterious recessive alleles, which if expressed can lead to a reduction in fitness (Bacles and 

Jump 2011). In contrast, a reduction in gene flow may be beneficial to marginal populations 

and promote the expansion of range edges, as it can prevent a drop in the adaptive potential 

of outlier populations due to swamping gene flow, defined as pollen or seed dispersal from 

maladapted individuals from the core range (Kirkpatrick and Barton 1997, Bridle and Vines 

2007, Savolainen et al. 2007). 
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Although isolation caused by the sequential colonisation of a habitat, and isolation caused by 

fragmentation, have certain fundamental processes which differ, such as the presence of 

colonisation dynamics in the former and lack of in the latter; natural isolation gradients found 

at the leading range edge of tree species can shed light on the potential long-term effects of 

contemporary anthropogenic impacts, such as deforestation. An estimated loss of 13 million 

hectares of forests per year occurred in the past decade (FRA 2010) leading to chronic 

population fragmentation and hence a reduction in their genetic connectivity. It can take 

several generations for the impacts of disturbance to manifest in the genetic structure, 

essentially delaying the effects of fragmentation (Mona et al. 2014). Organisms with long 

generation times, such as trees, may experience an effective lag to recent fragmentation 

events (Aguilar et al. 2008, Bacles and Jump 2011), which is reflected in the inconsistent 

empirical evidence existing for the effects of fragmentation on tree populations, coined the 

paradox of forest fragmentation genetics (Kramer et al. 2008).  

 

Tree species may have the potential to buffer the effects of genetic drift in fragmented 

populations through high gene flow rates via seed and pollen dispersal (Hamrick 2004, Sork 

and Smouse 2006). However, chronic fragmentation and persistent isolation can lead to 

reduction in gene flow, even in wind pollinated species. Studies that have found significant 

effects of isolation and small population size on the genetic variability of wind pollinated tree 

species include Jump and Peñuelas (2006), Leonardi et al.(2012) (Fagus sylvatica), Provan et al. 

(2008) (Juniperus communis), Aizawa et al. (2009) (Picea jezoensis), Liepelt et al.(2009) (Abies 

alba), Hensen et al. (2012)  (Polylepis incana), with effects on pollen-mediated gene flow 

found in Wang et al. (2010) (Pinus tabulaeformis), Vranckx et al. (2014) (Quercus robur). In 

contrast, various studies have found no effect of isolation, including Schuster and Mitton 

(2000) (Pinus flexilis), (Muir et al. 2004) (Quercus petraea), Bacles et al. (2005), Bacles et al. 

(2006) (Fraxinus excelsior), Buschbom et al. (2011) (Q. robur), Ortego et al. (2014) (Quercus 



113 
 

ilex). 

 

We used a gradient of increasingly isolated forest patches found at the northern range edge of 

the European beech, Fagus sylvatica, in Sweden to determine the impact of relatively long-

term isolation on genetic variation. As the isolation gradient coincides with the post-glacial 

migration front in beech, we measured historic gene flow and contemporary pollen-mediated 

dispersal rates to gain insight into the contributions of past colonisation dynamics and current 

isolation on the genetic structure of beech in Sweden. Beech is a predominantly outcrossing 

(Merzeau et al. 1994), wind-pollinated tree species, with seeds that are dispersed by gravity 

and animals  (Wagner et al. 2010, Packham et al. 2012). Generation times range from 150 to 

300 years, with flowering beginning at 40 to 60 years of age. Its 14 million ha range in Europe 

is predominantly climatically limited (Huntley et al. 1989), with the establishment of 

populations in Sweden further limited by anthropogenic impacts, such as the clearance of 

deciduous forests preferentially colonised by beech (Bradshaw and Lindbladh 2005) and 

intensive land use (Björkman 1996). The present-day distribution suggests a discontinuous 

migration front with outlying populations which promote colonisation (Björkman 1999). The 

Swedish distribution of beech during 1927-30 was extensively mapped by Lindquist (1931) 

using aerial reconnaissance techniques, charting stands of pure/beech-dominated forests, 

mixed stands with beech, and solitary trees. The map provided a comprehensive resource to 

derive both area- and distance-based indices of isolation, which have been shown to differ in 

their effectiveness as a measure of connectivity (Moilanen and Nieminen 2002).  

 

5.3 Materials and methods 

5.3.1 Sample collection, site selection and study sites 

Sites were selected based on their historic level of isolation, which was determined using a 

Lindquist’s (1931) map (Figure 5.1).  A total of 14 sites were sampled (Table 5.1) towards the 
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northern edge of the native range of beech in southern Sweden (Figure 5.2).  Within each site, 

a plot of 50 adults was established, sampling all adult trees within the plot. Samples were 

collected from a cohort of 50 seedlings that germinated during the year of sampling (2012), 

towards the centre of the plot of adults to improve the probability of capturing the mother 

tree for parentage analysis. As beech has no persistent seed bank (Packham et al. 2012), 

seedlings were the result of pollen-mediated gene flow during the previous year (2011), also a 

mast year. 

Fig. 5.1 Distribution of beech in Sweden taken from Lindquist (1931). Beech forest in Sweden mapped 

between 1927 to 1930 using aerial reconnaissance techniques. Dark red areas represent pure beech 

stands, or forests where beech was dominant, and hashed areas indicate the occurrence of scattered  

beech trees. Red open circles represent single beech trees.
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5.3.2 Measuring the multiple dimensions of isolation 

Lindquist’s (1931) map was geo-referenced using ArcMap 10 (Esri software) allowing us to 

measure the approximate area of beech present during the fertilisation of the sampled adult 

trees. To attain different measures of isolation, circular buffer zones with a radius of 5km, 

10km, and 15km were created around the group of samples at each site. Within each buffer 

zone, polygons were created for all beech stands on Lindquist’s (1931) map (see 

supplementary material S5.1 for examples). Mapped single beech trees were counted and 

given an arbitrary value of 78.54m2, an estimate of the circular crown area of a mature beech 

tree with a radius of 5m, which was added to the area of polygons, giving a total area of beech 

forest within each buffer zone. Area measurements in each of the exclusive buffer zones (i.e. 

centre to 5km, 5km to 10km, and 10km to 15km) were used to account for the additive effect 

of including each buffer zone.  

Fig. 5.2 Study sites on an 

interpolated map of the area of 

beech in 15km buffer zones. 

Labelled sampling sites are 

surrounded by 15km inclusive 

buffer boundaries, shown as light 

circles, with geo-referenced 

beech forest from Lindquist’s 

(1931) map in dark red. The map 

is overlaid on a basemap of water 

bodies that indicate the 

positioning of the two largest 

lakes, Vänern (west) and Vättern 

(east), near sites GUL, GAR, and 

OMB. 

 

 

 

 

 

The area of beech within the site boundary was also measured, as it is sometimes used as a 

proxy of population size (e.g. Jump and Peñuelas (2006),  Wang et al. (2010), and Hensen et al. 
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(2012)), although in practice determining a boundary for a forest can be difficult and 

dependant on tree density at the forest edge. Distance measures, commonly used to establish 

isolation levels (e.g. Jump and Peñuelas (2006) and Leonardi et al.  (2012)), provide a 

comparison with area-based measurements. Measurements of distance included the shortest 

distance from the centre of the sampled forest to the neighbouring forest boundary 

(abbreviated CB), and the shortest distance from the boundary of the sampled forest to the 

neighbouring forest boundary (abbreviated BB). We used two measurements, as their 

explanatory capacity was dependant on the heterogeneity in the distribution and structure of 

the surrounding forest patches. Both methods work best when working with small, scattered 

populations. However, larger forest patches with uneven, indistinct boundaries can result in 

dissimilar measurements for a given site. 

 

5.3.3 DNA isolation and microsatellite analysis 

Genomic DNA was extracted from dried leaf and cambium samples (Colpaert et al. 2005) dried 

in silica gel, using the BIOLINE Isolate Plant Kit and the QIAGEN 96 Dneasy Plant Kit according 

to manufacturer’s instructions. A total of 1376 individuals were genotyped at 12 polymorphic 

SSRs (fs1-03, fs1-15, fs3-04, fcm5 (Pastorelli et al. 2003), mfc7 (Tanaka et al. 1999), mfs11 

(Vornam et al. 2004), sfc0007-2, sfc0018, sfc0036,sfc1143, sfc1061, sfc1063 (Asuka et al. 

2004))  in three multiplexes as detailed in Sjölund and Jump (2015). Fragment analysis was 

performed on an ABI 3730 DNA Analyzer (Applied Biosystems) with scoring on GENEMARKER 

2.4.0 (SoftGenetics). 

 

Possible null alleles were identified in MICRO-CHECKER (Van Oosterhout et al. 2004) as loci 

showing significant deviations from Hardy-Weinberg equilibrium with excess homozygosity 

occurring in all allele size classes. 11 out of 14 sites had a significant proportion of null alleles 

in fcm5. Analyses presented exclude fcm5 and use a total of 11 loci. Two further loci, sfc0018 
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and fs3-04, were removed from parentage analysis, as CERVUS 3.0.6 (Kalinowski et al. 2007) 

detected possible null alleles close to 10% and the accuracy of parentage assignment is 

particularly sensitive to null alleles.  Gametic disequilibrium between loci pairs were tested 

using FSTAT 2.9.3.2 (Goudet 1995), which identifies significant associations by the random 

association of genotypes at pairs of loci 1,100 times, using a 5% nominal level after Bonferonni 

correction. The multilocus average error rates were 0.5% for the 11 loci used in population 

genetic structure analyses, and 0.6% for the 9 loci used in parentage analyses. The error rate 

per locus was calculated as the number of erroneously assigned loci over 80 repeated samples. 

 

5.3.4 Measuring and visualising genetic diversity and pollen dispersal 

We used inverse distance weight methods available on the spatial analyst interpolation tool on 

ARCGIS (ESRI) to map multilocus estimates of genetic diversity for the adults and seedlings 

using 11 loci, and the percentage of external pollen-mediated gene flow attained from 

parentage analysis using nine loci.   

 

Rarefied allelic richness (AR) and rarefied private allelic richness (AP) were obtained using ADZE 

1.0 (Szpiech et al. 2008). Private alleles were defined as those unique to a single site within 

either the adult or seedling cohort. Estimates of gene diversity corrected for samples size (HS) 

and the inbreeding coefficient (FIS) were obtained using SPAGEDI 1.4b (Hardy and Vekemans 

2002). The difference between adult and seedling cohorts for each diversity estimator was 

tested using the non-parametric Mann-Whitney U test. 

 

Parentage analysis was performed within each site to quantify the proportion of seedlings 

arising due to pollen-mediated gene flow from adult trees existing outside the sampled plot. 

Maximum-likelihood based methods were used to identify potential parents using CERVUS 

(Kalinowski et al. 2007). A combined exclusion probability of >99.99% for parent pairs was 
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obtained for nine loci. 

 

Three relative measures of external pollen-mediated gene flow were determined using a 

variation of the methods employed by Buschbom et al. (2011). Within each site, seedlings 

were primarily assigned a maternal tree at 90% confidence intervals (CI) using the LOD score, 

obtained from the natural log of the overall likelihood ratio. A maternal tree was assigned to a 

seedling if it had the highest LOD score at 90% CI. Seedlings with no reconstructed parents at 

90% CI were excluded from further analysis. Out of the seedlings which were assigned a 

maternal tree, a random subset of 15 seedlings (i.e. the lowest number of maternal trees 

assigned for any given site) was used for parentage analysis to standardise the sample size per 

site and eliminate potential bias. For the purpose of maternal tree assignment, seedlings were 

assumed to be primarily dispersed by gravity (Wagner et al. 2010), which is likely as the 

seedlings originated from a mast year, known to satiate primary predators, including animals 

involved in seed dispersal. 

 

Seedlings originating from external pollen dispersal were determined using three measures 

derived from parent pair analysis, paternity analysis, and simple counts of foreign alleles. For 

parent pair analysis, seedlings were considered a result of external pollen dispersal if analysis 

of parent pairs with unknown sexes yielded no local parent pair for the seedling at 95% CI. For 

paternity analysis, external pollen dispersal was considered when a local pollen donor could 

not be assigned at a 95% CI using known mothers. For the counts of foreign alleles, seedlings 

that had one or more foreign alleles were considered to be the result of external pollen 

dispersal. Critical LOD scores and Delta (the difference in LOD scores between the most likely 

candidate parent and the second most likely candidate parent) for parent pairs (unknown 

sexes) and paternity (known mothers) analyses were obtained through simulating 100,000 

offspring using the following simulation settings: all adult trees were included as candidate 
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parents and represented 100% of potential parents, the proportion of loci typed varied from 

0.998 to 1, the proportion of loci mistyped was set to 0.01. The number of foreign alleles was 

calculated for each seedling per site, and was defined as an allele present in the seedling 

cohort but not present in the adult cohort. The three measures are not considered absolute, 

but were instead relative estimates of parentage that were analysed separately to find 

congruent trends when tested against isolation levels. 

 

5.3.5 Modelling the effects of isolation on genetic diversity and pollen-mediated gene flow 

We performed a partial least squares regression (PLSR) using the R package PLSDEPOT 0.1.17 to 

compare the effects of isolation on each of the genetic diversity estimators and the measures 

of external pollen-mediated gene flow. PLSR is relatively robust to small sample sizes 

compared to multiple regression and has the added benefit of allowing easy visualisation of 

data consisting of correlated predictor variables (Carrascal et al. 2009). PLSR deals with the 

lack of independence among predictor variables by grouping them into one or more 

orthogonal, linear gradients of covariation whilst maximising the explained variance in the 

response variable (Palomino and Carrascal 2007).  

 

We tested three variables describing genetic diversity in adults and seedlings; allelic richness 

(AR); private allelic richness (AP); and gene diversity (HS). We did not perform tests on FIS as 

patterns are confounded by the significance of the FIS values.  For parentage analysis, we 

tested the three continuous measures of external gene flow, the number of seedlings with; no 

local parent pairs at 95% CI; no local fathers 95% CI; and foreign alleles (FA). The predictor 

variables used were the six measures of isolation derived from Lindquist’s (1931) map which 

included the four area-based (5km buffer, 10km buffer, 15km buffer, site boundary) and two 

distance-based (CB, BB) measurements. Latitude and longitude were included as predictors to 

account for geographical variation. Predictor variables were log(x+1) transformed.  
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Components which displayed significant correlations with the response variables and 

explained more than 10% of the original variation were tested using a cross-validation 

procedure splitting the data into 10 segments, using nine segments to predict observations in 

the remaining test segment. Two response variables, adult allelic richness (AR) and seedling 

gene diversity (HS) did not pass cross-validation. However, as the procedure is compromised 

by small datasets (N = 14), we still present the results from significant components of adult AR 

and seedling HS and interpret them together with maps of genetic diversity to identify clear 

trends. In models with two significant components, the secondary components were found to 

be redundant, revealing similar trends as the main component and are therefore not 

presented. We present weights of significant predictor variables, which indicate the trend and 

the importance of the relationship with the component.  

 

To explain the trends between isolation and genetic diversity, we performed preliminary 

analysis for recent bottlenecks in the adult and seedling cohort using 11 loci. We used the 

program BOTTLENECK 1.2.02 tested under the Two-phase model (TPM), allowing 95% single-step 

mutations and 5% multi-step mutations with a variance of 12 among multi-step mutations 

under 1000 simulation iterations, as recommended for microsatellites by Piry et al. (1999). 

Recent reduction in population effective sizes display a correlative reduction in allelic richness 

and heterozygosity (He, analogous to Nei’s (1987) gene diversity (HS)), where allelic richness is 

reduced faster than He leading to a larger heterozygosity than expected under mutation-drift 

equilibrium (Heq). Significance tests for He > Heq were performed using the Wilcoxon’s test. 

 

5.3.6 Identifying regional population structure at the leading edge 

individual-based assignment methods were performed on the adult cohort using GENELAND 

4.0.4 (Guillot et al. 2005) - a spatially explicit Bayesian clustering model. Seedlings were 
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excluded from cluster analysis as significant deviations from Hardy-Weinberg equilibrium were 

found in six out of the 14 sites, as well as significant isolation-by-distance in seedlings (slope 

0.02649, p < 0.01; data not shown) deviating from model assumptions for both clustering 

programs  (STRUCTURE methods described below). Although isolation-by-distance was 

present, it was weaker in adults (slope of 0.0124, p < 0.05; data not shown). Site GAR was 

removed from analysis as it was exclusively assigned to a cluster which displayed significant 

deviations from Hardy-Weinberg equilibrium and linkage disequilibrium (data not shown). 

Results presented exclude site GAR from analysis as there was a noticeable improvement in 

the precision of the number of clusters (K) between individual runs after its removal.  

 

Runs were performed in GENELAND for 500,000 Markov Chain Monte-Carlo (MCMC) iterations 

with a thinning of 500, and a burn-in of 200. To determine the initial number of K, the 

uncorrelated allele frequency model with a spatial prior was used with K varying from 1 to 13. 

Using a spatial prior allows the identification of genetic discontinuities associated with barriers 

to gene flow and potentially isolation (Francois & Durand 2010). Since primers for F. sylvatica 

are known to have null alleles (Chybicki and Burczyk 2009), the null allele model was 

implemented as recommended by Guillot et al. (2008). Runs were performed 10 times for 

each model to compare average posterior probabilities for each value of K. To check 

compliance of inferred clusters with modelling assumptions (Guillot et al. 2009), we 

performed tests for gametic disequilibrium within the three inferred clusters and genetic 

differentiation between pairs of clusters in FSTAT 2.9.3.2 (Goudet 1995). 

 

To refine cluster membership we used the correlated allele frequency model with K fixed at 

the value obtained from the uncorrelated allele frequency model. Setting K as a variable in the 

correlated model can lead to its overestimation (Guillot et al. 2014) as larger values are not 

sufficiently penalised, resulting in the inference of spurious sub-populations, which occurred in 
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preliminary tests (data not shown). The correlated model is better at detecting low 

differentiation from recent ecological events, although it is more sensitive to departures from 

model assumptions (Guillot 2012). Post-processing analysis was performed on the correlated 

allele model output to assess the level of admixture using 500,000 iterations with a burn-in of 

200. Admixture and substructure within subsets of the westerly and easterly clusters were 

analysed further using the same protocol as above. 

 

To validate our results, we analysed the data using a second Bayesian clustering program, 

STRUCTURE 2.3.4 (Pritchard et al. 2000), as recommended by Guillot et al. (2009). Repeats of 10 

runs were performed for each K value, set from 1 to 10, with each run consisting of 500,000 

MCMC iterations, with a burn-in period of 100,000, using the correlated allele frequency 

model (Falush et al. 2003) and the admixture ancestry model. Unlike GENELAND, georeferencing 

information cannot be implemented as a spatial prior in this program. We examined the mean 

log-likelihood values for each K to identify their convergence and the true number of clusters 

in the data. The value of K was validated using the method of Evanno et al. (2005) on 

STRUCTURE HARVESTER 0.6.94 (Earl and vonHoldt 2012), which measures ΔK, a statistic related to 

the second-order rate of change in the log probability of the data. Post-processing of 

Q-matrices was performed in CLUMPP 1.1.2 (Jakobsson and Rosenberg 2007) with graphics 

created in DISTRUCT 1.1 (Rosenberg 2004). 

 

5.4 Results 

5.4.1 Isolation indices 

The level of isolation obtained by area-based measurements ranged from 8396.37ha to 

32.94ha of surrounding forest. Distance measures of isolation ranged from 0.065km to 

50.429km (Table 5.1). Mapping the total area of beech within a 15km inclusive buffer zone 

around each site revealed a north easterly trend of increasing isolation (Figure 5.2), which 
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appeared to reflect the distribution in the original map (Figure 5.1).  There were significant 

correlations between variables within area and distance-based groups (P < 0.001), although 

variables from different groups did not display significant correlations with each other (data 

not shown). 

 

5.4.2 Estimates of genetic diversity and external pollen-mediated gene flow 

The 11 loci used in this study were found to be in gametic equilibrium considering a 5% 

nominal level after Bonferroni correction. The maximum number of alleles for all samples had 

a multilocus average of 13.36, ranging from 4 to 28 alleles per locus. Rarefied allelic richness 

(AR) in adults ranged from of 5.06 to 7.17, and 4.50 to 6.17 in seedlings, with adults having a 

significantly higher level of allelic richness compared to seedlings (U(12) = 147, Z = 2.25, 

P < 0.05) (Table 5.2). Adult rarefied private allelic richness (AP) ranged from 0.020.02 to 

0.390.22, with seedlings displaying levels ranging from 0.00 to 0.530.36.There were no 

significant differences between levels of private allelic richness in adults and seedlings 

(U(12) = 87, Z = -0.51, P = 0.63), although the highest levels of AP were consistently found in 

the most southerly site (HAC) in both adults and seedlings (Figure 5.3).  Gene diversity (HS) 

estimates ranged from 0.601 to 0.703 in adults, and in seedlings ranged from 0.534 to 0.688, 

with no significant differences found between adults and seedlings (U(12) = 126, Z = 1.28, 

P = 0.21). No evidence of homozygote excess was found in either cohort. However, 

significantly negative inbreeding coefficients (FIS) indicated a heterozygote excess in one site 

for the adult cohort and in six sites for the seedling cohort (Table 5.2, Figure 5.3), with 

significantly lower values of FIS in seedlings (U(12) = 154, Z = 2.57, P < 0.01). 

 

The variation in the sensitivity of the three methods used to quantify the proportion of 

seedlings resulting from pollen derived from adults outside the plot was reflected in the range 

of estimates attained per method (Figure 5.4). The largest estimate was found using parent 
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pair analysis, which identified a range of 13.3% to 86.7% of seedlings with no local parent pairs 

at 95% CI. Paternity analysis identified 0% to 46.7% of seedlings with no local father at 95% CI 

with the counts of seedlings with foreign alleles identifying from 0% to 26.7% of external 

dispersal events per site.  

Fig. 5.4 Percentage of seedlings resulting from external pollen dispersal. Interpolated maps of the three 

methods of parentage analysis using nine loci. Maps depict the percentage of seedlings (%) with no local 

parent pair at 95% CI (No LPP 95% CI), with no local father at 95% CI (No LF 95% CI) and with foreign 

alleles (FA). Percentages are calculated from a subset of 15 seedlings per site.  

5.4.3 PLSR models of genetic diversity and external pollen-mediated gene flow 

Significant PLSR components were found for rarefied allelic richness (AR) and gene diversity 

(HS) in adults and seedlings, as well as for all three variables used for parentage analysis (Table 

5.3). No significant relationships between components and response variables were found for 

private allelic richness (AP) in adults or seedlings (data not shown). It should be noted that 

significant correlations between buffer-based isolation measures and latitude were found 

(Pearson’s r and significances, 5km: r = -0.713, P < 0.01; 10km: r = -0.732, P < 0.01; 15km: r = -

0.733, P < 0.01; Site boundary: r = -0.520, P = 0.06; CB: r = 0.373, P = 0.19; BB: r = 0.424, P = 

0.130). No correlations were found between isolation indices and longitude (5km: r = -0.068, P 

= 0.82; 10km: r = -0.150, P = 0.60; 15km: r = -0.032, P = 0.91; Site boundary: r = 0.071, P = 0.81; 

CB: r = 0.219, P = 0.45; BB: r = 0.209, P = 0.47). There was no evidence for recent genetic 
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bottlenecks in any of the 14 sites in the adult or seedling cohort (data not shown). 

 

For genetic diversity estimators, the strongest relationship between predictor variables and 

response was found in seedling AR (R2 = 58.3%, P < 0.05), which was significantly negatively 

related to isolation. The remaining genetic diversity response variables in order of the original 

variance explained were seedling HS (R
2 = 33.8%, P < 0.05), seedling AR (R2 = 30.1%, P < 0.05), 

and adult HS (R
2 = 26.2%, P < 0.05). 

 

An increase in AR in adults was associated with southern sites, with a high area of surrounding 

beech forest (Table 5.3, Figure 5.3). Latitude explained the largest variation in adult AR (R2 = 

7.3%, P < 0.001), with site boundary explaining the most variation out of the area-based 

measurements (R2 = 5.8%, P < 0.001). There was an unexpected significant, positive 

relationship of increasing distance and increasing adult AR. However, this explained <0.1% of 

R2 (P < 0.05) and therefore was not considered biologically relevant. Seedling AR revealed a 

similar trend to that found in adults, although isolation was the primary driver of variation in 

the response, instead of latitude. Increased AR in seedlings was associated with a high area of 

surrounding forests and low distances between forests in southern latitudes. The area-based 

measure of beech in the 15km buffer zone was the primary contributor to variation in the 

response (R2 = 8.3%, P < 0.001) with a comparable amount of variance explained by the 

distance measure, boundary to boundary (BB) (R2 = 8.2%, P < 0.001). Latitude only explained 

0.4% of the total variation in the response (P < 0.001). 

 

Adult HS was primarily related to increased area of surrounding beech, specifically associated 

with the 15km buffer zone (R2 = 14.9%, P < 0.001). As with adult allelic richness, southern sites 

also displayed higher levels of HS. However, in the maps of genetic diversity (Figure 5.3), the 

trend for adult HS was not as clear as that displayed by adult AR. Seedling HS was the only 
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response significantly influenced by longitude, with HS increasing on a west to east gradient, 

explaining the largest amount of variation in the response (R2 = 14.7%, P < 0.001) (Table 5.3, 

Figure 5.3). The relationship with isolation was contradictory to that found in the other genetic 

diversity response variables, as higher levels of seedling HS were associated with a decrease in 

surrounding beech area (10km: R2 = 4.3%, P < 0.01) and lower distances between forests (CB: 

R2 = 2.7%, P < 0.05). 

Table 5.3 Significant PLSR models with predictor weights and their contributions to R
2
 

Only response variables which had significant relationships to components were included in the table. 

All predictor variables include four area-based measures (m
2
), the 5km, 10km, and 15km buffer zones, 

and site boundary; two distance-based measures (m), the centre to boundary (CB), and boundary to 

boundary (BB); and two geographic measures, latitude and longitude. Predictor weights and their 

contribution to R
2

 are given for those significantly related to the component. Model cross-validation 

outcomes are indicated as significant (SIG) or non-significant (NS). Significant P-values are indicated as, 

* P < 0.05, ** P < 0.01, *** P < 0.001. 

 

 Genetic diversity External pollen-mediated gene flow 

 
Adult   

AR 
Adult  

HS 
Seedling  

AR 
Seedling   

HS 
No LPP  
95% CI 

No LF  
95% CI 

FA 

Cross-validation NS SIG SIG NS SIG SIG SIG 

Response R
2
 30.1* 26.2* 58.3* 33.8* 58.2** 41.4* 29.4* 

R
2 

contributions        

5km 4.5  6.9  10.1 5.8 6.9 

10km 0.4  2.3 4.3 8.7 3.7 3.3 

15km 4.6 14.9 8.3  7.9 7.0 3.2 

Site boundary 5.8  5.7  5.7 5.4 4.4 

CB    2.7 10.2   

BB <0.1  8.2  9.0 4.7 3.2 

Latitude 7.3 7.0 0.4  6.5 9.1 7.8 

Longitude    14.7    

Predictor weights        

5km 0.386***  0.450***  0.417*** 0.375*** 0.482*** 

10km 0.113*  0.262** -0.358** 0.387*** 0.298*** 0.336*** 

15km 0.393** 0.755** 0.495***  0.367*** 0.412*** 0.329*** 

Site boundary 0.439***  0.410***  0.313** 0.363*** 0.388*** 

CB     0.282* -0.419*   

BB 0.004*  -0.162***  -0.394*** -0.337*** -0.331*** 

Latitude -0.492*** -0.518** -0.511***  -0.334*** -0.468*** -0.516*** 

Longitude    0.660***    



 

130 
 

Again, the varying sensitivities of the methods used to estimate the proportion of seedlings 

resulting from external pollen dispersal were reflected in the relationship between the main 

component and the response variables. The strongest relationship between component and 

response was found for the number of seedlings with no local parent pairs at 95% CI 

(R2 = 58.2%; P < 0.01), followed by the number of seedlings with no local fathers at 95% CI 

(R2 = 41.4%; P < 0.05), and the number of seedlings with foreign alleles (FA) (R2 = 29.4%; 

P < 0.05). The number of seedlings with no local parent pairs at 95% CI increased in sites with 

lower distances between forests, higher areas of surrounding beech, following a north to 

south gradient. The contribution of significant isolation variables and geographic variables 

were similar, with distance-based variable, BB, explaining 10.2% (P < 0.001) of the variation 

within the response, the area of beech within the 5km buffer zone explaining 10.1% 

(P < 0.001), and latitude explaining 9.0% (P < 0.001). The number of seedlings with no local 

fathers at 95% CI and the number of seedlings with foreign alleles, revealed a similar pattern 

to that found using parent pair analysis (No LPP 95% CI), except that latitude was the primary 

contributor to R2 in the two former methods (No LF 95% CI: R2 = 9.1%, P < 0.001; FA: R2 = 7.8%, 

P < 0.001), although isolation variables were still important contributors to variation in the 

response (Table 5.3).  

 

When considering all models for both genetic diversity and external pollen-mediated gene 

flow, area-based measurements significantly contributed to the explanation of the response 

for all presented response variables, whereas distance-based measures failed to explain 

significant variation in the response in one model, adult HS. Concerning area-based measures, 

significant contributions were made by the addition of each buffer zone in all response 

variables except for HS, which in adults only related to the 15km buffer, and in seedlings, the 

10km buffer. The boundary-based distance measure, BB, which was significant in most 

models, did not significantly explain variation in adult or seedling HS. 
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5.4.4 Regional genetic structure at the leading range edge 

Three clusters were identified using individual-based assignment methods in 8 out of 10 runs 

using the uncorrelated model, with consistent results in 9 out of 10 runs with the subsequent 

correlated model. The spatially explicit models in GENELAND presented the highest average 

posterior probabilities for the clusters that extended over three regions; 1) the west; 2) the 

south-east; and, 3) the north-east (Figure 5.5; see supplementary material S5.2 for maps of 

cluster posterior probabilities), reflecting the north-easterly gradient of increasing isolation 

(Figure 5.2). Admixture analysis in the spatially explicit program, GENELAND, revealed distinct 

clusters with low admixture (Figure 5.6). Further substructuring was found in the 

south-eastern and north-eastern cluster, 2 and 3, when analysed separately, with each of the 

four populations clustered individually with relatively low admixture levels within each (Figure 

5.5 and 5.7; see supplementary material S5.3 for maps of cluster posterior probabilities). No 

further substructuring was found in the western cluster 1 (data not shown). All inferred 

clusters using 13 sites were found to be significantly differentiated and in gametic equilibrium 

considering a 5% nominal level after Bonferroni correction, except for site OMB, which 

showed significant disequilibrium at one pair of loci.  

Fig. 5.5 Inference of genetic clusters in 

the adult cohort over 13 sites. Sites 

are displayed as small black circles, 

with large open circles indicating the 

grouping of the three inferred 

population clusters; the western 

cluster 1 (grey); the south eastern 

cluster 2 (green); and the north 

eastern cluster 3 (orange). The dotted 

lines indicate further substructuring 

found in further analysis of the subset 

of sites in cluster 2 and 3. 11 loci were 

used in analysis. 
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Analysis with STRUCTURE was concurrent with GENELAND and indicated a presence of 3 clusters 

in the data (see supplementary material S5.4 for the log probability of the data and ΔK). The 

levels of admixture were higher in the non-spatial STRUCTURE model compared to the spatially 

explicit GENELAND model, with a trend of decreasing admixture as isolation (i.e. area of beech 

forest in the 15km buffer zone) increased (Figure 5.8).  

Fig. 5.6 Inference of posterior proportions of admixture from GENELAND. Spatial coordinates represent a 

west to east gradient. Colours of clusters are equivalent to those presented in Figure 5.5 with the 

western cluster 1 (grey); the south eastern cluster 2 (green); and the north eastern cluster 3 (orange). 

Analysis was conducted on the run with the highest posterior probability. 

 

Fig. 5.7 Posterior proportions of 

admixture in south-eastern (2) and north-

eastern (3) clusters from GENELAND. Spatial 

coordinates represent a west to east 

gradient. Colours of clusters are TRO 

(white) and HOR (yellow) which comprise 

the north eastern cluster (2), and MAT 

(orange) and OMB (green) comprising the 

south eastern cluster (3). Analysis was 

conducted on the run with the highest 

posterior probability.  

 

Fig. 5.8 Individual assignment to each cluster using STRUCTURE. The Q-matrix presents the average 

assignment probabilities over 10 consecutive runs for K = 3. Site codes are indicated below, and are 

ordered by increasing isolation from left to right obtained from estimates for the area of beech (ha) in 

the 15km inclusive buffer zone. A total of 11 loci were used in analysis. 
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5.5 Discussion 

5.5.1 Founder events and isolation shape genetic diversity  

We found evidence of reduced rarefied allelic richness (AR) in both adults and seedlings in 

isolated sites, with latitude also significantly explaining a large proportion of variation in adults 

(Table 5.3). Adult gene diversity (HS) revealed a similar trend to that found in allelic richness. 

The observed pattern in genetic diversity also resembled the southern richness and northern 

purity paradigm, coined by Hewitt (1999), and was based on the observed reduction in 

population size through founder events at the leading edge, away from refugia, resulting in a 

loss of alleles through genetic drift (Nei et al. 1975, Lande 1988, Excoffier et al. 2009). Vucetich 

and Waite (2003) predicted that this trend was also caused by low migration between isolated 

populations. Although beech in Sweden is far from its post glacial refugia, southern 

populations are in proximity to the entry point in Sweden (Bradshaw and Lindbladh 2005), 

therefore displaying a similar movement away from a source population as post-glacial 

migration progressed. As rare alleles are at risk of disappearing first, a reduction in population 

size can affect AR disproportionally more than HS (Piry et al. 1999, Comps et al. 2001, Jump and 

Peñuelas 2006). This is reflected in both adults and seedlings, which display a higher amount 

of variation explained by predictor variables for AR compared to HS. Additionally, the most 

southerly site, HAC, located near the entry point of beech into Sweden displayed the highest 

level of rarefied private allelic richness (AP) in adults and seedlings (Figure 5.3), although PLSR 

models for AP were not significant.  

 

The interacting effects of latitude and isolation on AR in adults suggest that marginal, isolated 

populations are subject to strong genetic drift, possibly due to the combination of founder 

events and persistent small population sizes that lead to the loss of alleles over time. The 

relatively weaker effect of isolation on AR in adults, compared to latitude, may also be 

influenced by an outlier, site OMB, which displayed relatively high levels of allelic richness 
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(Figure 5.3). Although OMB is not the most northerly site, it is the most isolated in terms of 

surrounding area and the distance to the nearest neighbouring forest (Table 5.1), influencing 

the trend found with isolation indices. Seedling AR was strongly affected by isolation, with very 

little contribution of latitude. This stronger negative impact of isolation on seedlings compared 

to adults (Table 5.2, Figure 5.3) reflects temporal effects of genetic drift on small populations, 

which intensify over time (Ellstrand and Elam 1993, Aguilar et al. 2008). This is in agreement 

with the observed adult to seedling relative reduction of AR in site OMB, compared to 

remaining sites (Figure 5.3). As the lifespan of beech is between 150 to 300 years, the oldest 

populations, having established approximately at 3000 BP (Bradshaw and Lindbladh 2005), 

have experienced at least 10 to 20 generations (not considering overlapping generations). This 

is just within the lower bounds of the number of generations determined by simulations, for 

isolation to affect genetic diversity at the leading range edge, with more than 100 generations 

being the optimal (Mona et al. 2014), suggesting a relatively strong effect of isolation on 

genetic diversity in these populations. 

 

The observed reduction in AR and HS in the adult cohort with isolation and latitude suggest the 

existence of founder effects (Nei 1978, Ellstrand and Elam 1993, Young et al. 1996). However, 

the founder effects were not associated with recent genetic bottlenecks. Aizawa et al. (2009) 

similarly found no bottlenecks in isolated, range edge populations of Pinus jezoensis in Japan, 

which also displayed the low levels of allelic richness associated with isolation. The authors 

suggest that it was possible that populations recovered from past bottlenecks, aided by the 

high mutation rate in microsatellites promptly returning the population to mutation-drift 

equilibrium (Cornuet and Luikart 1996). Wind pollinated trees, such as beech, typically have 

delayed reproduction, which can dampen founder effects and may prevent bottlenecks, as 

several migrants can colonise the site before reproduction begins (Austerlitz et al. 2000, 

Widmer and Lexer 2001).  
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The trend of increased HS in seedlings in easterly and isolated sites might have arisen due to 

rare gene flow events between genetically divergent populations, as further clusters and 

hence population substructure was found in easterly sites (Figure 5.5 and 5.7). This is 

supported by the negative FIS values, which are significantly lower in seedlings compared to 

adults (Table 5.2) with more sites in seedlings displaying a significant heterozygote excess 

(Figure 5.3). Genetic bottlenecks have been attributed to similar trends indicating negative 

correlations between AR and HS found at a regional level for beech (Comps et al. 2001). 

However, we did not find any significant negative correlations between AR and HS in seedlings 

(data not shown). There is a possibility that this trend is driven by complex colonisation 

dynamics as it reflects the easterly spread of beech after 2000 BP (Bradshaw and Lindbladh 

2005). However, it may not be the sole driver, as there were no significant correlations 

between longitude and the isolation indices (data not shown), suggesting that isolation may be 

independently contributing to the variation. Interestingly, the Swedish population in Comps et 

al. (2001), contrasted with the majority of northern populations in their study as it displayed a 

higher than average allelic richness and lower gene diversity with no significant evidence of a 

bottleneck. Recent palynological evidence suggests the establishment of a small outlying 

population of beech and other temperate tree species in Denmark as early as 10,000 BP 

formed as a result of long distance dispersal events ahead of the main migration front 

(Overballe-Petersen et al. 2013) that might have contributed to the genetic diversity of 

populations in Scandinavia, potentially preventing strong bottlenecks. 

 

 5.5.2 Post-glacial colonisation is reflected in regional genetic structure 

The large western cluster 1 identified by GENELAND in the adult cohort (Figure 5.5), excluding 

site GAR, is concurrent with palynological evidence on the initial colonisation of beech in 

Sweden around 3000 BP (Bradshaw and Lindbladh 2005). Bradshaw and Lindbladh (2005) 
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found that regional palynological data, using a threshold of 0.2% of total tree pollen, indicated 

an initial expansion resulting in a westerly distribution in southern Sweden at 3000 BP, that 

subsequently expanded eastward with the establishment of outlier populations in areas 

further north than the current range. The distribution at 1000 BP reflects the contemporary 

range of beech in Sweden (Björkman 1996). Bradshaw and Lindbladh (2005) describe the 

migration front as patchy and dynamic due to the colonisation of an already fragmented, 

cultural landscape where beech preferentially colonised areas dominated by deciduous forest, 

a habitat that suffered a decline after 2000 BP. Keller (2010) found that genetic clusters 

reflected similar post-glacial colonisation patterns in populations of Populus balsamifera in 

North America. A large central cluster was identified near the primary refuge, and hence the 

source of the population during post-glacial migration. North-easterly populations displayed 

higher levels of divergence, lower genetic diversity, and received migrants from the central 

population.  

 

Further population substructure observed for clusters 2 and 3 (Figure 5.5 and 5.7) are likely to 

have arisen from genetic drift in marginal populations (Excoffier et al. 2009) created by the 

patchy north-eastward colonisation front after the initial south-westerly expansion (Bradshaw 

and Lindbladh 2005). Gradual regional changes in allelic frequencies caused by isolation-by-

distance can lead to the false assignment of clusters using GENELAND. Although we found 

isolation-by-distance in the adult cohort, it appears that paired sites for each geographic 

distance displayed a greater genetic distance between them, if sites originated from different, 

instead of the same cluster, suggesting the existence of genuine barriers to gene flow (McRae 

et al. 2005, Rosenberg et al. 2005, Fontaine et al. 2007) (see supplementary material S5.5 for 

plot of geographic and genetic distance within and between clusters). Clustering results using 

STRUCTURE revealed a trend of increased admixture in south-westerly sites with increased 

homogeneity among individuals between north-eastern clusters (Figure 5.8). A similar trend 
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has been found in leading-edge populations of Acer campestre in Poland, which also display 

further genetic structuring and less admixture with latitude (Chybicki et al. 2014). 

 

The only discernible geographical barriers which have the potential to reduce gene flow are 

the two large lakes, Vänern and Vättern, as the topography of southern Sweden is relatively 

flat (Figure 5.2). However, Vättern is the only lake which is directly situated between any two 

sites, specifically sites GAR and OMB, and as GENELAND analysis did not include GAR, it is 

unlikely that the major geographical entities acted as barriers shaping the structure found 

between the 13 remaining sites. Therefore, isolation is likely to be acting as a barrier to gene 

flow at the range edge in Sweden, which is supported by the reduction in external pollen-

mediated gene flow with increased isolation (Figure 5.4). As pollen grains in beech are 

relatively large (Andrew 1984) and dispersal distances limited (Oddou-Muratorio et al. 2010, 

Poska and Pidek 2010, Soepboer et al. 2010), isolation could restrict gene flow more than 

expected for a wind-pollinated tree. Negative impacts of fragmentation have been found in 

the southern range edge of beech (Jump and Peñuelas 2006).  It should be noted that 

Lindquist’s (1931) map reveals a general trend of smaller forest patches towards the north-

east which is not fully captured by our isolation variables as it does not reflect the matrix of 

forest patches between sites. 

 

In terms of adaptation and expansion at the range edge (Kirkpatrick and Barton 1997, Bridle 

and Vines 2007), the presence of barriers to gene flow in the north-east implies that  

swamping gene flow may not be a major factor limiting adaptation and hence range 

expansion. This is in agreement with palynological  and model predictions for beech range 

expansion (Kramer et al. 2010). Local-scale palynological evidence for one of the isolated 

stands in used our study, MAT, revealed a steady increase in pollen influx values for beech 

from the time of establishment, suggesting the continued expansion of the stand which was 
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thought to be primarily limited by the lack of surrounding suitable habitat due to human 

activity (Björkman 1996). However, migration of maladapted genotypes into high latitude, 

isolated populations, situated within the westerly cluster could lead to swamping gene flow, 

preventing northwards expansion in this region. 

 

5.5.3 Pollen dispersal and its relation to forest density 

The directional relationships observed for pollen dispersal with isolation and latitude were 

consistent between models, even though there were differences in the amount of variation 

explained in each of the response variables. As our study plot exists within a forest fragment, 

measures of external-mediated pollen dispersal reflect the density of the pollen cloud 

produced by surrounding forest as opposed to strict long-distance pollen flow. As pollen 

production is related to the number of reproductive trees, it is likely that pollen production is 

higher in continuous populations compared to isolated population. Therefore, the probability 

of fertilisation by pollen grains from external trees decreases with isolation. This is in 

agreement with previous studies that have found an increase in pollen dispersal with tree 

density (Wang et al. 2010, Vranckx et al. 2014). Although the isolation indices used in our 

study do not incorporate density in terms of tree numbers, the buffer measures do 

incorporate the density of forest fragments. The reduction in allelic richness between adult 

and seedling cohorts suggests that the pollen donor diversity is not large enough to safeguard 

against the effects of genetic drift under small population sizes (Table 5.2, Figure 5.3). As 

seedlings were the result of pollen dispersal during a mast year, we would expect a stronger 

negative impact of isolation on pollen dispersal during non-mast years as flowering and 

pollination success are significantly lower in non-mast years (Lindquist 1931, Nilsson and 

Wästljung 1987, Hilton and Packham 1997).  
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5.5.4 Effective measurements of isolation 

A combination of isolation variables was effective at explaining variation in genetic diversity 

and pollen dispersal. Area-based measurements using buffer zones present a standardised 

measure for the surrounding area of forest. We found a general additive effect of increasing 

buffer zone size, implying a sensitivity to buffer size and also the importance of local and 

regional isolation levels on genetic diversity and pollen dispersal of beech. Buffer-based 

measurements were particularly effective predictor variables in our study, as at least one 

buffer zone was significant in all presented PLSR models. Site boundary did not explain any 

variance in gene diversity (HS) and is compromised by its definition, as mapped boundaries 

may not be biologically relevant, especially for wind-pollinated tree species. This has 

implications for the definition of population size, as site boundaries may not be biologically 

relevant in structurally complex range edges with high variability in the spatial structuring of 

forest fragments. The boundary to boundary (BB) distance measure did not explain any 

variation in HS either. The centre to boundary (CB) measure was the most ineffective measure 

of isolation, although CB did explain variation in seedling HS that was not described by BB.  

 

In a meta-analysis by Moilanen and Nieminen (2002), buffer-based measurements were found 

to be superior to distance-based measurements in defining isolation. However, buffer-based 

measures were also sensitive to the size of the buffer used and Moilanen and Nieminen (2002) 

concluded that a measure of site boundary combined with distance to all source populations 

was the best measure of isolation. Measuring distances to all source populations would be 

very labour intensive for a high gene flow species, such as beech, which, in Sweden, also 

displays a heterogeneous species distribution structure with thousands of forest fragments 

(Figure 5.1). Therefore, buffer-based measurements provide a relatively easy and quick way of 

measuring isolation that, in our study, has performed better than commonly used site 

boundary and distance measures. 
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5.6 Conclusion 

The interaction between colonisation dynamics and isolation at the leading range edge of 

beech in Sweden has created gradients of historical and contemporary gene flow within the 

species. Isolation has a negative impact on allelic richness, which is exacerbated over time, 

further affecting progeny. In adult populations, gene diversity follows a similar trend to allelic 

richness. The current genetic structure of beech in the south-west consolidates palynological 

evidence describing post-glacial colonisation routes into Sweden. North-eastern populations 

appear to be shaped by barriers to gene flow imposed by isolation, as opposed to geographical 

features. This study highlights the long-term cumulative effects of isolation on beech forests 

and its negative impacts on genetic diversity and gene flow, which can lead to inbreeding 

depression and higher extinction risk as genetic variability is reduced. However, negative 

consequences are balanced by the potential for adaptation at the range edge that may not be 

an issue for north-eastern populations, but may limit northward range expansion of western 

populations.  
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5.9 Supplementary material 

S5.1 Examples of buffer zones. Sites, from left to right with decreasing beech area (ha), are SOD, GUL, 

STO, and OMB. 

 

S5.2 Maps of posterior probability of cluster membership for each population in GENELAND. Contour 

lines represent posterior probabilities of belonging to cluster 1, 2, and 3, in order from left to right. 

  

S5.3 Maps of posterior 

probability of cluster 

membership for the subset 

of clusters 2 and 3 in 

GENELAND. The subset 

includes sites TRO and HOR 

from the north-eastern 

cluster (2), and MAT and 

OMB from the south-

eastern cluster (3). Contour 

lines represent posterior 

probabilities of belonging to 

the four clusters.  
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S5.4 Identifying the number of K in 

the data from analysis in STRUCTURE. 

We assessed the convergence of 

mean values for the log probability 

of the data (Ln P(D)) and used the 

Evanno et al. (2005) method to 

determine the number of clusters. 

Data consists of the adult cohort at 

13 sites. 

 

 

 

 

 

S5.5 The relationship between 

geographic and genetic distance 

partitioned into comparisons within 

and between GENELAND clusters. Grey 

circles are comparisons of sites within 

the same cluster. Open symbols 

represent comparison of sites in 

different clusters, i.e. between cluster 1 

and 2 (open circles), 1 and 3 (open 

triangles), and 2 and 3 (open squares). 
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Chapter 6 

GENERAL DISCUSSION 

 

6.1 Research purpose 

Forests in Europe have long been influenced by humans through silvicultural management, the 

harvesting of timber, the grazing of animals, the planting of stands, and the clearing of forests 

for land-use change. These practises shape forest populations at local spatial scales through 

their influence on regeneration and establishment, and at regional spatial scales through their 

influence on migration and colonisation. By examining forests that have been heavily managed 

and their natural counterparts, we can uncover factors that limit gene flow and impact genetic 

diversity. The research presented in this thesis focused on the ecologically and economically 

important tree species, the European beech, as its extensive range exhibits a mosaic of forests, 

ranging from natural to heavily managed stands. Several spatial scales are explored from 

fine-scale effects on genetic variation, to larger, regional patterns in genetic variation. 

 

6.2 Altering regeneration and establishment at the local scale 

Many European forests have experienced historic traditional management practices, such as 

coppicing and pollarding, which alter the fundamental mechanism of regeneration within a 

stand, reduce the rate of establishment through grazing (Rozas 2004), and change canopy-

cover dynamics (Coppini and Hermanin 2007). Converting from a primarily naturally 

regenerated system to one which regenerates primarily vegetatively is likely to have 

consequences for the distribution of genetic diversity, the physiology of trees, the associated 

species diversity, the resulting habitat structure, and ecosystem functioning, which is 

intensified over time. 
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The review in chapter 2 highlighted the effects of exploiting vegetative regeneration for 

several decades, identifying some significant negative consequences of subsequently halting 

management, such as an increased vulnerability of neglected trees to climatic stress (Corcuera 

et al. 2006, Bobich et al. 2010, Di Filippo et al. 2010), age-related deterioration (Panaïotis et al. 

1997), and mechanical failure (Fay 2002, Read et al. 2010), which together with a lack in 

establishment (Ratcliffe 1992, Rozas 2004) may compromise forest persistence. The review 

presents the first comprehensive study of the literature concerning traditional management 

and its effect on the managed trees and their associated species. Its outcomes can be applied 

to management using the information given under section 2.6 Recommendations for 

management and future research, providing a resource of research-based recommendations 

for forest managers, whether it is for timber or conservation management of traditionally 

managed forest. 

 

It can be argued that the genetic consequences of traditional management is greater for 

species that primarily regenerate naturally, such as beech (Coppini and Hermanin 2007). The 

review in chapter 2 highlighted the state of knowledge concerning the genetic consequences 

of traditional management. Only a handful of studies explored the genetic consequences of 

coppicing on tree species (Aravanopoulos et al. 2001, Cottrell et al. 2003, Mattioni et al. 2008, 

Valbuena-Carabaña et al. 2008, Dostálek et al. 2011), with only two considering these effects 

on beech (Paffetti et al. 2012, Piotti et al. 2012). The review highlighted the importance of 

species-specific management, and identified a lack in knowledge on the effects of traditional 

management on genetic variation in beech, one of the most important tree species in Europe. 

 

Chapter 3 presents genetic research to fill this gap in knowledge, and is unique amongst other 

genetic studies on traditionally coppiced beech forest, in its use of pairwise comparisons with 

nearby stands, maintained primarily through natural regeneration, to isolate the impacts of 
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coppice management on genetic variation. This is the most in-depth study to date on the 

genetic effects of coppicing in a temperate tree species, employing a high number of 

molecular markers, samples, and replicates of paired sites. An exception is the study of 

Mattioni et al.(2008), who use more paired plots but only sample 26 trees within each, 

therefore reducing the power to detect fine-scale spatial genetic structure.  

 

The research in chapter 3 identified differences in the fine-scale spatial genetic structure 

between paired sites, employing 112 to 170 individuals that were genotyped at 11 loci. A high 

number of samples and markers improved the resolution of our study, allowing the detection 

of increased structure extending 10m - 20m further in coppiced stands, compared to natural 

stands, despite no difference in the genetic diversity between paired plots. While relatively 

small in their magnitude, the trend was consistently found over all sites, which occur under 

diverse abiotic conditions and have different population histories, suggesting that prolonged 

management had changed genetic structuring in coppiced forest.  

 

Using more than three paired site replicates occurring in neighbouring regions in the 

experiment in chapter 3 may have been more informative and would have allowed us to see if 

the change in genetic structure remained consistent. However, the cost-benefit trade-off 

between having an in-depth sampling scheme and having more sites was a barrier to the 

inclusion of more study sites. An average of more than 150 samples has been recommended 

to detect fine-scale spatial genetic structure in high gene flow species, such as wind-pollinated 

trees (Cavers et al. 2005, Jump and Peñuelas 2007). Previous research has found that 

genotyping up to 200 individuals in 6 SSR loci may not provide adequate power to detect 

fine-scale genetic structure (Jump and Peñuelas 2007). Previous research was used to optimise 

the number of samples and loci employed in chapter 3, allowing the detection of subtle 

changes in spatial genetic structure between three paired sites. 
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6.3 Migration and colonisation shape regional genetic variation 

Consolidating the genetic evidence derived from this thesis, with paleoecological evidence (Hu 

et al. 2008) has developed our understanding of the dynamics of beech migration and 

colonisation during the Holocene. The regional-scale work in chapters 3 and 4 present the 

most comprehensive research of beech population genetics in both countries. Both studies 

employ the use of historical sources (e.g. sources from Rackham (1980) for Great Britain, and 

Lindquist (1931) for Sweden) which, together with paleoecological data, add a novel 

dimension to genetic research. 

 

Artificial long-distance dispersal has led to the homogenisation of genetic variation in Britain, 

creating a population range typified by high gene flow and little spatial genetic structuring 

(chapter 4). However, cryptic signals driven by natural migration, such as isolation-by-distance 

and gradients of haplotype diversity, remain in the putative native range. The palynological 

evidence of the Holocene post-glacial spread of beech in Britain (Birks 1989) can be described 

as having identified primeval beech forests, whilst the current research on the genetic 

component suggests that there exists descendants of primeval forests, thereby reconciling a 

temporal gap in the history of beech in Great Britain. 

 

The research in chapter 4 prompts a change in the view of beech as native to a fraction of 

Great Britain, echoing a previous call to move away from the restrictive and ecologically 

unfounded labelling of native woodland in Britain (Brown 1997). Results revealed that Britain’s 

forests had been impacted so drastically by humans that there exists little basis to assign a 

native range for beech in the country, therefore agreeing with Preston et al. (2002) in 

assigning beech as native throughout. This finding frames beech in Britain as an ideal case 

study to examine potential impacts of translocations to shed light on the implications of 
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assisted migrations, a practice which has the potential to mitigate some climate change 

impacts on biodiversity, but that has been hindered by uncertainty surrounding the potential 

effects of introductions on local biodiversity (Ricciardi and Simberloff 2009, Vitt et al. 2010, 

Hewitt et al. 2011). The introduction of beech ahead of its leading range in Britain bears some 

similarities to assisted migrations, albeit far less regulated. Monitoring naturalised populations 

may provide information on the effects of translocated beech on associated species diversity 

and the long-term consequences of assisted migrations. The existing literature on Britain’s 

northern beech forests (Watt 1931a, b) may already yield insights into potential consequences 

of assisted migrations through examining the literature from an alternative standpoint. 

 

The distribution of beech in Sweden contrasts that in Britain, as the range is primarily shaped 

by natural processes, such as migration, colonisation, and abiotic conditions (Lindquist 1931). 

Chapter 5 presents the first study in beech exploring the leading range edge of the species. It 

highlights issues and provides solutions to measuring isolation of wind-pollinated tree species, 

where visible boundaries between forest patches may not translate to biological boundaries. 

Founder effects and prolonged isolation had a negative impact on genetic diversity and led to 

increased genetic differentiation between forests, which is congruent with theoretical 

predictions (Ellstrand and Elam 1993, Ouborg et al. 2006, Eckert et al. 2008).  

 

The research in chapter 5 benefitted from access to a key piece of historical work, Lindquist’s 

(1931) map of beech distribution in Sweden, which allows us to estimate the surrounding area 

of beech forest at each site. Regional maps with this level of detail are understandably 

uncommon because of the sheer effort involved in their creation and the suitability of certain 

species to mapping techniques. For example, using aerial reconnaissance techniques, beech in 

Sweden could only be mapped during a short window in May when its unique foliage colour 

and time of budburst allowed it to be distinguished from other co-occurring tree species 
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(Lindquist 1931) . Nevertheless, future studies on isolation may benefit from employing buffer 

based measures that can be attained for a fraction of the surrounding area without the need 

for a regional scale map. 

 

The pattern of genetic clustering in Swedish beech populations reflected palynological 

patterns revealing its colonisation route into the country during the Holocene (Bradshaw and 

Lindbladh 2005). Eastern, isolated sites were more genetically differentiated than western 

sites. This pattern was thought to be driven primarily by past-colonisation dynamics coupled 

with the long-term effects of isolation. The isolation indices used in chapter 5 may have been 

improved by including a measurement of the amount of beech forests between sites, as the 

regional distribution appears to follow a south-west to north-east isolation gradient that was 

not fully captured by the isolation measurements used. This could be attained through 

pairwise measurements of beech forest patches between sites or the use of resistance 

matrices (McRae 2006). 

 

Isolation can occur as a result of migration and colonisation of sub-optimal habitat, or as a 

consequence of anthropogenic habitat fragmentation through deforestation. The reduction in 

genetic diversity and increased genetic differentiation found in isolated populations in 

Sweden, can lend insights into the long-term consequences of anthropogenic forest 

fragmentation. It should be noted that fragmented populations situated in the core range lack 

the relatively strong influence of colonisation dynamics, compared to range-edge populations. 

However, founder events during colonisation can have some similar consequences on genetic 

variation to that of genetic bottlenecks created by a reduction in population size as a result of 

fragmentation, such as the loss of rare alleles, the reduction in genetic diversity, and the 

reduction in gene flow between patches (Young et al. 1996). The effects of relatively recent 

forest fragmentation on genetic diversity may experience a functional lag due to the long 
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generation time of trees (Bacles and Jump 2011). Improving the measurements of isolation 

used in fragmentation studies by including a variety of informative indices may improve 

accuracy and hence analysis power, allowing the detection of small, but significant changes in 

the genetic diversity of populations.  

 

6.4 Future research and conclusions 

The extensive data sets collected for this thesis provide a valuable resource for several 

avenues of future research. Results from research in chapter 3 on coppiced forests can provide 

information that may improve the parameterisation of population models, which aim to 

determine genetic variation of future beech populations (Kramer et al. 2008, Kramer et al. 

2010). Studies using simulations can be used to provide greater detail of past processes that 

have shaped populations, and also provide future scenarios of population dynamics. Scenarios 

of alternative colonisation histories can be tested against each other using modelling methods, 

such as approximate Bayesian computation (ABC) (Cornuet et al. 2008). Next generation 

sequencing can be used to generate the summary statistics used for ABC analysis. Cost 

effective forms of next generation sequencing, such as RADseq, allow the study of genomics at 

a population level (Davey and Blaxter 2010). These methods can yield thousands of potential 

markers, overcoming issues of low marker numbers experienced in past studies, such as those 

exploring the genetic effects of coppicing, as discussed in section 2.6.1. 

 

The movement of beech through Europe has been largely driven by natural processes. 

However, long-standing human impacts have changed local and regional patterns of genetic 

variation. Widespread traditional management, which promotes vegetative regeneration and 

reduces establishment, has the potential to fundamentally alter familial neighbourhood sizes 

in stands. Colonisation dynamics have shaped the leading range-edge of the species, creating 
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distinct patterns of genetic clusters, with founder effects and genetic drift in isolated 

populations influencing their genetic diversity and differentiation. In Great Britain, the genetic 

signal created by the natural migration of the species has been concealed by the artificial 

dispersal of the species within and outside of its historic natural range. Humans have played 

an integral part in shaping contemporary forests and examining both natural and 

anthropogenic processes can shed light on novel strategies that can be used to increase forest 

persistence in the future. 
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