
76'1

FORMALLY-BASED TOOLS AND TECHNIQUES

FOR HUMAN-COMPUTER DIALOGUES

by

Heather Alexander

Submitted to the University of Stirling

in partial fulfilment of requirements for

the degree of Doctor of Philosophy

ABSTRACT

With ever cheaper and more powerful technology. the proliferation of

computer systems. and higher expectations of their users, the user interface is now

seen as a crucial part of any interactive system. As the designers and users of

interactive software have found. though. it can be both difficult and costly to create

good interactive software. It is therefore appropriate to look at ways of

"engineering" the interface as well as the application. which we choose to do by

using the software engineering techniques of specification and prototyping.

Formally specifying the user interface allows the designer to reason about its

properties in the light of the many guidelines on the subject. Early availability of

prototypes of the user interface allows the designer to experiment with alternative

options and to elicit feedback from potential users.

This thesis presents tools and techniques (collectively called spn for

specifying and prototyping the dialogues between an interactive system and its

users. They are based on a formal specification and rapid prototyping method and

notation called me too. and were originally designed as an extension to me too.

They have also been implemented under UNIX". thus enabling a transition from the

formal specification to its implementation.

,. UNIX is a trademark of AT&T Bell Laboratories

ACKNOWLEDGEMENTS

My thanks to:

Peter Henderson, without whose encouragement, ideas, criticism and enthusiasm
this work would not have been started, continued or finished;

ICL in general, and Tony Gale in particular, for supporting me financially and
allowing me the time to pursue this research;

Bob Clark and Simon Jones for their advice, criticism and time spent in
proof-reading this thesis, and to Val, Cyd and Simon for additional proof-reading:

Lynne for ty.ping this thesis, displaying patience and fortitude in the face of many
last-minute changes and an uncooperative word-processor;

my family for all their encouragement;

and to some very special people who have opened their lives to me and kept me
moving forwards - Rena, Billy, Fiona, Lynn and Catherine.

imprimis gratia deo

j

CONTENTS

1. INTRODUCTION 1
1.1 Software development 21.2 Software for human-computer interaction 41.3 Formal specification 61.4 Rapid proto typing 71.5 Functional specification languages 9
1.6 Terminology 10
1.7 Summary 10

2. RELA TED WORK n
2.1 Software engineering techniques 13

Formal specification
Rapid proto typing

2.2 Human-computer interaction 19
Overview of concepts
Prototyping techniques
Specification techniques
Features of the techniques

2.3 Contributions of this work 36
3. EARL Y PROTOTYPES OF SPI 38
3.1 Streams in me too 39
3.2 Introduction to streamCSP 42

StreamCSP notation
Departures from CSP
Using streamCSP
Implementing streamCSP
Evaluation of streamCSP

3.3 Edit-Compute-Show (ECS) paradigm 48
Introduction to ECS
Using ECS
Implementing ECS
Evaluation of ECS

3.4 Introduction to eventCSP 54
EventCSP notation
Using eventCSP
Process labelling
Implementing eventCSP

3.5 Summary 60

4. DIALOGUE SPECIFICATION USING SPI 62
4.1 Event specification 62

The dialogue state
Event operations
Decision table example
Proto typing with event operations

4.2 Introduction to eventISL 68
Basic attributes of events
Saving and retrieving objects
Local declarations
Removing objects
Process initialisation
Process labelling in evenUSL

u

4.3 SCHOLAR example 144.4 Form-based interaction 18 '
4.5 Summary 80
5. EXECUTING DIALOGUE SPECIFICA TIONS 83
5.1 Overview of the dialogue executor 83
5.2 EvenUSL translator 84
5.3 EventCSP simulator 86
5.4 Event manager 88
5.5 The SPI interpreter 90
5.6 Traces 92
5.1 Summary 94
6. TOWARDS A CONVENTIONAL IMPLEMENTATION 95
6.1 Initial implementation decisions 95
6.2 Processing the eventCSP language 96
6.3 EventCSP simulator 98
6.4 Processing the evenUSL language 99
6.5 Event manager 103
6.6 The SPI interpreter 104
6.7 Summary 104
1. COMPARISONS AND CONCLUSIONS 106
1.1 Comparisons with other techniques 106
1.2 Suggestions for further work 108

Analysing dialogue specifications
Extending event descriptions
Using the object-oriented paradigm
Industrialising SPI

1.3 Conclusions III

APPENDICES
1. me too notation 114
2. Specification of logon example 122
3. Specification of decision table example 123
4. Rewrite rules for streamCSP 124
5. Specification of ECS-state interpreter 127
6. Syntax definitions for eventCSP 128
1. Syntax definitions for evenUSL 130
8. Specification of SCHOLAR example 133
9. Specification of forms example In
10. Specification of forms dialogue 140
11. Translating evenUSL to me too '146
12. Translating evenUSL to C 148
D. Specification of the event manager 149
REFERENCES 151

iii

List of Figures

Fig.!.l

Fig.2.1

Fig.3.1

Fig.3.2

Fig.3.3

Fig.4.l

Fig.4.2 .

Fig.A.3

Fig.4.4

Fig.S.1

Fig.5.2(a)

Fig.5.2(b)

Fig.6.l

Fig.6.2

Software lifecycle

Structure of a UIMS

Decision table example

Edit-Compute-Show cycle

ECS state

SPI dialogue state

SPI dialogue state (extended)

Dialogue control system - overview

Dialogue control system - two layers

SPI dialogue executor

ECS execution cycle

SPI execution cycle '

Decision table example - C version

SPI screen display

iv

CHAPTER 1

INTRO DUeTlON

Until recently. most of the emphasis in software development has been on

the functionality of the end-product rather than its user interface. However. with

cheaper and more powerful technology. such as high-resolution screens and speech

processing. and the proliferation of computer systems (particularly of small,

low-cost systems), the user interface is now seen as a crucial part of any interactive

system.

As developers of interactive software have found. though, it can be both

difficult and costly to create good interactive software, with production of the

actual interactive portion of the software consuming the major part of the

development effort. as reported in [Sutton & Sprague 78]. It is therefore

appropriate to look at ways of "engineering" the interface as well as the application.

Formal specitlcatlcn and rapid proto typing are two software engineering

techniques advocated as means of improving the process of software development in

general: we wish to apply them to the design of software for human-computer

interaction. Formally specifying the user interface allows the designer to reason

about its properties in the light of the many guidelines on the subject [Dix &

Runciman 85]. Early availability of prototypes of the user interface allows the

designer to experiment with alternative options and to elicit feedback from

potential users. ego [Boumique & Treu 85].

This thesis presents SPIt a way of specifying and prototyping the dialogue

between a system and its user. SPI encompasses both a method and languages. and

is implemented by a system which allows dialogue specifications to be executed as

prototypes.

In this introduction, we begin by clarifying some of the problems of

software development in general before going on to examine the particular

difficulties related to human-computer interaction. The techniques of formal

-1-

specification and rapid prototyping are introduced. together with one particular way

of drawing the two together which we have exploited in this work.

1.1 Software development

Software development is widely acknowledged to be an expensive.

time-consuming and error-prone undertaking (see. for example. [Jensen & Tonies 79]

[Sommerville 82]). This has prompted calls for a more scientific or

engineering-based approach [Jones 80. 86] [Hoare 82a]. "Software engineering" is

the name given to the discipline which began to emerge in the late 1960's in

response to the problems encountered as new. more powerful computer technologies

became available. Despite considerable research and development devoted to

software engineering. the term "software crisis" is still appUed to this situation

[Pressman 82]. There are many reasons for the problems we find in producing

reliable software. Some arise from the nature of software itself while some are due

to the way in which it is developed. The situation is aggravated by the growing

demand for reliable. high-quality and increasingly complex software.

Unlike other engineering disciplines, the raw material in software engineering

is abstract" rather than concrete, logical rather than physical. concerned with ideas.

algorithms and structure. Software deals with quantities that take discrete values.

rendering interpolation and extrapolation invalid. This makes it harder to verify the

correct operation of the software product by testing. since testing it at the limits of

permissible values is insufficient to guarantee its behaviour between those limits. In

addition, there are a great many such quantities in any software product. and

determining the effects of all potential interactions between them becomes

effectively impossible.

With the increasing availability of computer technology has come two demands

. from its users. Firstly. the widespread use of computers has led to a growing

dependence on them in many areas of society, such as business, defence. and

medical systems, where failure of a system can result in failure of a company or loss

-2-

of life. Consequently, one demand is for extremely reliable computer systems.

Secondly, the decrease in hardware costs and the greater sophistication of hardware

has created a demand for much more complex and sophisticated software to exploit

this.

Software engineering research has resulted in a number of techniques, methods

and tools which are intended to improve the way in which software is produced.

Many of these doubtless have a beneficial effect when they are used. However, the

cost of using them can prevent their use. These costs arise because staff are not

trained in the appropriate techniques. or because using them increases the length of

the development process, or because they involve investment in new hardware or .

software tools. The highly competitive nature of the software industry has meant

that these short-term costs have been rejected. with little regard for the long-term

costs incurred as a result. One such long-term cost is that for product support and

maintenance, since errors found at these later stages in the development process are

much more difficult and expensive to rectify. .

Even when techniques for planning, designing, costing and structuring the

software product are used, the emphasis is on debugging and testing as the way to

produce reliable software. As a result. insufficient time is given to software design.

particula~ly the exploration of alternative designs. because of the need for an early

start to implementation. Much of the design that is done uses informal methods.

relying on diagrams or natural language descriptions. to communicate the meaning of

the specification between the desiqners and to the implementers. The lack of a

precise semantics for such descriptions makes it difficult to reason about the

correctness or completeness of the specification, thereby giving greater scope for

ambiguity, inconsistencies, errors and omissions. Such errors. introduced at the

design stage, are generally harder to remedy when they are found, since they can be

fundamental to the entire design and tend to be discovered late in the development

cycle.

For all of the reasons given above, software engineering techniques which

address the early stages of development are of particular interest. Two such

-3-

techniques are formally specifying the product and prctotypinq the product early in

the design process. We introduce these techniques after looking at the additional
I

problems found in designing software for human-computer interaction.

1.2 Software for human-computer interaction

Human-computer interaction (hci) is a relatively new discipline in computing

science. Although some of the issues with which it is concerned arose with the

advent of interactive teletype devices [Orr 68] [Meadow 70], it is only in the last

few years that human-computer interaction has emerged as a discipline in its own

right. Evidence for this can be seen in the Increaslnq number of workshops and

conferences devoted to the subject [Guedj et al 80] [Gaithersburg 82] [Oegano Bc

Sandewall 83] [CHI 83] [INTERACT 84] [CHI 85] [HCI 85] [CHI 86] [HeI 86].

It is not simply an academic interest either. The computer industry, too, is

taking human-computer interaction seriously [Thomas 82] [Bewley et al 83] [Alvey

84a] [Reid 85] [Shackel 86]. There are a number of reasons for this explosion of

interest in the subject.

One factor is cheaper and more powerful technology, such as high-resolution

screens and speech processing. which makes more sophisticated interfaces possible.

Another is the recognition that ergonomics. or human factors, can be applied to

software as well as to hardware. With businesses. hospitals and defence installations

(to quote the examples given earlier) ever more dependent on ever more complex

interactive computer systems. it has become important to develop systems that are

not only reliable but also offer interfaces which lead to correct use of the systems.

being easy to use, resistant to errors and so on.

The primary factor, however, is the proliferation of computer systems.

particularly of small. low-cost systems. which has resulted in a much larger and

more heterogeneous population of computer users [Moran BIb]. In the early days of

interactive computing, software was used either by computer scientists who were

familiar with the terminology and tolerant of poor interfa~es or by dp professionals

-4-

who had no choice but to adapt to the interfaces provided. With the wider use of

computers have come new classes of user. such as the "naive" or computer-illiterate

user who may well be a professional in some other capacity, or the discretionary

user who can choose whether or not to use a system depending on whether it is a

help or hindrance to the task in hand. These users require software products that

are. amongst other things, easy to learn, easy to use, efficient and robust: in other

words, users now have much higher expectations of the user interface to software

products.

As stated earlier, though, it is not easy to design good interactive software

[Underwood 85]. In addition to all the normal problems of software design, such as

misinterpreting or not being given user requirements, there are specific difficulties

relating to human-computer interaction.

- The major problem is the nature of the human partner in the interaction.

People cannot be described in precise, mathematical terms and they have highly

individual characteristics and preferences. Consequently it is hard to design an

interface for communication between a system and such a partner.

Another reason is that human-computer interaction covers such a wide

spectrum of issues. Interaction with the user involves several aspects, such as

screen layout, human factors and dialogue structure. A considerable range of

interface technology is available, permitting use of keyboards, mice, touch-screens,

graphics, voice input and so on. The abilities and understanding of the prospective

users of the system can vary enormously, and designers may not appreciate the

difficulties and expectations of these different groups of users [Hammond et al 83].

There are also different styles of interaction, such as command-driven, menu-driven

or forms-based. Interfaces may be text-based or graphical. ~The interaction may be

under user control, system control or some mixture of the two [Thimbleby 82].

Currently, there is inadequate help available for designers faced with this

plethora of decisions to be made. One approach has been to try to establish

guidelines for the design of user interfaces. Consequently many authors describe

-5-

principles for different aspects of hci design; among them: [Martin 73] [Gilb &:

WeInberg 77] [Good 81] [Otte 82] [Schneider 82] [Gaines &: Shaw 84] [GaUtz 8S].

However this has not yet yielded a consensus on detailed, useful guidelines for

software designers. If anything, the sheer number of guidelines available is more of

a hindrance than a help [Gaines Bc Shaw 86]. confusing designers by their quantity

and inconsistencies.

The current lack of a theoretical base for deciding what constitutes a "good"

user interface means that they are best developed experimentally: in other words.

by proto typing the user's interaction wit~_the system [Sime &: Coombs 83] [8lU-y 84]

[Norman 84]. From the designers' point of view, this has the added benefit of

allowing them to experience the interface themselves, since it can be difficult to

visualise a dynamic interaction from a static specification •. Moreover the

complexity of many interfaces, especially when error handling and on-line help are

taken into account. indicates that a formal notation may help interface developers

to reason about their designs.

The combination of these factors means than an approach which brings

together formal specification with some form of prototyping is likely to meet the

particular needs of designers of interactive systems, particularly if the approach can

be consistently used for the entire system. The next two sections introduce these

two techniques.

1.' Formal s~ecificatlon

Naur [Naur 82] defines formalism as being expressed "purely by means of

symbols given a specialised meaning". Usually mathematics is taken as the basis for

the symbols. or notation. used. Formal methods for software specification, then,

are usually based on the use of mathematical concepts in describing the

requirements on the software. Formal specifications concentrate on defining what

is to be achieved by the software rather than how it is to be achieved, although they

may also suggest the architecture of the implementation.

-6-

The use of a formal mathematical notation gives a precise meaning to the

specification, namely that of the mathematics used. This alone has significant·

advantages for software designers. Given designers familiar with the notatlon,:

mathematical notation should be easier to reason about than informal notations,

which in tum should enable earlier detection of errors and inconsistencies. A

mathematical notation suffers none of the ambiguities of natural language thus
..

allowing precise communication between designers. Finally, its precision makes it

possible to perform syntax and type checking of the specification automatically.

Such a specification can be used in a number of ways, depending on the

specification language and method being used. The act of constructing a

specification can be a major benefit itself, with its attendant comprehension of the

problem, concern for consistency and completeness, and documentation of mutual

understanding among designers [Guttag et al 82] [Duce & Fielding 84]. However,

most advocates of the technique do not stop at this stage.

One approach is to repeatedly transform it mathematically until it is

executable as an efficient program (Darlington 81, 8S] (Feather 82]. A second way

is to use it as the standard against which the implemented program is judged, either

formally (by correctness proofs) or informally. Another way is to formulate

questions about the desired behaviour of the product (as in "what happens if .••?")

and answer them from the specification (Guttag & Homing 80]. Examining the

behaviour of the specified system can also be achieved by executing the

specification itself. This may be by symbolic execution (Cohen et al 82], or as a

prototype of the software [Tavendale 8S], or both [Kemmerer 85]. Either method

gives valuable feedback to the designers about their specification.

1.4 Rapid proto typing

Prototyping of a software product is seen as a useful software engineering

technique in its own right. An analogy with other engineering disciplines can be

drawn, whereby a scale model or prototype of a system is often built as part of the

-7-

early design phases of development, either to clarify the requirements of the user or

to explore alternative ways of meeting those requirements. Consequently, "rapid

proto typing" is becoming more and more common. both in academic literature and in

industrial practice (see, for example. [Gomaa & Scolt 81] [Wasserman & Shewmake

82] [Boehm et al 841 [Berry & Wing 85]).

The traditional software development lifecycle consists of (at least) the

following stages as shown in Fig.l.l:

requirements analysis

t
specification

t
design

t
implementation

t
validation

t
maintenance

Fig.!.l Software lifecycle

This has a number of limitations: it does not easily handle areas of uncertainty in

requirements or design, the user has little opportunity to influence development until

product delivery, and design faults may not be detected until a lale stage in the

process.

Introducing prototyping into the early part of this cycle has a number of

advantages [Oeamley & Mayhew 83]. Prototypes can help clarify and correct user

requirements. which may only become apparent to the users themselves as they

experience a working prototype. They are often easier to comprehend than either a

concise formal specification or an imprecise informal description. They allow dynamic

reviews of the design among the design team. and experimentation with alternative

designs. They can be submitted to extensive user trials for monitoring and feedback.

Users may also find them valuable as a training aid in preparation for the real system.

-8-

Proto typing can be seen as complementary to formal specification. Indeed

[Swartout & Balzer 82] views the two as being inextricably linked. If users are

unclear about their product requirements, it can be difficult to give a formal

specification of the design. and a prototype may be the best way to establish the

actual requirements [Gomaa 83]. Formal specifications are still subject to errors

and a prototype can be used to help designers detect them. especially errors of

omission or poor usability. The two techniques are particularly closely linked when

the formal specification language is directly executable. so that the specification

acts as the prototype [Henderson 86].

1.S Functional specification languages

One way to gain the benefits of both formal specification and rapid

prototyping is to use a formal notation which can be executed directly. A number of

notations possess both these attributes; we have chosen to use a purely functional

language to achieve executable specifications.

Functional programming languages have a relatively long history in computing

science with Lisp as the main (albeit impure) example dating from 1960 [McCarthy

60]. Functional programming, though, was brought to prominence in Backus' Turing

lecture [Backus 78]. in which he identified the shortcomings of conventional von

Neumann computer architectures and languages, and proposed an alternative

functional style of programming to overcome the deficiencies.

Conventional languages, however simple or complex, elegant or obscure, are

based on the concept of making changes to a global state by means of some form of

assignment statement •. All other facilities in such languages can be seen as ways of

controlling the use of assignment (by constructs like loops or case selections). of

limiting the scope for assignment erro~ (for example, by strong typing) or of

organising the structure of parts of the global state (as with data structuring

facilities). This style of programming is mathematically complex in theory and has

proved unreliable in practice.

-9-

In its place, the use of functional languages offers a mathematically-based,

high-level approach to programming. Functional languages are built on the

mathematical foundations of the lambda calculus and permit clear, concise program

descriptions constructed from functions free from side-effects. They continue the

trend away from a preoccupation with efficiency towards increased power, clarity

and succinctness in programming languages.

This very high level of description together with their mathematical

foundations mean that functional languages can be used as a formal notation for

specifying software systems. In addition, since the notation is an executable

programming language, the specification can be executed as a prototype of the

system.

1.6 Terminology

Various descriptions are used by different authors to refer to aspects of

human-computer interaction, with many giving specialised (and different) meanings

to terms such as "conversation", "dialogue" or "interaction". In this thesis, we refer

to the overall communication between the software system and its user as a

dialogue. A dialogue is made up of a number of interaction points, or interactions,

which are the points in the dialogue where information is communicated from one

partner to the other - a single input and/or a single output. Each interaction is

specified by an event. An event may also describe other activities in the system

(such as changes to the system state) as well as interactions. The order in which

these events occur is called the structure of the dialogue.

This thesis presents languages for specifying a dialogue by spec~fying each

event and the order in which they occur.

1.7 Summary

The motivation for this work has been succinctly stated by R.F. Sproull:

-10-

"As the complexity of user interfaces increases rapidly.
it becomes increasingly necessary to apply some discipline
to the programming of the user interface •.•• It should be
possible to define a structure for a user interface that
helps to organise and simplify its construction and
modification ...

(Sproull 63. p.135]

We have seen that it is difficult to design good software. that is. software that is

reliable. usable and maintainable. In particular. human-computer interaction is an

area in which good software design is both crucial and difficult to achieve. Formal

specification and rapid prototyping have been advocated as software engineering

techniques which help in designing software. This thesis shows a way of applying

them to human-computer interaction as a discipline and structure for creating' user

interfaces.

Iriteraction makes particular demands of the techniques. A specification

should be clear and comprehensible. and should communicate the intentions of the

designers. In specifying dialogue. a major feature to be communicated is the

sequence of interactions between user and system. Consequently. any notation for

specifying dialogue should be able to convey such information.

This work began with an existing formal specification notation and method

(me too) which was to be extended to allow specification of human-computer

interaction. Several prototype systems were built and used to explore different

approaches. The first borrowed notation from CSP ("Communicating Sequential

Processes") [Hoare 76] to specify communication between the user and the system.

The second was state-based. employing a cycle of actions on that state. where each

cycle represents a single interaction in the dialogue. Experience with these methods

revealed their complementary strengths and weaknesses. and underlined the

difficulty of using a single notation to specify both the structure of a dialogue (ie.

the events which constitute it) and the activity involved in each event.

Accordingly. the two approaches have been united in one method with two

languages. The first abstracts from the details of the user-system interactions: it

specifies the structure of the dialogue in terms of the events that make up the

-11-

dialogue and when they occur using a CSP-based notation. The second defines each

event, specifying the state transformations which occur for that event.

The combination yields a specification and prototyping method for

human-computer interaction, using an event-driven dialogue manager based on

esp. The method has been demonstrated on a number of examples, some of which

are described in lhis thesis. It is based on the me loa melhod of developmenl

(described in lhe nexl chapter) and the final prolotype of the lool embeds its event

specification language in me too. However, for production use, lhe tool was also

built using C under UNIX·. This version embeds the event language in C.

The remainder of the thesis is as follows. Chapter 2 surveys other work in

formal specification and rapid prototyping, both in general terms and as it relates to

human-computer interaction. Chapter S introduces lhe concepts involved in our

method of dialogue specification by describing the early protolypes since the

concepts were developed during these experiments. Chapter 4 presents the dialogue

specification languages. Chapter 5 describes the syslem that implements them.

Chapter 6 highlights implementation issues for the system, and chapter 7 presents

conclusions and suggests avenues of further research.

• UNIX is a trademark of ATBcT Bell Laboratories

-12-

CHAPTER 2

RELA TEO WORK

This chapter surveys work both in human-computer interaction and in the
. .

software engineering techniques which we have chosen to use.

For formal specification, some representative methods are described to

lllustrate the various approaches possible. The second technique, rapid prototyping.

is far from being a generally-agreed method, with many different definitions and

techniques. Consequently, we discuss these differences and some of the reasons for

them as well as some ways in which prototyping is achieved.

The second part of the chapter describes concepts from the field of

human-computer interaction which are relevant to our work before surveying

different methods for specifying and proto typing dialogues. Finally. we summarise

the contributions made by the work reported in this thesis.

2.1 Software engineering techniques

2.1.1 Formal specification

This section looks at some languages and methods used in the formal

specification of software. Two general approaches may be distinguished. namely

axiomatic and model-based, although there is some convergence of the two [Homing

as].
An axiomatic, or "property-based", approach defines the properties of

operations by giving equations relating them, as in the ubiquitous stack example:

pop (new-stackO) = error
pop (push(element. stack)) = element

where new-stack and push are the "constructor" operations for the slack type, and

are considered primitive. In practice, olher operations are defined in terms of the

constructors. This is the approach taken primarily by algebraic specification

techniques (eg. [Guttag Bc Horning ~8] [Goguen Bc Tardo 79]). One much-quoted

application area for algebraic methods has been the description of abstract data

-13-

types. although the methods can also be used for more general problems [Goguen Be

Meseguer 82]. A different axiomatic approach is the use of logic (such as

first-order predicate logic or temporal logic) to specify software [Manna Be Pneuli

81] [Kowalski 8S] [Moszkowski 86].

The model-oriented. or constructive. approach attributes meaning to a

specification on the basis of an underlying model whose semantics are already

defined mathematically. A data type, or object, is specified by constructing it from

basic types whose properties are already known (eg. sets). Its operations are

specified in terms of their effect on the object.

The rest of this section describes a selection of individual methods which

illustrate aspects of formal specification.

OBJ

One specification language based on algebraic methods is OBJ [Goguen Bc

Tardo 79]. OBJ allows the user to define abstract "objects", where an object may

describe an abstract data type (that is, a class of values together with operations

which manipulate such values) or an algorithm. Objects can import objects that

have already been defined, forming a dependency hierarchy of objects. Operations

belonging to an object are specified by algebraic equations as described above.

Objects may be parameterised, so that. for example, the object UST defined for

elements of any sort can be instantiated as UST -OF-INT, speciftc to i~tegers. This

allows libraries of useful objects to be set up.

As aspeclflcation language, then, OBJ offers the benefits of formal

specification, abstraction and modularity. In addition, it is possible to execute an

OBJ specification by regarding the equations as rewrite rules. In order to do this

the equations must satisfy two conditions: firstly, that there are no infinite

sequences of rewrites; and secondly, that the final result is independent of the order

in which the rules are applied. (OBJ provides a facility to overcome the problem of

non-termination, by saving the intermediate results of rewrites and prohibiting any

-14-

rule which would produce a result that had already been obtained.) OBJ rewrites a

suppUed term until no further rules can be applied and then returns the resulting

term.

More recently. OBJ has been modified and extended to allow it to be used as a

very-high-Ievel programming language [Goguen 84]. In consequence, OBJ can be

used for both specification and proto typing in the design of software.

VOM

VOM[Bjomer Bc Jones 82] [Jones 80, 86] is a development method which uses a

model-oriented specification language, although it does not exclude axiomatic

specifications. In a VOMspecification. operations are defined as acting on a state

which is constructed from mathematical objects (sets, lists. maps and so on). The

mathematical objects used can be manipulated by the operations normally

associated with them, for example, set union or list concatenation. The effect of an

operation is specified implicitly by a post-condition, which is a predicate relating.
the input state to the output state. This specifies a class of implementations for the

operation with no restriction on the algorithm to be used, save that it satisfy the

post-condl tion.

VOMis not simply a notation, however. It is a method. a way of developing

software rigorously, defined by Jones as being "precise without being completely

formal". It is iterative in nature, with each iteration moving from the specification

towards a more concrete representation, and ultimately to the program ltself.

The initial specification is abstract, defining data in terms of mathematical'

objects and defining operations implicitly. At each iteration, the data types may be

made more concrete by choosing a less abstract representation ("reification") and

respecifying the operations accordingly, or the operations may be developed towards

the implementation ("decomposition"). In either case, the designer has to

demonstrate that the result of the iteration meets the specification from which it

was derived. Once this has been done, the result may be used as the specification

-15-

for the next iteration. This process continues until a satisfactory implementation is

reached. The resulting program will. if the method is followed. have been shown to

be correct with respect to the original specification.

MIRANDA

If OBJ is an example of the progression of a specification language towards a

very-high-level programming language. then MIRANDA [Turner 85] illustrates the. .

opposite development. A purely functional language based on the use of recursion

equations. it shares the main characteristics of functional languages - it is a static.

definitional language. it has a powerful data-structuring capability, it treats

functions as first-class objects (ie. it is higher-order) and it has a mathematical

foundation (functions, lambda-calculus and recursion equations). These features are

very similar to those required of a specification language.

With the addilion of a notalion for set abstraclion [Turner 82] and a strong

polymorphic type discipline. it is not surprising to find MIRANDA being advocated

as a language suitable for specification. It has the added benefit that the resulting

specifications can usually be executed. so providing a rapid prototyping facility.

The equational language used is amenable to mathematical manipulation: in

particular, a specification can often be transformed to a more efficient form (or, if

the original was not executable, to an executable form). and properties of the

specification can be studied by stating and proving theorems about it.

me too

Like VDM. me too [Henderson & Minkowitz 86] [Henderson 86] adopts a

model-oriented approach and encompasses both a method and a notalion. Like

MIRANDA. it is based on a purely functional language. in this case either LispKit

[Henderson 80] or a subset of muLisp (muLisp 8~]. Like OBJ. me too takes an

object-based view of software. requiring the specification of objects (data

structures) and operations which act on those objects.

-16-

me too proposes an iterative method of software design. The first step (called

the Model step) in each cycle is to describe the abstract objects and operations.

This is done informally, the result being a list of objects and operations, their

intended meaning or purpose described in English, and the functionaUty of each

operation.

The second step (the Specify step) involves giving a formal representation for

each object and a formal specification for each operation. As in VDM, objects are

constructed from basic mathematical types, in this case, sets. relations. finite

functions (maps). tuples and sequences •. The operations are defined in terms of the

natural operations for the underlying mathematical types. Unlike VDM, however,

the operations are- explicitly specified, defining how their results can be constructed.

This constructive specification leads to the third (Prototype) step in the

method. The specification notation is transliterated into a functional style suitable

for execution by a proto typing shell run on'LispKit. This form of the specification

can then be executed as a prototype. Exercising the prototype is likely to reveal

errors, inconsistencies and omissions in the design. which is why the process is

iterative, allowing changes to the model and/or its specification.

2.1.2 Rapid proto typing

The growing interest in this technique is evidenced by two major workshops

devoted to the subject [Squires 82] [Budde et al 84]. There is still considerable

debate over the role, content, validity. costs and benefits of software prototypes

[Floyd 84]. Some of this arises from the different concepts covered by the term, so

we begin by reviewing the various definitions in the literature.

"Rapid" does not refer to execution time, but is generally taken to mean

"quick to produce" since the cost must not be excessive and the prototype is

required early in the design process if it is to have any influence in further design.

The iterative method of

Design -> Prototype -> Review

-17-

implies that the prototype must also be "quick to change" in order to respond to the

feedback obtained from earlier versions. Such iteration in the design process is

acknowledged to be a valuable mechanism for finding and correcting design errors at

an early stage in software development [Sommerville 82] [Bonet & Kung 84] [Berry &

Wing 85].

"Prototype" has two very different interpretations - it can mean a "mock-up"

[Gregory 84] or "scenario" [Mason & Carey 83] which is a surface presentation of the

product usually concentrating on the user interface with little or no functionality

behind it. Alternatively, it can mean "bread-boarding" [Botting 85] or "scale

modelling" [Weiser 82] which provides the functionality and structure of the logical

design with minimal concern for its presentation. What both these interpretations. .

have in common, however, is the desire to clarify and/or explore areas of

uncertainty in the requirements and design [Oavis 82] and to communicate the

declsions made. Prototyping is intended to allow designers to investigate the least

certain or most critical parts of a design. be that its user interface or its

functionality. Some work has been aimed at prototyping both the interface and the

functionality, as in the USE system [Wasserman 86].

The different way in which prototypes can be used accounts for much of the

debate over the technique. For example. one argument concerns the fate of the

prototype [Patton 63]. Should it be discarded once used [Brooks 75] or should it be

developed into the final product [Blum 83]? As pointed out in [Strand & Jones 82],

this can depend on the circumstances of the development. In small-scale systems,

evolution from prototype to product may be dictated by economic necessity.

More generally. differences arise from that fact that producing a prototype of

a system involves limiting that system in some way. The choice of limitation. and

hence the kind of prototype, depends on the objectives for the prototype [Smith 82].

The designers may limit lhe performance, perhaps la allow the use of an expressive

but inefficient language for prototyping. They may decide to limit the scope, for

example, to cover only simple cases or to use small amounts of data. Or they may

-18-

~imit the functionality by simply omitting some aspects of the system, such as error

handling.

How prototyping is actually achieved is another issue (Taylor & Standish 82].

As has been shown by the examples in §2.1.I, rapid prototyping is often closely

related to formal specification methods, particularly where the specification can be

executed. When this is possible, it arises from the use of a mathematically-based

notation which, being precise and unambiguous, can be "understood" by some form of

interpreter (Goguen & Meseguer 82] (Stavely 82] [Belkhouche & Urban 84] [Kowalski

85] [Lee & Sluizer 85].

There are other, less mathematical, approaches to rapid prototyping. They

may still involve a formal description, in the sense of Naur's definition, where the

notation is an existing programming language (Boehm et al 84] or a specially-

developed language [Mason & Carey 8~]. Existing software may be re-used, or a

prototype may be produced rapidly using ordinary software development techniques

by restricting the functionality.

Surveys of various techniques used in rapid prototyping have been compiled in

[Carey & Mason 83] and [Hekmatpour & Ince 86b].

2.2 Human-computer interaction

Although some attempts have been made to apply the general specification

techniques described above to human-computer interaction (hci), most work has

involved the development of specialised notations. This section describes both

specialised and general techniques used to specify user interfaces. Before doing so,

however, various concepts have to be introduced.

2.2.1 Overview of concepts

Separation

Many authors agree that components dealing with interaction should be separated

from components forming the actual application, ego [Casey & Dasarathy 82]

-19-

[Feldman & Rogers 82] [Huckle & Bull 84] [Williges 84]. One or two point out that in

practice such a separation may be difficult to define or achieve [Reid 85] [Cockton

86]. However, when it is possible. the benefits of dividing the software into these

subsystems are considerable.

An analogy is ~ith database management systems; there. data storage.

organisation and retrieval are delegated to a single "back-end" subsystem. the

DBMS. The application programmer no longer has to handle a substantial part of the

overall system. thus simplifying the task in hand. Similarly. interaction between

system and user accounts for a large part of any interactive system [Sutton &

Sprague 78]. Accordingly. it seems reasonable to create a single front-end

subsystem. called the "user interface management system" (or UIMS)[Kasik 82]

[Buxton et al 83] [Pfaff 85]. With such a system available. the application designer

is concerned only with the functionality of the application and the interface

designer with the dialogue. As a result. we can envisage employing specialist

designers to deal with these different aspects of the system [Johnson & Hartson 82]

[Norman 84].

Separating the application from the interface handling is thus a means of

simplifying the designers' task. but it brings other benefits as well. Given this

separation. it should be straightforward to provide different interface components-

for an application (eg. menus. forms or commands) or to ensure the same style of

interface across many different applications. An example of the latter approach 15

the COUSIN system which gives a consistent form-based interface to several

different applications [Hayes 85]. In a distributed environment. a further advantage

is that dialogue components can be located In distributed workstations. If the

components are adapted to take account of individual user characteristics. the user

interface at each workstation can be tailored to its user(s) [Carey 84].

Layers of interaction

Human-computer interaction can be subdivided. corresponding to different

layers of the interaction. The number of layers involved depends on which model of

-20-

interaction is adopted [Moran Sla] [Foley &: van Dam 82] [Neilsen 86]. The most

widespread approach follows a linguistic model. seeking to define the dialogue at

each of the lexical. syntactic and semantic layers.

Within this model. the interface contains two languages - user input and

system response. The individual keystrokes. button pushes or the like that make up

the "words" of the user input are defined as tokens in the lexical layer, as are the

components and characteristics of any system output (such as colour. position.

choice of window). The syntactic layer defines the sequence of input and output. In

particular for user input. it defines valid "sentences" in the user language. ie. the

allowable combinations of tokens which the user may input. The effects of such

sentences are defined by the semantic layer. which specifies the functionality

underlying the interface. Dividing the user interface into these different aspects

simplifies its design by allowing different parts of the problem to be considered

separately.

The semantic layer is defined by the application designer in the course of

designing the objects and operations of the application. User input is translated into

invocations of the operations supplied by the application system. System responses

are also specified by operations within the application. This layer does not form

part of a UIMS since it is defined by specifying the application. This can be done

using any of the existing formal specification techniques. such as algebraic or

model-based methods. Although the semantic operations are not specified as part

of the interface, they will. of course, be used in the interface specification.

Secondly. we consider the syntactic layer. which defines the sequence of

inputs and outputs in the dialogue. It specifies more than two individual sequences

for input and for output. though. It has to specify the relationship between the two

languages. the "interaction logic" (Strubbe 8S]. It is thus the key to specifying the

dialogue. since it draws together all the various aspects of the dialogue. This layer

defines what we have called the dialogue structure. In a UIMS. it is handled by a

component called the "dialogue manager". This thesis is primarily concerned with

-21-

specifying this layer and providing a dialogue manager to allow it to be prototyped.

Finally, the lexical layer defines the layout of the screen, windows. colour.

internal representation for user input and so on. In the past. this area has received

the most attention when the user interface has been considered - how tokens are to

be made up ("a HELP button. or the user typing HELP?". "what form of command

abbreviation?" ••••) and screen presentation ("what are the friendliest colours?".

"how much information can be displayed on the screen?" ••••) and so on, ad

infinitum. In some ways it is not surprising that this should be so. since this surface

detail is very apparent to the user and is often the first cause for complaints.

However. this part of the UIMShas usually been regarded as straightforward,

performing relatively simple transformations of input from and outputto the user

[Edmonds 82]. More recent investigations involving graphics systems indicate the

correct handling of feedback to the user is rather less trivial than first anticipated

[Kamran 85] [Olsen et al 65]. However. since we have chosen to concentrate on the

syntactic layer, we assume the existence of a "presentation manager" within the

UIMSwhich is responsible for this layer.

With the components mentioned above. the architecture of a UIMSmay be

pictured as in Fig.2.l.

presentation
component

dialogue
manager

application

UIMS

Fig.2.1 Structure of a UIMS

It should be noted that most authors extend or elaborate upon the layers

outlined above. All those cited above add a conceptual layer to describe the user's

model of the tasks to be peformed by the system. Moran and Nielsen elaborate the

layers by further subdividing their concerns. For example. Moran introduces the

'-22-

"interaction level" which incorporates some aspects of dialogue structure as well as

such details as key presses required from the user.

2.2.2 Proto typing techniques

A number of techniques have been devised for prototyping user interfaces.

This section describes those which are not directly related to a specification

language.

The least formal and least expensive approach is to use fixed screen displays

to demonstrate what the interface will look like at key points in the dialogue. This

may be entirely manual. using printed diagrams. or may involve the use of an

animation system to run through a sequence of screens, with or without user input
I

[Mason Bc Carey 8S]. Although it provides a concrete display to the user and is quick

to set up, it is also restricted in what can be shown to or experienced by the user.

Another method is to substitute the designer for parts of the interface that

are missing [Good et al 84] [Kelley 85]. The user interacts with the system as

intended in the production version. but for missing facilities or unrecognised input.

the input is sent to a second terminal where the designer responds as required. This

allows a more realistic experience of the system and also enables the designer to see

how the user would like to be able to use it. However it may be restricted in the

kinds of systems that can be presented. since the designer must be able to respond in

a realistic time. and is not appropriate for large-scale trials with many users.

A third approach is to undertake preliminary implementation. This is less

restrictive than either of the previous methods and allows any aspect of the user

interface to be included. It can be expensive both to produce and modify such

implementations. however.

Consequently. methods which allow a realistlc prototype to be derived

automatically from a description of the interface are much in demand.

Commercially. this has led to fourth-generation tools such as QuickBuild [IeL 66]

which allow entire interactive application systems to be generated very quickly.

-23-

Such tools tend to be founded on database technology and are usually restricted to

commercial dp systems. More generally. a number of methods are directly linked to

a specification language which is used as the basis for the prototype. either driving

an interpreter or being used to generate the prototype itself. Since they are so

closely related to their specification technique. they are described in the next

section where appropriate.

2.2.' Specification techniques

This section surveys the various techniques proposed as means of specifying

human-computer interaction. Drawing on the linguistic model. the most

frequently-used techniques are those derived from traditional language specification

and analysis. namely BNF (Backus-Naur Form) and state transition networks; these

are described first.

BNF

In BNF. the grammar defines the input language. The terminals of the

grammar are taken to represent primitive user input actions. while non-terminals

group and structure these actions. As it stands. BNF is not sufficient to describe

the syntactic layer of dialogues since it has no means of relating valid input to its

effects. including outputs. However. it can be augmented by adding notation to

describe actions to be taken when a phrase or sentence of the input language is

recognised. This approach is adopted, for example, in the compiler-compiler YACC

(Johnson 78]. as well as in specifying the user interface [Lawson et al 78].

An example of a BNF specification for a simple logging-on dialogue. extended

by actions as above. might be:

<logon>
<user-id>
<bad-user>
<good-user>

::= LOGON (1) <user-id>
::= <bad-user>w <good-user>
::= %USER (2)
::= %USER (3)

where
(1) output:
(2) condi lion:

output:
(3) condition:

"user name?"
not REGISTERED-USER(%USER)
"invalid user name. try again"
REGISTERED-USER(%USER)

-24-

[Reisner 83] extends BNF in a different way to include the cognitive actions of

the user as well. The resulting specification allows estimation of user performance

with the Interface prior to its implem~ntation. This enables the designer to

experiment with alternative interfaces without having to implement them. [Payne

& Green 83] also presents a variant of BNF which is used for analysing specifications

of command languages.

However. as suggested earlier. it is often helpful for the designer to

experience the interface personally [Lieberman 83] and to allow users to evaluate it

[Damodaran & Eason 83]. Consequently the formality of BNF is exploited as a

means of generating the user interface. Prototyping is achieved by providing an

interpreter for BNF which allows the designer to generate the user interface

components directly from the specification [Hanau & Lenorovitz 80] [Olsen &

Dempsey 83].

Note that these grammar-based approaches are centred on user input. with

output regarded as an "action". [Shneiderman 82b] moves awayfrom this

asymmetric treatment of input and output by using a "multi-party grammar". This

labels the source of each utterance. either the user or the system. [Bleser & Foley

83] presents a specification language based on this idea. The language is capable of

describing the three basic layers of the interaction described above. For the

syntactic layer. it describes the grammar of both input and output. and their

relative sequencing. They use this notation to define interface characteristics and

to analyse the resulting specification with respect to the various guidelines given for

human-computer interaction.

State transition networks

When state transition networks are used. the specification describes a set of

states (nodes) and transitions between them (directed arcs). either in a text form or

diagrammatically [Parnas 69]. Transitions are labelled with user inputs. A

transition from a state will be traversed if its input is given while the system is in

-25-

lhat slate. To mimic lhe use of non-lerminals in BNF and lo reduce the size of

individual specifications. the label on a transition may name a sub-network [Denert

77]. Also. as with BNF, the original concept is extended to allow actions and/or

outputs to be associated with transitions [Woods 70]. The example dialogue given

above could be specified (using the same actions) as:

LOGON(1)

%USER(2)

%USER(3

[Jacob 85] relates this approach to the interaction layers described in [Foley Bc

van Dam 82]. The semantic layer is defined by the operations supplied by the

application. The syntax and lexical layers are described in separate groups of

diagrams, with lexical sub-diagrams being "called" from syntax diagrams. Each

transition can have various attributes attached to it: a condition to be satisfied, an

input to be matched, an output to be generated, an action to be taken or the name

of a sub-diagram to be called. The diagrams, in their text form, are executable by

an interpreter, thus, as with BNF, the interface component can be created directly

from the specification.
,

SYNICS [Edmonds Bc Guest 84] takes a similar approach, though it uses BNF to

define the user input language whereas Jacob uses state transition networks

. throughout. It also permits input to be taken from the application, thus allowing the

same analytic techniques to be used for system responses as for user input. SYNICS

makes it explicit that the interaction is seen as a collection of dialogue events. A

dialogue event corresponds to a named state together with its outgoing arcs and

other attributes. [Guest 82] found that designers preferred the state-transition-,

network version of SYNICS to an earlier version based on BNF, partly because of the

natural way in which the former could express the sequence of events in a dialogue.
. .

[Alty &: Brooks 85] describes CONNECT which.Tike SYNICS, associates the

-26-

attributes for each step with the nodes rather than the arcs of the network. It

identifies dlfferent types of node to handle various activities. so that a "task" node

does not communicate with the user but with the task required. A major aim of this

work is to investigate ways of dynamically reconfiguring the network in order to '

provide dialogues which can be adapted to the needs of users as they engage in them.

An alternative method of allowing different styles of interaction to suit

different classes of user is proposed in (Hagglund & Tibell 8~]. Instead of describing

a data structure (the state transition network) with a single interpreter. so that

different dialogue styles depend on changes to the data structure. they provide a

state-transition-network data structure which can be used by several different

interpreters. Each interpreter implements a different style of dialogue control (eg.

menus or forms). All the information needed for the interaction is represented as

attributes of the states. The attributes include prompts. defaults. Iexlcal

information and transition instructions. They are the union of the slightly different

attribute sets needed for the different styles. .
This does not cover all of the state-transition-network-based techniques -

since it is a popular approach there is a sizable amount of the literature on the

subject. (Jacob 8~] gives a comprehensive survey of the use of state transition

networks (and BNF) for specifying human-computer interaction. More recent papers

include (Warlik & Pyster 83] (Ho 84] [Olsen 84] [Kieras & Polson 85] and (Wasserman

85].

Interaction events [Benbasat & Wand 84]

. An interaction event is defined as a point in the dialogue where user input is

required. A dialogue is then a sequence of basic interaction events. and the

specification of a dialogue consists of event definitions together with a specification

of the flow of control. Like a SYNICS dialogue event. each interaction event is

made up ·of common generic elements, some of which are mandatory (eg. prompts or

the flow of control) while others are optional (eg. help or input checks). The

-27-

sequence of events is specified by the "flow control" element in each event; that is.

it 19defined within the events themselves. Constructs available are based on the

usual programming structures: sequence. choice and iteration.

. In this example. we omit some of the elements and compress the notation for !

the sake of space:

Event-id Prompt
COMMAND ..?..
LOG "user name?"

Check
RESP E Valid-Cmds
REGISTERED-USER(RESP):
TEXT="invalid user •••"

Flow-control
(RESP=LOGON) -> LOG

This method does not make use of the layers of interaction described earlier;

all information about the dialogue is contained in the one description. In particular.

it does not enforce a syntactic/semantic split. as the code implementing actions or

conditions is incorporated into the dialogue description itself. The method is

. primarily designed to handle command languages at present; it has no facilities for

screen definition.

Frame-based techniques

This approach Is often found in systems for computer-aided learning (CAL).

and alms to provide an "authoring language" with which the author of a CAL lesson

can describe the dialogue of the lesson. The "frame" used here is not related to the

AI notion introduced in [Minsky 75] but is merely a unit of information for display.

Like an interaction event. it packages together all aspects relating to that step in

the dialogue. [Barker 84] describes a dialogue programming language. MICROTEXT.

in which each frame contains many of the attributes of interaction events. such as

flow control. input checks. help information and so on. MICROTEXT, though. is

screen-based and so it also allows screen positions and layout to be defined.

[Lafuente &: Gries 78] takes a slightly different frame-based approach. The

language separates the sequencing of frames (the flow control) from the

representation of the frames. This allows the frames to be entirely declarative in

nature. with the imperative sequencing handled by the (Pascal) program in which the

-28-

frame descriptions are embedded. In addition to the usual ability to define the

content and layout of items 1n a frame, the designer can incorporate behaviour rules
I

I ,

in a frame description. Thus a frame description defines the items contained in it

but also relationships between them and rules governing their behaviour. As an

example, consider one frame which describes the "new account" display for a

banking application:

SANKOF CALEDONIA
NEWACCOUNT

Press RETURN when all fields supplied

Name:
Status: ·MARRIED

·SINGLE

Salary:
Spouse's salary:

The rules for this frame include

require salary, name;
require card(status) <= 1;
require salary2 if MARRIED in status and salary < 10000
let salary2.display be (MARRIED in status):
terminate if RETURN-KEY:

These rules, for example, end the frame when RETURN is pressed, will not allow the

frame to be sent without entering a salary, only display the spouse's salary field

when the applicant is married and only require that information under certain

condi tions.

Object-oriented techniques

A number of techniques use an object-oriented approach. (Jacob 86] defines

an interface using interaction objects, each of which can specify its dialogue with

the user as well as its data and procedures. The dialogue specification itself may be

local or inherited. The multiple-inheritance mechanism means that a significant

economy in specification can be achieved, since generic objects can be specified and

then reused by more specialised objects.

-29-

[Cook 86] is also concerned with providing generic inlerfaces using lhe

object-oriented approach. Instead of state transition networks, though, the entire

interface is specified in a non-executable functional language. The paper shows how

the specification of a simple window manager can be specialised to handle windows

of different types.

[Smith et al 84] use an object-oriented programming language with special

facilities for interface handling. The system is broken down into individual tasks,

within a hierarchic structure. A task is defined in terms of its attributes, which are

called slots. ego the code. expansion or port slots. Sequencing is described by the

module hierarchy and by any (partial) ordering defined within the module. The port

slot defines a primitive step in the flow of data between tasks. The interaction

style used (eg. menu o~ command-driven) is not specified explicitly in the task

description but is selected by the interface handler on the basis of information in

the descrip tion.

A predecessor of the object-oriented approach was the artificial intelligence

concept of frames [Minsky 75], which included the concept of inheritance within a

hierarchy of frames. GUS [Bobrow et al 77] explored their use for controlling a

dialogue. More recently. [SandewaU 82] defines command languages for office

information systems in terms of frames, capitalising on the similarities between the

languages, ego create an X, delete an X, print an X, where X may represent such

objects as a mail message, an appointment or a room booking.

[Lieberman 85] has a more limited field of interest, namely menu systems. but •

shows how object-oriented techniques can simplify the specification of such systems.

Knowledge-based techniques

Even before the popularity of expert systems, knowledge-based techniques

were advocated for specifying hci [Hopgood Bc. Duce 80] [Durrett Bc Stimmel 82].

Inputs are received in working-storage and production rules are held in long-term

storage (the "knowledge base" in expert system terminology). The interaction

handler compares the contents of the working-storage with the conditions in the

production rules. When a match is made, the actions of the matched rules are

triggered; this may cause an output, some internal action and/or the addition of

further items to working-storage. The matched items are removed from

working-storage and then the process is repeated.

[Kieras & Polson 85] combine the use of production rules with state transition

networks. The rules describe the user's view of the task to be performed, based on

lhe GOMSmodel [Card et al 83]. The behaviour of the system is defined by state

transition networks. Their interest is in analysing the complexity of both views of a

system and the correspondence between them.

Hopgood & Duce nole that rule-based methods can lead to simplicity and

economy of description (particularly when simultaneous user inputs are permitted).

avoid specifying crd~r unnecessarily on the sequence of user inputs, and create the

possibility of adaptive dialogues (by dynamic modification of the knowledge base).

These properties are being investigated in an Alvey project, "Adaptive Intelligent

Dialogues" (Alvey 84b1[Durham 85].

o ther specialised techniques for hci

Input-output tools propose a hierarchic method of specifying interaction [van

den Bas et al 83]. An input-output tool is a named object with an input rule, an

output rule. internal tool definitions and a tool body. The input rule is analogous to

a production rule in a grammar, il specifies the input pattern capable of triggering

the tool. The ru1e can name other tools (as non-terminals) and has operators for

selection, interleavinq, repetition and sequencing. If the rule can be matched to the

user input, the tool body is executed and output is generated. With the addition of

prefix (guard) functions on input rules and post-test functions on output parameters.

the descriptive power of input-output tools is extended up to that of

context-sensitive grammars.

The Descartes system [Shaw et al 83] is based on principles of language design,

such as the provision of suitable abstractions. The designer specifies individual

-31-

elements of the screen display and can then compose them using generic rules. For

example.

for COMPOSE !d2. BACKGROUND=white. FORMAT=framed

Dialogue: COMPOSE of Command-area. Help-area
with AUGN=vertical

Help-area: SCROLL of [PROGRAM-VAR of HelpText]
••• etc

The interaction is rnanaqed by an application-specific module which can be

generated, in part at least. from the specification.

General formal specification methods

[Anderson 85] uses general formal specification techniques (the algebraic

language CLEAR, together with regular expressions, context-free grammars and a

denotational style) for interaction rather than developing a specialised notation.

Armed with this array of techniques. he is able to state mathematical formulations

of desirable properties of user interfaces and demonstrate whether or not they hold

for a specified interface. [Mallgren 8J] presents event algebras as an extension to

an algebraic specification method to handle interaction. primarily to enable the

formal definition of inpuVoutput primitives in interactive graphics languages.

Another extension to algebraic specification is proposed in [Chi 85]. using the flow

expressions described in [Shaw 80].

The model-based method is also being investigated for specifying hci. A

significant specification. in that it is of a reasonable size and has been implemented.

is for a display editor [Sufrin 82]. This was defined using Z. a model-based notation

that can specify operations either axiomatically or constructively. Other proposals

involve YOM. Of these. the most ambitious project is EPRO~ [Hekmatpour Bc Ince

86a], which seeks to integrate all aspects of software development in a single

framework. For dialogues. EPROS uses state transition networks. A primary goal

of EPROS has been to ensure that at each stage of development from specification

to implementation the system. both functionality and user interface. is executable.

Functional languages are also addressing the issues of synchronisation and

-32-

inpuVoutput directly [Abramsky &: Sykes 8S] [While 86]. but have not yet been

developed sufficIently to offer a clear way to specify het, Of these. a promising

approach is that advocated by While. in which a language based on temporal logic

describes constraints on the execution of Hope programs [Bailey 8S]. [Feldman 82]

presents a syntax-directed approach to interface specification. using the functional

language FP to give meaning to the syntactic constructs of the input language for a

line editor.

Techniques for concurrent input

With the advent of multiple interaction devices. such as touch-screen. mouse

and keyboard. has come the need to be able to specify concurrent input and the

ability to omit specifying ordering of the inputs where appropriate. This section

groups a number of methods by their effect (allowing concurrency) rather than by

the technique employed.

One notation is flow expressions [Shaw 80]. which is an extension of regular

expressions to provide a notation for describing graphics command languages •. The

extensions allow the notation to handle interleaving of symbols, cyclic activities and

synchronisation. [Chi 85] proposes using flow expressions together with algebraic

specification to describe user interfaces, although how they are to be combined is

not made clear in his paper.

Based on CSP and CCS, squeak [CardeUi &: Pike 8S] is a programming language

developed primarily to address the issue of concurrency among interaction devices.

Although it is mainly concerned with the device level. it can be used to describe

higher-level dialogues such as the logon example. However. the example given here

illustrates a particular feature of squeak: its explicit handling of time. This

example is a process describing the detection of button presses on a mouse:

Click = ON? • (wait[clickTime] •
(UP? • click! • Click)
II (down! • UP? • up! • Click))

The II construct specifies alternative options dependent on a timeout. The form of

-33-

this is

wait[x](a.P) II Q

which means that P will occur if event a happens within time x. If event a does not

happen in that time. the process continues as Q. In this example. then. when the

button is pressed (event DN occurs). the process waits for it to be released (event

UP). If it occurs within the "click Time" specified. a non-primitive "click" event is

generated. If not. a non-primitive "down" event shows that the button is being held

down. In this case, when the UP event is received. the "up" event is sent.

A third approach is taken by [ten Hagen 8c Derksen 85], which describes

dialogue components using dialogue cells. A dialogue is made up of steps, each

defined by a dialogue cell. A cell is built from four basic elements: user action,

external system reaction (echo), internal state changes. and conditions determining

when the action occurs. To allow parallel input. cells may be active simultaneously.
and the user may input to any active cell.

Statecharts [Harel 86] are a graphical. extended version of state transition

networks. They define states graphically. as nested boxes. and trigger transitions by

events. Statecharts offer a number of features not found in the more usual

state-transition notations. For example, they permit specification of default entry

points to enclosed states. history-dependent defaults. and concurrent processing.

The charts give no detail as to the effect of events, however; this is specified

separately.

In [Jacob 86], the state-transition-network technique is extended to handle

modem "direct manipulation" interaction techniques [Shneiderman 82a]. Jacob

adopts the object-oriented paradigm and represents items on the screen by

interaction objects. Each object has an associated transition diagram specifying

how the user may interact with the object. An executive activates and suspends the

individual dialogues as co-routines. calling each only when an appropriate token is

available for it. so that the user can switch between interacting with the various

objects displayed on the screen.

-34-

2.2.1 Features of the techniques

This section picks out some of the main features found in the techniques

described above.

Defining dialogue steps

Most of the techniques described are based. either implicitly or explicitly. on

breaking the dialogue down into primitive steps. each with a common structure.

These dialogue steps have various mandatory and optional attributes, which together

describe the characteristics of that step. The sequencing of the steps may be

included in these attributes or may be specified separately. Often this

decomposition of a dialogue is specified in some form of data structure. The

interaction can then be animated by one or more processors which interpret the data

structure representing the dialogue.

Combining dialogue specifications

Clearly. where a dialogue is decomposed into its constituent parts, some

mechanism for creating the overall structure from the parts must be provided. In

some techniques. this is achieved by a hierarchic structuring of the parts (eg.

dialogue cells. input-output tools); in others. by explicit command. (eg. "COMPOSE"

in Descartes): in others, by the nature of the specification (eg. state transition

networks where node and arc descriptions are all part of the one notation).

Offering alternative interaction styles

Interactive systems are used by various classes of user, ranging from "novice"

through "casual" up to "expert". with different methods of interaction being

appropriate for each [Badre 84]. For example, a menu-driven system may be

suitable for novice or casual users but can be tedious for experts. Consequently, it

is useful to be able to offer different dialogue styles for any given application.

One approach is simply to specify the different dialogues individually and then

rely on the separation of interface from application to allow the appropriate

-15-

interface module to be used with the application. Alternatively. the interface

components can be altered dynamically as the dialogue progresses (as in

CONNECT). [Hagglund & Tibell 83] proposes a sufficiently generic dialogue

structure that can be processed by more than one interpreter. each offering a

different interaction style. The system described in [Smith et al 84] bases the

choice of style on the properties of the information required rather than on the user.

Proto typing interaction

Rapid prototyping of software is increasingly acceptable as part of the

software development process. It is particularly appropriate when designing

interactive software since it allows the interface designers to see a dynamic

presentation of the interface. For example. [Sufrin 82] notes that some design

decisions were only made after experimenting with alternative implementations of

the display editor.

Where the notation used for specification is executable. the specification

itself acts as the prototype. Many of the techniques described in this paper enable

the interface component to be prototyped from the specification, ego BNF with

actions. state transition networks. interaction events, input-output tools.

2.3 Contributions of this work

The languages. tool and method presented in this thesis (collectively known as

SPI - for ~ecifying and E,rototyping interaction) bring together many of the

desirable features currently scattered across the techniques described in the

previous section.

SPI sets out the dialogue in terms of discrete events acting on a state. clearly

separating the structure of the dialogue from the effects of the individual events

within that structure. The overall structure is specified in a subset .of CSP [Hoare

8S]. This defines the order of events, the possible sequences of events that can

occur in a dialogue. Using CSP notation allows concurrent and partially-ordered

-36-

input to be specified. The events themselves are simply me too operations which

specify when an event can occur and what happens to the state when it does. Such

events are defined in a second notation. designed as a shorthand for the me too that

would otherwise have to be written.

The SPI languages have been embedded in me too. and. like me too. they are

formal. declarative and executable. Embedded in C. the event specification

language provides better performance and more scope as a production-quality tool.

SPI adopts the me too method for software design: an iterative. prototyping

activity based on formally specifying the behaviour of the system. In addition. it

offers the transition from specification to implementation. A SPI specification can

be reworked in the programming language C and the result can be executed as the

implementation of the dialogue.

Using CSP as a way of controlling me too operations (in the form of events) is

similar to proposals for using temporal logic to control execution of Hope equations

[While 86]. Thus. although not the main intent of SPIt the languages offer a way of

handling synchronisation in a functional language. In particular. SPI allows

input/output in a functional language,' as the synchronisation between program and

user.

Overall. SPI demonstrates a way in which formal specification and rapid

proto typing can be applied to human-computer interaction in order to reap the

benefits of using such techniques in this increasingly important area.

-H-

CHAPTER'

EARLY PROTOTYPES OF SPI

This chapter describes the background to the present system. It traces the
.

development from the original me too language by means of three prototyped

systems which were used to explore different ways of characterising human-

computer interaction. As such, it serves both to introduce the concepts involved in

the SPI architecture and languages and to illustrate the general method of software

development advocated in me too.

In functional languages, a natural approach is to consider an interactive

function as mapping an input stream to an output stream. Although adequate for

demonstration purposes, this view becomes overly complex for more realistic

systems. This observation led to the first group of prototypes of SPI which

investigated the use of a more succinct nolation for streams. The notation was

based on CSP channels and did make it easier to read and write specifications of

dialogues. However the notation, although useful, was restricted in a number of .

ways, especially for specifications of larger systems.

As a result, a simpler characterisation of interaction was developed. This

second technique, called ECS, moves away from explicit stream handling, using

instead state transformation and interpretation.· While this method, not surprisingly,

clarifies the state transformations involved, it tends to obscure the structure of the

dialogue.

The third set of experiments returned to CSP for modelling a dialogue, but no

longer using a stream-based implementation. In this notation, a dialogue is'

specified as sequences of events, where each event represents an inleraction or

other activity occurring in the dialogue. This proved to be an excellent way of

outlining the structure of a dialogue and led to the architecture and languages

presented in this thesis.

The sections that follow describe the functional approach originally used in

me to·o. then each of the three exploratory systems. me too notation is explained as

it is introduced. but for reference Appendix 1 gives a fuller description of the

language.

'.1 Streams in me too

.slnce me too is a functional specification language. a natural starting point in

describing dialogues is to experiment with existing methods used in functional

programming. The usual approach is to view the description of an interactive

system as a function from its input stream to its output stream [Henderson 82]. ~nd

to assume that constructing this description is a straightforward task.

Employing this technique may well be adequate for small functional programs.

but experience has shown that for more realistic programs it results in

specifications that are difficult to read and to reason about. me too has been used

to specify a variety of interactive applications. including spreadsheets. expert

system shells [Jones et al 85] [Bruce 86] and a decision support tool [Minkowitz 86].

In the process of developing these applications. it has become apparent that dealing

with input and output by this traditional method can become complex and certainly

obscures the meaning of the specification. particularly where a function deals with

more than one input or output stream [Jones 84]. Since the aims of formal

specification include comprehensibility [Liskov &: Zilles 15] and better

communication between designers [Henderson &: Minkowitz 86]. such a shortcoming

has to be taken seriously by those who advocate the use of functional languages to

specify software.

By way of an example. the "logon" example used in chapter 2 is given here

using me too. The operations specifying the dialogue assume the existence of a

table of users and passwords and appropriate underlying operations for checking

them. These constitute the "application". the semantics of the dialogue. and are

specified in Appendix 2.

The structure of the operations is determined by the way in which interactive

-39-

me too prototypes are executed. A prototyping shell for me too. called ProtoKit.

has been built at Stirling. It enables a designer to execute a me too specification.

creating and manipulating the specified objects using the specified operations. For

an interactive operation. that is. one which maps an input stream (the keyboard) to

an output stream (the screen). ProtoKit provides the "run" command. This expects

. the interactive operation to be of a particular type. namely:

(in -> (out x user-state x in»

For future reference. we will call this the type runnable-process. The operation

supplied to "run". therefore. is expected to take an input stream and map that into

an output stream. some form of result and the unused portion of the inpul stream.

In practice. interactive operations usually have functionality.

(user-state -> (in -> (out x user-state x in)))

or. abbreviated:

(user-state -> runnable-process)

This is to allow use of predefined objects as the user-state. In the logon example.

"run" is called with the operation "cmd-Ievel(udb)" as its parameter. where the

dialogue is specified by the following me too operation:

cmd-level(udbXkb) ==
letrec (sl.dl.kl) =

let cmd = head(kb)
kb = tail(kb)

in
- if cmd="logon" then logon(udb)(kb)

else if crnde ••••
else Ietrec (s2.d2.k2) = cmd-Ievel(udb)(kb)
- in list(cons(errmsgl.s2).d2.k2)

in list(cons("?" .sl).d Lk 1)

To understand this specification. it is first necessary to appreciate the way in

which "run" drives the interactive operation supplied to it. The "run" command

seeks to display each item in the output stream as it becomes available. and all

other activity in the runnable-process (input and/or computation) is only undertaken

in order to extract the next output item.

In me too. the let and letrec expressions introduce local declarations within an

-40-

operation. Here letrec is used ,to identify the individual components returned by a

runnable-process.

The first step in this operation is to add the prompt "?" to the output stream.

so that "run" will display it. Next. "run" seeks to evaluate the rest of the output

stream. here identified as "51". part of the result returned by the rest of the

operation. In order to obtain the next output item, "run" has to evaluate this inner..
expression. so it begins by removing the next item from the input stream. referring·

to it locally as "cmd". This input is used to determine the result of the operation. If

a valid logon command has been given. the result is created by calling another

operation "logon" (also of type runnable-process) with what remains of the input

stream. If no valid command has been given, an error message is added to the

output stream and the rest of the result is obtained by recursively calling

"cmd-level" •

Thus this operation prompts the user for a command and processes the reply,

either calling a further operation or giving an error message before starting again.

The other operations needed to specify this dialogue have a very similar structure,

and so are given below without further explanation.

10gon(udbXkb)==
letrec (sl,dl,kl) =

let user = head(kb)
kb = tail(kb)

in
- if registered(udb,user)

then pwd(udb.user)(kb)
else letrec (s2,d2,k2) = logon(udb)(kb)
- in listCcons(errmsg2,s2),d2,k2)

in listCconsC"user.",sl),dl,kl)

pwdCudb,userXkb) ==
letrec (sl.dl.kl) =

let pass = head(kb)
kb = tail(kb}

in
- if validpwd(udb,user,pass)

then shell(user)(kb)
else letrec (s2.d2.k2) = logon(udb)(kb)

in listCcons(errmsgJ.s2),d2,k2)
in list(cons("password:" ,sl).d Lk I)

These three operations. which specify just the beginning of an interactive

-41-

session. all have to deal with the input and output streams explicitly. adding and

removing elements as appropriate and then handing streams on the next operation or
I

returning them to the previous one. While the specification can be understood. it

requires some effort because the explicit stream handling obscures the meaning of

the operations. This lack of clarity is compounded when multiple input and output

streams are used.

However, the fact that the same structures are repeatedly used in taking input

and constructing output indicated that it would be possible to provide some form of

shorthand notation which could be translated into lhese structures. This

development is described in the next section.

J.2 Introduction to streamCSP

Recognising that a suitable notation can be a powerful means of

communicating ideas [Iverson 79]. the first'prototyped system investigated the use

of a notation to express the stream-handling characteristics of interactive

operations. Clearly. this system went through a number of iterations. but here we

present only the latest version.

The notation used stems from the language of "communicating sequential

processes" (eSP) which was introduced by H~are (Hoare 78] to provide both a simple

way of describing input to and output from a program (or process) and a means of

achieving concurrency of execution among processes. Here. notation based on a

subset of esp is used for the description of input and output in deterministic

systems [Henderson 84].

It should be made clear at the outset that the CSP introduced in this section

differs in a number of significant ways from that given by Hoare. In order to

distinguish it from the original CSP. it is referred to as "streamCSP". Before

discussing the differences. however, we give the notation used.

-42-

'.2.1 St.reamCSP notation

In streamCSP. a process P is defined by a process expression:

p = cprocess-expro

where a process expression is defined as follows:

if P and P' are process expressions, Sand S' are boolean
expressions. Q and Q' are processes. then the following
are also process expressions

c?v-+P input - on channel c, receive a
value into v and do P
output - put value of e on
channel c and do P
termination ("skip") - naming
components of process state to
be returned
conditional ("alternative") -
if S then P. if S' then P', .••

c Le s P

return(x l •.••xk)

(B -+P
o B' -+P'
o ...)
Q(xl, ••••xk)

Q:Q'(x l •••••xk)

process invocation - call Q
with the named components of
the process state
sequential composition - call
Q with the process sta te
supplied; when it terminates.
call Q' with the process state
returned by Q

Note that streamCSP uses channels for communication. In the original version

of CSP [Hoare 78]. channels were not present: instead processes were uniquely

named and communication was between named processes, ego

R = (P!e -+Q?x -+R)

which sends data to process P and receives data from process Q. However the

disadvantages of this approach led to the introduction of named channels for

communication [Hoare 83, 85]. StreamCSP adopts this later development and names

input and output channels rather than source and destination processes.

3.2.2 Departures from CSP

In this section we assume a CSP with channels as the basis of comparison.

Firstly. CSP uses unbuffered channels whereas streamCSP. which implements

each channel by a lazy infinite list, has buffered channels of potentially infinite

-43-

capacity. Each system can model the other, since CSP can specify buffered

channels by using buffer processes and streamCSP can 'specify systems with

unbuffered channels by establishing some form of hand-shaking protocol between

the processes involved. Nevertheless, this is a significant semantic difference

between the two notations.

Secondly, employing lazy lists as input channels precludes the use of input
•

guards in alternative commands (here referred to as conditional process

expressions). In CSP. the presence or absence of input on a channel can be used to

choose .between alternative actions, as in

(chI? x'" P
n ch2 ? y ...Q)

where the choice between P and Q depends on which of the channels (chl or ch2)

receives an input value first. In streamCSP, lazy evaluation of an input channel

means that it cannot be checked to see if a value is present or not - ProtoKit will

simply wait until an input appears on the first channel it checks (of course, input

may not appear at all on that channel). Consequently the guards in a conditional

process expression are restricted to being of boolean type.

A third difference is in the treatment of non-deterministic choice between

guards. In CSP, non-determinism is introduced in the conditional process expression

by allowing more than one condition to evaluate to "true" and by not defining the

order of evaluation. Non-determinism is avoided in streamCSP by guaranteeing the

order of evaluation of conditions. Even if several conditions may be true, the choice

of which will be used is determined by the order of evaluation, the order being that

in which the conditions are specified. Consequently the meaning of

is
(8 ...P n 8'P' ••••)
if 8 then P
else if 8' then P'

Analogously
if 8 !!:lW. P else P"

expresses
(B ... P n true .. P")

The two notations are exactly equivalent in streamCSP.

-44-

It can be seen from this "discussion that our aim was not an accurate

implementation of CSP but lts use as a convenient notation for stream

manipulation. The fallowing sections shaw how this notation has been used and

implemented.

3.2.3 Using streamCSP notation

As a first example, consider a decision table application. The application

supplies various operations to interrogate and manipulate a decision table of the

farm shown in Fig.3.l (specified in Appendix J). With these operations, we can

specify a dialogue in which the system asks the user questions from the table until a

decision is reached.

Responses

02 Y n Y n

a b b c

" 01 Y Y n n
Questions

Decisions

Fig.3.1 Decision table example

This can be speci ned by the process

dts(dt) = (is-decision{dt) ~ scr!<"decision:",dt>
~ return{dt) "n true ~ scr!<question(dt),"?"> ~ kb?ans
~ dts(prune(dt.question(dt).ans»

)

In this specification, the process first decides whether or not the decision has

been reached by calling the application operation "is-decision". If so, the decision is

the remaining tree "dt" and is output to the screen on channel "scr", whereupon the

process terminates. If more information ·is needed to make a decision, the user is

asked the next question by sending illo the screen. The user response is accepted

from the keyboard channel "kb" into a local variables "ans". This response is then

used to change the current version of the table (in the "prune" operation supplied by

the application) and this new version is handed to a new call of the "dts" process.

-45-

Note the use of sequence construction <•••> to create a single item of output

text from a number of constituent items. A sample dialogue with this system (with

the user input underlined) might be:

QI? ~
Q2? ~
decision: a

Alternatively, we could specify a system which allows the user to choose the order

in which the questions are answered:.
dtu{dt) = (is-decision(dt) _.scr!<"decision:" ,db

_.retum(dt)
D true _.scr!"?" _. kb?q&a

_.dtu(prune(dt,get-q(q&a),get-a(q&a»)
)

A sample dialogue with this system might be

? Q.ti
? QI n
decision: b

In all these examples, we use "kb" to denote the keyboard input channel and "scr" for

the screen output channel.

The earlier "logan" example can be re-specified as.
process cmd-Ievel(udb) =

scr!"?" _.kb?cmd _.
(cmd="logon" _.logon(udb)o cmde •••
D true _.scr!errmsgl _.cmd-Ievel(udb))

process logon(udb) =
scr!"user:" _.kb?user _.
(registered(udb,user) _.pwd(udb,user)n true _.scr!errmsg2 -+ logon(udb))

process pwd(udb.user) =
scr!"password:" _. kb?pass _.
(valldpwdludb.user.pass) -+ shell(user)
D true _.scr!errmsg3 -+ logon(udb))

This description is much more succinct, readable and comprehensible than the

earlier version with explicit stream manipulation. StreamCSP has been used to

specify a variety of dialogue styles (described in detail in [Alexander 85]) and has

proved effective in communicating the structure of interactive operations. Before

discussing its advantages and limitations, though, we outline its implementation.

-46-

3.2.4 Implementing streamCSP

StreamCSP is implemented as a language embedded in me too. StreamCSP (in

its functional S-expression form) is translated by a preprocessor into standard

me too which can then be run as a prototype. The preprocessor systematically

rewrites terms in the source notation using a set of rewrite rules until no more rules

can be applied [Finn 84]. Thus streamCSP is defined by a set of rewrite rules which

translate processes into stream-handling me too operations of type runnable-

process. The rules for the version of streamCSP described above (which assumes a

single input channel- the keyboard - and a single output channel - the screen - both

implicitly named by the preprocessors) are based on rules devised by S.B~Jones of

the University of Stirling. and are given in Appendix 4.

'.2.5 Evaluation of streamCSP

Compared with the explicit stream manipulation required in me too.

streamCSP was a significant step forward in making it easier to specify and

prototype interactive systems using a functional specification langauge. One reason

for its appeal is that it turns out to be well-suited to convey the sequence of events

in a dialogue. Since the structure of human-computer interaction is primarily a

sequence of exchanges between the user and the system. a notation which clearly

sets out that sequence makes the specification easier to understand.

Unlike most other dialogue specification notations. streamCSP does not

decompose a dialogue into its primitive steps. each with certain predefined

attributes. such as a condition or an action. Instead it specifies a dialogue as being

made up of one or more processes. A process is not restricted to specifying a single

exchange between user and system. but usually specifies a group of related

interactions.

The version of streamCSP described in this section was only one of a number

of prototypes used to explore this approach to dialogue specification. This

particular version has been presented because it offers the' clearest way of

introducing the concepts involved. rather than demonstrating how far streamCSP

~47-

can be taken. Other ideas which were investigated included alternative ways of

composing processes and use of multiple input and output channels. Each of these

developments added significantly to the complexity of specifications given in

streamCSP and thus began to expose the limitations of this approach.

A major deficiency in streamCSP is that. while it simplifies specifications of

simple dialogues. it too becomes unwieldy and complex when more powerful

constructions are required. Secondly. streamCSP displays an inherently imperative

form. This is undoubtedly useful for setting out the structure of the dialogue. but is

not considered a desirable feature ofa functionally-based specification language. A

further problem is the substantial way in which it differs. from Hoare's CSP since

this can contribute to misunderstanding of streamCSP specifications.
I

While streamCSP did offer an improvement in its ability to specify interactive

me too operations, the disadvantages given above encouraged investigation of a

different method.

3.3 Edit-Compute-Show (ECS) paradigm

In searching for an alternative view of dialogue using a functional

specification language an obvious question to ask is 'how Lisp, the archetypal

functional language (even if net purely functional). achieves its highly interactive

capability.

The answer lies in its use of a very simple form of interaction: the

Read-Eval-Print loop. Thus. the Lisp system is in some state, with some functions

defined, perhaps. and some data available. It accepts an input from the user

("Read"). evaluates that against the state ("Eval") and gives some appropriate

response ("Print"). In the process of evaluating the input. the state itself may be

changed.

This approach models a finite-state machine [Minsky 72]. where both the new

value of the state and the output depend only on the current input and the current

value of the state. In fact, finite-state machines (FSMs) are related to

stream-processing as well: a process which receives an input stream and the current

-48-

state and returns an outpul stream and a new value of thal slale is a function with

internal state, modelling a FSM [Sheeran 84].

The Read-Eval-Print paradigm, then, was adopted as a different way to

specify dialogues. It does not involve any additional language features in me too;

instead it prescribes a way of constructing me too operations.

3.3.1 Introduction to ECS

ECS employs the notion of the "state" of the dialogue advocated by the

proponents of transition networks. The system is in a particular state until given

some user input. It reacts to that input by transferring to a new state and perhaps

producing some output.

Thus the current slatus of the dialogue is modelled by a state. Possible

actions on that state are edit (to change it by providing the input), compute

(constructing any output and the new state) and show (making the output available

to the user). These actions. after some initialisation, are repeatedly executed in a

cycle as shown in Fig.3.2. The name of the technique is derived from this cycle of

events.

start _. edit

t
compute

t
show

Fig.3.2 Edit-Compute-Show cycle

Operations for "edit" and "show" are supplied as standard me too operations,

together with a further me too operation which executes the ECS cycle and acts as

the Interpreter of the state. This interpreter is specified in Appendix 5.

The designer's task, then, becomes one of specifying the operation(s) needed to

implement each step of the dialogue, ie. supporting the "compute" action. These

operations have to specify a numberof tasks to do with recording the new state of

the dialog'ue (such as creating output. requesting input or indicating the end of the

-49-

dialogue). They can then be executed by the ECS-interpreter. thus providing a

prototype of the dialogue.

The state is represented as a "finite function" (or "map". in VDM

terminology). This can be thought of as the table given in Fig.S.S.

index entry contains

INPUT
INPUT·REaD
OUTPUT
TERMINATE
DB

user input
boolean flag for input
created by "compute"
boolean flag to step
application database

Fig.3.3 ECS state

The properties of this table are:

- all rows are optional and are unordered
- the set of indices for all rows present in the table (ie. the
domain of the table) is given by

dom(state)
- the presence of a row is indicated by the presence of its
index in the domain of the table. which can be checked
by the usual set membership test

- state ds Ill .removes row i (domain subtract)
- state e{i~v}overwrites row iwith value v
- the contents of row i are accessed by

state[i]def
returning the default given by "def" if the row is not
in the table

More formally. it is defined as a me too object:

where
ECS-state = ff(lndex.Contents)

Index = {INPUT • OUTPUT. DB. TERMINATE. INPUT-REQD }
Contents = Text U Boolean U AppState
Text = seq(Atom)

In particular, for indices INPUT and OUTPUT. the contents. are Text: for indices

INPUT-REQD and TERMINATE. the contents are Boolean; and for DB. the contents

have lhe application-specific lype AppSlale.

The operations on the ECS-stale are

start: AppState -> ECS-slale
edit: ECS-slate x Texl -> ECS-slale
compule: ECS-stale -> ECS-slale
show: ECS-slale -> Texl

-50-

Of these, the standard operations edit and show are very simple, just adding input

text to the state or extracting output text:

edit (st,i) :: st ED (INPUT-+i}

show (st) :: st(OUTPUT]<>

The start operation is supplied as part of the specification. Its purpose is to set up

the dialogue state as required by the compute operation. This may simply be to

include the application-state, as in

start(as) = { OB...as }
but it may also initialise other parts of the state if required (since the compute

.
operations can extend the state to save and use local information).

3.3.2 Using ECS

First we specify the decision table example introduced in §3.2.3. The me too

notation used here is that for finite functions, as given above. The operations

needed for the example are: .

start(dt) :: {os-e }
compute(st) :: dts(st)

dts(st) ::
let inp = st[INPUT]<>
-dt = strOBl

st' = st ds {INPUT}
in
st' e
if is-decision(dt)
then { TERMINATE-+true,
- OUTPUT-+<"decision:",dt> }
else if INPUT fl dom(st)
then"1 INPUT-REQO ...true,
- OUTPUT..question(dt)}
else (OB-+prune(dt,question(dt),inp)}

The alternative interaction style where the user controls the order of questions is

specified by:

compute(st) :: dtu(st)

dtu(st) ::
let inp = st[INPUT]<>
- dl = strOBl

st' = st ds {INPUT}

-51-

if is-decision(dt)
then { TERMINATE~true.

OUTPUT~ <"decision:" .db }
else if INPUT Eldom(st)
then"1 INPUT-REQD~true. OUTPUT~"?" }
else (DB-.prune(dt.get-q(inp).get-a(inp»}

Unlike streamCSP, the availability of input is signalled to a compute operation by

the presence of the INPUT entry. The absence of input causes the operation to

prompt for it. The operations in this example remove input from the slate as soon

as it is used but in other situations it might be appropriate for the input to remain

available for more than one ECS-cycle.

For comparison with streamCSP, we also give a specification of the logon

dialogue. This example reveals the major problem with ECS, namely the way in

which a natural sequence of interactions has to be controlled explicitly by the

designer.

start(udb):= {DB~db, NEEDS~MD }

compute(st) ::
let needs = st[NEEDS]CMD
in

if needs = CMD then cmd-level(st)
else if needs = USERNM then logon(st)
else if needs = PWD then pwd(st)
else st ED{OUTPUT~"error" }

cmd-Ievel(st) ::
let inp = st[INPUT]<>
- st' = st ds {INPUT}

st' ED
if INPUT f£ dom(st)
then {INPUT -REQD-+true. OUTPUT~"?"}
else if inp = "lagan"
then {NEEDS~USERNM }
else {OUTPUT~"error: bad command" }

10gon(st) =
lel inp = st[INPUT]<>
- udb = st[OB]

st' = st ds {INPUT}

st' ED
if INPUT f£ dom(st)
then {INPUT -REQD~true. OUTPUT~"user:" }
else if registered(udb.inp)
then {NEEDS-+PASSWD.USER~inp }
else {OUTPUT....error: bad user" }

-52-

pwd(st) :;
let inp = st[INPUT]<>

udb = st[DB]
user = st[USER]<>
st' = st ds {INPUT}

in
st' e

if INPUT E dom(st)
then {INPUT-REQD~true. OUTPUT~"password:" }
else if validpwd(udb,user,inp)
then TOUTPUT .."logon completed", NEEDS~SHELL-CMD}
else {OUTPUT.."error: bad password",

NEEDS..uSERNM }

. ,.,., Implementing ECS

Since ECS involves no additional language constructs in me too, all that is

required is to implement the standard operations for the edit and show operations in

the ECS-cycle (which were given in §3.2) and the ECS-state interpreter.

The ECS-interpreter runs through the cycle, giving output if there is any and

ending when the TERMINATE flag is set to "true". Informally, its behaviour is:

- stop if the TERMINATE flag is set

- request input (the "edit" step) if INPUT-REQD set

- execute the "compute" operation

- display output (the "show" step) if there is any

It is specified formally in Appendix 5, using me too to handle the single input stream

and output stream explicitly. Since this is the only place where input/output occurs

and the interpreter is provided as part of ECS, the dialogue designer is not required

to deal with input/output streams directly.

'3.'.4 Evaluation of ECS

ECS provides a data-based, declarative way of specifying the structure of a

dialogue. It constructs a dialogue from a number of steps, each corresponding to

one edit-compute-show cycle. The activities involved in each step are determined

by processing the ECS-state data structure. This data structure and its processing

are relatively simple, yet the method is capable of describing the same wide variety

of dialogues as streamCSP [Alexander 85].

-53-

In its view of dialogue as consisting of discrete steps. each having the

potential to use or alter attributes of the state, ECS has adopted a similar style to,
I

many other dialogue specification techniques. A compute operation specifies the

possible transformations of the dialogue state, complete with conditions and actions,

and so can be seen to be comparable with state transition networks.

However in practice ECS yields cumbersome specifications. Moreover,

because each use of the compute operation in a cycle is distinct from the previous

use, there is no automatic sequencing of events or actions. The dialogue designer

can be forced into specifying these sequences in detail, where streamCSP handles

them as a matter of course. These deficiences can make it difficult to determine

the structure of the dialogue being specified. Since this is a major requirement for

a dialogue specification language, this is a serious flaw in the method.

3.4 Introduction to eventCSP

The ability of streamCSP to express the sequence of interactions and

activities in a dialogue and the failure of ECS in this respect led to further

experiments with CSP as a notation for dialogue specification.

In more recent years. Hoare's presentation of CSP has moved from its

Algol-like origins which used c~mmunication between processes as its means of

synchronisation [Hoare 78] to a more general event-based approach using events

(including communication events) as the synchronisation objects [Hoare 82b. 83, 85].

This change in approach prompted the development of a simulator to allow the

animation of processes written in this l,ater style of CSP. The availability of this

simulator for event-based CSP provoked investigation into its use as a notation for

describing interactive systems. This notation, which is a subset of the language

presented in [Hoare as]. is referred to as "evenlCSP" in the remainder of this thesis.

In using eventCSP. we seek to abstract the structure of the dialogue

(represented by events) from the details of the actual inputs, outputs and state

transformations that occur. Unlike streamCSP. eventCSP is not merely a notational

convenience, but is intended to implement (a subset of) CSP.

-54-

'.4.1 EventCSP notaUon

. A process. then. describes the behaviour pattern of some object in terms or
events which affect it. In choosing the events considered appropriate for an object.

no consideration is given to which are caused by the object (such as an output) and

which are caused by its environment (such as an input). As far as the behaviour of

an object is concerned they are all events in which it participates in some way.

regardless of their origin.

In eventCSP. a process is defined as follows:

if e. e l •••••en are events and P. PI •••••Pn are processes. then
the following are also processes

(e ~ P)
(el ~ PI
D e2 ~ P2
D···o en ~ Pn)
PI : P2
Pl.lI P2
skip
abort

- (prefix) engage in event e then behave like P
- (choice) engage in e I then behave like Pl.
or engage in e2 and behave like P2. etc

- (sequence) PI followed by P2 if PI terminates
- (parallel) P I in parallel with P2
- successful termination
- no further interaction

The syntax for eventCSP. both abstract and concrete. is given in Appendix 6.

Among these definitions. the parallel operator (ID offers considerable scope

for innovation in specifying interaction. For example. we can easily specify

"two-handed" (ie. concurrent) input. where the user is free to use. say. a pointing

device and keyboard together. Or we can use II to separate and synchronise the

activities of related processes. Later examples will illustrate both these uses of the

parallel operator.

Unlike streamCSP. both the syntax and the semantics of this notation are
closely based on CSP as defined in [Hoare 851·

'.4.2 Using eventCSP

As a first example. this notation is used to describe the behaviour of the

decision table dialogues introduced in §'.2.2:

dts = (is-decision ~ (give-decision skip)
D not-decision ...(ask-question (user-answer ~ dts»)

-55-

This specification outlines the behaviour of the system-driven style of interaction. The

process first chooses between the "is-decision" and "not-decision" events. If a decision

has been reached. it proceeds to deliver that decision. indicated by the "give-decision"

event, and terminates. If not, the events "ask-question" followed by "user-answer"

indicate that the next question from the table is asked and a response accepted from the

user. The process then continues to behave as "dts", ie. deciding If a decision has been

reached and acting accordingly.

For a series of events. as occurs above. the bracketing can be dropped from the

specification. so that the other interaction style for decision tables can be specified as

dtu = (is-decision ~ give-decision ~ skip
D not-decision ~ prompt ~ user-reply ~ dtu)

These do not provide detailed specifications of the decision table system.

particularly as they rely on the event names to give meaning to the specifications.

However each specification does represent the structure of the dialogue more

clearly than streamCSP since it is so uncluttered by detail.

Another example is the Click process from [CardeUi & Pike 8S] which was

given in chapter 2. This process handles the button-pressing activity of a mouse:

Click = (ON ~ (UP ~ click ~ Clickn wait>clickTime ~ down ~ UP ~ up ~ Click
»

ON and UP represent the depression and release of the mouse button. We have

dispensed with the special "wait" construct and replaced it by orthodox CSP using an

event which is triggered if the time is exceeded. The other events represent the

signals sent to the process currently using the mouse.

The next example specifies the logon dialogue:

CmdLevel = (prompt ~
(logon-cmd ~ Logono other ~ errmsgl ...CmdLevel
))

Logon = (prompt-far-user ~
(user-ok ~ Pwd
D not-user-ok ... errmsg2 ~ Logon
»

-56-

Pwd = (prompt-for-pwd ~
(pwd-ok ~ skip
o not-pwd-ok ~ errmsq) ~ Logon
»

The final example in this section is also taken from [Cardelli &: Pike 8S] and

specifies concurrent input from a mouse and keyboard. First we define a simple

process describing the activity of the mouse:

Mouse = (DOWN~ get-position ~ send-position ~ UP ~ Mouse)

Here the DOWN and UP events represent depressing and releasing the mouse

button. When the button is pressed, the current position of the mouse is determined

and communicated to the process which is controlling the screen activity.

The process defining keyboard use is also straightforward:

Kbd = (get-char ~
(newline ~ send-line ~ Kbdo text-char ~ add-ta-line ~ Kbd))

Characters are accumulated in a line buffer until a newline character is received,

then the completed line is made available to the controlling process.

The Mouse and Kbd processes have no events in common so running them in

parallel, as in

Mouse 11 Kbd

allows interleaved use of the devices, with no constraint on the order of user input.

To manage their joint use, we have a controlling process, Text, with which Mouse

and Kbd are independently synchronised.

Text = (send-position ~ save-position ~ Text
n send-line ~ write-line ~ Text)

Receiving a new position from the mouse has no effect on the screen, although the

last position sent is remembered. Receiving a line from the keyboard device causes

it to be displayed at the current position. The entire interaction is specified as

Text II Mouse 11 Kbd

Although a simple example, this demonstrates the way that concurrent use of

interaction devices can be modelled in eventCSP. Modem direct manipulation

displays can be specified in a similar way. Each object on the screen is represented

-S7-

by a process whose initial events determine when that object is selected (eg. by

checking the cursor position). The entire display is specified as the parallel

operation of the processes for all the objects it contains. When an object is

selected. the appropriate process is executed.

J.4.' Process labelllng

A process P labelled by 1 is denoted

l:P

and each event of P is then labelled with 1. A labelled event e is the pair I.e. The

process I:P engages in the event I.e whenever Pwould have engaged in e.

This labelling allows us to make multiple use of processes. Suppose we have. .

two similar fronl-ends for applications - one for dalabase access and one to access

a frames knowledge base:

dbfe = (prompt ..
(stop? .. skip.
D query? .. query .. dbf eo stals? .. statistics .. dbfeo update? .. update" dbfe
o ..•o anything .. error .. dbf e))

ffe = (await-input ..
(end? .. skipo list? .. listframes .. ffe-

00 show? .. showframe .. ffen del? .. delframe .. ffe
o ...o other" error-s He))

It is useful, given their similar structure, to be able to write a single eventCSP

specification of a general front-end process and then reuse it as necessary. Thus, a

generic fronl-end is

fe = (prompt ..
(end? .. skip
o cmdl? .. act! .. fe

, 0 cmd2? .. act2 .. feo cmdJ? .. acn .. fe
D···n other" error .. re))

-58-

which allows the specific front-ends to be defined by

dbfe = db:fe
ffe = f:fe

where "db" and ·f" are labels.

3.4.4 Implementing evenlCSP

Unlike streamCSP. eventCSP is not a language embedded in ~ too. Instead.

an eventCSP specification is represented by a data structure which is interpreted to

provide a simulation of the behaviour of the specified processes. The user running

such a simulation acts as the environment for the processes. choosing which event

will happen next and observing the results of that choice.

The implementation of operators in evenlCSP are loosely based on the

implementations given in [Hoare 85]. The primary difference is that processes are

not treated as functions (essentially that is the approach taken by streamCSP and

[Nee1y 83]). but as a description of possible event combinations. Details of the

simulator. which was originally developed by Peter Henderson of the University of

Stirling. will be given in chapter 5.

An example of running the "dts" specification would be

> RUN (call(dts) •.••)
PICK ONE OF {is-decision. nol-decision }
> PICK(bad-event)
WRONG- PICK ONE OF {is-decision. not-decision}
> PICK(not-decision)
PICK ONE OF {ask-question}
> PICK(ask-question}
PICK ONE OF {user-answer}
> PICK(user-answer)
PICK ONE OF {is-decision. not-decision}
> PICK(is-decision}
PICK ONE OF {give-decision}
> PICK(give-decision}
PICK ONE OF { tick}
> ...

where ">" is the system prompt and lhe "lick" event is offered by the skip process la

indicate successful termination.

Although tedious to execute and somewhat unrealistic. this is a useful way of

examining lhe behaviour of processes. and can be considered a valid. if limited. form

of prototyping. Despile the limitations. observing this simulated activity in the

. -59-

system is helpful in designing the system. particularly when the parallel construct is
,

used. Moreover the specification clearly lays out the structure of the intended

interactions in a precise. simple and formal way.

'.S Summary

This chapter has described the early prototypes used to explore methods for

specifying and prototyping dialogues between user and system.

Initially. streamCSP gave us a way to encode stream-handling me too

operations more succinctly and comprehensibly. The second approach. ECS. had a

more traditional view of dialogue as composed of primitive interaction steps and

provided a simple model of human-computer interaction. Its deficiences in

communicating the dialogue structure took us back to CSP but no longer basing it on

stream-handling functions.

It is clear that ~'SingeventCSP is not sufficient to formally specify interactive

systems. though. since no actual meaning is given to the events. Also. individual

selection of each event is not an appropriate method for demonstrating a prototype

of an interactive system.

All of these methods offered improvements over me too stream handling and

all proved adequate for specifying several styles of dialogue. However for the

reasons given in this chapter. none of them could be, considered an entirely

satisfactory method.

Taken together. though. it can be seen that the methods possess

complementary strengths and weaknesses. Both streamCSP and eventCSP clearly

set out the structure of the dialogue •. ECS, on the other hand, provides a simpler

and more declarative model for dialogues and makes the state transformations

involved explicit. These various features are desirable in any dialogue specification

language. and so it was felt that it was appropriate to develop some synthesis of the

methods.

Of the techniques given in this chapter. only eventCSP is retained in its

entirety. The notations and implementations for streamCSP and ECS have now been

-60-

discarded. However the ECS model for dialogue has been kept and combined with

eventCSP. resulting in the method presented in this thesis. The structure of a

dialogue is specified using eventCSP. Each event is then separately specified as a

state transformation operation with an associated predicate over the state which

determines when that event can occur.

The next chapter describes how this combination of eventCSP and state

transformations attached to interaction steps is used to specify and prototype

dialogues.

-61-

CHAPTER 4 .

DIALOGUE SPECIFICAnON USING SPI

The architecture presented in this chapter recognises firstly that CSP (in the

form of eventCSP) offers a convenient and expressive description of the structure of

a dialogue and secondly that decomposing a dialogue into its primitive steps with

associated state transformations is a simple yet powerful model for human-

computer interaction. This chapter presents the fourth (and final) prototype in our

development of a dialogue specification and proto typing method.

The overall behaviour of the system is specified using a subset of CSP (called

"eventCSP") in terms of individual events, each of which defines a single interaction

and/or activity in the dialogue. The eventCSP specification can be exercised simply

as a simulation of the dialogue or it can be used to control the execution of the

events in a prototype of the dialogue. To use it for prototyping dialogue. each event

has to be specified. stating any output to be given. any input required and any state

transformations to be made. Events are specified in a separate notation. the

Interaction Specification Language: evenUSL.

In this chapter. first we show how eventCSP can be used for proto typing

dialogues by augmenting it with event operations. The eventCSP language has

already been described in the previous chapter (§3.4) so it is not given again here.

The second section introduces evenUSL as a language for specifying the event

operations. The remaining sections give further. more substantial. examples to

demonstrate the languages.

The details of the implementation of the SPI system which allows the

simulation and prototyping of dialogues are deferred to the next chapter.

4.1 Event specification

Given an eventCSP specification, how is it to be extended to allow a more

reallstlc prototype of the dialogue?

-62-

From the brief discussion showing the use of the simulator in chapter 3. we

can see that two aspects need to be handled. Firstly. there must be some

mechanism for selecting the next event that happens without asking the user to

make an explicit choice. With decision tables. for example. we need to determine

whether or not the user has reached a decision point when choosing between the

events "is-decision" and "not-decision". Secondly. having picked an event by some

means. that event must be able to cause the appropriate activity in the dialogue

before stepping on to the next interaction point in the dialogue. Again with the

decision tables example. we would expect the event "give-decision" to output the

resul t to the user.

In order to address these two requirements. we return to the ECS use of the

Read-Eval-Print model and of a state which records the current status of the

dialogue.

4.1.1 The dialogue state

As in ECS. the dialogue state is a finite function. consisting of a system part

with pre-defined entries and an application-specific part containing any objects

needed by the application. Informally. it is an extensible table as shown in Fig.4.1.

Note that ECS index names have been abbreviated for convenience and post fixed by

"s" to distinguish them from any application entries in the state.

index entry contains

IN$
IR$
OUT$
STOPS
08$.

user input
boolean flag for input
system output
boolean flag to stop
application database

at start

Fig.4.1 SPI dialogue state

Formally. it is described as the me too object:

DlgState = SysState X. AppState

where the system part of the state is as follows

-63-

SysState = ff(SysIndex.SysContents)
SysIndex = {IN$. OUTS. OBS, STOPS. IRS}
SysContents = Text U Boolean U InitAppState
Text = seq(Atom)

In particular, for indices INS and OUTS, the contents are Text; for indices IR$ and

STOPS. the contents are Boolean; and for OB$, the contents have lhe application-

specific type InitAppState. InitAppState is the type of an initial value supplied for

the application. The application can extend the dialogue state and may use

information in this initial object to do so. Typically. several values may be recorded

in this entry which the application later separates into individual entries in the

application-specific part of the state. AppState. This has the type

AppState = ff(AppIndex.AppContents)

where AppIndex and AppContents are dependent on the application involved. The

actual types required by a particular specification are explicitly recorded as part of

that specification.

4.1.2 Event operations

For each event named in the eventCSP specification. we need to be able to

decide when it may be selected and the effect that it has on the dialogue stale if it
. .

is selected. Consequently. an evenl is specified in two parts: a guard [Dijkstra 75].

or condition. which determines when that event may be selected and an action which

describes the state transformations associated with that event. (This contrasts with

eventCSP simulation where events are selected by the user and their behaviour is

inferred from their names.)

These two aspects of an event can be described using me too operations on the

dialogue state. For example. an event which is always ready to prompt with "?" can

be specified by the pair of operations:

condition: OlgState -> Boolean
condition(dlg) == true
.
action: DIgState -> OlgState
action(dlg) == dIg e {aUTs?"}

For each event, then, we require two me too operations - one to specify the

-64-

condition. the other to specify the action. These operations are linked la lhe event

by the event name, so that the operations for an event called "is-decision" would be

named "is-decision-C" and "is-decision-A" for the condition and action operations

respectively. The next section shows how the events in the decision table example

can be specified using event operations to extend the eventCSP specification.

4.1.3 Decision table example

This section presents me too specifications of the event operations needed for

the decision table example. Some similarity with the ECS approach can be seen but

here no attempt is made to describe the structure of the dialogue. since this is

specified separately using eventCSP.

As a reminder. we repeat the eventCSP part of the specification:

dts = (is-decision .. give-decision .. skip
n not-decision .. ask-question .. user-answer .. dts)

dtu = (is-decision .. give-decision .. skipo not-decision .. prompt .. user-reply .. dtu) .

In addition to the underlying application operations for decision tables, these

event specifications make use of some additional operations on the dialogue state:

getdb(dlg) :: dIg[D8S]
getinp(dlg) :: dlg[INS]<>

.The specification assumes that 08$ holds the decision tree and lhat
AppState uses the types:

AppIndex = { QU }
AppContents = Question

with QU mapped to the current question.

Some of the events are used by both the interaction modes. user-driven and

system-driven:

is-decision-C(dlg) :: is-decision(getdb(dlg»
is-decision-A(dlg) :: dlg

not-declsion-C(dlg) :: not is-decision(getdb(dlg»
not-decision-A(dIg) :: dIg

give-decision-C(dlg):: true
give-decision-A(dlg) :: dIg e (QUTS-+<"decision:".getdb(dlg»}

-65-

prompt-C(dlg) == true
prompt-A(dlg) == dIg ED {IRS..true. OUTS""?" }

The user-driven mode requires operations to ask for and process a user response:

user-reply-C(dlg) == true
user-reply-A(dlg) ==

let dt = getdb(dlg)
- qu = get-q(getinp(dIg»

ans = get-a(getinp(dIg»

dIg ED(OB$-+prune(dt.qu.ans) }

The system-driven mode requires operations for "ask-question" and "user-answer". The

first of these extends the application-specific part of the state to record the question

that has been asked.

ask-question-C(dIg) ::: true
ask-question-A(dlg) :::

letrec dt = getdb(dIg)
qu = question(dt)

in
- dIg ED{IR$..true. QU-+qu.aUT$-+qu }

user-answer-C(dIg) ::: input-present(dlg)
user-answer-A(dlg) :::

let dt = getdb(dlg)
qu = dIg[QU]O
ans = getinp(dlg)

dIg ED(OB$..prune(dt.qu.ans) }

Now that a formal meaning has been given to the events in an eventCSP specification. it

is time to link the two descriptions together to provide an executable specification for use

as a prototype.

4.1.4 Prototyping with event operations

The first step is to incorporate the state used by the evenlCSP simulator (referred

to as the simulator state from now on) into the dialogue state. The simulator state has

not yet been formally defined; we leave this until chapter 5. where the simulator is

described. and simply refer to it as having type SimState. A new entry is added to the

system part of the dialogue state. which now has the form shown in Fig.4.2.

-66-

index entry contains

IN$
IR$
ours
STOPS
D8$

SS$

user input
bcotsan flag for input
system output
boolean flag to stop
application database

at start
simulator state

Fig.4.2 SPI dialogue state (extended)

The me too definition is extended to reflect this:

SysIndex = {INS. OUTS. OBi. STOPS. IRS. SS$ } .
SysContents = Text U Boolean U InitAppState U SimState

with SS$ being mapped to a v~lue of type SimState.

The event simulator can now be used. as before. to offer possible events and to

step on in the current process when given an event selection. However. the user is

no longer required to make a direct choice o.f the next event. Instead. this is

determined by the condition operations for the possible events. The condition

operation for each of the possible events is evaluated and. of those which evaluate

to true, one is selected.

Once an event has been selected. its action operation is invoked to perform

the required state transformation and the simulator is used to step on to the next

point in the evenlCSP specification. The event manager which controls all this

activity. using the simulator where appropriate. is described in chapter 5•

. By providing a formal description of both the structure and the effect of

events in a dialogue,' we now have a method for formally specifying and prototyping

interactive systems. A primary goal, that of clearly setting out the dialogue

structure, is achieved using a subset of an established formal notation (CSP).

Together with formally specified event operations, the resulting specifications can

be executed to give a prototype of the system.

However, describing event operations in me too involves giving much detail

which could be generated automatically. Consequently a more concise notation has

been developed for specifying these event operations.

-67-

4.2 Introduction to evenUSL

Events in an eventCSP specification are given meaning by event operations.

Instead of specifying these operations directly in me too, now we use a language

(evenUSL) which allows the operations to be specified more concisely. The

constructs in evenUSL are translated into me too, in the style shown in the previous

section.

EvenUSL is a language for describing the attributes of events and the state

transformations they produce. The current form of evenUSL is derived from

experience in specifying several dialogues of different styles. It is minimal, in that

it offers only what has been found to be necessary for concise, understandable

specifications of events. A number of extensions can be suggested, but we defer

discussion of this until chapter 7.

The event attributes have been selected for a number of reasons. Essentially,

they allow the designer to access and manipulate the dialogue state. Some (out and

prompt) reflect entries in the system part of the state (OUTS and IRS,

respectively). The when attribute defines the conditions under which the event may

be selected. Other constructs in evenUSL allow the specifier to manipulate'

application entries in the dialogue state.

An event has the overall form

event <EventName> =
~tribute-list>

where <attribute-list> is a list of the attributes for the event and <EventName> is.
one of the event names from the eventCSP specification concerned. EvenUSL is

formally defined in Appendix 7.

This section introduces evenUSL by re-specifying the decision table example.

In order to relate it to the idea of event operations, we show lhe results of

translating the events into me too, but details of how this is done are left until

chapter 5. As before, we assume that the dialogue slate is held in the global object

"dIg". For the purposes of illustration, we no longer hold the decision table in the

system part of the state (in the DBS entry). Instead. we assume that it is in the

-68-

application-specific part in an entry labelled "dt". Initially we also assume the

existence of an operation to extract that entry:

getdt: OlgState -> Tree

4.2.1 Basic attributes of events

The first requirement is to be able to specify the condition operation for an
•

event. This is given by the when attribute which defines when the event may be

selected. The "is-decision" and "not-decision" events, for example, use only this

attribute:

event is-decision =
when is-decision(getdt(dlg»

event nol-decision =
when not is-decision(getdt(dlg»

where the attribute is defined by a boolean-valued me too expression. This

expression becomes the body of the condition operation, so that the condition

operations for lhe evenls above are

is-decision-C(dlg) :: is-decision(getdt(dlg»
not-decision-C(dlg) :: not is-decision(getdt(dlg»

The when attribute does not contribute in any way lo the action operation for the

event. If, as here. the event has no attributes contributing to the action operation,

that operation has no effect on the state. The action operations for these events are

is-decision-A(dlg) :: dIg
not-decision-A(dlg) :: dIg

If the ~ attribute is omitted the condition default~ to true and the event may.
therefore be selected at any time.

The "give-decision" event illustrates a second attribute: the out attribute for

returning output to the user. It is specified as

event give-decision =
out getdt(dIg)

This attribute is defined by a me too expression yielding a value suitable for

-69-

output to the user. The expression sets the OUTS entry in the state. Thus the

operations for this event are

give-decision-C(dlg) := true
give-decision-A(dlg) :: dIg ED (OUT$~etdt(dlg) }

The last basic attribute for an event sets the IR$ flag in the state when input

is required. This is signalled by the prompt attribute. Often it will be used in

association with the out attribute (although this is not essential) as in the "prompt"

event.

event prompt =
out "?"
prompt true

The event operations for prompt are

, prompt-C(dlg):: true
prompt-A(dlg) :: dIg ED {IR$...true, OUTS"'"?" }

These three attributes (when, out and prompt) are the basic attributes of a

dialogue event. In the examples above, the values for the attributes have been

constants or the result of some me too operation, but" as their syntax shows, their

values can be determined by any valid me too expression yielding a value of the

appropriate type.

4.2.2 Saving and retrieving objects

As in ECS, it is useful to be able to hold application-specific objects in the

state. This section gives the evenUSL constructs which allow these objects to be

created and accessed by the application.

In the system-driven decision table example, for instance, it is appropriate to

remember which question has been asked, so that the event involved is specified as

event ask-question =
out queslion(getdt(dlg»
prompt true
qu = question(getdt(dlg»

This adds an entry named "qu" to the dialogue state which is used to save the value

of "questlon(getdt(dlg»". The syntax of this expression is

<entry-index> = <Expr>

-70-

The action operation for this event is then

ask-question-A(dlg) ::
dIg ED{IR$~true.

"qu"-+question(getdt(dlg».
QUT$-+question(getdt(dlg» }

Given a mechanism for saving objects in the state. we also need to be able to

retrieve them. For this. evenUSL provides the ~ expression which lists the entries

required. Each entry index in the list becomes part of a me too let expression.
extracting its entry from the state. For example.

~ X in <AttrExpr>

becomes

let X = dlg["X"] in <AttrExp>

The value of "qu" can be retrieved by

event user-answer =
use qu in -
dt = prune(getdt(dlg). quo getinp(dlg»

Here we can also create and save a new value of the decision table. as can be seen

from the action operation for the event •.

user-answer-A(dlg) ::
let qu = dlg["qu"]

dIg E9 { "dt"~rune(getdt(dlg).qu.getinp(dlg» }

Note that with ~. we can now rewrite some of the event descriptions to extract

the decision table directly:

event is-decision =
use dt in
-when is-decision(dt)

event not-decision =
use dt in
-when not is-decision(dt)

event give-decision =
~dt in .

out dt

Recall that the system entry IN$ holds user input. Events will require access

to this entry, and so an event may refer to it by the index "input", as in

-71-

event user-answer =
use dt, quo input in
- dt = prune(dt:- quo input)

The request for the "input" entry in the state extracts the IN$ system entry. so the

action operation for this event is:

user-answer-A(dlg) ::
let dt = dlg["dt"]

qu = dlg["qu"]
input = dlg[IN$]<>

dIg ED ("dt"~rune(dt.qu.input) }

The same idea applies to the 08$ entry which can be referred to as "db" within the

specification.

4.2.:5 Local declarations

If we rewrite the "ask-question" event as well. we obtain

event ask-question =
use dt in
out question(dt)

prompt true
qu = question(dt)

This still requires "question(dt)" to be evaluated twice. so we extend evenUSL by

borrowing the let expression from me too to permit local declaration. We also add

the retain expression. which saves a variable in the state. The event specification Is

now

event ask-question =
use dt in
let qu = question(dt)

in
out qu
prompt true
retain qu

and has the action operation

ask-question-A(dlg) ::
let dt = dlg["dt"]
in let qu = question(dt)

in
dIg ED{IR$...true. "qu"-+qu,OUT$-+qu}

Note that retain is simply an alternative way of expressing

"qu" = qu

-72-

4.2.4 Removing objects

The last construct in evenUSL allows for the removal of objects from the

state. It could be used with the "user-reply" event to ensure that user input is not,

held in the state after its use:

event user-reply =
use dt, input in
-dt = prune(dt. get-q(input). get-a(input»

remove input

for which the action operation is

user-reply-A(dlg) :=
let dt = dlg["dt"]
- input = dlg[INS]<>

dIg ds {INS}e
rdt"~rune(dt.get-q(input).g~t-a(input))}

Note that here, as in all event specifications, the event attributes and expressions

can be written in any order.

4.2.5 Process initialisation

The next issue concerns the initialisation of the state (cf. the "start" operation

in ECS). When the specification is executed. the interpreter is given all the

necessary application-defined objects (le. other than' the dialogue objects shown in

Fig.4.2) in a single argument. It .saves this composite object in the DBS entry in the

state, referred to by the index "db"•. This is unlikely to be the most convenient form
. ,

for the specification however. so a way is provided to initialise the state as

required. namely by using a process specification. The process may specify no

action, as in

process test

or it may perform some state-transformation and/or output. All the eventISL

constructs except when are available and are translated into me too in the same way

as event specifications.

For the decision table example, the process specifications might be

process dts =
~ db in dt = db

-73-

process dtu =
~db in dt = db

to set up the table in the required entry in the state. Alternatively, the events

could have referred directly to the "db" entry.

4.2.6 Process labelling in evenUSL

Recall that in eventCSP a process P may be labelled by 1by specifying it as I:P

with labelled events l.e. In order to be used with eventCSP specifications containing

labelled processes, evenUSL must be able to specify labelled events. The syntax for

this is

~ <Jabel>.<EventName> ••• etc

as in

and

event ffe.prompt =
----oUt. "?"

Prompt true

event dbfe.prompt =
out "next command:"
prompt true

4.' SCHOLAR example

A more substantial example. which demonstrates the use of the parallel

operator, is a specification of the SCHOLAR computer-aided instruction system

[Carbonnell 70]. The original system exhibited a number of distinctive features, one

of which is the style of interaction, where either partner (student or system) can'

take the initiative and ask questions of the other. In the example here, we are

concerned to specify this style of interaction, rather than all the characteristtcs of

SCHOLAR (such as use of natural language or inference from the data

representa tion).

In a session with SCHOLAR, the student is asked questions and gives answers

in much the same way as for a "drill-and-practice" CAl system. However at any

point the student can, instead of answering the question, ask SCHOLAR for

information. SCHOLAR responds as appropriate and lhen repeals the unanswered

-74-

question. Carbbnnell coined the phrase "mixed initiative" to describe this style of

interaction; in SCHOLAR. it can be characterised as a system-controlled style

which allows interruption from the user. SCHOLAR also provides a user-controlled

mode which can be requested by the student. In this mode. SCHOLAR answers.
questions posed by the student. With user input underlined. the structure of a

SCHOLAR session might look like

Uruguay is a? country
RIGHT
Peru has main language? French
WRONG
Brazil is in? QU Peru has main language
Spanish
Brazil is in ? QA
Confirm (yIn) ? ~
? QU Bolivia
Bolivia is a country; Bolivia is in South America
? MI
Confirm (yIn)? ~
Brazil is in? South America
RIGHT •••

First we give the eventCSP specification of SCHOLAR. This specification

splits SCHOLAR into three subsystems. The first (MI) handles the mixed-initiative

mode; the second (QA) handles the question-answer mode; and the third (switch)

controls the switching between these two modes of interaction. These are specified

as running in parallel with each other.

scholar = switch II MI II QA
synchronised on {select-QA?, select-M!?

select-QA, select-MI, initial-MI }

switch = (initial-MI ~ switch')
switch' = (select-QA? ~ confirm? ~

(yes ~ select-QA ~ switch'
D no ~ select-MI ~ switch')

D select-M!? ~ confirm? ~
(yes ~ select-MI ~ switch'
n no ~ select-QA ~ switch')

}

MI = (initial-MI ...mio select-M! ...mi')
mi = (choose-question ~ mi')
mi' = (ask-question ~

(select-QA? ...MI
o user-answer » check-question ~ min user-query ... answer ~ mi') }

-75-

QA= (select-QA _.qa)
qa = (prompt _.

(select-M!? _.QA
n user-query _. answer _.qa))

The SCHOLAR example illustrates the value of the parallel operator, since

.each subsystem can be specified separately. Indeed, any other interaction styles

could be added relatively easily, involving only the switch process in any changes.

Using II makes for a succinct, modular descriptlon of the system.

The evenUSL specifications for SCHOLAR eventCSP are given below. As

usual, the specification makes use of application types and operations. These are not

given here but are specified in Appendix 8.

The AppState is defined by:

AppIndex = {"db", "qu" }
AppContents = ScholarDb U SchQu

with "db" holding the SCHOLAR information base and "qu" holding the current

question. The process initialisation operation is

process scholar

which makes no change to the state, since all initialisation in this example is

performed by the initial-MI event.

- events for the switch process

event initial-M! =
use db in
- db = initdb(db)

qu = NullQu

The events which signal selection of a mode have no attributes, that is, they are

synchronisation events and their use is controlled entirely by the structure of the

eventCSP. They have no effect on the state.

event select-MI

~select-QA

The remaining events for the switch process all examine user input. For these

events we assume the existence of a simple pattern-matching me too operation:

matches: Text x Pattern -> Boolean

(it is specified in Appendix 4 since it is also available in streamCSP).

-76-

Only two of the four event specifications are given here, due to their

similarity:

event select-MI? =
use input in
-when matches(input. "M!")

event yes =
~inputin

when matches(input,"y")'

- events (or MI processes

event choose-question =
use db, qu in
- qu = if qu = NullQu then pickq(db) else qu

event user-answer =
use input in .

when not (matches(input,"QA")
- - or matches(input."MI")

or is-question(input))

event check-question =
use db, quo input in

out checl«db.qu,input)
db = register(db,qu) .
qu = NullQu

- events for QA and MI processes

event user-query =
use input in

~ is-question(input)

event answer =
use db, input in

out query(db,input)

The prompt event from the decision table example (see §4.2.1) is reused (or this

specification, so we omit it here.

This completes the SPI specification of the SCHOLAR dialogue. It should be

" pointed out that this is the product of several iterations in the design, arrived at as

the result o(experimenting with the dialogue to ensure that it possessed the

required (eatures of SCHOLAR. From this example, we can see that the events (or

-77-

a fairly sophisticated system like SCHOLAR can be specified in a straightforward

way and that decomposing a system into its primitive events provides an effective

modularisation of the system.

4.4 Form-based interaction

Using form-filling as a means of communicating with an interactive system

has been explored by a number of researchers. ego [Balbin et al 8S] [Frohlich et al

85] [Hayes 85]. Advantages claimed for this approach include its flexibility, ease of

construction and ability to offer a consistent interface across different

applications. For our final example. we give a formal specification of part of such a

system. [Studer 84] gives a high-level VDM specification of a forms-based system.

but it is very abstract and not executable.

Here, a form is a sequence of single field entries, each of which can solicit one

input from the user.

FormOb = ff(FormName,Form)
Form = seq(Field)
Field = tuple(FieldName.FieldAttr)

The definitions of other objects, such as the precise form of the field attributes, are

not relevant to the dialogue specification and are omitted here. Suffice to say that

the form structure allows the designer to specify default values, help texts,

mandatory fields and inter-field dependencies, These are among a number of

facilities recommended in [Gehani 83]. Appendix 9 specifies all the objects and

operations in the forms component.

The AppState is:

~index

thisf
lastf
f
flds
fld
done
fdb

FormName
FormName
Form
seq(Field)
Field
seq(Field)
FormDb

name of current form
name of previous form
curren t form
fields to process
current field
fields processed
form database

-78-

The system first offers· the user a choice of forms to fill:

forms = (menu
(valid-formget-formfill-in: formso repeat?get-formfill-in; formso inv-formerrorforms)

Only a selection of the events in this process are specitled; the full specification is

given in Appendix 10.

event menu =
use fdb in
- out 'form-menu(fdb)

prompt true

event valid-form =
use reb, input in

when not matches(input."REPEAT")
- and form-exists(fdb.input)
thisf = input
f = clear(get-form(fdb.input»

event repeat? =
use fdb.lastf. input in
- when matches(input."REPEA T") and form-exists(fdb.lastf)

thisf = lastf
f = get-form(fdb.lastf)

event get-form =
use fdb. f. thisf in
- out display-form(fdb.thisf)

done = <>
flds = fields(f)

The fill-in process requests user input. allowing the user to supply a value, ask

for help. skip the field, finish with the current form (with or without saving It) and

to undo the previous field supplied:

fill-in = (fields-left?positionold-value
....positionget-input

(help? fill-in
D skip? fill-in
D cancel?formso undo? fill-in
D save? check-form
n value? updatefill-in)o not-fields-left? check-form)

Again. a number of event operations are omitted for the sake of space:

event fields-left? =
use flds in

when not flds = <>
fld = head(flds)

-79-

event skip? =
use flds. done.· Ild, input in
-when matches(input. "SKIP")

flds = tail(flds)
done = dId> .. done

event update = ,
use f. flds. done. fld. input in
-f = enter(f. get-name(fld): input)

done = <f1d> .. done
flds = remove-field(flds.fld)

Finally the check-form process ascertains whether or not all the required

fields have been supplied.

check-form = (complete? .. save-form .. skipo not-complete? .. fill-in)

event not-complete? =
use f in
letto-do = not-complete(f)

in
when not to-do = <>
out "error: some required fields not given"
flds = to-do
done = <>

The result of this event is that the user will be prompted for each remaining

required field. The specification of .this event illustrates how the design of the

application and the dialogue cannot always be independent of each other, since the

application originally retumed just a boolean indicator as to the completeness of the

form. After running the original prototype. it was decided to re-prompt for the

missing fields which meant that extra facilities were needed in the application.

4.5 Summary

By drawing on the notation of esp, the Read-Eval-Print paradigm and the

concepts of finite-state machines, we have developed a two-layer model for
I

specifying human-computer interaction. as in Fig.4.~.

dialogue interpreter
sp ecifi catio n application

DeS

Fig.4.~ Dialogue control system - overview

-80-

EventCSP is based on CSP, using the general model of events without interprocess

communication, and is intended as a language for specifying the overal1 structure of a

dialogue. The activities which take place in that dialogue are specified by event

operations written in a structured form of me too, namely in evenUSL. Together they

enable a dialogue to be specified and prototyped separately from the application; see

Fig.4.4.

eventCSP event
specification manager apptlcaticn

I IeventCSP simulator

DeS

Fig.4.4 Dialogue control system - two layers

SPI fits into the UIMSmodel described in chapter 2 as a dialogue control

system - the component which controls the interactions with the user on the basis of

a supplied dialogue specification.

As a method, SPI forms part of the me too framework. Identifying the model,

ie. the objects which are involved in user tasks and the operations upon them,

remains as the first step in the method. These objects and operations are specified

in me too, as before.

The dialogue designer, too, may well need to employ these steps in specifying

objects and operations peculiar to the dialogue components, such as interaction

histories or menu structures. In addition, though, the dialogue designer has to

specify the structure and content of the dialogues to be offered to the user by the

system. In specifying the dialogue events, the model of the application provides the

task objects and operations available to the user through the interface.

With the specifications of both application and dialogue avallable, the entire

system can be executed as a prototype. As before, this eX,ercise is likely to suggest

changes and reveal errors, so the method remains an iterative one.

-81-

SPI is thus seen as an extension to me too. not a replacement of it. It retains

the me too iterative method; SPI's languages simply provide ways of imposing
I

constraints on the structure and time of execution of me too operations.

As has been said already. the me too method and notation has been used to

specify and prototype SPL In the next chapter we give this me too specification of

SPI.

•

-82-

CHAPTER 5

EXECUTING DIALOGUE SPECIFICA nONS

Given a SPI dialogue specification. consisting of an eventCSP description

together with eventISL operations. the next task is to exercise the specification as a

prototype. This chapter describes the tool which makes this possible - the SPI

dialogue executor.

5.1 Overview of the dialogue executor.

There are two central components responsible for executing the specification:

the eventCSP simulator and the event manager;

The eventCSP simulator is an interpreter for the eventCSP portion of the

specification. Its first function is to determine which events are currently possible

according to the current position in the eventCSP structure. Secondly. given an. .

event from this set of possible events. it uses that to move to the next position in

the structure. The simulator can be invoked by the user. who is then responsible for

selecting the event that is to happen. Alternatively, it can be called from the event

manager which uses the condition operations for the events to select which events

happen.

The event manager uses the eventCSP simulator to control which events may

be triggered at any particular point in the dialogue. Given a set of possible events,

it calls their condition operations and arbitrarily chooses one of the events for which

this evaluates to true. Before moving to the next interaction point. it invokes the

action operation for the chosen event to effect the required state transformation.

There are other components involved as well. For evenUSL to be executed,

the events it specifies have to be translated into the corresponding me too

operations. This is done by' a separate translation component when an evenUSL

specification is read. It is translated into the corresponding me too operations

which are then defined as part of the run-time environment. No translation of

eventCSP is required since the specification itself acts as the data structure which

is to be interpreted. Overall. the dialogue is controlled by a component which calls

the event manager to execute the dialogue and interacts with the user as dictated

by the dialogue state.

The relationships between these components are shown in Fig.5.1.

SPI
spec'n

'-.
SPI

translator

roo-
~ •eventCSP event

specificatio n operations ~ APPLICATION

t· ~
U S
S ~ P eventCSP
E I simulator

R
i

event manager --
..__ DIALOGUE CONTROL SYSTEM "

Fig.5.1 SPI dialogue executor

5.2 EventISL translator

A dialogue is specified in two parts - eventCSP and eventISL. The

specification may be read from a file or it may be defined (or modified)

interactively. The eventCSP part is incorporated into the SPI environment as a

named data structure. The evenUSL part is translated into its equivalent me too

operations which are then added to the environment. This section describes how ~

too operations are created from the eventISL specification.

In order to create a me too operation. the translator constructs the text of the

operation from the event description and then evaluates it to add the definition to

the environment. Each event generales a condition operation and an action

-84-

operation, both taking the dialogue state as the sole argument. Thus an event "ex"

would generate operations with functionality

ex-C : DlgState -> Boolean
ex-A: DlgState -> DlgState

Each construct in evenUSL is translated into part of a me too operation. This

section describes that translation for each construct, using the following notation:

if e represents some evenUSL text. then
C(e]

represents its translation as required for the condition operation. and
A(e]

represents its translation as required for the action operation.

The translation rules are based on the formal definition of evenUSL in Appendix 7.

but the description below is illustrative rather than completely formal. Appendix 11

gives the formal definition of the rules.

crevent ex = E]
A[event ex = E]
where E is a DlgExpr

= ex-C(dlg) = C[E]
ex-A(dlg) = A[E]

~ is translated in the same way for both types of operation:
Cruse a.b in E] = let a = dIg["a"]

b = dlg["b"]
in C[E]
let a = dlg("a"]

b = dlg["b"]
in A[E]

A(use a.b in E] =

where E is an AttrExpr

The translation of let only changes the embedded AttrExpr E:
C[let x = e in El = let x = e in C[E]
A[let x = e in E] = let x = e in A[E]

The special names for entries in the system part of the state are
treated in the same way for both types of operation:
C[input] = A[input] = INS
C[db] = A(db] = DBS

The remaining rules are based on the definition of an attribute list
<AttrList> as

<AttrList> ::= empty I<AttrList> <Attr>
In the rules that follow, let E stand for an AttrList.

C(empty]
A[empty]

= true
dIg=

The when attribute is only used in condition operations. Its
boolean::valued me too expression is unchanged by the translation.
C[E ~ B] = C[E] and B
A[E ~ B] = A[E]

-85-

ere prompt B] = e[E]
A[E prompt B] = A[E] ED { IR$-+a }

e[E out text] = e[E]
A[E out text] = A[E] ED { ours-rea }
C[E retain x,y] = e[E]
A[E retain x.y] = A[E] ED { "x"-+x,"y"...y }

e[E x = e] = erE]
A[E x = e] = A[E] ED { "X"-+e }
where e is an Expr

Removing entries from the state is achieved by subtracting the
entry indices from the domain of the state.
C[E remove u,v] = erE]
A[E remove u.v] = A[E] ds {MU", "v"}

5.~ EventCSP simulator

EventeSP is implemented by an interpreted data structure. This structure is a

process database which is a finite function mapping process names to their

definitions. Simulating the behaviour pattern of a process is achieved in two steps.

For the current process definition, the set of possible next events is determined. Of

these, one is selected by some means (to be discussed later) and is used to advance

one step in the definition.

First we consider how to determine the possible events by specifying the

behaviour of a "nextevents" operation for each construct in the language.

nextevents : Process x ProcessOb -> set(EventName)

For brevity, the me too definition of nextevents is given using pattern-matching on

the language constructs to distinguish the cases and to name the constituent parts of

each construct:

nextevents((a-+P),pdb) == la}

nextevents(PDQ. pdb) == .
nextevents(P.pdb) U nextevents(Q.pdb)

nextevents(Pname. pdb):: nextevents(pdb["Pname"].pdb)

nextevents(skip. pdb):: { TICK}

nextevents(P;Q. pdb) ==
if TICK E nextevents(P.pdb)
then nextevents(Q,pdb)
else nextevents(P .pdb)

-66-

nextevents(l:P. pdb):::
((I.e) le ...nextevents(P.pdb) }

nextevents(PIIQ. pdb)::
let NI = nextevents(P.pdb)
- N2 = nextevents(Q.pdb)

5 = synchronisers(PIIQ)

(Nl-S) U (N2-S) U (NI n N2 n 5)
where "synchronisers" returns the set of events on which P and Q
are synchronised.

Given a set of possible events. one is chosen and used to advance one step in

the current process definition. (How that choice is made depends on whether the

event manager or the user is driving the simulator. an issue that will be addressed in

later sections of this chapter.) The simulator uses an operation called "step" to

move on. given the chosen event:

step: Process x EventName x ProcessDb -> Process

As before. we use me too with pattern-matching for brevity:

step((a_.p). e«, pdb) ::: P

step(P a Q. ev, pdb) ::
if ev E nextevents(P.pdb)"
then if ev E nextevents(Q.pdb)
--then step(P,ev,pdb) n step(Q,ev.pdb)

else step(P.ev,pdb)
else step(Q .ev .pdb)

(Note that this implements a "benevolent" non-determinism which does not •
choose between alternative processes until forced to do so.)

step(Pname, ev, pdb) ::-step(pdbC"Pname"],ev.pdb)

step(skip. ev, pdb) :: abort"

step(P;Q, ev, pdb) ::
if TICK E nextevents(P .pdb)
then step(Q.ev,pdb)
else step(P .ev .pdb);Q

step(I:P. l.ev, pdb) :: l:step(P ,ev ,pdb)

• step(PIIQ, ev, pdb) ::
let NI = nextevents(P ,pdb)

N2 = nextevents(Q.pdb)
5 = synchronisers(PIIQ)

if ev E NI n N2 n 5 '
then step(P ,ev .pdb) " step(Q,ev,pdb)
else if ev E NI
then step(P,ev.pdb) II Q
else P " step(Q,ev.pdb)

-87-

These two operations. nextevents and step. form the core of the eventCsp

simulator. The simulator maintains a state to control its 'activities. It is defined as

the me too object

SimState = tuple(ProcessDb.Process.set(EventName),Msg)

where the first element is the original eventCSP specification (the process

database). the second is the current process definition. and the third is the set of

possible next events for that definition and the last element is used to give messages

(errors. prompts. or menus) to the user.

ProcessDb = ff(ProcessName. Process)
Process = concrete syntax of eventCsp (see Appendix 6.2)
Msg = seq(A tom)

The controlling operations for the simulation are

initstate : Process x ProcessDb -> Simstate
nextstate : simstate x EventName -> SimState

and are speci fled as

initstate(p,pdb) := (pdb.p.nexteventstp.pdb), "PICK ONE OF:")

nextstate(ss.e) :=
letrec (pdb.p.n.msg) = ss
in

if e En
then let p' = step(p.e,pdb)

in (pdb,p' .nexteventstp' .pdb), <"OK- PICK ONE OF:"»
else (pdb.p.n.<"WRONG- PICK ONE OF:"»

An additional operation to show the appropriate part of the state to the user is:

showsim(ss) = fourth(ss) .. sort(third(ss»

The simulator as described above is used unaltered by the event manager to

prototype dialogues. For direct use. the user employs a number of special

commands which create and manipulate the simulator state and display it on the

screen, as illustrated in chapter 3.

5.4 Event manager

The eventCSP specification can be run as a prototype. not just a simulation. by

linking it with the event operations specified in evenUSL.

-88-

To do this, the event ma!'lager uses a state which amalgamates the simulator

state and the dialogue state (see §4.1.1). The entire simulator state is included as

a single entry in the dialogue state to ensure that the simulator can be run

unchanged. It is extracted from the overall dialogue state by

simstate(dlg) = dlg[SS$]

The operations in the event manager correspond to those in the ECS cycle.

Fig.5.2 shows the corresponding operations.

start _.. idit•compute•show
i nitd Ig -~editdlg•nextdlg.'showdlg

Flg.5.2(a) ECS execution cycle Fig.5.2(b) SPI execution cycle

The major difference is that the dialogue designer does not have to supply any

operations in the cycle explicitly. since these are all part of the event manager.

The cycle is implemented by the SPI interpreter: the event manager simply supplies

the operations needed for it. In this section, we specify the major operations of the

interpreter, as shown in Fig.5.2(b). Subsidiary operations are specified in Appendix
~i

13.
Initialisation is accomplished by the initdlg operation which has functionality

initdlg : ProcessName x ProcessDb x InitAppState -> DlgState

and which sets about the initialisation in two steps. First it creates a new dialogue

state containing the application state given and a new simulator state (created by

the call on the simulator initstate operation). Secondly, it invokes the process

initialisation operation for the named process. The "call-action" operation

constructs the name of the action operation from a process or event name and calls

it to perform the state transformation. The operation is specified by

-89-

initdlg(proc-nm,pdb,udb) =
let dig = (SS$-+initstate(pdb(proc-nm]O,pdb).
- DB$~db}
in call-action(proc-nm.dlg)

User input is added to the state by:

editdlg(dlg.text) = dIg ds {IR$}e {IN$-+text }
and output is shown by

showdlg(dlg) = dlg(OUT$]"no output"

The bulk of the work is performed by the "nextdlg" operation. This uses the

simulator state and the event operations to control the dialogue. If the simulator

indicates no further progress is possible. the termination flag is set and no more is

done. Otherwise the condition operation for each of the possible events is evaluated

against the state and one chosen arbitrarily. For the chosen event. its action

operation is invoked. a new simulator state is created and the new version of the

dialogue state is returned. If no event is possible. a special error event is returned.

This event has a system-defined action operation which is called to give an error

message to the user.

nextdlg(dlg) =
letrec ss = 5imstate(dlg)

(pdb.p,n.msg) = ss

if process-end(p.n)
then dIg e {STOP$-+true }
else let e = cbocse-eventm.dlqj

. in call-action(e.dlg) ED { SS$-+nextstate(ss.e) }

As with the eventCSP simulator. the event manager can be run directly by the

user with various commands but in practice it is invoked by the SPI interpreter.

5.5 The SPI interpreter

As in ECS. the interpreter controls the dialogue by calling the underlying'

operations and interpreting the dialogue state. After initialisation. a loop is entered

to repeatedly accept any input. create a new version cf the state and show any

output generated as a result. This continues until the termination flag is set.

This component is currently written in Lisp and used to replace the

-90-

Read-Eval-Print mechanism in the Lisp system. However, here we outline its

specification in SPI (omitting the less important event specifications for the sake of

space):

rep = (header ...repl)

The repl process requests the parameters for the call to "initdlg" which is made in

the init event.

repl = (get-params ... init ...rep2)

The rep2 process detects when the termination flag is set and offers a choice

between rerunning the shell or finishing.

rep2 = (dIg-end? ... end-run ...options ...
(restart? repln finish? exit ...skip)

n not-dIg-end? ...
(input? ... in rep3
D not-input? rep3))

At this meta-level of description, we cannot fully specify events in evenUSL since

the events for-the interpreter deal with the system entries in the dialogue state and

with the state as a whole. To describe the behaviour of the interpreter, therefore,

we have to allow ourselves the licence to use and set the dialogue state "dIg" in the

events.

event input? =
----When dIg [IRS] false

prompt true

event in =
~inputin

dIg = nextdlg(editdlg(dlg,input» EDI.1RS...false}

event not-input? =
when not dlg[IRS]faise
dIg = nextdlg(dlg)

The rep3 process is responsible for giving output from the state if any is present.

rep 3 = (output? ...out ...rep2 .
D not-output? ...rep2)

event out =
-Out dlg[OUTS]<>

dIg = dIg ds {OUTS}

-91-

This interpreter is adequate for prototyping purposes. although clearly there

are many improvements that could be made (such as to allow direct. menu-driven

interaction with the eventCSP simulator or single-stepping the event manager for

debugging purposes. and so on). At this stage. such enhancements are unnecessary.

but they will have to be considered for a full production version of this tool.

One extension has been made to the system. however. This is based on the

concept of traces found in CSP [Hoare 85] and provides a way of monitoring the

events occurring in a dialogue as it is executed. This development is described in

the next section.

5.6 Traces

•A trace of the behaviour of a process is a finite sequence of symbols
recording the events in which the process has engaged up to some moment of
time."

[Hoare 8S. p.41]

For example. for the process

P = (a -+ (b -+ P D c -+ P »
the traces of P include

<ababa> ~d <acabac>

but not <aa> or < abc>

Hoare uses traces to characterise processes for much of the mathematical

theory of esp. In SPIt they can be used more practically as a means of monitoring

the progress of a dialogue.

Since part of the rationale for proto typing interaction is to allow the

prototype to be subject to some form of trials and experiments with other designers

and potential users. clearly evaluation of those experiments is necessary to provide

the feedback for the next iteration of the design. The exact nature of that

evaluation is the subject of much discussion in the human (actors literature (see. for

example. [Bleser & Foley 82] [Good et al 84] [Lindquist 8S]). Nevertheless. one

component of evaluation is widely accepted: the dialogue prototype should provide

-92-

some means of recording the activity of its users [Williges 84], perhaps for analysis

or "re-playing" the dialogue [Neal &: Simons 83].

Traces in CSP offer a simple model for logging each event as it happens. In a

practical tool, of course. this would involve adding information to each entry in the

log. such as timestamps, but for now we simply extend SPI to record each event.

This extension requires no changes to the eventCSP or eventISL languages, but

to the eventCSP simulator and its state. The simulator state is extended to include

two new entries: a boolean flag lndlcatlnq whether or not tracing is required and the

trace itself, which is defined as
.

, Trace = seq(EventName)

50 that SimState is now

tuple(processDb, Process, set(EventName), Msg, Boolean, Trace)

The trace is maintained by the nextstate operation (§5.2.2) which is now specified as:

nextstate(ss,e) =
let (pdb,p,n,msg,trf ,tr) = ss
in

if e En
then let p' = step(p,e,pdb)

tr' = if trf then tr"<e> else tr
in (pdb,po-,nextevents(p',pdb), "OK- PICK ONE OF:",trf,tr')

else (pdb.p,n,"WRONG- PICK ONE OF:".trf,tr)

As far as the user interface to SPI is concerned, we introduce two

meta-commands to the SPI shell, one to switch tracing on and off and another to

extract the trace from the state.

We could also implement some of the CSP trace operations to provide a trace

analysis package:

trtA
s in tr
4ltr

restricts trace tr to symbols in the set A
determines whether or not s is a subsequence of tr
yields the length of tr
50 that 4t(trfA) gives the number of occurrences
in tr of symbols in A
= 4t(sUx}) to count the occurrences of symbol xsfx

Together with the usual me too operations on sequences, these operations provide

some tools for analysing the events in a monitored dialogue. It would also be

possible to allow "replays" of a dialogue using trace files.

-93-

5.1 Summary ..

The combination of SPI and me too described so far allows a software designer

to specify many aspects of an interactive system: its functionality, the structure of

its interactions with users, and input and output formats. The current tools are

adequate for the stated purpose, specifying and proto typing dialogues, but many

additions and improvements are immediately apparent.

The me too/Lisp-based implementation of SPI is, however, only a prototype,

limited in its functionality and in its performance. In developing SPIt we have

employed the me too method in an iterative process of designing a software

product. In this case, the product happens to be a tool for specification and

prototyping. Having specified and prototyped its design, and redesigned it in the

light of experience with the prototype. we are now in a position to implement a

production version. -The next chapter discusses such an implementation.

-94-

CHAPTER 6

TOWARDS A CONVENTIONAL IMPLEMENTA TION

Thus far. we have sought to demonstrate the viability of the SPI languages for

dialogue specification by applying them to a variety of examples. This chapter

takes a different approach but with the same end in mind. In order to demonstrate

that the SPI architecture and languages provide a sufficiently complete design for

dialogue specification. we show how the system can be implemented by an

imperative language on a conventional system. The implementation described here

is not seen as the final version. but as the first steps in that direction.

The previous chapter showed how a SPI dialogue specification Is executed. and

described the various components of the dialogue executor. Same·were specified in

me too (and are executable as a result) while others were written in Lisp. Together,

they act as a prototype of the dialogue executor. They make few concessions to

usability and show barely adequate performance. features acceptable in a prototype

of the tools but not in the tools themselves. Implementing the languages and the

dialogue executor in C under UNIX enabled some of these issues to be addressed.

In this chapter we show one way in which SPI can be implemented as a set of

usable tools with acceptable performance. and discuss some of the implementation

decisions which were taken.

6.1 Initial implementation decisions

Some early decisions affected much of the way in which the implementation

was tackled and so these are presented here before the individual components are

described.

The first decision was to follow the me too specifications for the evenlCSP

simulator and event manager quite closely, retaining both the internal structure of

the various operations and the overall architecture. Thus the simulator is

implemented independently of the event manager and, as in the prototype, can be

-95-

run separately to simulate the dialogue. The event manager calls functions in the

simulator, and ts 1n tum called by the SPI interpreter.

In the same way that the computational structure of the prototype was

retained. so also many of the data structures were kept. In particular. sets were

considered a useful data type and so a module implementing sets (as linked lists) was

provided.

The major difference in data structure concerned the representation of

eventCSP. In the prototype. the eventCSP specification was represented by a finite

function mapping process names to their definitions. In the implementation

described here. a single process definition is created. with pointers to processes

replacing process names. for reasons given in the next section. This change is

responsible for the majority of the differences between the prototype and the

implementation.

6.2 Processing the eventCSP language

One method of implementing eventCSP is to translate it into a more

conventionallanguage~ This approach is taken in implementing "squeak", a language

incorporating many of the features of CSp, [Cardelli & Pike as]. Amongst other

things. this involves expanding the parallel construct to allow all ~he interleavings of .

events tha t this expresses.

Alternatively. eventCSP can be implemented as an interpreted data structure,

as in the SPI prototype. This is not dissimilar to the extension to Hope proposed in

[While 86]. which employs a data structure to contr~l the use of Hope recursion

equations •. Here we use the eventCSP data structure to control the invocation of

me too operations or C functions. This is the method employed in the current

version of SPI.

In the me too prototype. the s-expresslon version of the eventCSP

specification itself acts as the data structure. In a conventional language such as C.

the symbol manipulation involved in maintaining a textual version of the structure is

-96-

inefficient and so it was decided to create a painter version of the structure

instead. Where the prototype refers to called processes by name. the

implementation uses pointers to process definitions. An eventCSP specification is

"compiled" into this data structure. ready for use by the simulator. It can also be

saved in text form in a file so that it can be kept after compilation.

Some changes to the notation were made to ease implementation. Firstly. by

way of concession to the ASClI character set. the choice operator is denoted by ".

as in P ...Q and arrows by ->. as In (a -> P).

Secondly. the process definitions should be fully bracketed. T~irdly, the

synchronisation events for the parallel operator have to be given explicitly. These

are the events common to bath processes. so if we have

P = (a -> b -> P)
Q = (b -> C -> Q)

then the set of common events for P and Q is Cb}and the parallel operator would be

written thus:

(P II Q Cb})

Finally. the C restrictions on identifier names have to be noted: an identifier must

begin with a letter but subsequent characters may be alphanumeric. Underscore (_)

is regarded as a letter. In most implementations of C. the Significant portion of an

identifier is restricted to the first few characters (8 in C under PNX). Longer event

names may be used but the designer should be aware that they will be truncated by

the C compiler.

Allowing for these modifications, the eventCSP specifications given in this

thesis have all been compiled and run on the simulator. For example. the eventCSP

specification for decision tables becomes

dts = «is-decision -> (give-decision -> skip»

(not-decision -> (ask-question -> (user-answer -> dts»)
)

The syntax for the C version of evenUSL is defined in Appendix 6.

-97-

EventCSP has been implemented using LEX and YACC [Johnson Bc Lesk 78].

As each eventCSP construct is recognised by the YACC-generated parser. it is

treated as an internally-named process and entered in a temporary process

database. When the entire specification has been read. this process database is

either transformed into the required process definition or it is written to a text file

for later use.

Translating an eventCSP specification to its internal form and then to a

process definition is achieved with very acceptable performance.

6.3 EventCSP simulator

This section outlines how the me too specification of the simulator was used to

guide its implementation. As in the prototype. the heart of the simulator is the pair

of functions, nextevents and step. The computation and structure of these functions

are the same as for their me too counterparts. Most differences arose from the

representation of processes asa single process definition rather than as a database

of named definitions. The implementation retains the benevolent non-determinism

of the prototype.

The simulator maintains a state corresponding to the SimState of the

prototype. It no longer needs to keep a copy of the process database. so this

component of the state is omitted. The state is represented by global variables in

the simulator module. The "current process definition" is actually a pointer into the

dynamically-extended process defini~ion.

The control loop of the simulator again reflects that of the prototype. offering

the possible events. accepting a choice of event and stepping on to the next position

in the process definition. Termination is defined as being when the single event

"TICK" is offered. Ie. when a skip process is encountered that is not part of an

enclosing parallel or sequence process.

It can be seen from this outline of the simulator that the decision to follow the

prototype so closely made its implementation a straightforward matter. However,

although it was convenient and the result outperforms the prototype. it is not

-98-

space-efficient, building up extensions of the process definition during execution.

This is due to the change in process representation.

There are, of course. alternative implementation strategies. This particular

one was almost entirely determined by the early decisions described in §6.1.

Oiffer'!!nt decisions at that point would have resulted in a different implementation.

We regard this implementation as one of a number of possible "refinements" of the

specification. It is not necessarily the best. but it has the merit of being

constructed quickly. In its own way. the implementation is a prototype. the next

step in the evolution from initial requirements ("a way of specifying and proto typing

hci") to a fully-fledged set of tools capable of meeting those requirements.

6.4 Processing the evenUSL language

In the prototype. evenUSL is embedded in me too: that is. its constructs use

me too expressions and the specification is translated into me too operations. In the
"

implementation. eventISL is embedded in C. so that its constructs use C expressions

and the specification is translated into a C program. Although the approach is the

same. the differences between a functional specification language and an imperative

programming language mean that there are differences between the me too and C

versions of eventISL. This section is concerned simply with outlining the changes to

the notation and the reasons for them.

The syntax is defined in Appendix 7 and. to illustrate some of the differences.

the C version of the evenUSL specification for the forms example is given in

Appendix 10. In §S.2.1. we listed the rules for translation that are employed in the

prototype; the corresponding rules for the implementation are given in Appendix 12.

Many of the changes result from the fact that values can be held in ordinary

variables. using the normal assignment and access mechanisms provided in C.

Consequently. using an explicit dialogue state to hold system and application objects

is no longer necessary. The system part of the state is declared as variables within

the event manager module. The application part is declared by the designer as C

data within the eventISL specification.

-99-

Being able to store and access data in the state directly in C means that we no

longer require explicit language constructs for this in evenUSL. The use expression

becomes redundant. and the saving of values is achieved by assignment to

application variables. This implies the need to incorporate C code into the body of

an event, since we now need to use C assignment statements. A new attribute, text.

has been added to allow this; an event may have more than one text attribute. It

should be noted that order is significant in an imperative language and so, unlike the

me too version. the order in which attributes are given in an event becomes

significant.

The use of text attributes in an event also removes the need for the let

expression. The event

event user-reply =
use input, dt in

let uq = get-q(input)
ua = get-a(input)

dt = prune(dt.uq,ua)

can be written as

EVENT user_reply
TEXT uq = get_q(input);

ua = get_a(input);
dt = pruneldt.uq.ua);

- in the concrete syntax of the C version of evenUSL.

Using variables to represent the state means we no longer ha~e the option to

remove data from the state, since C does not allow variables to be "un-declared"

once declared. Instead, a specification must set a null value in a "removed" variable

to signal' the non-availability of data.

As a result of these changes to the language, an evenUSL specification now

only needs to use the basic attributes (when, out and prompt) together with the new

text attribute. Of these. the boolean-valued attributes are used in the same way as

before, being supplied now with a boolean-valued C expression.

A number of options were possible for the out attribute, since C provides a

number of ways of constructing text output. The choice made was that the

-100-

attribute should supply the text in the form required by the "printf" function, giving

a format and data to be output. This is an experimental decision, and open to

change as the language is used. In particular, we will require some mechanism to

allow the output of graphical as well as textual information.

A minor change, made necessary by the requirements of C, is that all

application functions must be declared as external functions before use.

As an example, we give the C version of one of the decision table

specifications in Fig.6.l.

DIALOGUE

It dts - evenUSL specification
It

4tinclude "dt.h"

extern unsigned check_decisionO;
extern char ItqueslionO;
extern DT PTR prune():
extern DT-PTR dt example():- -
,. declarations for decision tables
It,./
DT_PTR dt:
char qu[256]:

PROCESS dts
TEXT dt = dt_exampleO:

EVENT is decision
- WHENcheck_decision(dt)

EVENT not decision
-WHEN!Check_decision(dt)

EVENT give_decision
OUT "\ndecision: %s\n",dt->text

EVENT ask_question
TEXT slrcpy(qu,(char It)question(dt»;
PROMPT TRUE
OUT "\n%s ? ",qu

EVENT user answer
TEXT dt = prune(dt,qu,input) ;

Fig.6.l. Decision table example - C version

-101-

An example of how the screen display would appear during execution of this dialogue

is given in Fig.6.2

choose an option
run simul~r
execute di~gue
toggle trace flag
toggle log flag

not_decision
ask_question

name of eventCSP file? dts.csp
I

Choose an event from:
is_decision
not_decisi0n

? not_decision
Choose an event from:

ask_question
? ask_question
Choose an event from:

user-reply

Tracing begins

Fig.6.2 SPI screen display

The translation of eventISL is also implemented using LEX and YACC, and

follows a similar pattern to that in the prototype. Each event causes the creation of

two C functions - a condition function and an action function. Each attribute

causes a fragment of C to be added to the generated program as part of the

approcrlate function. For ease of implementation, we impose the restriction that

the when attribute, if present, must precede all other attributes for that event.

Some additional C code is also required. Various system files are "included"

into the program and links to the system part of the state are established. At the

-102-

end of the program, the translator defines a function table which maps the event

names to their condition and action functions.

The program generated by eventISL translation has to be compiled and linked

in with the SPI modules in the usual C fashion. Together with an eventCSP process

definition, it can be used by the event manager to prototype dialogues.

This exercise showed how it is possible to embed eventISL in a language other

than me too. Such a development, though, has the potential to change the syntax of

eventISL considerably. This depends on the nature of the hosl language so il mighl

be expected that eventISL embedded in Pascal, say, would not be vastly different

from the eversion.

6.5 Event manager

Again, this module follows the structure of the proto typed version. Some .

differences arise from using permanent global variables to represent the system part

of the dialogue state, such as providing functions to access these variables

appropriately. Secondly, holding the evenl-lo-functions mapping in a function table

means that the new mechanisms were needed to find and call the appropriale

functions for an event. Traces are implemented differently, as described below, but

otherwise the code is a straightforward "hand-translation" of me too into C•...

The trace of the execution of a process is no longer held as an entry in the

state. In a practical tool, we recognise that there are (at least) two different uses

for a trace of execution. First, for monitoring or feedback purposes, we require a

time-stamped permanent log recording not only each event but, at a minimum, the

user input supplied as well. an the other hand, for debugging, a dynamic display of

each event selected is probably sufficient. Accordingly, we distinguish between

logging events (to a file) and tracing events (to a screen window). The screen shown

in Fig.6.2 includes the trace window.

Where, in the prototype, an event was added to the sequence held as the trace,

now calls are made to a logging function and a tracing function which add the event

-103-

·to the log file and trace window respectively. In addition. when an input is received.

another logging function is called. Entries in the log and output of trace only occur

when their respective flags have been set by user commands. These commands. as

before. are processed by the SPI interpreter. which is described in the next section.

6.6 The SPI interpreter

In chapter 5. we gave an outline of how the dialogue state is interpreted in

order to allow proto typing of the specified dialogue. Although this module followed

the same structure (the Read-Eval-Print paradigm essentially). it also afforded

some scope for experimenting with the user interface to SPI.

Part of the module implements the specified interpreter as one option which

may be selected by the user. Other options are to run the simulator. to toggle the

trace flag. to toggle the log flag or to quit. All options are presented in a pop-up

menu with selection by mouse button press. There are other possibilities which

could be implemented. such as dynamic creation or modification of dialogue

specifications. but for now the front-end is adequate to demonstrate the tool.

6.7 Summary

This chapter shows how we have begun to address the implementation of SPI

using an imperative language in a conventional system. A number of questions are

raised by such a process. as is to be expected when moving from specification to

implementation. The choice of representation for data structures. improving

efficiency. maintaining a correspondence between specification and implementation.

considering the user interface in more detail: these are all traditional concerns at

this point in product development and all have been touched upon in the discussion

above.

Implementing SPI in this way has. as required. improved both its performance

and its presentation. These are subjective jUdgements. based on experience with

both the prototyped and implemented versions. The difference is marked. even if

not measured.

-104-

In one instance, namely traces, the implementation differed from the

specification. as practical experience was gained with SPI. These differences were

anticipated in the specification. which stated what was required (a tracing

mechanism) and an approach (based on event names as selected) while

acknowledging that more detail would be needed for the implementation.

As it stands, this implementation incorporates the functionality of the

prototype. Experience with the system, though. has revealed that a number 'of

enhancements are desirable. These include dynamic creation and modification of

SPI specifications. the ability to single-step through a dialogue, the establishment of

libraries of interaction techniques and tools for using and analysing log files. These

are important features if SPI is to be of use in practical situations, but the present

implementation suffices to show that the SPI architecture has tackled the major

issues. that It can be implemented within a conventional system and that it has the

potential for use in product development.

-105-

·CHAPTER 7

COMPARISONS AND CONCLUSIONS

This chapter reviews the work reported in this thesis. We begin by comparing

SPI with other techniques advocated for specifying and prototyping human-computer

dialogues. Before concluding the thesis with a summary of what has been achieved

with SPIt we suggest ways in which SPI could be used and extended.

7.1 Comparisons with other techniques

This section compares SPI with techniques advocated by other authors. We

select some of the significant features found in these other methods and examine

SPI in the light of them.

Many of the methods can be regarded as data-based. describing all (or a

significant amount) of the dialogue in some data structure. perhaps augmented by

actions or with separate control of the sequencing. as with the frames of [Lafuente

Bc Gries 78]. This data structure may consist of such objects as BNF rules. state

transition diagrams. frame descriptions or interaction event tables. It is then

processed by an interpreter. or is used to create an interpreter. thus providing a

prototype of the dialogue described. SPI adopts a similar approach. but uses two

separate data structures: the dialogue state and that derived from the eventCSP

speci fica tion. .

The first of these. the dialogue state is defined by the actions of the events

and is processed by the SPI interpreter. Thus it is a dynamic description of the

dialogue. subject to change in each cycle of the dialogue. In the other methods

mentioned. the data structure is static, its contents defined at the outset. An

advantage of the static approach is that the data structure describing the dialogue

can be used to drive on-line help facilities automatically. One system [Feyock 77]

uses the state transition diagrams to answer such questions as "what are valid

commands in the current state?" or "how can state X be reached from here?".

-106-

In SPIt the second data structure is the representation of the eventCSP

specification. which is static and could be used as the basis for similar analytic tools.
I

Several methods consider a dialogue to be made up of distinct steps. each step

having various pre-determined characteristics. Examples are state transition

diagrams. interaction events and OMS [Hartson et al 84]. SPI takes a similar view of

the dialogue. considering each event as having the potential properties of input.

action (state transformation) and output.

In a production system. rules are specified to determine the actions taken in

the dialogue, depending on the contents of the working-memory. If these actions

include modification of the rules themselves. then it is possible to develop dialogues

which adapt to the behaviour of the user. The CONNECT state-lransition-network

system [Alty &: Brooks 85] offers a measure of adaptability by extending the

dialogue description to include production rules which can be used to modify the

network. SPI does not yet address this issue of adaptability.

Another advantage claimed for production systems is that they make it

possible to describe dialogues where there is no ordering or only a partial ordering

on events. ather notations offering such capabilities include statecharts. flow

expressions and the supervisory cells of SUPERMAN [Yunten &: Hartson 85]. The

parallel operator in eventCSP allows SPI specifications to give a similar degree of

flexibility in dialogues. This is particularly useful in specifying concurrent input and

direct manipulation screen-based interfaces.

The ability to specify interactions by composing. or bringing together. smaller

specifications is evident in most of the methods. For some, such as notation based

on CLG [Browne et al 86] and GUIDE [Gray &: Kilgour 85]. it is fundamental to the

method since they are based 'on hierarchic structuring; in GUIDE, the hierarchy is

based on the UNIX filing system. In other methods. like state transition networks, it

is a feature which as been added to enable the specification to be decomposed into

smaller, more comprehensible parts. For SPIt the unit of specification is the

process. These units can be combined as defined in the eventCSP language.

SPI shares with EPROS [Hekmatpour &: Ince 86a] and UML/GUSL [Green 85]

-101-

the goal of being able to specify all aspects of an interactive system within a single

framework. SPI achieves this by adding notation for dialogue control to me too: the
I

result is that both the application and the dialogue can be specified within this

augmented me too method.

A number of techniques distinguish the two layers identified in SPI: the

structure and the content of a dialogue. Examples include the systems described in

[Christensen Bc Kreplin 84] and [Lafuente Bc Gries 78]. ADDS makes a similar

division [Bums Bc Robinson 86]. defining a dialogue using "scripts" and state

transformations. EventCSP is a more powerful notation than the scripts they

describe. however.

Finally. some methods. like state transition diagrams. are particularly

appropriate for conveying the sequence of events in a dialogue. CSP was chosen as

the basis for one of the SPI languages because it was found to share this property.

Abstracting from the details of the dialogue and expressing the' resulting abstract

structure In eventCSP clearly shows the possible sequences of events in the

dialogue. Moreover this structure can be explored interactively using the eventCSP

simulator.

7.2 Suggestions for further work

Comparing SPI with these other methods suggests a number of ways in which

this work might be extended.

7.2.1 Analysing dialogue specifications

Analysing formal specifications of dialogue is a useful technique for a number

of reasons. It can be a way of determining whether or not the dialogue

specifications meet various guidelines [Bleser Bc Foley 82] [Anderson 86]. finding

paths through the dialogue [Brown 82] [Ally 84]. estimating performance times [Card

et al 80] and predicting potential user reaction [Reisner 83] [Lindquist 85]. CSP is a

formal language that also lends itself to analysis and derivation of properties of

specifications [Goltz & Reisig 84] [Barringer et al 85] [Hoare 85]. It would be useful

-108-

,to provide tools for analysing dialogue specifications written in eventCSP.

7.2.2 Extending event descriptions

As a language. evenUSL contains only as much as is necessary for dialoqua

specification and prototyping. Its generality means that a dialogue designer is free

to make use of the dialogue state to control such aspects as help and

error-handling. However, explicitly coding them into the dialogue structure can

obscure the meaning of the speclncatton. One solution is to add standard, built-in

ways of dealing with such issues, such as the "pervasive" states of [Olsen 84] or

"diversions" [Wartik &: Pyster 83]. This sort of approach would lead to new

attributes for events, for example, help, errors, levels and escapes. This in tum

would mean enhancing the SPI interpreter to deal with the new attributes.

Such changes would also offer a way of introducing adaptability, since events

could operate in different" modes. using different attributes, depending on the

required representation of the interface.

Extending evenUSL offers considerable scope for making dialogue.

specification easier, but at the cost of complicating the very simple

Read-Eval-Print model of dialogue at the heart of SPI. It remains to be seen how

these conflicting requirements can best be balanced.

Other work primarily involving evenUSL would be to experiment with

embedding it in other languages. Some work has started on transforming me too

specifications in Ada" [Clark 86]: it would be worth exploring how SPI could be set

into an Ada environment, especially since Ada offers concurrent execution of tasks.

7.2."5 Using the object-oriented paradigm

The combination of encapsulation and inheritance found In object-oriented

programming [Goldberg &: Robson 83] [Cox 86] seems to offer a particularly

N Ada is a trademark of the U.S. Government-Ada JQint Program Office

-109-

powerful way of constructing systems. It is natural. therefore. to consider how

systems might be specified in this style as well. Already. work has begun which

extends me too in this direction [Minkowitz Bc Henderson 86]. In chapter 2. we saw

that several ways of applying the object-oriented paradigm to dialogue specification

are being developed. and we would like to explore how it might be incorporated into

SPI.

7.2.4 Industrialising SPI

Based on experience ~ith SPI. we believe it to be a useful. practical way of

specifying and proto typing dialogues. Until tested in the world of industrial

software development. this is merely a subjective opinion. Logically. the next step

for SPI should be case studies based on more realistic use of the tools and techniques.

Experience with SPI has already suggested a number of improvements or

additions to the tools: ways of handling standard interaction techniques such as

menus and windows. structure editors for eventCSP and eventISL. process and event

libraries. a more flexible outer shell with better debugging and on-the-fly

modification facilities •.•• and so on. Better facilities for input parsing along the

lines of Language-By-Example [Johnson 85] are also required. A debugger capable

of handling CSP would be an asset [de Francesco et al 85]. as would the ability to

execute incomplete specifications [Zave Bc Schell 86].

Another issue not yet fully explored is how best the SPI method and tools can

be used in the context of a software project. Assuming the separability of the. .
interface from the functionality. SPI would seem to offer a useful communication

tool between the two groups of designers involved. This needs to be tested in

practice, as well as the underlying assumption that the languages are simple enough

for use by human factors personnel unfamiliar with formal notations.

7.' Conclusions

In SPIt we have presented an architecture for dialogues. an architecture

supported by languages and tools that enable designers to specify and prototype

-110-

human-computer dialogues.

This architecture separates the sequence of events in a dialogue from the

state transformational nature of those events. It was derived after experimentation

with both stream-based and state-based approaches. As a result. it was found that

this separation is a good way of defining dialoques, retaining both the aspects of

structure and effect but not allowing either to obscure the other.

The use of CSP gives us a formal. expressive. succinct and powerful notation

for specifying dialogue structure. CSP was. in many ways. a "natural" choice as a

notation for expressing dialogue structure. In its earlier form. it was used because

channels were an appropriate way to specify input and output streams in

stream-handling operations. In its later form. processes are specifically intended to

describe possible sequences of events. which is exactly what we required of a

notation for dialogue structure.

There are other notations for such an event-based approach. ego[Gorski 85]

(Avrunin et al 86]: there are other notations for considering sequences of events. ego

LUCID [Wadge Bc Ashcroft 85]: and there are other notations for expressing

concurrency. such as temporal logic (Manna Bc Pneull 81]. CCS [Milner 85]. NIL

(Strom Bc Vemini 85]. Petri nets (Thiagarajan 85]. occam [INMOS 84] and other CSP

derivatives [Haase 85]. Any of these may well have proved suitable. but CSP had

the advantages of familiarity. an easily implementable formal notation. our earlier

experiments using streamCSP and the reported experience of others who found CSP

a useful design tool [Hull Bc McKeag 64].

In CSP. the parallel operator (II) offers considerable scope for innovation in

specifying dialogues. For example. we can easily specify concurrent input.

Alternatively. it can be used to separate and synchronise the activities of related

.processes. thus allowing the decomposition of a dialogue into sub-dialogues. Such

decomposition is illustrated in the specification of a syntax-directed editor in

[Alexander 86]. and is a well-known and much-advocated technique for managing

complexity in software development.

-111-

Because we have been concerned with the syntactic layer of dialogues. little

has been said about SPI's lexical capabilities. As stated in chapter 2. this layer

covers a number of issues, such as primitive device handling (mouse. screen.

keyboard, external sensor, •••). token representation and analysis, screen layout and

interaction techniques (menus, forms. windows. dials ••••). It could be argued that

much of this level is best defined using a traditional programming language or a

specialised notation [Green 85], since it involves low-level device handling. It is

true that the me too version of SPI is not particularly appropriate for the very

detailed level of device handling. key presses. icon drawing etc, largely due .to the

nature of me too. since it was not designed to deal with such issues. Embedding SPI

in C is more appropriate for this layer and offers the opportunity to handle all

aspects of user interface design.

SPI does not directly address layout issues, since much of this can be specified

in separate me too components and the remainder is concerned with device

handling. [Rowles 86] describes a functional layout language embedded in me too

which enables text-based screens to be designed and saved in a screen dictionary.

The me too-based implementation of SPI provides a specification and

prototyping environment for dialogues. The combination of SPI and me too allows a

software designer to formally specify and prototype most aspects of an interactive

system: its functionallty, the structure of its interactions with users, and input and

output formats. However. this version of SPI can also be seen as a prototype in its

own right, limited in its functionality (as outlined in the previous section) and

particularly in its performance. Having followed the me too method in designing

SPI, the next step was to use the design to implement the tools in a more

conventional way.

The first phase of this implementation has been completed, offering SPI under

UNIX and embedding evenUSL in C. The resulting system. while not yet a

fully-fledged production-quality tool, has yielded much improved performance and

presentation. and now offers an implementation environment for dialogues.

-112-

Implementing SPI in this way has demonstrated that there are no major difficulties

left to be resolved.

In summary. SPI has achieved its original goals; its languages are formal and

executable. and it offers an integrated technique for specifying and prototyping

human-computer dialogues. supported by the necessary tools. Work on related areas

remains. but we believe the SPI"s architecture and languages are more than an

adequate foundation for that work.

-113-

APPENDIX 1

me too notation

In chapter 2. the me too method for speclftcatlcn and rapid proto typing was

introduced. This appendix describes the me too notation that is used throughout the

thesis so that the reader can understand the specifications that are given. This

appendix is intended only as an outline of me too; further details can be found in the

me too manual (Henderson et al 85].

AI.l LispKlt notation

Since me too is embedded in the functional language LispKit [Henderson 80].,

all the LispKlt notation is imported into me too. This section gives a summary of

LispKit notation available in me too.

arithmetic: x+y x-y xtty x/y x ~ Y

boolean: bl and b2
bl or b2
notb
el=e2
x<=y (less than or equal)

conditional: if b then el else e2

lists: Iistta.b.d)
head(!)
tai1(l)

append(ll.12)

creates the list (a b d)
extracts the first list element
returns all but the first list
element
adds element x at the start of
list I
concatenates lists 11 and 12

cons(x.l)

function application:

fn(e l •••••ek)

returns value of the function named fn applied to the arqurnents el.

Application can be nested to any depth. For example. if

double(x) =: x It 2

then

double(S) = 10
double(double(1+2» = 12

-114-

local declarations:

let nl = el

nk = ek

e

retumsthe value of e, evaluated in a context enriched by binding the names

ni to the values ei

letrec nl = el

nk = ek

e

recursive version of the above. so that the ni may be used within the

expressions ei.

The functionality (or type) of a function is given by

f: TI x T2 x ••• x Tk -> Tk+l

where f is a function with arguments of type Tl ••.•Tk and a result of

type Tk+l.

There are strict and lazy versions of LispKit available. In most me too

specifications. the evaluation strategy is immaterial: however. 1t should be noted

that streamCSP relies on lazy evaluation of the input and output channels in order

to handle input/output processing.

Al.2 Sets

enumera lion: {el ••••• ek}

with {}or ~ for the empty set

basic set operations:

st U s2
si n s2
sl - 52
eEs
sl C s2

union
intersection
difference
member
subset

cardinality (size): card s

selection: the S

selects the member of the singleton set S. The result is undefined if S has

more than one member.

-115-

distributed union: union S

where S is a set of sets. For example. if A = {l.2}. a = {2.5}. C = {J.n
and S = {A.a.C}
then

union S = {5.1.J.2}

set construction: {eln ... S}

constructs a new set by taking each element from the set S. naming it nand

building a new element using e (where e is an expression involving n). "n ... S" is

called a generator clause.

If S is {l.2.J}. then {x+l I x ...5 } is {2.J.4}

{eln ... S;b}

as above. except that the elements of 5 are tested using the predicate (or

"filter" b before being used to build the new set. Elements not satisfying the

predicate are not used. tin ...S ; b" Is also a generator clause •.

With 5 as above, { x+l Ix ...5; x<J } is {2,n

{e I g1; •.•; gk }

the most general form of set construction. where each gl is a generator

clause (with or without filter).

reduction: nleS

collapses the set 5 into a single element with the same type as e,

using binary function with name n. If S is the set { e1••••• ek } then

nle S = neeI ,.••n(ek,e) ••.)

For example.

+to {J,4,S} = 12

uta = union

An object is declared to be a set by

obj = set(T)

where T is some type. All elements of a set are of the same type.

Al.J Relations

A binary relation is a set of pairs. Since it is a set. all the set operations given

in the previous section may be used with binary relations.

-116-

In what follows. we assume that x = { (a.I), (b.2). (a.3). (c.4) }

enumeration: {(el.e2) ••••• (ek.ekvl) l

relation operations:

dam r

returns the set of elements in the domain of r, so dam x = {a,b.c}

!:2!lr

returns the set of elements in the range of r, sO!:2!l x = {l.2.3.4}

r dr 5

returns a new relation, containing pairs from r whose domain element occurs

in the set 5,50 X dr {a}= { (a.I), (a.J) }
r ds 5

returns a new relation, containing pairs from r whose domain element does not

occur in the set S, so x ds {a}= { (b,2), (c.e) }

An object is declared to be a binary relation by

obj = rel(Tl.T2)

where domain elements are of type T 1 and range elements are of type T2.

A1.4 Finite functions

A finite function is a binary relation with unique entries in the domain. that is,

if F is a finite function then

card F = card dom F .

In VDM terminology. this type is known as a "map". Since it is a binary relation, all

the operations. given in the previous section may be used with finite functions.

enumeration:

construction:

{el-.e2, •••, ek-ek«I }

{n-+eln+-5}

constructs a finite function by taking each element from S (the domain),

naming it n and computing the corresponding range element as e (where e

is an expression involving n).

Thus ifS is {l,5~7}

then {n-+n+l InO+-5} is { 1~2, 5-+6. 7~8 }

-111-

{n-e] n .. S;b}

as above. but the filter b is applied to the elements in S.

application: f[e]

if the value of e appears in the domain of f. the result is the corresponding

range element. Otherwise the result is undefined.

If f = {l-+red. 7~lue. 2~een}

f[7] = blue
f[6] is undefined

f[el]e2

as above. except that if el does not occur in the domain of f. the default

expression e2 is returned as the result of the application. With f as above,

f[l]purple= red '
f[6]pLU1Ple= PLU1Ple

override: fl Ea f2

creates a new finite function whose domain contains the domain elements of

fl and f2. If an element occurs in the domains of both fl and f2. the new.
range element Is taken from f2 (hence f2 overrides f l), Otherwise the new

finite function contains all the pairs in f1 together with all the pairs in f2.

If f is as above and ft = { 3~ink. 7-+yellow} then

f Ea ft = { l-+redt 2~reen. 3~ink. 7-+yeUow}
ft Ea f = { l-+red. 2~reen. J~ink. 7~lue }

An object is declared to be of type finite function by

obj = fr(T l ,T2)

where domain elements are of type Tl and range elements are of type T2.

AI. S Sequences

enumeration: < elf •••, ek >
with empty sequence <> or nil

or { I-e 1•••• , k-ek }

since sequences can be regarded as finite functions mapping integers (the

position in the sequence) to sequence elements,

-118-

concatenation (append): ql .. q2

returns a sequence starting with all the elements of ql followed by all the

elements of q2.

cons: conste.q)

returns a sequence with first element e followed by the elements of q.

sequence operations:

head{q)
tail(q)
len q
elems q
inds q
q(x]

length of sequence
set of elements in sequence
indices of sequence
selects element at position x

If we define Q = cc.a.b.d.t.a» then

head(Q) = c
tail(Q) = ca.b.d, f,a>
len Q = 6
etems Q = {a.f.d.b.c)
inds Q = {l.2.'.4.5,6}
Q[5] = f

override: q e {x I ~ 1•••• , xn-en }

returns a sequence which Is the same as q, except that expressions ei are

now in positions xl, ,With Q as defined above,

Q ED { 3...x, l ...y} = <y.a.x.d. f .a>

distributed concatenation: £Q!!£. Q

where Q is a sequence of sequences.

If Q = < ca.b>, <b,d>, cc» >
then

. ~ Q = ca.b.b.d.c»

construction: <eln"'q>

constructs a new sequence by taking each element from the sequence q,

naming it n and building a new element e (where e is an expression involving

n). As with set construction. "n+-q" is called a generator clause.

For example. <xltxlx ...a,-1.3» is <4.1,9>

c e l n e q t b >

as above. except that only the elements of q which satisfy the predicate (or

"filter") b are used to build the new sequence. "n ...q ; b" is also a generator

-119-

clause (with filter).

<eigl: •••:gk>
I

I I
is the general form of sequence'ccnstructlcn, where each g1 is a generator

clause (with or without filter)'.

An object is declared to be a sequence by

obj = seq(T)

where T is some type. All elements of a sequence are of the same type.

Al.6 Tuples

A tuple is an ordered group of elements which may be of different types.

enumeration: (el •••••ek)

constructs a k-tuple

selection: first(t)
third(t)
fifth(t)

second(t)
fourth(t)

are the only operations available for tuples in me too. They select the

appropriate entry of a tuple.

patterns: (nl •••••nk) = e

where e evaluates to a k-tuple. This is an alternative (non-standard) notation

for selecting and naming components of a tuple.

If x is the tuple (1. fred. <3.7.2» and a local declaration 15 made

letrec (a.b,c) =x
in E

this is equivalent to

let a = first(x)
- b = second(x)

c = lhird(x)
in E

Thus. in E. a=1. b=fred and c=<'. 7.2>.

An object is declared to be a tuple by

obj = luple(T 1•••••Tk)

where the Ti may be different types.

-120-

AI. 7 Const~nts

Strictly, all constants used in me too specifications should be quoted, ego

F["red"]

but where the intention is clear, constants are not quoted. As a further aid, all

atoms given entirely in uppercase are deemed to be constants.

Al.B Types

In addition to the individual type declarations shown above, an object may be

declared as being of type T1 or of type T2 by

obj = TI U T2'

eg Flag = Int U Boolean

Composite types can be declared as

obj = Tl X T2

so that an object of this type has a component of type T 1 and a component of type

T2.

-121-

APPENDIX 2

Specification of logon example

This component supplies operations to support the checking of users and passwords

for a logon dialogue.

Objects

The system maintains a table of users and their passwords. This is represented as a

finite function, mapping each user name to the appropriate password:

UserDb = ff(UserName.Passwcrd)
UserName, Password = Atom

Operations

Two operations are supplied. The first checks that the given user name is registered

in the table: the second checks the supplied password against that in the. table.

registered: UserDb x UserName -> Boolean
validpwd: UserDb x UserName x Password -> Boolean·

where the operations are defined as follows:

registered(udb,u) :: u E dom(udb)
validpwd(udb,u,pw) :: pw = udb[u]

-122-

APPENDIX ,

Specification of decision table example

This component supplies operations on a decision table containing questions. answers

and decisions.

Objects

The table is represented by an n-ary tree. with questions in composite nodes. and

branches labelled with possible answers.

Tree = Decision U ff(Question.ff(Answer. Tree»
Decision. Question. Answer = Atom
QA-pair = tuple(Question.Answer)

Operations

Is-decision checks to see if the tree has been reduced to a single node. le, a

decision. The next question to be asked is returned by the operation question and

prune reduces the tree according to the answer given to the question.

is-decision: Tree -> Boolean
gel-q : QA-pair -> Question
get-a: QA-pair -> Answer
question: Tree -> Question
prune: Tree x Question x Answer -> Tree

is-decision (t) :: atom(t)

get-q(q&a) :: first(q&a)

get-a{q&a) :: second(q&:a)

question (t):: the dom(l)

prune (t.q.a) ::
let pruned = { (a' .prune(t' .q.a) I (a' .t') ...t[question(l)] }

if is-decision(t)
then t
else if q = question(t)
then t[q][a]
else {question(t)~runed }

-123-

APPENDIX 4

Rewrite rules for streamCSP

StreamCSP is implemented as a language embedded in me too. It is translated

by a preprocessor from its S-expression form into standard me too which can then

be compiled as usual and run as a prototype. The preprocessor systematically

rewrites terms in the source notation using a set of rewrite rules until no more rules

can be applied (Finn 84]. This appendix describes the rewrite rules used by th~

preprocessor for streamCSP; they are based on rules originally devised by Simon

Jones of the University of Stirling.

As indicated by the example in §~.l, the translation transforms the process

function from having functionality.

(user-state ->user-state)

to having the functionality

(user-state -> (in -> (out x user-state x in)))

le. (user-state -> runnable-process)

as required by the ProtoKlt "run" command which is used to execute interactive

prototypes.

In the rules that follow, each is in the form of a l-list:

(set-of-bound-variables
term- to-be-wri t ten
result-after-rewriting)

The first DODEFS rule specifies the first term to be rewritten, then the

remaining DODEFS rules deal with individual processes, rewriting them as me too

operations with the appropriate functionality. Non-process functions are left

unchanged. The final rule enables internal operations to be added to the

specification at the end.

((e 1) (processes e • 1) (letrec e DODEFS 1))

« pid iv I body)
(DODEFS ((pid process iv body) • 1))
((pid lambda lv (lambda (kb) (DOBODY body)))

DODEFS 1 »

-124-

((id other I)
(DODEFS ((id • other) • 1))
((id • other) DODEFS 1))

(0 (DODEFS NIL) ADDFUNI)

As a result of the DaDEFS rule. each process function body is flagged by DpBaDY.

The DaBaDY rules recognise and expand the streamCSP notation. Note that the

rule for input (c?x->P) forces the evaluation of each input as it is requested in

order to ensure the correct interleaving of input and output.

«cxp)
(DOBaDY (c ? x .. p))
(let
(let (if (atom x) the-rest the-rest)
(the-rest DOBODY p))

(x head kb)
(kb tail kb)))

«cep)
(DOBODY (c ! ep))
{ letrec

(list (cons e -as) *ov *is)
((*os *ov *is) DOBODY p)))

((oe) (DOBaDY (return oe)) (list nil oe kb))

When calling another process. only the input state is explicitly given. This rule adds

the implicit input stream (kb) to the call.

((pid' ie)
(DaBaOY (pid' • ie))

((pid' • ie) kb))

Sequential composition is implemented by an internal operation called SEQ (see

below). This rule translates the: construct into a call on SEQ. adding the input

stream parameter as for a process call.

((pidl pid2 le)
(OOBODY « pidl : pid2) • le))

(((SEQ pid I pid2) • ie) kb))

The following rules carry the DOBOOY translations through the normal me too

constructs.

((c pl p2)
(DOBODY (if c p l p2))
{ if c (DOBODY pl) (DOBODY p2)))

-125-

((pI)
(DOSODY (let p • I »
(let (DOSODY p) • 1))

((pI)
(DOSODY (letrec p • I))
(letrec (DOSOOY p) • I))

The rules below add the SEQ operation required for sequential composition and a

simple pattern-matching operation.

(NIL
ADDFUNI
{ (SEQ lambda (P Q) ,

{ lambda (st)
(lambda (kb)

(letrec
(list (append oull out2) st2 kb2)

((outl st l kbl) (P st) kb)« out2 st2 kb2)(Q stl) kbI)»»
, • ADDFUN2))"

(NIL
AOOFUN2'
« matches

lambda
(x t)
(if
(atom t)
(or (eq t (quote ANYTHING))(eq x t))

(if
(atom x) false
(if
(eq (head x) (head t))
(eq (length (tail x)) (length (tail t)))
false»)»)

-126-

APPENDIX 5

Specification of. ECS-state interpreter

Objects

ECS-state (see chapter 3)
in and out are the input and output streams respectively

Operations

The interpreter is implemented by a group of me too stream-handling operations.
The outermost operation has type

ECS : AppState -> (in -> (cut x AppState x in»

The remaining processes arc:

ecsl : ECS-state -> (in -> (out x ECS-state x in»
ecs2 : ECS-state -> (in -> (out x ECS-State x in»

ECS(asXkb) = ecsI(start(as»(kb)

ecsl(st)(kb) ::
if st(TERMINATE]false
then list(nil,st(DB],kb)
else if st(INPUT -REQD]false
. then

let inp = head(kb)
- kb = lail(kb)
in ecs2(edit(st ds {INPUT_REQD},inp»(kb)

else ecs2(st)(kb)

ecs2(st)(kb) =
let newst = compute(st)
in

if OUTPUTedom(newst)
then let (out,newst' ,kb') =

ecsl(newst ds {OUTPUTl)(kb)
in list(show(newst)",out,newst' .kb')

else ecsl(newst)(kb)

show(st) :: st[OUTPUT]<>

edit(st,i) = st ED{INPUT"'i}

-127-

APPENDIX 6

Syntax definitions for eventCSP

The first section gives the definition of the abstract syntax given in chapter

3. The following sections define the concrete syntax by showing how each construct

from the abstract syntax is represented. Note that there is no explicit

representation for the "abort" process.

A6.1 Abstract syntax

A process is defined as follows:

if e, e 1, •••,en are events and P, P 1•••••Pn are processes, then the following
are also processes

(e ...P)

(el PI
o e2 P2
n •..n en ... Pn)
PI : P2

PI II P2
1 : P
skip
abort

- (prefix) engage in event e then
behave like P

- (choice) engage in el
- then behave like PI. or engage in e2
and behave like P2. etc

- (sequence) PI followed by P2 if PI
terminates

- (parallel) PI in parallel with P2
- (label) label P with I
- successful termination
- no further interaction

A6.2 Concrete syntax for me too

This version adopts the S-expression form used in the concrete syntax of ~

too. For ease of reading. this definition shows constant strings thus: 'seq

(e ...P)
PDQ
P:Q
P
PIIQ
synchronised on {x.y,z}

I : P
skip
Pname = Q

(lev e P)
('alt P Q)
('seq P Q)
('call P)
('par P Q (SET x Y z))

('label IP)
'skip
(Pname Q)

-128-

A6.2 Concrete syntax for C

(e -+ P)
PDQP;Q
PIIQ
synchronised on {x.y.z}

1 : P
skip
Pname = Q

-129-

(e -> P)
(P A Q)
(P : Q)
(P II Q {X y z))

,; (l:P)
skip
Pname = Q

APPENDIX 7

Syntax definitions for evenUSL

The first section below defines the abstract syntax for evenUSL. EvenUSL is

an embedded language and so its concrete syntax is heavily influenced by its host.
language. Thus far it has been embedded In me too and C. The remaining sections

in the appendix give the concrete syntax for these versions.

In the following sections. the syntax is defined using the fallowing notation:

<XYZ> XYZ names a non-terminal symbol

{XYZ}+ XYZ repeated one or more times

{XYZ}- XYZ repeated none or more times

[XYZ] XYZ is optional

ABC 1 XYZ ABC or XYZ

A7.1 Abstract syntax

Dialogue ::= <ProcessOp> {<Even~Op>}-
ProcessOp ::= process <ProcessName> = <DlgExpr>
EventOp ::= event <EventName> = <DlgExpr>

DlgExpr ::= <UseExpr> 1 <AttrExpr>
UseExpr ::= ~ {UseVar}+in <AttrExpr>
AttrExpr ::= <LetExpr> 1 <AttrList>

LetExpr ::= let {LetPair}+ in <AttrExpr>- -LetPair ::= <LetVar> = <Expr>

AttrList ::= empty 1 <AltrList> <AltD
Attr " ::= when <BooIExp> I"

prompt <BooIExp> 1
out <Expr> I
retain {<ApprVar>}+I
remove {<RemVar>}+I
"<AppVar>= <Expr>

Expr any valid expression in hast language
LetVar, UseVar, AppVar, RemVar, EventName, ProcessName

any valid identifier in host language

Note that this does not rule out the use of when in a process specification; however

any condition operation generated is not used.

-130-

A7.2 Concrete syntax for me too

This version adopts the S-expression form used in the concrete syntax of ~

too. For ease of reading, this definition shows constant strings thus: 'event

Dialogue
ProcessOp
EventOpList
EventOp

DlgExpr
UseExpr
UseVarList
AttrExpr

LetExpr
LetP airList
LetPair

AttrList
Attr

AppVarList

For example.

::= (<ProcessOp> • <EventOpList>)
::= ('process <ProcessName> <DlgExpr>)
::= NIL I (<EventOp> • <EventOpList>)
::= ('event <EventName> <OlgExpr>)

::= <UserExpr> I<AttrExpr>
::= ('use <UseVarList> <AttrExpr>)
::= NIL I(<UseVar> • <UseVarList>)
::= <LetExpr> I('attrs • <AttrList>)

::= ('let <LetP airList> <AttrExpr>)
::= NIL I(<LetPair> • <LetPairList>)
::= (<LetVar> • <Expr>)

::= NIL I (<Attr> • <AttrList>)
::= ('when <BooIExp>) I

('prompt <BoolExp>) I
('out <Expr>) I
('retain <AppVarList>) I
('remove <AppVarList>) I .
(<AppVar> <Expr>)

::= NIL I (<AppVar> • <AppVarList>)

('event user-answer
('use (dt qu input)
('attrs

(dt (prune dt qu input)))))

or

('event ask-question
('use (dt)
('let

('attrs
('out qu)
('retain qu))

(qu question dt))))

A7.'S Concrete syntax for C

This version of eventISL is strongly influenced by the imperative nature of C.

The most significant difference reflects the fact that all application-specific data is

declared as variables in the evenUSL specification. As a result none of the state

manipulation expressions are included in this version of the language.

-lH-

Dialogue

ProcessOp
EventOp

DlgExpr

::= DIALOGUE <Text> <ProcessOp>
{<EventOp>llt

::= PROCESS <ProcessName> <DlgExpr>
::= EVENT <EventName> [<When>] <DlgExpr>

::= PROMPT <Text> <OlgExpr> I
OUT <Text> <DlgExpr> I
TEXT <Text> <DlgExpr> I nothing

::= WHEN <Text>When

Text
Chunk

::= {Chunk}+
the words "input", "db", or any other text except
one of the keywords above.

In other words, any unrecognised text (in the right places) is ignored by the syntax

and assumed to be valid C code. For example,

EVENT user answer
TEXT dt = prune(dt,qu,input) ;

EVENT ask_question
TEXT strcpy(qu.(char It)question(dt»;
PROMPT TRUE
OUT ,,\n%s ? ",qu

-1l2-

APPENDIX 8

SpecificaUon of SCHOLAR example

SCHOLAR is a CAl system described in [Carbonnell 70]. The original system

exhibited a number of distinctive features, of which two are modelled by this

component. One is the style of interaction: Carbonnell coined the phrase "mixed

initiative" to describe this style, where either partner (student or system) can take

the initiative and ask questions of the other. The other is that questions are derived

from information in the database, instead of being stored directly. This

specification describes a simplified version of this feature, in that it does not

include any inference mechanism which would allow the system to deduce, for

example, that if Lima is the capital of Peru and Peru is in South America, then Lima

is in South America.

AS.l SCHOLAR

Objects

ScholarDb = FDM-database
UserInp. Answer = seq(Atom)
UserQu = tuple({QU}.Entity, TableName) U tuple({QU}.EntHy)
SchQu = tuple(Entity, TableName.{?})
Reply = {RIGHT, WRONG}

and a constant Null Qu =0

For definitions of FDM-database. Entity and TableName, see A8.3 below

(specification of FDM).

Operations

Initdb and register set up and update (respectively) a table in the database which

records questions that have already been asked. Pickq constructs a question from

the information in the database, avoiding questions already used; a question is made

up from an entry and the name of a table in which it appears, eg "Bolivia

has-capi tal?"

-133-

initdb: ScholarDb -> ScholarDb
register: ScholarDb x SchQu -> ScholarDb
pickq : ScholarDb -> SchQu

The student may also ask questions. These have the general form

QU paraml param2

where param I is mandatory and names an entity, param2 is optional and names an

attribute (le. a TableName). If the full format is used, a single answer is given: If

the short form is used, all information about the entity is returned; for example

"QU Peru has-capital" yields "Lima"
"QU Bolivia" ' yields "is-a country;

is-in South America"

The next three operations all deal with user questions: is-question checks for the QU

keyword, query answers the question, using all-about if the short question form is

given.

is-question: UserInp -> Boolean
query: ScholarDb x UserQu -> Answer
all-about: ScholarDb x Entity -> set(Answer)

When a student answers a question. check compares the answer with the facts in the

database.

check: ScholarDb x SchQu x UserInp -> Reply

The SCHOLAR database holds both the subject information and some

meta-information for system control. The system maintains a dictionary of tables

in the CONTAINS table. flagging subject tables as "T" and meta-tables as "MT",

The TYPE table is a dictionary of entities and their types. The ASKED table notes

which questions have been asked for each entry in the subject information.

init(db) :: dbadd(dbdel(db,ASKED),
ASKED,
fnadds(0,dom{get(db, TYPE».O))

register (db,q) == dbadd(db,
, ASKED,

fnadd(get(db,ASK ED),first{q),second(q))

pickq (db) ==
let ETpairs = ((e,t.?) le .. used(db);

t .. tables-in(db);
e E dom(get(db,t»
and t fI. asked-ebouttdb,e) }

-D4-

if ETpairs = 0
then "No more questions"
else any(ETpairs)

where any(s) = head(s)

is-question (ui) == not atom(ui) and first(ui) = QU

query (db,uq):::
if length(uq) = 2
then all-ebouttdb.seconotuc)
else apply(get(db,third(uq»,{second(uq)})

all-about (db,e) == { <e,t,apply(get(db,t),{e}» I
t +-tables-in(db): e E dom(get(db,t» }

check (db,q,a) ==
let SCHans = apply(get(db,2(q»,{l(q)})
in if a E SCHans then RIGHT else WRONG

A8.2 Subsidiary operations

tables-in: ScholarDb -> set(TableName)
used: ScholarDb -> set(Entity)
asked-about: ScholarDb x Entiry -> set(TableName)

tables-in (db) == apply(get(db,CONT AINS),{T})

used {db}== union {dom(get(db,t}} It+- tables-in(db) }

asked-about (db,e) == apply(get(db,ASKED},{e})

For descriptions of get, dbadd, dbdel, dom, apply, fnadds and fnadd, see section

below.

A8.3 Specification of FDM

This component provides some operations associated with the Funct~onal Data

Model [Gray 84]. The database can be regarded as a collection of named tables. We

give only the me too model of FDM; ie. the objects and an informal description of

the operations.

Objects

FDM-database = ff(TableName, Table)
Table = ff(Index,EntitySet)
Index = Entity
EntitySet = set(Entity)
TableName, Entity = atom

-135-

Operations

Get retrieves a named table from the database. Apply returns all entitles in the

rows indicated by the set of index entities given to it.

get: FDM-database x TableName -> Table
apply: Table x set(Entity) -> set(Entity)

Dom returns all entities in the first column of a table: ran returns all entities

appearing in the second column of a table.

dom : Table -> set(Entity)
ran: Table -> set(Entity)

The database can be updated by adding or deleting named tables.

dbadd : FDM-database x TableName x Table -> FDM-database
dbdel : FDM-database x TableName -> FDM-database

The next operations create a single row, then add or remove its contents from the

table. For addition, this may create a new row (if the index e'ntity was not already

present in the first column) or add to the EntitySet of an existing row. For removal,

removing the last member of an EntitySet in a row deletes the row from the table.

fnadd : Table x Entity x Entity -> Table
fndel: Table x Entity x Entity -> Table

These operations are similar but create a number of rows (the cross-product of the

two sets supplied) instead of just one.

fnadds : Table x set(Entity) x set(Entity) -> Table
fndels : Table x set(Entity) x set(Entity) -> Table

-1'6-

APPENDIX 9

Specification of forms example

A form is a sequence of single (ield entries, each of which can solicit one input

from the user. The form structure allows the designer to specify default values,
,

help texts, mandatory fields and inter-field dependencies. These are among a

number of facilities recommended in [Gehani 83].

Objects

= ff(FormName.Form)= seq(Field)= tuple(fn:FieldName,fa:FieldAttr)= tuple(def:FieldValue.val:FieldValue.
pos:Position,help: Text.
requ:Boolean.depd:set(FieldName»

FieldValue, FormName, FieldName = Text
Position = tuple(x:Int,y:Int) <

Text = seq(Atom)

FormOb
Form
Field
FieldAttr

For compactness of specification, we have associated Identifterswith each element

in a tuple. These act as "selectors", so that an element lna tuple is extracted as

this-form.fn

or any- field. fa.pos.x

to yield the form name and x coordinate, respectively. This is not standard me too

notation; but does make the specification shorter and easier to read (Clark 86].

Constants

xstart, ystart: define an initial position on the screen

Operations

Creating fields

mkfield : FieldName x FieldAttr -> Field

mkfield(fn.fa) := list(fn.fa)

Extracting form and field names

forms: FormOb -> set(FormName)
fields: Form -> seq(FieldName)

-B7-

forms(fdb) :: dom(fdb)
fields(f) :: < fld.fn I fld ... f >

Database query and update

get-form: FormDb x FormName -> Form
update: FormDb x FormName x Form -> FormDb
form-exists: FormDb x FormName -> Boolean

get-form(fdb.fb) :: fdb[fn]
update(fdb.fn.f) ::: fdb ED { fn ~ f }
form-exists(fdb.fn) :: fn E forms(fdb)

Updating and checking forms

clear: Form -> Form
remove-field: seq(Field) x Field -> seq(Field) .
enter: Form x FieldName x FieldValue -> Form
in-form: Form x FieldName -> Boolean
defaults: Form -:> Form
not-complete: Form -> seq(Field)
newvalue : Field x FieldValue -> Field

clear(f) == < newvalue(fld.<» I fld ... f >

remove-field(flds,fId) =
< fId' I fld' ... flds; fld.fn 1:. fId' .fn>

enter(f.fdn.fdv) ::
< if fdn = fId.fn then newvalue{fld,fdv)

else fld I fld ... f >

in-form(f,fdn) :: fdn E elems fields(f)

defaults(f) ::
< if fld.fa.def 1: <> and fld.fa.val = <>
.then newvalue{fld.fld.fa.def)
else fld I fld ... f >

not-complete(f) ::
let given = elems < fld.fn I fld ... f;

fld.fa.val = <> >
< fld I fld ... f; fld.fa.val = <>

and (fld.fa.requ
ID: given n fld.fa.depd ~ (2) >

newvalue{fId,v) ::
let a = fId.fa
in

mkfield{fId. fn.list{ a.def, v .a.pos.a.help .a.requ.a.depd)

Extracting field attributes

get-name: Field -> FieldName
get-value: Field -> FieldValue
get-help: Field -> Text

get-name(fld) = fId.fn
get-value{fld) = fId.fa.val
get-help(fld) = fld.fa.help

-l~B-

Displaying forms

form-menu: FormDb -> Text
display-form: FormDb x FormName -> Text
display-title: FormName -:> Text
display-fields: Form -> Text
display-field: Field -> Text
vstart : Field -> Position

1

form-menu(fdb) =
let m = sort(forms(fdb»

< "Forms available:" > .. £Q!:!£. < nlO .. opt Iopt ...m >

display-form(fdb,fn) ==
let f = get-form(fdb,fn)
in pretty(display-title(fn) .. display-fields(f)

display-title(fn) :: < curststart.ystart), fn >

display-fields(f) == £Q!:!£. < display-field(fld) I fld ... f >
display-field(fld) ::

let start = vstart(fld)
in

< curs(xstart+ fld. fa.pos.x, ystart+ fld. fa.pos. y),
fld.fn, curststart.x.start.y), fld.fa.val >

vstart(fld) ==
list(xstart+ fId. fa.pos.x- leng theexplode(fId. fn».

ystart« fId. fa.pos.y)

External operations

The forms component imports operations from a screen component. One allows the

cursor to be positioned; the other creates a "newline":

curs : Int x Int -> Text
nl : -> Text

-J S9-

APPENDIX 10

Specification of forms dialogue

This appendix gives the full specification of the forms dialogue. including the

eversion.

AIO.I EventCSP specification

forms = (menu ~
(valid-form -+ get-form -+ fill-in: formsn repeat? -+ get-form -+ fill-in: forms
n inv-form -+ error -+ forms)

.fill-in = (fields-left? -+ position -+ old-value
-+ position -+ get-input -+

(help? -+ fill-ino skip? -+ fill-inn cancel? -+ formso undo? -+ fill-in
n save? -+ check-form
n value? update -+ fill-in)

D not-fields-left? check-form)

. check-form = (complete? ... save-form -+ skipn not-complete? ... fill-in)

A.·lO.2 EvenUSL specification - me too version

The AppState is:

thisf
lastf
f
flds
fld
done
fdb

FormName
FormName
Form
seq(Field)
Field
seq(Field)
FormDb

used for

name of current form
name of previous form
current form
fields to process
current field
fields processed
form database

The events are:

event menu =
use fdb in
- outf"orm-menu(fdb)

prompt true

-140-

event valid-form =
use fdb. input in

~ not matches(input."REPEA T")
and form-exists(fdb.input)

thisf = input
lastf = thisf
f = clear(get-form(fdb.input»

event inv-form =
use fdb. input in

when not (matches(input,"REPEA T")
Q!: form-exists(fdb,input))

event repeat? =
use fdb. input, lastf In
- when matches(input,"REPEA T") and form-exists(fdb,lastf)

thisf = lastf
f = get-form(fdb,lastf)

~ get-form = .
use fdb, f, thisf in
- out display-form(fdb,thisf)

done = <>
flds = fields(f)

event error =
-Out "error. no such form"

event fields-left? =
use flds in
- when flds 1:. <>

i1d'7head(flds)

event not-fields-left? =
use flds in
- when flds = <>

event position =
use fld in
- out vstart(fld)

event old-value =
USe1id in
- out get-value(fld)

~ get-input =
prompt true

event skip? =
use flds, done, fld, input in

when matches(input,"SKIP")
flds = tail(flds)
done = dId> .. done

event cancel? =
use input in

. when matches(input."CANCEL")
flds = <>
done = <>

-141-

event undo? ::
use flds. done, input in

when matches(input,"UNDO")
flds:: head(done) .. flds
done e tail(done)

event save? ::
~input in

when matches(input,"SAVE")
done e <>

~help?::
~ input, fld in .

when matches(input,"HELP")
out get-help(fld)

event value? ::
USefriputin
- when not (matche5{input:CANCEL")

ru: matches(input,"UNDO")
ru: matches(input,"SAVE")
Q!:matches(input,"SKIP")
Q!:matches(input,"HELP"))

event update ::
use f. flds, done, Ild, input in

f:: enter(f. get-name{fld), input)
done :: <fld> .. done
flds:: remove-field(flds.fld)

.event complete? ::
use f in
- when not-complete{f) :: <>

event not-complete? ::
use f in
- let to-do e not-complete{f)

in
when not to-do:: <>
out "error: some required fields not given"
flds:: to-do
done:: c-

event save-form ::
use Idb, f in
-flds:: <>

done e <>
fdb :: update(fdb,f)

AlD.' EvenUSL specification - C version

DIALOGUE

J'tHHHf'lf

'If forms - evenUSL specification

#include "form.h"

-142-

ItHHt externals to patterns component _**1
extern unsigned matches():

1*** externals to forms component _**1
extern FOB PTR form exampleO:
extern FoB-PTR update{):
extern unsigned exists_formO:
extern char -form menu();
extern char -display _formO:
extern char ·vstartO: -
extern FLoS_PTR get_form():
extern FLoS PTR enter():
extern FLOS-PTR clear():
extern FLOS-PTR fie1ds();
extern FLO(PTR not_complete();
extern FLDS_PTR join();
extern FLDS_PTR copy_fie1dO;
extern FLOS_PTR removeJieldC);

1_** externals to screen component .uI
extern char ·curs();
extern char -cls():

1_*_ declarations for forms application _U/
static char thisJorm[25],

1ast_form[25]:
static FOB PTR fdb:
static FLOS PTR r. flds, fld, done:
static char .str, *ctr1;

PROCESS forms
TEXT fdb = form_exampleC);

EVENT menu
TEXT str = form_menu(fdb);

c trl = cls(); .
OUT It%s\n\n%s\nType name of form: It,ctrl.str
PROMPT TRUE
TEXT free(str); free(ctrl):

EVENT valid form
WHEN (!matches(input,ltREPEA Tit)&& exists_form(fdb.input»
TEXT strcpy(last_form.this_form):
strcpy(this_form.input):

f = clear(get_form(fdb.input»;

EVENT inv form
WHEN !(matches(input,ltREPEA Tit)II exists_form(fdb.input»

EVENT is-repeat '
WHENmatches(input,"REPEA T") && exists form(fdb,last form)
TEXT strcpy(this_form.1ast_form); _ _

f = get_form(fld.this_form);

EVENT error
OUT "\nerror: can't find form %s\n",input

-143-

EVENT get_farm
TEXT str = display_farm(fdb,this_form);
OUT "%s",str
TEXT free(str):
TEXT done = NULL; flds = fields(f);

EVENT fields left
WHEN flds != NULL .
TEXT fld = copy_field(flds->fn.flds->fa,NULL):

EVENT not fields left
WH-EN ntis = NULL

EVENT position
OUT "%s",vstart(nd)

EVENT old value
OU-T "%s",(fld->fa)->value

EVENT get_input
PROMPT TRUE

EVENT is help
W-HENmatches(input"HELP")
OUT "%s\l"l".(fld->fa)->help

EVEN T is skip
W-HENmatches(input,"SKIP")
TEXT flds = remove_field(flds.fld->fn):

done = join(fld.done):

EVENT is undo
W-HENmatches(input,"UNOO")
TEXT Itt take the last field done ••• tt,

fld = copy _field(dane->fn,done->fa.NULL):'tt ... put it on the "fields-ta-do" list ••• tit,
flds = join(fld,flds):,tt ... and take it off the "done" list tt,
done = remove_field(done,done->fn):

EVENT is save
W-HENmatches(input,"SAVE")
TEXT done = NULL;

EVENT is cancel
W-HENmatches(input,"CANCEL")
TEXT flds = done = NULL;

EVENT is value
W-HEN !(matches(input,"HELP") " matches(input,"SKIP") II

matches(input,"UNOO") II matches(input,"SAVE") II
matches(input,"C ANCEL"»

EVENT upda le
TEXT enter(fld,input);

done = join(fld,done);
flds = remove_field(flds, fld->fn):

-144-

EVENT completed
WHEN not_complete(f) == NULL
TEXT free_names(done); free_names(flds);

EVENT not_completed I

WHEN not complete(f) != NULL
TEXT flds _= not complete(f);

done = NULL; ,
OUT "\nerror. some mandatory fields omitted\n"

EVENT save-form
TEXT str = display_form(thisJorm.f);

ctrl = curs(O.40);
OUT "%s%sForm saved\n\n",str.ctrl
TEXT fdb = update(fdb.this_form.f);

free(str); "
free(ctrl);

-145-

APPENDIX 11

Translating e"enUSL to me too

This appendix formally defines the rules which were gi"en in chapter 5.

All.l E"enUSL syntax

The rules are defined in terms of abstract syntax for e"enUSL, which we

repeat here for reference.

Dialogue
ProcessOp
E"entOp

DlgExpr
UseExpr
AttrExpr

LetExpr
LetPair

::= <ProcessOp> {<E"entOp>}*
::= process <ProcessName> = <DlgExpr>
::= e"ent <E"entName> = <DlgExpr>

::= <UseExpr> I<AttrExpr>
::= ~ {UseVar}+in <AttrExpr>

, ::= <LetExpr> I < AttrList>

::= let {LetPair}+ in <AttrExpr>
:::::<LetVar> = <Expr>

AttrList ::= empty I<AttrList> <Attr>
Attr ::= when <BooIExp> I

prompt <BooIExp> I
M<Expr> I
retain {<AppVar>}+I
remo"e {<RemVar>}+I
<AppVar> = <Expr>

Expr any valld expression in host language
LetVar, UseVar, AppVar. RemVar. E"entName, ProcessName

. any valid identifier in host language

We make use of the same syntactic notation, ie. {}It and Il+. in the rules to

allow concise expression of rules for repeated constructs.

A11.2 Transla lion rules

This section describes that translation for each construct, using the following

notation:

if e represents some e"enU5L text. then
C(e]

represents its translation as required for the condition operation;
A(e]

represents its translation as required for the action operation.

C«Oialogue>] =
A«Oialogue>] =

{C[<EventOp>] }It
A«ProcessOp>] {A«EvenlOp>] }*

A[<ProcessOp>] = A[<EventOp>]
-146-

C(<EventOp>]
A«EventOp>]

= <EventName>-C(dlg) = C(<DlgExpr>]
<EventName>-A(dlg) = A[<DlgExpr>]=

The ~ expression is translated in the same way for both types of operation:

C«UseExpr>]
A(<UseExpr>]

C[<UseVar>]
A«UseVar>]

= let { C«UseVar>] 1* in C[<AttrExpr>]
let (A[<UseVar>] 1* in A«AttrExpr>]

<UseVar> = dlg["<UseVar>"]
C[<UseVar>]

=
:.

The translation of a let expression only affects the <AttrExpr> it contains:

C(<LetExpr>]
A[<LetExpr>]

= let {<LetPair>}+ in C«AttrExpr>]
let {<LetPair> 1+ in A[<AttrExpr>]=

The special names for entries in the system part of the state are treated in the same
way for both types of operation.

C[input] = A[input] = IN$
C(db] = A[db] = OB$

The next group of rules all deal with the translation of an <AttrList>:

C(empty] = true
A(empty] = dIg

C«AttrList> when <BoolExp>] = C(<AttrList>] and <BooIExp>
A«AttrList> when <BoolExp>] = A[<AttrList>]

C[<AttrList> prompt <BoolExp>] = C(<Attrlist>]
A[<AttrList> prompt <BooIExp>] = A[<Attrlist>] e {IR$-+ <BoolExp> }

C«AttrList> out <Expr>] = C«AttrList>]
A[<AttrList> out <Expr>] = A«AttrList>] e {OUT$-+ <Expr>}

C[<AttrList> retain {<AppVar>I*] = C[<AttrList>]
A[<AttrList> retain {<AppVar>}*] = A«AttrList>] e {{A[<AppVar>]}* }

A[<AppVar>] = "<AppVar>" -+<AppVar>

C«AttrList> remove {<RemVar>}*] = C[<At trLis t>]
A[<AttrList> remove {<RemVar>}*] = A[<AttrList>] ds { {A[<RemVar>]}*}

A[<RemVar>] = "<RemVar>"

C«AttrList> <AppVar> = <Expr>] = C«AttrList>]
A[<AttrList> <AppVar> = <Expr>] = A[<AttrList>] e {"<AppVar>"-+ <Expr» }

-147-

APPENDIX 12·

Translating evenUSL to C

We use the following notation:

if e represents some evenUSL text, then
T[e]

represents its translation.

The translation rules are illustrative in nature, showing the effects of trans~ating

each construct by example, rather than formally in terms of the syntax:

T[PROCESS ex E] = unsigned A_exO { T[E] }
T[EVENT ex

WHEN b
E] = unsigned C_exO

{ T[WHEN b] }
unsigned A_exO {T[E]}

T[EVENT ex
E] = unsigned A_exO (T[E])

T[WHEN b] = return b ;
T[PROMPT b] = _prompt = b :
T[OUT txt] = sprintf(out.txt) :
T[TEXT txt] = txt
T[input] = _input
T[db] = _db

-148-

APPENDIX 13

Specification of the event manager

Th!S appendix gives specifications of subsidiary and external operations called

by the event manager. The main operations (initdlg. editdlg. nextdlg and showdlg) are

specified in chapter 5.

Subsidiary operations

choose-event: set(EventName) x DlgState -> EventName
call-cond : EventName x DlgState -> Boolean
call-action: Name x DlgState -> DIgState

where Name = ProcessName U EventName
GenName = { Name-A. Name-C }

choose-event(evs.dlq) ::
let poss = { ev I ev 4- evs; call-condtev.dlq) }
in if poss = (2) then ABORT

else arb(poss)

where "arb" arbitrarily selects one member from a set

call-action (nrn.dlq) ::: APPLY (ev-acl(nm). (dIg»

call-cond (ev, dIg) :: APPLY (ev-cond(ev). (dIg»

where "APPLY" is a Lisp function. applying the function labelled by the name given

in the first argument to the parameter list given in the second argument

ev-act : Name -> GenName
ev-cond : EventName -> GenName
add-suffix: Name x seq(Char) -> GenName
expand-name: seq(Atom) -> seq(Char)

ev-act(nm) :: add-suffix(nm. ft_A")

ev-cond(en) :: add-suffix(en."-Cft)

add-suffix(n,suf) :::
let n' = if atom(n) then < n, suf >
- else < head(n), ":", tail(n), sur>

implode (expand-narnetn')

-149-

expand-name(n) ::
if n = 0 then n
else explode{head(n» ...expand-name(tail(n»

where "implode" and "explode" are primitive operations that pack and unpack

characters in an atom.

External operation

The event manager calls one operations provided by the eventCSP simulator, to

determine when the eventCSP process being executed has finished.

process-end: set(EventName) ...Boolean

process-end (evs) ::
evs = { }Q! (cam evs = 1 and TICK E evs)

. ,

-150-

REFERENCES

Abramsky S. Sykes R (1985)
"SECD-m: a virtual machine for applicative programming"
in Functional Programming Languages and Computer Architecture (LNCS
201) pp.8l-98
ed. J.P.Jouannaud: publ. Springer-Verlag. Berlin

Alexander H (1985)
"Formal specification and rapid proto typing techniques for
human-computer interaction"
Technical Report TR.26
Dept. of Computing Science. University of Stirling

Alexander H (1986)
"SPI: specifying and proto typing interaction"
submitted to International Journal of Man-Machine Studies

Alty J L (1984) . .
"Use of path algebras in an interactive adaptive dialogue system"
in [INTERACT 84] pp.351-354

Alty J L~Brooks A (1985)
"Microtechnology and user-friendly systems - the CONNECT dialogue
executor"
Research Report MMIGR.139
Heriot-Watt/Strathclyde MMIUnit. University of Strathclyde

Alvey Directorate (1984a)
Alvey MMIStrategy. publ. lEE, London

Alvey Directorate (l984b)
Alvey Programme Annual Report 1984. publ. lEE. London

Anderson S 0 (1985)
"Specification and implementation of user interfaces: Example: a file
browser" . .
Draft Report
Dept. of Computer Science. Heriot-Watt University

Anderson S 0 (1986)
"Proving properties of interactive systems"
in (HCr 86] pp.402-416

Avrunin G S. Dillon L K. Wileden J C, Riddle WE (1986)
"Constrained expressions: adding analysis capabilities to design methods for
concurrent software systems"
IEEE Transactions on Software Engineering SE-12, 2 pp.278-291

Backus J (1978)
"Can programming be liberated from the von Neumann style?"
Communication of the ACM 21, 8 pp.6D-641

Badre A N (1984)
"Designing transitionality into the user-computer interface"
in [Salvendy 84] pp.27-34

-151-

Bailey R (1985)
"A HOPE tutorial"
Byte 10.8 pp.2H-258

Balbin I. Poole P C. Stuart C J (1985)
"On the specification and manipulation of forms"
in System Description Methodologies pp.239-252
ed. D.Teichroew, G.David

Barker P G (1984)
. "MICROTEXT - a new dialogue programming language for microcomputers"

Journal of Microcomputer Applications 7. 2 pp.167-188

Barringer H, Kuiper R. Pneuli A (1985) .
"A compositional temporal approach to a CSP-like language"
in Formal Models in Programming pp.207-227
ed. E.Neuhold,G.Chroust

Belkhouche B. Urban J E (1984)
..An executable specification language for abstract data types"
in Software Engineering: Practice and Experience pp.66-70
ed. E.Girard

Benbasat I. Wand Y (1984)
"A structured approach to designing human-computer dialogues"
International Journal of Man-Machine Studies 21, 2 pp.I05-126

Berry 0 M. Wing J (1985)
"Specifying and prototyping: some thoughts on why they are successful"
in [Ehrig et al 85] pp.1l7-128

Bewley W L. Roberts T L. Schroit p. Verplank W L (1983)
"Human factors testing in the design of Xerox's 80 I0 'Star' office
workstation"
in [CHI 8l] pp.72-77

Bjorner D. Jones C B (1982)·· .
Formal Specification & Software Development
publ. North-Holland. Amsterdam

Bleser T. Foley J D (1982)
"Towards specifying and evaluating the human factors of user-computer
interfaces"
in [Gaithersburg 82] pp.309-l 14

Blum B 1(1983)
"Still more about rapid prototyping"
ACM SIGSOFT Software Engineering Notes B. 3 pp.9-11

Bobrow D. Kaplan R. Kay M. Norman D. Thompson H. Winograd T (1977)
"GUS - a frame-driven dialogue system"
Artificial Intelligence B. 2 pp.15 5-174

Boehm B. Gray T E. Seewaldt T (1984)
"Prototyping vs. specifying: a multi-project experiment"
IEEE Transactions on Software Engineering SE-la. 3 pp.290-30l

-152-

Bonet R, Kung A (1984)
"Structuring into subsystems: the experience of a pro to typing'
approach"
ACM SIGSOFT Software Engineering Notes 9, 5 pp.2~-27

van den Bas J, Plasmeijer M J, Hartel P H (198~)
"Input-output tools: a language facility for interactive and real-time
systems"
IEEE Transactions on Software Engineering SE-9. ~ pp.247-259

Botting R J (1985) .
"On prototypes vs. mockups vs. breadboards"
ACM SIGSOFT Software Engineering Notes io. 1 p.lS

Boumique R, Treu S (1985)
"Specification and implementation of variable, personalized graphical
interfaces"
International Journal of Man-Machine Studies 22. 6 pp.66~-684

Brooks F B (1985) ,
The Mythical Man-Month
publ. Addison-Wesley. Massachusetts

Brown J W (1982)
"Controlling the complexity of menu networks"
Communications of the ACM 25. 7 pp.412-418

Browne D P. Sharrat B D. Norman M A (1986)
"The formal specification of adaptive user interfaces using CLG"
in [CHI 861 pp.256-260

Bruce E (1986) ,
"A formal specification of a 'Prospector'-type expert system shell"
Technical Report SETCIIN121 ~ ,
STL NorthWest, Kidsgrove

Budde R. Kuhlenkamp K, Mathiassen L. Zullighoven H - editors (1984)
Approaches to Proto typing
publ. Springer-Verlag. Berlin

Bums A. Robinson J (1986)
"ADOS - a dialogue development system for the Ada programming
language"
International Journal of Man-Machine Studies 24. 2 pp.153-170

Bury K (1984)
"The iterative development of usable computer interfaces"
in [INTERACT 84] pp.743-750

Buxton W. Lamb M R. Sherman D. Smith K C (l98~)
"Towards a comprehensive user interface management system"
ACM Computer Graphics 17. 3 pp.H-42

Carbonnell J R (1970)
"AI in CAl: an artificial intelligence approach to computer-aided
instruction"
IEEE Transactions on Man-M achine Systems MMS-ll, 4 pp.190-202

-153-

Card S K. Moran T p. Newell A (1980)
. "The keystroke-level model for user performance time with interactive

systems"
Communications of the ACM 23. 7 pp.396-410

Card S K. Moran T P, Newell A (198')
The Psychology of Human-Computer Interaction
publ. Lawrence Erlbaum Associates. New Jersey

Cardelli L. Pike R (1985)
"Squeak - a language for communicating with mice"
ACM Computer Graphics 19,' pp.199-204

Carey TT. Mason REA (1983)
"Information systems proto typing: techniques. tools, and methodologies"
INFOR 21. 3 pp.177-19l

Carey T (1984)
"Dialogue handling with user workstations"
in [INTERACT 84] pp.127-134

Casey B E. Dasarathy B (1982)
"Modelling and validating the man-machine interface"
Software - Practice and Experience 12. 6 pp.557-569

CHI (1983) ,
Proceedings Conference on Human Factors in Computer Systems (CHI'8')
ed. A.Janda; publ. North-Holland, Amsterdam

CHI (1985) ,
Proceedings Conference on Human Factors in Computer Systems II(CHI'85)
ed. L.Borman. W.Curtis; publ. North-Holland, Amsterdam

CHI (1986)
Proceedings Conference on Human Factors in Computer Systems m
(CHI'86)
publ. ACM, New York

Chi U H (1985)
"Formal specification of user interfaces: a comparison and evaluation of
four axiomatic approaches"
IEEE Transactions on Software Engineering 11. 8 pp.67l-688

Christensen N, Kreplin K (1964)
"Proto typing of user interfaces"
in (Budde et al 841pp.59-67

Clark R G (1986)
"Ada programs from me too specifications"
Technical Report TR.'O
Department of Computing Science. University of Stirling

Cock ton G (l986)
"Where do we draw the line?"
in [HCr 86] pp.417-432

Cohen D. Swartout W. Balzer R (1982)
"Using symbolic execution to characterize behaviour"
in [Squires 82] pp.25-32

-154-

Cook S (1986)
"Modelling generic user-interfaces with functional programs"
in [HCI 861 pp.369-385

Cox B J (1986)
Object-oriented programming
pub!. Addison-Welsey, Massachusetts

Damodaran L, Eason K D (1983)
"Procedures for user involvement and support"
in [Sime &: Coombs 831 pp.373-388

Darlington J (1981)
"An experimental program transformation and synthesis"
Artificial Intelligence 16, 16, 1 pp.1-46

Darlington J. Henderson P, Turner D A - editors (1982)
Functional Programming and its Applications: an advanced course
publ. Cambridge University Press. Cambridge

Darlington J (1985)
"Program transformation"
Byte 10.8 pp.201-214

Davis G B (1982)
, "Strategies for information requirements determination"
IBM Systems Journal 21. 1 pp.4-30

Deamley P A. Mayhew P J (1983)
"In favour of system prototypes and their integration into the systems
development cycle"
The Computer Journal 26. 1 pp.36-42

Degano P, Sandewall E - editors (1983)
Integrated Interactive Computing Systems
publ, North-Holland. Amsterdam

Denert E (1977)
"Specification and design of dialogue systems with state diagrams"
in Proceedings International Computing Symposium 1977 pp.417-424
ed. D.Ribbens
publ. North-Holland. Amsterdam

Denvir B T, Harwood W T, Jackson M I, Wray M J - editors (1985)
The Analysis of Concurrent Systems (LNCS 207)
publ. Springer-Verlag. Berlin

Dijkstra E W (1975)
"Guarded commands, non-determtnacy and formal derivation of programs"
Communications of the ACM 18, 8 pp.453-457

Dix A. Runciman C (1985)
"Abstract models of interactive systems"
in [HCr 8S] pp.13-22

Duce D A - editor (1984)
Distributed Computing Systems Programme
publ. Peter Peregrinus Ltd, London

-155-

Duce 0 A, Fielding E V C (1984) .
"Better understanding through formal specification"
Technical Report RAL-84-128; Rutherford-Appleton Laboratory

Durham A (1985)
"User-shaped software"
Computing - the magazine July 25 pp.5-6

Durrett J. Stimmel (1982)
"A production-system model of human-computer interaction"
in [Gaithersburg 82] pp.393-399

Edmonds E A (1982)
. "The man-computer interface: a note on concepts and design"
International Journal of Man-Machine Studies 16, 3 pp.231-236

Edmonds E A. Guest S (1984)
"The SYNICS2 user interface manager"
in [INTERACT 84] pp.53-56

Ehrig H. Floyd C. Nivat M. Thatcher J - editors (1985)
Formal Methods and Software Development
(LNCS 186; Proceedings TAPSOFT Conference. vo1.2)
publ. Springer-Verlag. Berlin

Feather M 5 (1982)
"Mappings for rapid prototyping"
in [Squires 82] pp.17-24

Feldman G (1982)
"Functional specifications of a text editor"
in Proceedings ACM Conference on Lisp and Functional Programming
Languages pp. H-46 .

Feldman M B. Rogers G T (1982)
"Towards the design and development of style-independent interactive
systems" .
in [Gaithersburgh 82] pp.11l-116

Feyock 5 (1977) .
"Transition diagram-based CAIIHELP systems"
International Journal of Man-Machine Studies 9, 4 pp.339-413

Finn S (1984)
"The CONVRULES production rule compiler - a user manual"
Internal note
. Dept. of Computing Science. University of Stirling

Floyd J 0, van Dam A (1982)
Fundamentals of Interactive Computer Graphics
publ. Addison-Wesley, Massachusetts

de Francesco N, Latella 0, Vaglini G (1985)
"An interactive debugger for a concurrent language"
in Proceedings 8th Int. Conference on Software Engineering pp.320-325
publ. IEEE.

Frohlich 0 M, Crossfield L p. Gilbert G N (1985)
"Requirements for an intelligent form-filling interface"
in [HCI 8S] pp.I02-116

-156-

Gaines 6 R, Shaw M L G (1984)
The Art of Computer Conversation
publ. Prentice-Hall International, New Jersey

Gaines 6 R, Shaw M L G (1986b)
"Foundations of dialog engineering - the development of hci. (Part moo
International Journal of Man-Machine Studies 24. 2 pp.10I-12'

Gaithersburg (1982)
Proceedings Conference on Human Factors in Computer Systems
Gaithersburg, Maryland, USA
publ. ACM. New York

Galitz W 0 (1985)
A handbook of screen format design
publ. QED. Massachusetts

Gehani N H (1983)
"High-level form definition in office information systems"
The Computer Journal 26. I pp.52-59

Gilb T, Weinberg G M (1977)
Humanized Input
publ. Winth_rop

Goguen J A. Tardo J J (1979) . .
"An introduction to 06J: a language for writing and testing formal
algebraic program specifications"
in Proceedings Specification of Reliable Software pp.l70-189

Goguen J A, Meseguer J (1982)
"Rapid prototyping in the OBJ executable specification language"
in [Squires 821pp.75-84

Goguen J A (1984)
"Parameterized programming"
IEEE Transactions on Software Engineering SE-IO, 5 pp.528-543

Goldberg A, Robson D (1983)
Smalltalk-80: the language and its implementation
publ. Addison-Wesley, Massachusetts

Goltz U, Reisig W (1984)
"CSP-programs as nets with individual tokens"
in Advances in Petri Nets (LNCS 18B)pp.169-196
ed. G.Rozenberg: publ. Springer-Verlag, Berlin

Gomaa H, Scott 0 B (1981)
"Proto typing as a tool in the specification of user requirements"
in Proceedings 5th IEEE Int. Conference on Software Engineering
pp.,n-342
publ. IEEE. New York

Gomaa H (19B')
"The impact of rapid prototyping on specifying user requirements"
ACM SIGSOFT Software Engineering Notes 8, 2 pp.17-28

-157-

Good M (1981)
·Etude and the folklore of user interface desiqn"
ACM SICPlAN Notices 16. 6 pp.34-43

Good M. Whiteside J. Wixon S. Jones 5 (1984)
"Building a user-derived interface" .
Communications of the ACM 27, 10 pp.1032-l043

Gorski J (1985) ..
..A technique for formal specification of parallel systems based on
message-passing semantics" .
in 3ret Int. Workshop on Software Specification &: Design pp.77-82

Gray P MD (1984)
Logic, Algebra and Databases
publ. Ellis Horwood Limited. Chichester

Gray P. Kilgour A (1985)
"GUIDE - a UNIX-based dialogue design system"
in [HC! 85] pp.148-160

Green M (1985)
"The design of graphical user interfaces"
Technical Report CSRI--170 (PhD Thesis)
Computer Science Research Institute
University of Toronto, Canada

Gregory S T (1984)
"On prototypes vs. mockups"
ACM, SIGSOFT Software Engineering Notes 9, 5 e.n

Guedj R A, ten Hagen P J W, Hopgood F R A, Tucker H A, Duce D A - editors (1980)
Methodology of Interaction
publ. North-Holland, Amsterdam

Guest S P (1982)
"The use of software tools for dialogue design"
International Journal of Man-Machine Studies 16. 3 pp.263-285

Guttag J V, Homing J J (1978)
"The algebraic specification of abstract data types"
Acta Informatica 10. I pp.27-52

Guttag J V. Homing J J (1980) .
"Formal specification as a design tool"
in Proceedings Symposium on Principles of Programming Languages
pp.2S1-261; publ. ACM, New York

Guttag J V. Homing J J. Wing J (1982)
·Some notes on putting formal specifications to productive use"
Science of Computer Programming 2. Ipp53-58

Haase V H (1985)
"Modular design of real-time systems"
in System Description Methodologies pp.91-102
ed. D.Teichroew, G.David

-158-

ten Hagen P J W, Derksen J (1985)
"Parallel input and feedback in dialogue cells"
in [Pfaff 85] pp.109-124

Hagglund S. Tibell R (1983)
"Multi-style dialogues and control independence in interactive software"
in The Psychology of Computer Use pp.I7l-189
ed. T R G Green et al

Hammond N. Jorgensen A. Maclean A. Barnard P, long J (1983)
"Design practice and interface usability: evidence from interviews with
designers"
in [CHI 83] pp.40-44

Hanau P R, lenorovitz D R (1980)
"Proto typing and simulation tools for user/computer dialogue description"
ACM Computer Graphics 14, 3 pp.271-278

Harel D (l986)
"Statecharts: a visual approach to complex systems"
Technical Report CS86-02

, Dept. of Applied Mathematics. Weizmann Institute of Science, Israel

Hartson H R, Johnson D H, Ehrich R W(1984)
"A human-computer dialogue management system"
in [INTERACT 84] pp.H9-383

Hartson H R - editor (1985)"
Advances in Human-Computer Interaction (vol.I)
publ. Ablex Publishing Corp., New Jersey

Hayes P J (1985)
"Executable interface definitions using form-based interface abstractions"
in [Hartson 85] pp.161-190

HCI (1985)
People and Computers: Designing the Interface. (Proceedings HCr85)
ed. P.Johnson, S.Cook
publ. Cambridge University Press, Cambridge

HCI (1986)
People and Computers: Designing for Usability. (Proceedings HCI'86)
ed. M.Harrison. A.F.Monk
publ. Cambridge University Press, Cambridge

Hekmatpour 5, Ince D (l986a)
"A formal specification-based proto typing system"
in Software Engineering'86 (Proceedings) pp.317-3 SS
ed. D.Bames. P.Brown
publ. Peter Peregrinus Ltd. London

Hekmatpour 5. Ince D (l986b)
"Rapid software prototyping"
Technical Report 86/4
Computer Discipline, Faculty of Maths
Open University. Milton Keynes

Henderson P (1980)
Functional Programming: application and implementation
publ. Prentice-Hall International, New Jersey

-159-

Henderson P (1982)
"Purely functional operating systems"
in [Darlington et al 82] pp.177-l92

Henderson P (1984)
"Communicating functional programs"
Internal Report FPN-8
Dept. of Computing Science. University of Stirling

Henderson p. Minkowitz C (1986)
"The me too method of software design"
ICL Technical Journal May pp.64-95

Henderson P, Minkowitz C J,' Rowles J S (1985)
me too Reference Manual
SETC, ICL Kidsgrove

Ho T-P (1984)
"The dialogue desig'ning dialogue system"
PhD Thesis. California Institute of Technology

Hoare CAR (1978)
"Communicating sequential processes"
'Communications of the ACM 21. 8 pp.666-677

Hoare CAR (1982a)
"Programming is an engineering profession"
Technical Monograph PRG-27
Oxford University Programming Research Group
University of Oxford

Hoare CAR (l982b)
"Specifications, programs and implementations"
Technical Monograph PRG-29
Oxford University Programming Research Group
University of Oxford

Hoare CAR (1983)
"Notes on Communicating Sequential Processes"
Technical Monograph PRG-33
Oxford University Programming Research Group
University of Oxford

Hoare CAR (1985)
• Communicating Seguential Processes

publ. Prentice-Hall International, New Jersey

Hoare CAR, Shepherdson J C - editors (1985)
Mathematical Logic and Programming Languages
publ. Prentice-Hall International, New Jersey

Hopgood F R A, Duce D A (1980)
"A production system approach to interactive graphic program design"
in [Guedj et al BD] pp.247-263

Homing J J (1985)
"Combining algebraic and predicative specifications in Larch"
in [Ehrig et al 85] pp.12-26

-160-

Huckle B A. Bull G M (1984)
MA model for software descriptions facilitating man-machine interface
variations"
ACM SIGCHI Bulletin 16,2 pp.70-75

Hull M E. McKeag R M (1984)
"Communicating sequential processes for centralised and distributed
operating system design"
ACM Transactions on Programming Languages and Systems 6. 2 pp.175-191

IeL (1986)
"ICl application development"
Sales information; ICl. London

INMOS (1984)
occam Programming Manual
publ. Prentice-Hall International. New Jersey

INTERACT (1984)
Human-Computer Interaction (Proceedings INTERACT'84)
ed. B.Shackel
publ. Elsevier (North-Holland). Amsterdam

Iverson K E (1979)
"Notation as a tool of thought"
Communications of the ACM 23. 8 pp.445-465

Jacob R J K (1983)
"Survey and examples of specification techniques for user-computer
interfaces"
Draft Report
Naval Research Laboratory. Washington DC

Jacob R J K (1985)
MAn executable specification technology for describing human-computer
interaction"
in (Hartson 85] pp.211-242

Jacob R J K (1986)
"A specification language for direct manipulation user interfaces"
Draft Report
Naval Research Laboratory. Washington DC

Jensen R W, Tonies CC - editors (1979)
Software Engineering
publ. Prentice-Hall International. New Jersey

Johnson D H, Hartson H R (1982)
"The role and tools of a dialogue author in creating human-computer
interfaces'
Technical Report CSIE-82-8
Department of Computer Science
Virginia Polytechnic Institute and State University

Johnson D H (1985)
"The structure and development of human-computer interfaces"
PhD thesis, Virginia Polytechnic Institute Bc State University

-161-

Johnson S C (1978)
"YACC - Yet Another Compiler-Compilertt
Unix Programmers' Manual (Vol.2)

Johnson S C, Lesk M E (1978)
"Language development tools"
Bell Systems Technical Journal 57, 6 pp.21 55-2175

Jones C B (1980)
Software Development - a rigorous approach
publ. Prentice-Hall International, New Jersey

Jones C B (1986)
Systematic Software Development using VDM
publ. Prentice-Hall International, New Jersey

Jones 5 B (1984)
..A range of operating systems written in a purely functional style"
Technical Report TR.16
Dept. of Computing Science, University of Stirling

Jones V M, Jones S B, Minkowitz C J (198S)
"A formal specification of an expert system shell"
Technical Report TR.20
Dept. of Computing Science, University of Stirling

Kamran A (1985)
"Issues pertaining to the design of a UIMS"
in [Pfaff 8S] pp.4~-48

Kasik 0J (1982)
"A user interface management system"
ACM Computer Graphics 16, :5 pp.99-106

Kelley J F (1985)
"Validating an empirical methodology for writing user-friendly natural
language computer applications"
mM Research Report RC-I0127 (45001)

Kemmerer R A (1985)
"Testing formal specifications to detect design errors"
IEEE Transactions on Software Engineering SE-II, I pp.34-42

Kieras 0, Polson P G (198S)
"An approach to the formal analysis of user complexity"
International Journal of Man-Machine Studies 22, 4 pp.365-394

Kowalski R (1985)
"The relation between logic programming and logic specification"
in [Hoare & Shepherdson 85] pp.II-24

Lafuente J M. Gries 0 (1978)
"Language facilities for programming user-computer dialogues"
IBM Journal of Research and Development 22, 2 pp.145-158

Lawson H W, Bertran M, Sanagustin J (l978)
"The formal definition of human/machine communications"
Software - Practice and Experience 8, I pp.51-58

-162-

Lee S. Sluizer S (1985)
·On using executable specifications far high-level proto typing"
in ,rei Int. Workshop on Software Specification Bc Design pp.UO-134

Lieberman H (1983)
·Designing interactive systems from the user's viewpoint"
in [Degano Bc Sandewall 831pp.4S-S9

Lieberman H (1981»)
"There's more to menu syslems than meels the screen"
in ACM Compuler Graphics 19,3 pp.181-189

Lindquist T (1985)
·Assessing the usability of human-computer interfaces"
IEEE Software 2. 1 pp.14-82

Liskov B. Zilles S (1915)
·Specification techniques for data abstractions"
ACM SIGPLAN Notices 10. 6 pp.12-81

Mallgren WR (1983)
Formal Specification of Interactive Graphics Programming Languages
publ. MIT Press. Massachusetts

Manna Z. Pneuli A (1981)
·Verification of concurrent programs: the temporal framework"
in The Correctness Problem in Computer Science pp.215-213
ed. R.S.Boyer. J.S.Moore
publ. Academic Press, London

Martin J (1913)
Oesign of Man-Computer Dialogues
publ. Prentice-Hall International. New Jersey

Mason R E, Carey T T (1983)
·Prototyping interactive information systems"
Communications of the ACM 26. 5 pp.341-354

McCarthy J (1960)
"Recursive functions of symbolic expressions and their computation by
machine"
Communications of the ACM 3.4 pp.184-195

Meadow C T (1970)
Man-Machine Communication
publ. John Wiley Bc Sons

Milner (1985)
"Using algebra for concurrency: some approaches"
in [Denvir et al 85] pp.1-25

Minkowitz C J (1986)
"A formal design of a decision analysis system"
Technical Report TR.21
Dept. of Computing Science. University of Stirling

Minkowitz C J, Henderson P (1986)
·A formal description of object-oriented programming using VDM"
Internal Report FPN-13
Dept. of Computing Science, University of Stirling

-163-

Minsky M L (1967)
Computation: finite and infinite machines
publ. Prentice-Hall International. New Jersey

Minsky ML (1975)
"A framework for representing knowledge"
in The Psychology of Computer Vision pp.211-277
ed. P.H. Winston. publ. McGraw-Hill. New York

Moran T P (1981a)
"The Command Language Grammar - a representation for the user
interface of interactive computer systems"
International Journal of Man-Machine Studies 15. 1 pp.3-50

Moran T P (l981b)
"An applied psychology of the user"
ACM Computer Surveys 13. I pp.1-12

Moc;;kowskiN (1986)
Executing temporal logic specifications
publ. Cambridge University Press. Cambridge

muLisp (1983)
muLisp 83 Reference Manual
publ. Microsoft Corp.

Naur P (1982)
"Formalization in program development"
BIT 22. 4 pp.4H-453

Neal A S. Simons ROM(1983)
"Playback: a method for evaluating the usability of software and its
documentation"
in [CHI 831pp.78-82

Neely R (1983)
"A protocol simulation tool"
MSc thesis. Oxford University

Nielsen J (1986) .
"A virtual protocol model for computer-human interaction"
International Journal of Man-Machine Studies 24. 3 pp.30 I-H2

Norman 0 A (1984)
"Cognitive engineering principles in the design of human-computer
interfaces"
in [Salvendy 841pp.l1-16

Olsen 0 R. Dempsey E P (1983)
"Syntax directed graphical interaction"
ACM SIGPLAN Notices 18. 6 pp.1l2-117

Olsen 0 R (1984)
"Pushdown automata for user interface management"
ACM Transactions on Graphics 3. 3 pp.177-203

Olsen 0 R. Dempsey E p. Rogge R (1985)
"InpuVoutput linkage in a User Interface Management System"
ACM Computer Graphics 19. , pp.191-197

-164-

Orr W 0 - editor (1968)
Conversational Computers
pub!. John Wiley & Sons

Otte F (1982)
"Consistent user interface"
in [Vassilou 82] pp.261-276

Pamas 0 L (1969)
. "On the use of transition diagrams in the design of a user interface for an
interactive computer system"
in Proceedings 24th National ACM Conference pp.379-385
publ. ACM. New York

Patton B (1983)
"Proto typing - a nomenclature problem"
ACM SIGSOFT Software Engineering Notes 8. 2 pp.14-16

Payne S J, Green T R G (1983)
. "The user's perception of the interaction language: a two-level model"

. in [CHI 83] pp.202-206

Pfaff G E - editor (1985)
. User Interface Management Systems
publ. Springer-Verlag, Berlin •

Pressman R S (1982)
Software Engineering: a practitioner's approach
pub!. McGraw-Hill

Reid P (1985)
Trip report on CHI'a5 conference
Alvey Software Engineering mailshot, August 1985

Reisner P (1983)
"Formal grammar as a tool for analysing ease of use: some fundamental
concepts"
in Human Factors in Computer Systems pp.5 3-78
ed. J.C. Thomas. M.Schneider
publ, Ablex, New Jersey

Rowles J S (1986)
"Oescribing screen layouts in a purely functional style"
Technical Report SETCIIN/217
STL Northwest, Kidsgrove

Salvendy G - editor (1984)
Human-Computer Interaction
(Proceedings 1st USA-Japan Conference)
publ. Elsevier, Amsterdam

Sandewall E (1982)
"Unified dialogue management in the Carousel system"
in Office Information Systems pp.175-197
ed. N.Naffah
publ. North-Holland, Amsterdam

Schneider M (1982)
"Ergonomic considerations in the design of command languages"
in [Vassilou 82] pp.141-161

-165-

Shackel B (1986)
"IBM makes usability as important as functionality"
The Computer Journal 29, 5 pp.475-476

Shaw A C (1980)
"On the specification of graphics command languages and their processors"
in (Guedj et al 80] pp.H7-392

Shaw M, Borison E. Horowitz M. Lane T. Nichols 0, Pausch R (1983)
"Descartes - a programming language approach to interactive display
interfaces"
ACM SIGPLAN Notices 18. 6 pp.IOO-1l1

Sheeran M (1984)
"muFP. an language for VLSI design"
in Proceedings Conference on Lisp Bc Functional Languages pp.104-112

Shneiderman B (1982a)
"The future of interactive systems and the emergence of direct
manipulation"
in (Vassilou 82] pp.1-27

Shneiderman B (1982b)
"Multiparty grammars and related features for defining interactive
systems" . . .
IEEE Transactions on Systems. Man and Cybernetics SMC-12, 2 pp.148-154

Sime M E. Coombs M J (l983) ,
Designing for Human-Computer Communication
publ. Academic Press, London

Smith 0 A (1982)
"Rapid software prototyping"
PhD thesis. Univesity of California, Irvine

Smith R G. Lafue G M E, Schoen E. Vestal S C (1984)
"Declarative task description as a user-interface structuring mechanism"
Computer 17, 9 pp-29-38

Sommerville 1(1982)
Software Engineering
publ. Addison-Wesley, London

Sproull R F (198 J)
"Programming the user interface"
in Proceedings Joint IBM/University of Newcastle-Upon- Tyne Seminar
pp.lj5-14j .
University of Newcastle-Upon- Tyne

Squires S L - editor (1982) .
ACM SIGSOFT Software Engineering Notes 7, S
(Special issue on Rapid Prototyping)

Stavely A M (1982) .
"Models as executable designs"
in (Squires 82] pp.167-168

-166-

Strand E M. Jones WT (1982)
"Proto typing and small-scale projects"
in [Squires 82] pp.169-170

Strom R. Vemini S (1985)
"The NIL distributed systems programming language: a status report"
ACM SIGPLAN Notices 20. 5 pp.36-44

Strubbe H J (1985) .
"Components of interactive applications"
in [Pfaff 86] pp.49-57

Studer R (1984)
•Abstract models of dialogue concepts"
in Proceedings 7th IEEE Int. Conference on Software Engineering
pp.420-429
publ. IEEE

Sufrin 8 (1982) .
"Formal specification of a display-oriented text editor"
Science of Computer Programming 1. 3 pp.157-202

Sutton J A. Sprague R H (1978) ,
•A study of display generation and management in interactive business
applications"
IBM Research Report RJ2392

Swartout W. Balzer R (1982)
"On the inevitable intertwining of specification and implementation"
, Communications of the ACM 25. 7 pp.438-440

Tavendale R 0 (1985)
"A technique for proto typing directly from a specification"
in Proceedings 8th Int. Conference of Software Engineering
pp.224-229; publ. IEEE

Taylor T. Standish T A (1982)
"Initial thoughts on rapid proto typing techniques"
in [Squires 82] pp.160-166

Thiagarajan P S (1985)
"Some aspects of net theory"
in [Denvir et al 85] pp.26-54

Thimbley H (1982)
"Dialogue determination"
International Journal of Man-Machine Studies 13. , pp.295-304

Thomas J C (1982)
·organising for human factors"
in [Vassilou 82] pp.29-46

Tumer 0 A (1982)
"Recursion equations as a programming language"
in [Darlington et al 82] pp.I-28

Tumer D A (1985)
"Functional programs as executable specifications"
in [Hoare & Shepherdson 85] pp.29-54. ,

-167-

Underwood M (1985)
"Alvey MMI- opportunities for multi-disciplinary research"
Seminar. University of Glasgow

Vassilou Y - editor
Human Factors in Interactive Computer Systems
publ. Ablex. New Jersey

Wadge WW. Ashcroft E A (1985)
Lucid, the dataflow programming' language
publ. Academic Press. London

Wartik S p. Pyster A (1983)
"The 'diversion' concept in interactive computer systems specifications"
in Proceedings IEEE 7th Int-Computer Software and Applications
Conference (COMPSAC '83) pp.28l-286: publ. IEEE

Wasserman A I. Shewmake D T (1982)
"Rapid prototyping of interactive information systems"
in [Squires 82] pp.l 71-180

Wasserman A I (1985)
"Extending state transition diagrams for the specification of
human-computer interaction"
IEEE Transactions on Software Engineering SE-ll. 8 pp.699-7D

Wasserman A I. Pircher P A. Shewmake D T, Kersten M L (1986)
"Developing interactive information systems with the User Software
Engineering methodology"
IEEE Transactions on Software Engineering SE-12. 2 pp.326-345

Weiser M (1982)
"Scale models and rapid proto typing"
in [Squires 82] pp.181-185

While L (1986)
"Synchronisation in functional languages"
Draft report. Imperial College. London

Williges R C (1984)
"Design of human-computer dialogues"
in [Salvendy 84] pp.35-42

Woods WA (1970)
"Transition network grammars for natural language"
Communications of the ACM 13. 10 pp.591-606

Yunten T. Hartson H R (1985)
"A SUPERvisory Methodology And Notation (SUPERMAN) for
human-computer system development"
in [Hartson 85] pp.243-282

Zave p. Schell W(1986)
"Salient features of an executable specification language and its
environment"
IEEE Transactions on Software Engineering SE-12. 2 pp.312-325

-168-

