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 20 

Abstract 21 

Probabilistic maturation reaction norms (PMRNs) are an important tool for studying 22 

fisheries-induced evolution and environmental effects on life history.  To date there 23 

has been no way to fit a PMRN to population-level fisheries data; instead individual-24 

level data must be used.  This limits the stocks and time periods that can be studied. 25 

 26 

We introduce a Bayesian method for fitting PMRNs to population-level data.  The 27 

method is verified against both an existing result and simulated data, and applied to 28 

historical Barents Sea cod data which combines observations of population-level 29 

variation in age, size and maturity status from Russia and Norway. 30 

 31 

The method shows a clear and rapid trend towards greater probability of maturation at 32 

smaller lengths in the Barents Sea cod.  33 

 34 

The new model fitting algorithm allows us to study historic changes in life history 35 

despite the lack of individual-level data seen in much long term data.  Access to more 36 

data will aid the study of evolutionary hypotheses in a wide range of organisms.   37 

1. Introduction 38 

Quantifying life history variables as reaction norms is critical to proper management 39 

because it affects stock assessment.  Especially, expressing maturity as a function of 40 

size and age (the probabilistic maturation reaction norm, PMRN, Heino et al 2002b) 41 

has proven valuable in accounting for demographic effects on the maturity ogive, and 42 

in diagnosing fisheries induced evolution towards earlier maturation (see, for 43 

example, Heino et al 2002a, Heino et al 2002c, Grift et al 2003, Olsen et al 2004, 44 

Kuparinen and Merilä 2007).  45 

 46 

A range of techniques for fitting PMRNs to different types of data are available, 47 

following a gradient from those requiring specialized data (Heino et al. 2002b) to 48 

those dealing with data collected routinely for other purposes (Barot et al. 2004a, 49 

Scott and Heikkonen 2012).  Heino et al (2002b) constructed PMRNs for a cohort 50 

using logistic regression on age and size data from two sub-components of the cohort: 51 
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those individuals who matured in the past year and individuals who are immature 52 

(individuals that matured in previous years are irrelevant to the calculation).  This 53 

type of data will be available if animals are studied through their lives in laboratory 54 

experiments, and can sometimes be extrapolated from scale-ring or otolith studies of 55 

wild fish.  Long-term databases describing maturation in commercial fish stocks 56 

typically lack sufficient resolution to specify the exact age and size that the 57 

individuals became mature. To circumvent this problem, variations on the original 58 

model fitting approach have been developed.   Heino et al (2002a)  dealt with data sets 59 

that describe the sizes and ages of maturing fish (those that matured in the past year), 60 

but lack information on immature fish.  Data of this form can occur if sampling omits 61 

immature fish, for example if they have a different spatial distribution.  The method 62 

first back-projects the sizes of immature fish using independently obtained maturity 63 

ogives, and then uses logistic regression on the resultant data set. Barot et al (2004a) 64 

examined data sets in which maturing fish are not distinguished from mature fish (that 65 

matured more than a year ago).  This form of data is typically obtained during surveys 66 

or by sampling commercial catches.  The method first constructs a size- and age-67 

based maturity ogive and from this extrapolates the proportion of fish maturing at 68 

each size and age, finally logistic regression is applied to yield a PMRN.   These 69 

techniques have led to a proliferation of studies applying the PMRN approach to 70 

commercial stocks and the majority have found results consistent with FIE 71 

(Dieckmann and Heino 2007).  These existing methods share the common 72 

requirement of individual-level data about size, age and maturity status.  There 73 

remains a wealth of data, much of it associated with routine surveys (e.g. DATRAS 74 

database http://datras.ices.dk/), that could produce insights into FIE but are not 75 

amenable to individual-level methods. 76 

 77 

This paper aims to complement the existing repertoire of tools by providing a 78 

Bayesian method based on simulation of growth and maturation, to be used when 79 

such traits are described at a population-level only.  Such data can arise if different 80 

variables are measured on different individuals during different surveys.  We 81 

demonstrate the new method by testing whether there is evidence for FIE in Northeast 82 

Arctic (NEA) cod Gadus morhua using a long term database (1946—1989 cohorts).  83 

The data were obtained from both Norwegian and Russian sources.  The database 84 

covers a larger geographical extent than previous PMRN studies of the stock (Heino 85 
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et al. 2002c, Heino et al. 2002a). For much of the period of interest, individual-level 86 

data are not available from Russian sources which necessitates a method that can be 87 

applied to population-level data.  The method is also validated against an independent 88 

existing result obtained by Grift et al (2003) for North Sea plaice, and a synthetic data 89 

set based on the NEA cod. 90 

2. Theory and Calculation 91 

2.1 Probabilistic Maturation Reaction Norms 92 

Mathematically, a PMRN is a function taking a description of fish state as arguments, 93 

and returning the probability that the fish will have matured within the last year.  94 

Typically, probability follows a logistic relation to size with different coefficients for 95 

every age of fish as in eqn 1: 96 

 97 

logit(p(a, s)) = ca,1 + ca,2 s       (1) 98 

 99 

where p(a, s) is the probability that a previously immature fish of age a and size s will 100 

have matured in the last year.  An example using results about North Sea plaice in 101 

Grift et al (2003) is shown in Figure 1.  The model is represented by contours of 102 

constant probability of maturation.  If a plaice is 30cm at age 3 then it will have 103 

approximately 25% chance of having matured; if it does not mature at age 3 and 104 

grows to 35cm by age 4 then it will have a 50% probability of maturing. The 105 

probability of a fish being mature is the cumulative probability of maturing at each 106 

annual point on its growth curve.  In this case, there is a 62.5% probability of 107 

maturing by age 4. 108 

 109 

Variants of the model use different functions of s and a.  Most models (e.g. in Figure 110 

1) have distinct coefficients for each age of fish.  Coefficients for each age in these 111 

models are fitted using data on the fraction maturing only from that age.  In this paper, 112 

however, data from all ages is used to fit a smaller number of coefficients which apply 113 

to all ages.  Specifically, we use models with linear coefficients of age, so contours 114 

are straight parallel lines 115 

 116 

logit(p(a, s)) = c1a+ c2 s + c3       (2) 117 
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 118 

Linear models are chosen as a convenient approximation of the true shape of PMRNs.  119 

Theoretical and laboratory-based work (Stearns and Crandall 1984, Stearns and 120 

Koella 1986, Reznick 1990, Ernande et al. 2004, Plaistow et al. 2004) suggests that 121 

contours should be L-shaped curves, so that there is low (or zero) probability of 122 

maturity when very young, regardless of size.  Existing work on NEA cod (Heino et 123 

al. 2002c, Heino et al. 2002a) suggests that this stock has contours with a slight dome 124 

and overall upward gradient. Linear models are chosen for this study because they 125 

have only three parameters to estimate and because they roughly approximate both the 126 

asymptote of an L-shaped curve or a shallow curve as depicted in Figure 1.  127 

2.2 Bayesian Analysis 128 

Existing logistic-regression-based methods for fitting PMRNs cannot be used with the 129 

combined Russian-Norwegian Barents Sea cod data set because it lacks individual-130 

level information relating size to maturity status.  The data available, instead, consist 131 

of length distribution at each age and fraction mature at each age, for every cohort.  In 132 

our Bayesian method model parameters are  drawn from prior distributions and 133 

assigned an estimate of likelihood by repeatedly simulating observations of the 134 

maturity status of fish and recording the fraction of simulations that match the actual 135 

observations (which estimates P(observations | parameters) ).  Bayes' law then allows 136 

these likelihoods to be converted into the posterior distribution of the parameters, 137 

P(parameters | observations).  138 

 139 

In the method, each simulated fish is assigned a maturity status according to its length 140 

and age.  In order to do this, the probability of the fish being mature must be 141 

calculated from the probability of becoming mature at each prior age.  A PMRN gives 142 

the probability, p(a, s),  of a fish maturing at age a and length s.  The probability of an 143 

individual being mature at a and s can be calculated using eqn 3 (based on eqn 2 in 144 

(Barot et al. 2004a)). 145 

 146 

P(mature | a, sa) = P(mature | a-1, sa-1) + P(immature | a-1, sa-1)  p(a, s)  (3) 147 

= P(mature | a-1, sa-1) + (1 - P(mature | a-1, sa-1))  p(a, s) 148 

 149 
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The equation is derived from the fact that a mature fish was either mature last year, or 150 

was immature last year and matured within the last year.  Since all age 0 fish are 151 

considered to have zero probability of being mature, the equation can be used 152 

recursively provided that there is a way of back-calculating sa-1, the length of the fish 153 

the previous year.  We use an empirical growth model that assumes each fish 154 

maintains its position within the cohort (e.g. a cod at the 87
th

 percentile of length in its 155 

cohort at age 6 will still be at the 87
th

 percentile at age 7).  All simulated lengths are 156 

the midpoint of 5cm length classes.  This makes the implicit assumption that the effect 157 

of length on mortality within classes is negligible.  Similar assumptions are made in 158 

other methods for fitting PMRNs (Heino et al. 2002a) and any bias in the results 159 

caused by these assumptions will be similar and will not prevent results from this 160 

method being compared with other methods. 161 

 162 

Estimating likelihood for a particular set of model parameters for a single cohort uses 163 

the algorithm in Table 1.  The model is a linear probabilistic reaction norm with three 164 

parameters: S6, the size for 50% probability of maturation at age 6 (age 6 is chosen as 165 

a typical age to mature, other species may require other ages, this controls the 166 

intercept of the 50% contour, S0); S’, the slope of the contours; and W, the width 167 

between contours (difference in length between a fish with 25% probability of 168 

maturation, and one with 50% probability).  The equation for the model is 169 

 170 

logit ( p(a,s) )=
logit (0 .75)

W
( s− a× S'− S

0
)     (4) 171 

 172 

Where S0 = S6 – 6S’ and the sigmoidal logistic function is defined in the usual way 173 

logit(p) = log(p/(1-p))  (5) 174 

The method simulates the growth of a number, F, of fish of each age class, and is 175 

repeated for a number, R,  of replicates.  Preliminary trials showed that F=15 fish of 176 

each age per simulation and R=150 simulations per age class yielded reasonably 177 

consistent probabilities for each model.  Larger numbers of replicates improve 178 

accuracy, but greatly reduce the fraction of simulations that match observations and 179 

thus require more simulations and computation time.   180 

 181 
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Every tested set of model parameters is drawn independently from the joint prior 182 

distribution.  There is no chain of estimates converging on a solution as in Markov 183 

Chain Monte Carlo (MCMC) methods.  This means that there is no need to choose a 184 

length of model run or thinning frequency in order to ensure the model has converged 185 

and does not suffer from autocorrelation.  It also simplifies implementation and makes 186 

it easier to run several parallel processes (we used 6 processes, each testing 2000 187 

independent parameter sets). 188 

 189 

The parameters for cod were drawn from uniform priors chosen on the basis of 190 

existing work on cod (Heino et al. 2002a, Heino et al. 2002b, Barot et al. 2004b, Barot 191 

et al. 2004a, Olsen et al. 2004): 0 ≤ S6 ≤ 300 cm, -20 ≤ S’ ≤ 20 cm y
-1

 and 10 ≤ W ≤ 20 192 

cm.  The same 12000 sets of parameters were tested for every cohort.  This number 193 

was chosen as it allowed patterns to be clearly distinguished, without requiring too 194 

much computation time.  The result of applying our method to the cod data is a 195 

posterior distribution for the PMRN parameters.  All candidate parameters are 196 

assigned relative probabilities, P(parameters | observations), of how likely they are to 197 

be correct, given the observations.  The probabilities sum to 1 and directly reflect the 198 

fraction of all successful replicates for which the model was responsible.  Estimates of 199 

model parameters and their Bayesian confidence intervals are obtained from the 200 

posterior distribution.  The maximum likelihood model is the one with greatest 201 

P(model | observations). 202 

 203 

3. Methods and Materials 204 

3.1 Northeast Arctic cod 205 

Temporal trends in maturation of the NEA cod have been previously analysed using a 206 

Norwegian database about the fraction of the stock on spawning grounds around 207 

Lofoten from 1932 (Jørgensen 1990). Early applications of PMRNs used both 208 

historical data (1926 cohort) and contemporary survey data (1981-1990 cohorts) for 209 

NEA cod (Heino et al. 2002c, Heino et al. 2002a), but the individual-level 210 

observations were based only on the portion of the stock fished by Norway. To date, 211 

there has been no continuous reconstruction of PMRNs that has used both Norwegian 212 

and Russian maturity data. 213 
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 214 

Our data combines surveys from both Russia and Norway.  The data is structured into 215 

cohorts (fish spawned in the same year) from 1946--1989 and age classes from 3—13.  216 

Older and younger fish are all mature or immature respectively, and do not affect a 217 

study of maturation.  The data consists of age-based maturity ogives, and age-length 218 

keys, illustrated for a single cohort in Figure 2 and described below.  These are two 219 

types of data commonly available for many commercial fish stocks.   220 

 221 

The maturity ogive (AFWG 2006) records the fraction of fish mature in every age 222 

class of every cohort.  Maturity data are based on visual examination of ovary state.  223 

A mature fish skipping spawning (e.g. due to malnutrition) may appear to be 224 

immature.  Because of this, the proportion of mature fish in some cohorts appears to 225 

decline from one age to the next.  Similar artefacts can be caused by sampling error or 226 

increased mortality of mature fish.  Such problems are likely to be typical of other 227 

data sets and no attempt has been made to correct for these errors before fitting the 228 

models. 229 

 230 

The age-length keys (ALKs) partition the fish into 5cm length classes (Marshall et al. 231 

2004).  For every cohort-age-length class the ALK records the fraction of fish from 232 

the cohort-age class that were that length.  Because of sampling artefacts, some 233 

cohorts have some smaller fish in older age classes than in younger ones; again no 234 

attempt is made to correct the data prior to model fitting.  When combined, the ALK 235 

and maturity ogive do not reveal the different sizes of mature and immature fish, and 236 

do not give information about any individual. 237 

3.2 Validating simulation-based method with North Sea plaice data 238 

In order to validate the algorithm, data were obtained to which an existing method 239 

(Barot et al 2002) had been applied.  These data described two cohorts of female 240 

North Sea plaice from Grift et al (2003).  These data were chosen to provide a test 241 

completely independent of the NEA cod, and for which previous results have been 242 

published.  The data contained age, length, and maturity status of individual fish.  In 243 

total, there were 45 observations of fish from the 1960 cohort, and 264 from 1990.  244 

Observations were made of fish from ages 2 to 6 years.  Sampling was based on 245 

market size categories (lengths ranged from 25.2 to 52.1cm) so the lengths of 246 
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observed fish are not representative of the population.   The data were summarised to 247 

a form analogous to the NEA cod data: fraction of mature fish of each sampled 248 

cohort-age group; and cohort, age and length of each observed fish.  The information 249 

relating maturity status to length was discarded (to make it comparable with the NEA 250 

cod data in which this was not present). 251 

 252 

The plaice data differs from the cod data because the sampled fish are not 253 

representative (with respect to length) of the population.  This means that a different 254 

method is required to back-calculate the length of observed fish in the previous year, 255 

sa-1.  Grift et al (2003) used otolith measurements to calculate the change in length 256 

each year, but we did not have access to this data.  Instead, we obtained an ALK for 257 

North Sea plaice (WGSSDS 2006).  This gave the mean and standard-deviation of 258 

length for each cohort-age class ( ̂sc,a  and c,a, respectively).  The length of a fish at 259 

age a can be expressed as sa= ̂sc,a+k × σ c,a .  Assuming that the coefficient k is 260 

constant throughout the fish’s life (i.e. the fish maintains its position in the population, 261 

as in the cod case), the length in the previous year is sa−1= ̂sc,a− 1+k× σc,a−1 . 262 

 263 

There was a slight difference in the procedure used to calculate likelihood.  This was 264 

because the precise number of mature plaice out of a is known (rather than the 265 

fraction mature in a sample of unknown size).  For this reason, each replicate for the 266 

plaice data consists of fish of exactly the lengths sampled, rather than drawing lengths 267 

randomly from the age ALK (i.e. the loop on line 5 of the algorithm in Table 2 is “for 268 

every actual length sampled”).  The number of fish in each replicate varied between 2 269 

and 24.  As larger replicates have a lower probability of success, the number of 270 

replicates, r, was raised to 200 (from 150 for the cod).  12000 linear models were 271 

tested, with parameters drawn from uniform priors such that 0 ≤ S4 ≤ 60, -7 ≤ S’ ≤ 7 272 

and 0 ≤ W ≤ 15, based on the maximum length of plaice (52.1cm in the data set). 273 

3.3 Validating Fitting of PMRN Slope 274 

Initial investigation of the method led to concern that it could not distinguish correctly 275 

between different slopes of PMRN, in particular that it was biased towards selecting 276 

steep negative slopes.  This is a particular concern for NEA cod as previous research 277 

has found an overall slight positive slope (9cm over 5 years from Fig 5c of Heino et 278 
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al. (2002c)).  In order to test whether bias exists, two example linear PMRNs with 279 

parameters S6=100, S’=4, W =15 (positive slope) and S6=100, S’=-4, W =15 (negative 280 

slope) were selected.  Synthetic maturity ogives were created by simulating the 281 

maturation of a cohort of cod following the 1980 cohort ALK and each of the two 282 

selected PMRNs.  The model fitting method for cod was applied to the actual 1980 283 

ALK and each synthetic maturity ogive. 284 

4. Results 285 

4.1 North East Arctic Cod 286 

 287 

Figure 3 shows both (a) the single best model found for the 1980 cohort, and (b) the 288 

models that accounted for 95% of all successful replicates (the 95% Bayesian 289 

confidence interval of the posterior).  Figure 3a is the usual presentation or PMRNs 290 

(as in Figure 1), 3b allows visualisation of the uncertainties in model fitting.  It can be 291 

seen that as the cod grow through the contours of the PMRN, maturity rises.  292 

Furthermore, the fraction mature starts to rise when the largest fish are reaching the 293 

25% probability of maturation contour, and most of the fish are mature once they lie 294 

in the region between 25% and 75% of maturation.  It can also be seen that the 295 

uncertainty is greater in regions for which there is little data, e.g. all age 12 fish are 296 

mature, so there is no information about where the 50% contour should be at age 12. 297 

 298 

Figure 4 shows the parameter space for the PMRNs, parameters that were tested, and 299 

parameters that matched four cohorts through the time series.  Several features are of 300 

interest.  Firstly, S6 and S’ are correlated.  Secondly the correlation between S6 and S’ 301 

accounts for most of the within cohort variation in parameter estimates.  Thirdly, the 302 

cohorts shown have very little overlap in the joint model parameters.  This means that 303 

the maturation reaction norms for these cohorts are quantitatively distinct.  In 304 

addition, there is a trend in the parameters over time corresponding to smaller size at 305 

maturation between 1946 and 1974.  Figure 5 shows the PMRNs for the same cohorts 306 

in detail.  The trend towards maturation at smaller sizes is seen from the fact that the 307 

contours for later cohorts are lower on the graph than for earlier cohorts.  From 1974 308 

to 1989, the change is in the slope of the contours, with the 1974 fish having steeper 309 
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contours and, hence, a more sudden rise in maturity with age as seen in the inset 310 

maturity graph. 311 

 312 

 313 

To summarise changes in maturation patterns over time by focusing on a single age 314 

class Figure 6 shows the length a 6 year old fish born in each year would have to be to 315 

have a 50% chance of maturing and can be regarded as a summary of the effect of all 316 

the model parameters.  It shows an irregular decline in length.  Note that although the 317 

graph is for 6 year old fish, it is based on models derived using all age classes.  318 

Similar patterns are seen with other age classes, in particular the dip between 1972 319 

and 1976 is always present.  320 

 321 

The rate of phenotypic change can be measured from Figure 6.  Taking the trait as 322 

size for 50% probability of maturation at age 6, gives -12 000 darwins (relative 323 

change per million years) or -0.68 haldanes (standard deviations of change per 324 

generation).  Values were obtained using weighted linear regression on point 325 

estimates produced by the tested parameters weighted by posterior probability. 326 

 327 

4.2 Validation of method  328 

Figure 7 shows that the linear PMRNs from the simulation-based method are a 329 

reasonable approximation of the curves obtained for decade-long periods including 330 

1955—1964 and 1985—1994 by Grift et al (2003) using the method in Barot et al 331 

(2004a).  The fit has clear differences (especially for 1990), but this is to be expected 332 

for two reasons.  Firstly, the model fit using our method is based on slightly different 333 

data (a single cohort, rather than a decade of cohorts).  Secondly, the original model 334 

fitting was not restricted to linear models, so an exact match between methods is not 335 

possible. 336 

 337 

Results of fitting PMRNs to synthesised maturity ogives created with different sloped 338 

linear PMRNs are shown in Figure 8.  When the real slope of the PMRN is negative, 339 

then the model fitting performs well (Figures 8a and 8c).  When the real slope of the 340 

PMRN is positive, then the model fitting selects slopes that are smaller than the actual 341 
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slope or more negative (Figures 8b and 8c).  These show bias towards negative slopes, 342 

but that it can distinguish between maturity ogives generated by differently sloped 343 

PMRNs (the “A” and “B” marks in Figure 8c are non-overlapping).  Hence, the 344 

method makes the correct qualitative comparison between the cohorts even if the 345 

values are not precisely estimated.  346 

 347 

The model fitting shows that a more negative slope must have a higher intersect 348 

(correlation between S’ and S0 in Figure 8c).  There is a clear geometric reason for this 349 

correlation, as steeper slopes passing through the same region will necessarily have 350 

higher intercepts.  In models like this, the probability of maturation is determined 351 

more by age than size.  The model fitting is biased to select models like this as the 352 

data only provides indirect evidence of the influence of size on maturation.  The use 353 

of priors for model parameters excludes biologically unrealistically steep slopes.     354 

5. Discussion 355 

The analyses described in this paper are informative both from a methodological point 356 

of view in assessing the new algorithm and the PMRN approach, and an ecological 357 

point of view in revealing patterns in the biology of the cod stock.  The method opens 358 

up the possibility of studying maturation trends in many more fish stocks and other 359 

organisms with suitable population-level data.  The results suggest some limitations 360 

and possible refinements of the technique.  First the effectiveness of the algorithm is 361 

discussed, as all other discussion rests upon this. 362 

5.1 Data Analysis 363 

Comparison with Grift et al’s (2003) results and testing against synthetic data show 364 

that the method has a slight tendency to overestimate the downward slope of the 365 

PMRN contours, meaning that the effect of age on maturation is overestimated.  This 366 

can be controlled by choosing appropriate prior distributions for the model 367 

parameters.  For most commercial fish species, existing work on maturation will 368 

suggest values for these priors, although in the case of suspected FIE it is important to 369 

choose conservative priors and to use the same priors for all time periods to prevent 370 

the prior from biasing results.  Even when models produced by the new method differ 371 

from other methods, the trends in maturation that they show are the same.  As it is the 372 

presence of a trend that is typically of interest, rather than the precise model 373 
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parameters, the new method is equally suited to testing for a change in maturation 374 

dynamics. 375 

 376 

We conclude that the method is effective at fitting PMRNs because the new method 377 

shows the same qualitative differences between cohorts as the original analysis and 378 

allows the same conclusion regarding FIE to be drawn.   379 

 380 

Bayesian methods typically use MCMC methods to overcome the problem of large 381 

parameter spaces to search and to focus search on the resulting posterior distribution 382 

rather than the (much more dispersed) prior parameter distribution.  In the case of 383 

these PMRN models, there are few parameters and the prior distribution is relatively 384 

constrained (because it can be linked to well known features such as the size of the 385 

fish).  This meant that it was not necessary to use MCMC methods, but just to 386 

perform a brute-force search of the prior parameter space.  This avoids several 387 

problems with MCMC methods: they are somewhat more complex to implement as a 388 

computer program; and the modeller must ensure that the chain length is sufficiently 389 

long to ensure convergence, enough of the initial run-in period is discarded, and the 390 

chain is ‘thinned’ sufficiently to avoid autocorrelation.  It was also easy to take 391 

advantage of the multiple processors found on modern desktop computers by running 392 

several separate processes each testing a different set of model parameters. 393 

 394 

We fitted models that used S6 (cod) or S3 (plaice) as parameters for the intercept of the 395 

PMRN contours.  Qualitatively similar results were obtained using S0 (results not 396 

shown) but as this is not biologically meaningful (there is zero chance of an age 0 fish 397 

maturing at any viable size), and it increases the correlation between the intercept 398 

parameter and slope,  we favour the approach of using the intercept at an older age. 399 

5.2 Northeast Arctic Cod 400 

The analysis of Northeast Arctic cod data reveals a long trend of decline in size at 401 

maturation.  The trend is rapid and comparable with other studies of cod (Olsen et al. 402 

2004) including this stock (Heino et al. 2002c, Heino et al. 2002b).  The rate of 403 

change, measured in either darwins or haldanes, is close to the fastest rates cited by 404 

Hendry and Kinnison (1999) but less than the maximum rates measured by Devine et 405 

al 2012.  Rates of these magnitudes have only been seen in phenotypic studies of 406 
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organisms over very short periods of time (e.g. change in colour spots of guppies 407 

Poecilia reticulata measured over three generations by Endler (1980)).  The rapidity 408 

of the change suggests that evolution may not be the sole cause.  The time series in 409 

Figure 6 also shows a possible discontinuity in the late 1970s and other evidence in 410 

the form of weight-length-maturity relationships supports this notion of a shift 411 

between two time periods for this stock (Marshall and McAdam 2007), other aspects 412 

of stock dynamics also shifted abruptly for these cohorts (Marshall et al. 2006).  For 413 

this particular stock, we hypothesise that longterm changes in the prey availability or 414 

temperature (Yndestad 2003)  may have altered maturation in a way that age-and-415 

length-based PMRNs cannot account for.  Although this study shows a clear 416 

phenotypic change, like other PMRN-based studies, it is not capable of conclusively 417 

establishing whether this is a result of plasticity or evolution. 418 

5.3 Broader application of Bayesian Methods 419 

We have shown that a Bayesian method based on simulation can be used to model one 420 

aspect of a fish stock’s life history, even though the data are not suitable for analysis 421 

with other methods.  It is likely that similar methods can be found for other aspects of 422 

life history such as growth and fecundity, and other examples such as Scott and 423 

Heikkonen’s (2012) method for fitting PMRNs based on inflection points in growth 424 

curves already exist for particular forms of data.  There is increasing concern about 425 

climate change and prolonged high levels of fishing mortality impacting on the life 426 

history of our fish stocks (e.g. see Law and Grey 1989, Law 2000, Stokes and Law 427 

2000, Conover and Munch 2002, Kenchington et al 2003, Jorgensen et al 2007), but 428 

with the wealth of historic data available on fisheries, we are hopeful that new 429 

analytic methods can be used to give a clearer long-term view of the state of our 430 

fisheries. 431 
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Table 1: Simulation-based algorithm for finding likelihood P(observations | 563 

parameters) where the model is a probabilistic reaction norm, p(a, s), parametrised by 564 

intercept, S_0, slope, S’, and width, W, and the observations are a single cohort of cod 565 

data consisting of length distribution at age and age based ogive (fraction mature at 566 

age {m_a | a_recruit <= a <= a_max}). 567 

 568 

1. For each age class, a, a_recruit <= a <= a_max 569 

2.  Repeat R replicates for this age, recording numberthat are successful 570 

3.  Expected number of mature fish comes from ma in the ogive Fexp = 571 

round(F ma) 572 

4.  Draw F fish lengths, {s_i | 0 <= i < F} from the length distribution for 573 

age a 574 

5.  For each of these F simulated fish 575 

6.   Calculate probability P(mature | a, s_i) of this fish being 576 

mature using back-calculating lengths for earlier ages (eqn 3) 577 

7.   Assign the fish a maturity status according to a single Bernoulli 578 

trial with P(mature | a, s_i) 579 

8.   If the fish is mature, then increment count Fsim of mature fish at 580 

this age 581 

9.  If Fsim = Fexp then this trial is successful at age a 582 

10.  Likelihood at this age, P(observations a|S_0, S’, W), is fraction of the R 583 

replicates that were successful 584 

11. Likelihood over all ages is the product of the likelihood for each age, 585 

P(observations | S_0, S’, W) = PROD(FOR ALL a)( P(observations a|S_0, S’, W)) 586 

 587 

 588 

  589 
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 590 

Figure 1: PMRNs for North Sea plaice 1955-1964 cohorts (redrawn from values in 591 

Grift et al (2003)). Solid line is 50% probability of maturation; dotted lines are 25% 592 

and 75%. 593 
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Figure 2: All data about the 1980 NEA cod cohort.  Boxes show the fraction of each 594 

age-class that is within each 5cm size class.  The graph at the bottom shows how the 595 

fraction of fish mature varies with age from 0 to 100% (limits marked with horizontal 596 

dotted lines). 597 
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 598 

Figure 3: NEA cod.  (a) Single best model, and (b) 95% bayesian confidence interval 599 

for 1980 cohort (the models that accounted for 95% of all matches between a 600 

simulation and observations, line denity indicative of posterior probability).  Solid 601 

lines are the 50% probability of maturation contour.  Dotted lines are 25% and 75% 602 

probability.  Lines are cropped to cover only age-length combinations of NEA cod 603 

that have been observed.  Other features as Figure 2. 604 
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Figure 4: Parameter space for PMRNs for NEA cod, and results for four evenly-618 

spaced cohorts.  Grey dots are tested models, letters indicate the 95% Bayesian 619 

confidence interval for each cohort, A 1946, B 1960, C 1974, D 1989. 620 
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Figure 5: Plots of the PMRNs from Figure 4 (a) 1946, (b) 1960, (c) 1974, (d) 1989.  635 

Presentation as in Figure 3b. 636 
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Figure 6: Size at which a 6 year old NEA cod has a 50% probability of maturing for 645 

each cohort.  Values were sampled from the models according to their posterior 646 

probability to obtain median (solid line) and 95% confidence intervals (dotted lines). 647 
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 650 

 651 

Figure 7: North Sea plaice.  50% contours from simulation-based model fitting (grey) 652 

superimposed on curves from previous work (black): (a) new model fit for 1960 653 

against 1955-1964 cohorts from Grift et al (2002), (b) 1990 against 1985-1994. 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 



08/10/2014 11:33  27/27 

Figure 8: Validation of selection of slope parameter.  PMRN contours from new 663 

algorithm overlaid on synthesised data (presentation as in Figure 3b) and actual 664 

PMRN (black) for (a) actual positive slope of 4 cm yr
-1

, (b) actual negative slope of -4 665 

cm yr
-1

.  (c) bayesian 95% confidence interval of model parameters for (A) negative 666 

slope and (B) positive slope, actual model parameters marked by crosses, dots are 667 

tested parameters (as in Figure 4). 668 
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