769

FORMALLY-BASED TOOLS AND TECHNIQUES
FOR HUMAN-COMPUTER DIALOGUES

by

Heather Alexander

Submitted to the University of Stirling
in partial fulfilment of requirements for

the degree of Doctor of Philosophy

5/87

ABSTRACT

With ever cheaper and more powerful technology, the proliferation of
computer systems, and higher expectations of their users, the user interface is now
seen as a crucial part of any interactive system. As the designers and users of
interactive software have found, though, it can be both difficult and costly to create
good interactive software. It is therefore appropriate to look at ways of
"engineering” the interf ace‘ as well as the application, which we choose to do by
using the software engineering techniques of specification and prototyping.

Formally specifying the user interf ace allows the designer to reason about its
properties in the light of the many guidelinés on the subject. Early availability of
prototypes of the usér interface allowé the designer to experiment with alternative
options and to elicit feedback from poiential users.

This thesis presents tools avndrte‘chniqﬁes (dollectively called SPI) for
sﬁecifying and prototyping the dialogues between an interactive sysfem and its
users. They are based on a formal specification and rapid prototyping method and
notation called me too, ard were originally designed as an extension to me too.
They have also been implemented under UNIX*, thus enabling a transition from the

formal specification to its implementation,

* { JNIX is a trademark of AT&T Bell Laboratories

ACKNOWLEDGEMENTS

My thanks to:
Peter Henderson. without whose encouragement, ideas, criticism and enthusiasm
this work would not have been started, continued or finished;

ICL in general. and Tony Gale in particular, for supporting me financially and
allowing me the time to pursue this research;

Bob Clark énd Simon Jones for their advice, criticism and time spent in
proof-reading this thesis, and to Val, Cyd and Simon for additional proof-reading;

Lynne for typing this thesis, displaying patience and fortitude in the face of many
last-minute changes and an uncooperative word-processor;

my family for all their encouragement;

and to some very specxal people who have opened their lives to me and kept me .
moving forwards - Rena, Bllly, Fiona, Lynn and Catherine.

imprimis gratia deo

L

ot s Pt Pt Pt it et Pt
L]
O\ NN

NN
s

N
.
N

»
wd

NN N
L]

3.3

3.4

4.2

CONTENTS

INTRODUCTION
Software development '
Software for human-computer mteracnon
Formal specification
Rapid prototyping
Functional specification lanquages
Terminology
Summary

RELATED WORK

Software engineering techniques
Formal specification
Rapid prototyping -

Human-computer interaction
Overview of concepts = .
Prototyping techniques
Specification techniques
Features of the techniques

Contributions of this work

EARLY PROTOTYPES OF SPI
Streams in me too - o
Introduction to streamCSP -

StreamCSP notation
Departures from CSP
Using streamCSP
Implementing streamCSP
Evaluation of streamCSP
Edit-Compute-Show (ECS) paradxgm
Introduction to ECS
~ Using ECS ¢ f
Implementing ECS
Evaluation of ECS
Introduction to eventCSP
EventCSP notation
© - Using eventCSP
Process labelling
Implementing eventCSP
Summary -

DIALOGUE SPECIFICATION USING SPI
Event specification
The dialogue state
. Event operations
Decision table example
Prototyping with event operations
Introduction to eventISL
Basic attributes of events
Saving and retrieving objects
* Local declarations
Removing objects
Process initialisation
Process labelling in eventISL

ii

OO N —

10

13
13
19

36

38
39
42

48
54

60
62

68

2o
By WA

AARUR RV, RV, RV, RV, RV, |
L]
~ON W B W N

N NDE W —

O\O\O\O\.O\O\O\O\

SN
N —

1.3

SCHOLAR example
Form-based interaction

Summary

EXECUTING DIALOGUE SPECIFICATIONS
Overview of the dialogue executor
EventISL translator
EventCSP simulator
Event manager
The SPI interpreter
Traces
Summary

TOWARDS A CONVENTIONAL IMPLEMENTATION -

Initial implementation decisions
Processing the eventCSP language
EventCSP simulator

Processing the eventISL language
Event manager '
The SPI interpreter

Summary

COMPARISONS AND CONCLUSIONS
Comparisons with other techniques
Suggestions for further work
Analysing dialogue specifications
Extending event descriptions
Using the object-oriented paradigm
Industrialising SPI

Conclusions

APPENDICES -

me too notation

Specification of logon example
Specification of decision table example
Rewrite rules for streamCSP
Specification of ECS-state interpreter
Syntax definitions for eventCSP
Syntax definitions for eventISL
Specification of SCHOLAR example
Specification of forms example
Specification of forms dialogue
Translating eventISL to me too
Translating eventISL to C
Specification of the event manager

REFERENCES

i

111

114
122
123
124
127
128
130
133
137
140

‘146

148
149

151

Fig.l.1
Fig.2.1

Fig.3.1 -

Fig.3.2

Fig.3.3

Fig.4.1
Fig.4.2 -
Fig.4.3
Fig.4.4 .
Fig.5.1
Fig.5.2(a)
Fig.5.2(b)
Fig.6.1
Fig.6.2

List of Figures

- . Software lifecycle

- Structure of a UIMS

- Decision table example

.. Edit-Compute-Show cycle

- ECS state

SPI dialogue state
SPI dialogue state (extended)

- Dialoque control system - overview

“Dialogue control system - two layers

SPI dialogue executor
ECS execution cycle

SPI execution cycle *

- Decisjon table example - C version

iv

SPI screen display -

CHAPTER 1
. INTRODUCTION

Until recently, most of the em;:;hasis in software development has been on

" the functionality of the end-product rather than its user interface. However, with
cheaper and more powerful technology, such as high-resolution screens and speech
processing, and the proliferation of computer systems (particularly of small,
low-cost systems), the user interface is now seen as a crucial part of any interactive
system.

As developers of interactive software have found, though, it can be both -
difficult and costly to create good interactive software, with production of the
actual interactive portion of the software consuming the major part of the
development effort, as reported in [Sutton & Sprague 78)]. It is therefore
appropriate to look at ways of “engineering” the interface as well as the application.

Formal specification and rapid prototyping are two software engineering
techniques advocated as means of improving the process of software development in
general; we wish to apply them to the design of software for human-computer
interaction. Formally specifying the user interface allows the designer to reason
about its properties in the light of the many guidelines on the subject [Dix &
Runciman 85]. Early availability of prototypes of the user interface allows the
designer to experiment with alternative options and to elicit feedback from
potential users, eq. [Bournique & Treu 85].

This thesis presents SPI, a way of specifying and prototyping the dialogue
between a system and its user. SPI encompasses both a method and languages, and
is implemented by a system which allows dialogue specifications to be executed as
prototypes. |

In this introduction, we begin by clarifying some of the problems of
software development in general before going on to examine the particular

difficulties related to human-computer interaction. The techniques of formal

specification and rapid prototyping are introduced, together with one particular way

of drawing the two together which we have exploited in this work.

1.1 Software developmen£

Software development is widely acknowledged to be an expensive,
time-consuming and error-prone undertaking (see, for example, [Jensen & Tonies 79]
[Sommerville 82]). This has prompted calls for a more scientific or
engineering-based approach [Jones 80, 86] [Hoare 82a]. "Software engineering” is
the name given to the discipline which began to emerge in the late 1960's in
response to the problems encountered as new, more powerful computer technologies
became available. Despite considerable research and development devoted to
software engineering, the term "software crisis” is still applied to this situatien
(Pressman 82]. There are many reasons for the problems we find in producing ’
reliable software. Some arise from the nature of software itself while some are due
to the way in which it is developed. The situation is aggravated by the growing
‘demand for reliable, high-quality and increasingly complex software.

Unlike other engineering disciplines, the raw material in software engineering
is abstract rather than concrete, logical rather than physical, concerned with ideas,
algorithms and structure. Software deals with quantities that take discrete values,
rendering interpolation and extrapolation invalid. This makes it harder to verify the
correct operation of the software product by testing, since testing it at the limits of
permissible values is insufficient to guarantee its behaviour befween those limits. In
addition, there are a great many such quantities in any software product, and
determining the effects of all potential interactions between them becomes
effectively impossible.

With the increasing availability of computer technology has come two demands

from its users. Firstly, the widespread use of computers has led to a growing
dependence on them in many areas of society, such as business, defence, and

medical systems, where failure of a system can result in failure of a company or loss

of life. Consequently, one demand is for extremely reliable computer systems.
Secondly, the decrease in hardware costs and the greater sophistication of hardware
has created a demand for much more complex and sophisticated software to exploit !
this. |

Software engineering research has resulted in a number of techniques, methods
and tools which are intended to improve the way in which software is produced.

- Many of these doubtless have a beneficial effect when they are used. However, the
cost of using them can prevent their use. These costs arise because staff are not
trained in the appropriate techniques, or because using them increases the length of
the development process, or because they invoive investment in new hardware or
software tools. The highly competitive nature of the software industry has meant
that these short-term costs have been rejected, with little regard for the long-term
~ costs incurred as a result. One such long-term cost is that for product support and
maintenance, since errors found at these later stages in the development process are
much more difficult and expensive to rectify, ..

Even when techniques for planning, designing, costing and structuring the
software product are used, the emphasis is on debugging and testing as the way to
produce reliable software. As a result, insufficient time is given to software design,
particularly the exploration of alternative designs, because of the need for an earlyv
start to implementation. Much of the design that is done uses informal methods,
relying on diagrams or natural language descriptions.to communicate the meaning of
the specification between the designers and to the implementers. The lack of a
precise semantics for such descriptions makes it difficult to reason about the
correctness or completeness of the specification, thereby giving greater scope for
ambiguity, inconsistencies, errors and omissions. Such errors, introduced at the
design stage, are generally harder to remedy when they are found, since they can be
fundamental to the entire design and tend to be discovered late in the development
cycle.

For all of the reasons given above, software engineering techniques which

address the early stages of development are of particular interest. Two such

-3-

techniques are formally specifying the product and prototyping the product early in
the design process. We introduce these techniques after looking at the additional -
problems found |in designing software for human—lcomputer interaction.

1.2 - Software for human-computer interaction

Human-computer interaction (hci) is a relatively new discipline in computing
science. Although some of the issues with which it is concerned arose with the
advent of interactive teletype devices [Orr 68] [Meadow 70], it is only in the last
few yéars that human-computer interaction has emerged as a discipline in its own
rfght. Evidence for this can be seen in the increasing number of workshops and
conferences devoted to the subject [Guedj et al 80] [Gaithersburg 82] [Degano &
Sandewall 83] [CHI 83] (INTERACT 84] [CHI 85] {HCI 85] [CHI 86] (HCI 86]. |

It is not simply an academic interest either. The computer industry.} too, is
taking human-computer interaction seriously [Thomas 82] [Bewley et al 83] [Alvey
84a] [Reid 85] [Shackel 86]. There are a number of reasons for this explosion of
interest in the subject.

One factor is cheaper and more pawerful technology, such as high-resolution
screens and speech processing, which makes more sophisticated interfaces possible.
Another is the recognition that ergonomics, or human factors, can be applied to
software as well as to hardware. With businesses, hospitals and defence installations
(to quote the examples given earlier) ever more dependent on ever more complex
interactive computer systems, it has become impqrtapt to develop systems that are
not only reliable but also offer ';nterf aces which lead to conec@ use of the ;systems,
being easy to use, resistant to errors and so on.

The primary factor, however, is the proliferation of computer systems,
particularly of small, low-cost systems, which has resulted in a much larger and
more heterogeneous population of computer users [Moran 81b]. In the early days of
interactive computing, software was used either by computer scientists who were

familiar with the terminology and tolerant of poor interf aces or by dp professionals

who had no choice but to adapt to the interfaces provided. With the wider use of
computers havé come new classes of user, such as the "naive” or computer-illiterate
user who may well be a professional in some other capacity, or the discretionary
user who can choose whether or not to use a system depending on whether it isa -
help or hindrance to the task in hand. These users require software products that
are, amongst other things, easy to learn, easy to use, efficient and robust; in other
words, users now have much higher expectations of the user interface to software
products. |

As stated earlier, though, it is not easy to design good interactive software
[Underwood 85]. In addition to all the normal problems of software design, such as
misinterpreting or not being giver) user requirements, there are specific difficulties
relating to human-computer interaction.

* The major problem is the nature of the human partner in the interaction.
People cannot be described in precise, mathematical terms and they have highly
individual characteristics and preferences. Consequeﬁtly it is hard to design an
interface for communication between a system and such a partner.

" Anather reason is that human-computer interaction covers such a wide
spectrum of issues. Interaction with the user involves several aspecté. such as-
screen layout, human factors and dialogue structure. A considerable range of
int_erf ace technology is available, permitting use of keybcards, mice, touch-screens,
graphics, voice input and so on. The abilities and understanding of the prospective
users of the system can vary enormously, and designers may not appreciate the .
dif fiéulties and expectations of these different groups of users (Hammond et al 83].
There are also different styles of interaction, such as command-driven, menu-driven
or forms-based. Interfaces may be text-based or graphical.” The interaction may be
under user control, system control or some mixture of the two [Thimbleby 82].

Currently, there is inadequate help available for designers faced with this
plethora of decisions to be made. One approach has been to try to establish

guidelines for the design of user interfaces. Consequently many authors describe

principles for different aspects of hci design; among them: [Martin 73] [Gilb &
welnberg 77] [Good 81] [Otte 82] [Schneider 82] [Gaines & Shaw 84] [Galitz 85].
However this has not yet yielded a consensus on detailed, useful guidelines for
software designers. If anything, the sheer number of guidelines available is more of
a hindrance than a help [Gaines & Shaw 86], confusing designers by their quantity
and inconsistencies.

The current lack of a t.heoretical base for deciding what constitutes a "good”
user interface means that they are best developed experimentally; in other words,
by prototyping the user's interaction with the system [Sime & Coombs 83] [Bury 84]
[(Norman 84]. From the designers’ point of view, this has the added berefit of
allowing them to experience the interface themselves, since it can be difficult to
visualise a dynamic interaction from a static specification. “Moreover the
complexity of many interf aces. especially when error handling and on-line help are
taken into account, indicates that a formal notation may help interf éce developers
to reason about their designs.

" The combination of these factors means than an approach which brings
together formal specification with some form of prototyping is likely to meet the
‘particular needs of designers of interactive systems, particularly if the approach can
be consistently used for the entire system. The next two sections introduce these

two techniques.

1.3 Formal specification

- Naur [Naur 82] defines formalism as being expressed "purely by means of
symbols given a specialised meaning”. Usually mathematics is taken as the basis for
the symbols, or notation, used. Formal methods for software specification, then,
are usually based on the use of mathematical concepts in describing the
requirements on the software. Formal specifications concentrate on defining what
is to be achieved by the software rather than how it is to be achieved, although they

may also suggest the architecture of the implementation.

-6-

The use of a formal mathematical notation gives a precise meaning to the -
specification, namely that of the mathematics used. This alone has significant
advantages for software designers. Given designers familiar with the notation,"
mathematical notation should be easier to reason about than iknf ormal notations,
which in turn should enable earlier detection of errors and inconsistencies. A
mathematical notation suffers none of the aknbiguities of natural language thus
allowing precise t;ommunication between designers. Finally, its precision makes it
possible to perform syntax and type checking of the specification automatically.

Such a specification can be used in a’number of ways, depending on the
specification language and method being used. The act of constructing a
specification can be a major benefit itself, with its a.ttendant comprehension of the
problem, concern for consistency and completeness, and documentation of mutual
understanding among designers “[Guttag}et al 82] [Duce & Fielding 34]. However,
most advocates of the technique de not stop at this stage.

One approach is to repeatedly trahsf orm it matherﬁatically until it is
executable as an efficient program [Dariington 81. 85] [Feather 82]. A second way
is to use it as the standard agaif;st which the i‘mplemenf.ed program is judged, either
formally (by correctness proofs) or informally. Another way is to formulate
questions about the desired behaviour of the product (as in ~what happens if ...2")
and answer them from the specification {Guttag & Horning 80]. Examining the
behaviour of the specified system can also be achieved by executing the
specification itself. This may be by symbelic execution [Cohen et al 82], or as a
prototype of the software [Tavendale 85], or both [Kemmerer 85]. Either method

gives valuable feedback to the designers about their specification. ~ =

1.4 Rapid prototyping =~
" Prototyping of a software product is seen as a useful software engineering
technique in its own right. An analogy with other engineering disciplines can be

drawn, whereby a scale model or prototype of a system is often built as part of the

early design phases of development, either to clarify the requirements of the user or
to explore alternative ways of meeting those requirements. Consequently, "rapid
prototyping” is becoming more and more common, both in academic literature and in
indpstrial practice (see, for example, [Gomaa & Scott 81] [Wasserman & Shewmake
82] [Boehm et al 84] [Berry v& wing 85)).

The traditional software development lifecycle consists of (at least) the

following stages as shown in Fig.1.1:

requiraments analysis
specification
design

v

implementation

validation -

v

maintenance

| Fig.l.l Softwére lifecycle

‘This has a .nurnber of limitations: it does not easily handle areas of uncertainty in
requirements or design, the user has little opportunity to influence development until
product delivery, and aesign faults may not be detected until a late stage in the
process.

Introducing prototyping into the early part of this cycle has a number of
advantages [Dearnley & Mayhew 83]. Prototypes can help clarify and correct user -
requirements, which may only become apparent to the users themselves as they
experience a working prototype. They are often easier to comprehend than either a
concise formal specification or an imprecise informal description. They allow dynamic
reviews of the design among the design team, and experimentation with alternative
designs. They can be submitted to extensive user trials for monitoring and feedback.

Users may also find them valuable as a training aid in preparation for the real system.

-8-

Prototyping can be seen as complementary to formal specification. Indeed
[Swartout & Balzer 82] views the two as being inextricably linked. If users are
unclear about their product requirements, it can be difficult to give a formal
specification of the design, ana a prototype may be the best way to establish the -
actual requirements [Gomaa 83]. Formal specifications are still subject to errors
and a prototype can be used to help designers detect them, especially errors of
omission or poor usability. The two techniques are particularly closely linked when
the formal specification language is directly executable, so that the specification

acts as the prototype [Henderson 86].

1.5 Functional specification languages

One way to gain the benefits of both formal specification and rapid
prototyping is to use a formal notation which can be executed directly. A number of
notations possess both these attributes; we have chosen to use a purely functional
language to achieve executable specifications.)

Functional programming languages have a relatively long history in computing
science with Lisp as the main (albeit impure) example dating from 1960 [McCarthy
60]. Functional programming, though, was brought to prominence in Backus® Turing
lecture [Backus 78], in which he identified the shortcomings of conventional von
Neumann computer architectures and languages, and proposed an alternative -
functional style of programming to overcome the deficiencies. .

Conventional languages, however simple or complex, elegant or'obscure, are
based on the concept of making changes to a global state by means of some form of
assignment statement. ' All other facilities in such languages can be seen as ways of
controlling the use of assignment (by constructs like loops or case selections), of
limiting the scope for assignment errors (for example, by strong typing) or of
organising the structure of parts of the global state (as with data structuring
facilities). This style of programming is mathematically complex in theory and has

proved unreliable in practice.

In its place; the’ uselof functionallanguages of fers a mathematically-based,
high-level approach to programmlng._ F unctional languages are built on the
mathematical foundations of the lambda calculus and permit clear, concise program
descriptions constructed from functions free from side-ef fects. They continue the
trend away from a preoccupatlon thh efficiency towards mcreased power. clarlty
and succinctness in programmlng languages.

Thxs very high level of descrxptxon together with their mathematxcal
foundat1ons mean that functional languages can be used as a formal notatxon f or
specxfymg sof tware systems. In addltlon. smce the notatlon is an executable
programming language. the specxfxcatlon can be executed as a prototype of the

system,

1.6 Termlnology
Various descrlptlons are used by dxf ferent authors to ref er to aspects of

human-computer 1nteractlon. thh many giving speclahsed (and d1f f erent) meanings
to terms such as conversatlon , ”dxalogue or "interaction”. In thxs thesis, we ref er
to the overall communlcatxon between the sof tware system and its user as a

dialogue. A dialogue 1s made up of a number of mteractlon points, or mteractions,
vvhich are the points in the dialogue where information is'communicated from one
partner to the }other -a single input and/or a)single output. Each lnteractlon is
specif ied by an event An event may also describe oth‘er‘ activities in the system ‘
(such as changes to the system state) as well as mteractlons The order in whxch
these events occur is called the structure of the dxalogue

This thesis presents languages for speclfyxng a dlalogue by specifying each

event and the order in Which they occur.

1.7 Summary

The motivation for this work has been succinctly stated by R.F. Sprou11:

-10-

"As the complexity of user interfaces increases rapidly,
it becames increasingly necessary to apply some discipline
to the programming of the user interface. ... It should be
possible to define a structure for a user interface that
helps to organise and simplify its construction and
modification.” , ,
{Sproull 83, p.135)
we have‘seen that it is dif ficult' to' designg‘ood sof tware. that is, sof tware that is
reliable.‘ usable and maintainable. In particular, human;computef interaction is an
area in which good software design'is both crucial and difficult to achieve. F ormal
specxfxcatxon and rapld prototypmg have been advocated as sof tware engineering
techniques wh1ch help in desu;mng software. This thesxs shows a way of applying
them to hum an—computer interaction as a dlscxphne and structure for creatmg» user
interfaces. . | | | |

Interaction makes p'a’rticular\demands of the techniques. A specification |
ehould be clear and cornpx"enensible, andlshouid communicate th.e intentions of the
de51gners. In specxfylng dialogue, a major feature to be communicated is the
_sequence of mteractxons between user and system. Consequently. any notatxon for |
specxfylng dlalogue should be able to convey such information.

" This work began w1th an exxstmg f ormal specmcatxon notatxon and method
(me too) which was to be extended to ‘allow specification of human-computer
interaction. Several prototype systems were built and used to explore different
approaches. The first borrowed notation from CSP ("Communicating Sequential
Processes”) [Hoare 78] to specify communication between the user and the system.
The second was state-base..d; employing av cycle of actions on that state, where each
cycle represents a single interaction in the dialogue. Exoerience with these methods
revealed their complementary strengths and weaknesses, and underlined the
difficulty of using a sin(;le notation to specify both the structure of a dialogue (ie.
the events which constitute it) and the activity involved in each event.

Accordingly, the two approaches have been united in one method with two

languages. The first abstracts from the details of the user-system interactions; it

specifies the structure of the dialogue in terms of the events that make up the

-11-

dialogue and when they occur using a CSP-based notation. The second defines each
event, specifying the state transformations which occur for that event.

The combination yields a specification and prototyping method for
human-computer interaction, using an event-driven dialogue manager based on
CSP. The method has been demonstrated on a number of examples, some of which
are described in this thesis. It is based on the me too method of development
(described in the next chapter) and the final prototype of the tool embeds its event
specification language in me too. However, for produ;tion use, the tool was also
built using C under UNIX*. This version embeds the event language in C.

The remainder of the thesis is as follows. Chapter 2 surveys other work in
formal specification and rapid prototyping, both in general terms and as it relates to
human-computer interaction. Chapter 3 introduces the concepts involved in our
method of dialogue specification by describing the early prototypes since the
concepts were dzveloped during these experiments. Chapter 4 presents the dialogue
specification languages. Chapter 5 describes the system that implements them.
Chapter 6 highlights implementation issues for the system, and chapter 7 presents

conclusions and suggests avenues of further research.

* UNIX is a trademark of AT&T Bell LLaboratories

-12-

CHAPTER 2
RELATED WORK

'This chapter surveys work both in human-~-computer interaction and in the
software engineering techniques which we have chosen to use.

For formal specificatioﬁ, some representative methods are described to
illustrate the various approaches possible. The second technique, rapid prototyping,
is far from being a generally-agreed method, with many different definitions and
techniques. Consequently, we discuss these differences and some of the reasons for
them as well as éome weys in which prototyping is achieved.

" The secohd part of the chapter describes concepts from the field of
human-computer interaction which are relevant to our work before surveying
different methods for specifyihg and prototyping dialogues. Finally, we summarise

the contributions made by the work reported in this thesis.

2.1 Software engineering techniques
2.1.1 Formal specification
This section looks at some lanquages and methods used in the formal

specification of software. Two general approaches may be distingeished. namely
axiomatic and model-based, 'alt.hough there is some convergence of the two [Horning
851 |

" An axiomatic, or “property—based", approach defines the properties of
operations by giving equations relating them, as in the ubiquitous stack example:

pop (new-stack()) = error : :
pop (push(element, stack)) element

where new-stack and push are the constructor operatmns for the stack type, and
are consxdered prlmmve In practxce. other operatxons are def med in terms of the
constructors. This is the approach taken primarily by algebraic specifi ication
techniques (eq. [Guttag & Hornihg 78] tGoguen & Tardo 79)). One much—duoted

application area for algebraic methods has been the description of abstract data

-13-

types, although the methads can also be used for more general problems [Goguen &
Mesequer 82]. A different axiomatic approach is the use of logic (such as
first-order predicate logic or temporal logic) to specify software [Manna & Pneuli
81] [Kowalski 85] [Moszkowski 86].

The madel-ariented, or coﬁstructive. approach attributes meaning to a
specification on the basis of an underlying model whose semantics are already
defined mathematically. A data type, or object, is specified by constructing it from
basic types whose properties are already known (eg. sets). Its operations are
specified in terms of their effect on the object.

The rest of this section describes a selection of individual methods which

illustrate aspects of formal specification.

0813

One specification language based on algebraic methods is OBJ [Goguen & =
Tardo 79]. OBJ allows the user to define abstract "objects”, where an object may
describe an abstract data type (that is, a class of values ;6gether with operations
which manipulate such values) or an algorithm. - Objects can import objects that
have alfeady been defined, forming a dependency hierarchy of objects. Operations
belonging to an cbject are specified by algebraic equations as described above.
Objects may be parameterised, so that, for examgle, the object LIST defined for
elements of any sort can be instantiated as LIST-OF-INT, specific to integers. This
allows libraries of useful objects to be set up.

As a'specification langdage. then, OBJ offers the benefits of formal -
specification, abstraction and modularity. In addition, it is possible to execute an -
OBJ specification by regarding the equations as rewrite rules. In order to do this
thé equations must satisfy two conditions: firstly, that there are no infinite
sequences of rewrites; and secondly, that the final result is independent of the order
in which the rules are applied. (0BJ provides a facility to overcome the problem of

non-termination, by saving the intermediate results of rewrites and prohibiting any

-l4-

rule which would produce a result that had already been obtained.) 0OBJ rewrites a
supplied term until no further rules can be applied and then returns the resulting
term. -

Mare recently, OBJ has been modified and extended to allow it to be used as a
very-high-level programming language [Goguen 84]. In consequence, 0BJ can be

" used for both specification and prototyping in the design of software.

VDM -

VDM [Bjorner & Jones 82] [Jones 80, 86] is a development method which uses a
model-criented specification language, although it does not exclude axiomatic |
specifications. In a VDM specification, operations are defined as acting on a state
which is constructed from mathematical objects (sets, lists, maps and so on). The
mathematical objects used can be manipulated by the operations normally
associated with then_'l. for example, set union or list concatenation. The effect of an
operation is specified implicitly by a post-condition, which is a predicate relating
the input state to the Butput state. AThis specifies a class of implementations for the
operation with no restriction on the algorithm to be used, save that it satisfy the
post-condition.

VDM is not simply a notation, however. It is a method, a way of developing
software rigorously, defined by Jones as being "precise without being completely
formal”. It is iterative in nature, with each iteration moving from the speéif ication
towards a more concrete rebresentation. and ultimately to the program itself.

The initial specification is abstract, defining data in terms of mathematical"
objects and defining operations implicitly. At each iteration, the data types may be
made more concrete by choosing a less abstract representation ("reification") and
respecifying the operations accofdingly. or the operations may be developed towards
the implementation ("decomposition”). In either case, the designer has to
demonstrate that the result of the iteration meets the specification from which it

was derived. Once this has been done, the result may be used as the specification

-15-

for the next iteration. This process continues until a satisfactory implementation is
reached. The resulting program will, if the method is followed, have been shown to

+

be correct with respect to the original specification. o i

MIRANDA

If OBl is an exan_'\ple of the progression of a specification langgage towards a
very-high-level programming language, then MIRANDA [Turner 85] illpstrates the
opposite development. A purely functional language based on the use of recursion
equations, it shares the main characteristics of functional languages - it is a static,
definitional language, it has a powerful data-structuring capability, it treats '
functions as first-class objects (ie. it 1s higher-order) and it haé a mathematical
foundation (functions, lambda—calculqs and recursion equations). These features are
very similar ta those ’required of a specification language. .

With the addition of a notation for set abstraction [Turner 82] and a strong
polymorphic type discipline, it is not surprising to find MIRANDA being advocated
as a language suitable for specification. It has the added benef it that the resulting
specifications can usually be executed, so providing a rapid prototyping facility.
The equational language used is amenable to mathematical manipulation; in
particular, a specification can often be transformed to a more efficient form (or, if
the qriginal was not executable, to an executable form), and properties of the

specification can be studied by stating and proving theorems about it.

Like VDM, me too [Hendérson & Minkowitz 86] [Henderéon 86] adopts a
model-oriented approach and encompasses both a method and a notation. Like
MIRANDA, it is based on a purely functional language, in this case either LispKit

[Henderson 80] or a subset of rngLisp [mulisp 83]. Like OBJ, me too takes an

object-based view of software, requiring the specification of objects (data

structures) and operations which act on those objects.

~-16-

me too propéses an iterative method of software design. The first step (called
the Model step) in each cycle is to describe the abstract objects and operations.
This is done ini’ ormally, the result being a list of objects and operations, their |
intended meaning or purpaose described in English, and the functionality of each
operation.

The second step (the Specify step) involves giving a formal representation for
each obiect'and a formal specification for each operation. As in VDM, objects are
constructed from basic mathematical types, in this case, sets, relations, finite
functions (maps), tuples and sequences. The operations are defined in terms of the
natural operations for the underlying mathematical types. Unlike VDM, however,
the operations are explicitly specified, defining how their results can be constructed.

This ¢onstructive specification leads to the third (Prototype) step in the
method. The specification notation is transliterated into a functional style suitable
for execution by a prototyping shell run on LispKit. This form of the specification
can then be executed as a prototype. Exercising the prototype is likely to reveal
errors, inconsistencies and omissions in the design, wﬁich is why the process is

iterative, allowing changes to the model and/or its specification.

2.1.2 Rapid prototyping

The growing interest in this technique is evidenced by two major workshops
devoted to the subject {Squires 82] [Budde et al 84]. There is still considerable -
debate over the role, content, validity, costs and benefits of software prototypes
(Floyd 84]. Some of this arises from t.he. different concepts covered by the term, so
we begin by reviewing the various definitions in the literature.

*Rapid” does not refer to execution time, but is generally taken to mean
"quick to produce” since the cost must not be excessive and the prototype is
required early in the design process if it is to have any influence in further design.
The iterative method of

Design -> Prototype -> Review

-17-

implies that the prototype must also be "quick to change® in order to respond to the
feedback obtained from earlier versions. Such iteration in the design process is
acknowledged to be a valuable mechanism for finding and correcting design errors at
an early stage in software development [Sommerville 82] [Bonet & Kung 84] [Berry &
wing 85].

"Prototype” has two very different interpretations - it can mean a "mock-up”
(Gregory 84] or "scenario” [Mason & Carey 83] which is a surface presentation of the
product usually concentrating on the user interface with little or no functionality
behind it. Alternatively, it can mean "bread-boarding” (Botting 85] or "scale
modelling” [Weiser 82] which provides the functionality and structure of the logical
design with minimal concern for its presentation. What both these in'terpretations
have in common, however, is the desire to clarify and/or explore areas of
uncertainty in the requirements and design [Davis 82] and to communicate the
decisions made. Prototyping is intended to allow designers to investigate the least
certain or most critical parts of a design, be that its user interface or its
functionality. Some work has been aimed at prototyping both the interface and the
functionality, as in the USE system [Wasserman 86].

The different way in which pfototypes can be used accounts for much of the
debate over the technique. For example, one argument concerns the fate of the
prototype [Patton 83]. Should it be discarded once used [Brooks 75] or should it be
developed into the final product [Blum 83]? As pointed out in [Strand & Jones 82],
this can depend on the circumstances of the development. In small-scale systems,
evolution from prototype to product may be dictated by economic necessity.

More generally, differences arise from that fact that producing a prototype of
a system involves limiting that system in some way. The choice of limitation, and
hence the kind of prototype, depends on the objectives for the prototype [Smith 82].
The designers may limit the performance, perhaps to allow the use of an expressive
but inefficient language for prototyping. They may decide to limit the scope, for

example, to cover only simple cases or to use small amounts of data. Or they may

-l8-

limit the functionality by simply omitting some aspects of the system, such as error
handling. .

How prototyping is actually achieved is another issue [Taylor & Standish 82].
As has been shown by the examples in §2.1.1, rapid prototyping is often closely
related to formal specification methods, particularly where the specification can be
executed. When'this is possible, it arises from the use of a mathematically-based
notation which, being precise and unambiguous, can L;e "understood” by some form of
interpreter [Goguen & Meseguer 82] [Stavely 82] [Belkhouche & Urban 84] [Kowalski
85] [Lee & Sluizer 85).

There are other, less mathematical, approaches to rapid prototyping. They
may still involve a formal description, in the sense of Naur's definition, where the
notation is an existing programming language [Boehm et al 84] or a specially-
developed language [Mason & Carey 83]. Existing software may be re-used, or a
prototype may be produced rapidly using ordinary software development techniques
by restricting the functionality.

SLirveys of various techniques used in rapid prototyping have been compiled in

[Carey & Mason 83] and {(Hekmatpour & Ince 86b].

2.2 Human-computer interaction . .

Although some attempts have been made to apply the general specification
techniques described above to human-computer interaction (hci), most work has
involved the development of specialised notations. This section descri‘bes both
specialised and general techniques used to specify user interfaces. Before doing so,

however, various concepts have to be introduced.

2.2.1 Overview of concepts
Separation

Many authors agree that components dealing with interaction should be separated

from components forming the actual application, eq. [Casey & Dasarathy 82]

-]19-

[Feldman & Rogers 82] [Huckle & Bull 84] [Williges 84]. One or two point out that in
practice such a separation may be difficult to define or achieve [Reid 85] [Cockton
86]. However, when it is possible, the benefits of dividing the software into these
subsystems are considerable.

An analogy is with database management systems; there, data storage,
organisation and retrieval are delegated to a siﬁgle "back-end” subsystem, the
DBMS. The application programmer no longer has to handle a substantial part of the
overall system, thus simplifying the task in hand. Similarly, interaction between
system and user accounts for a large part of any interactive system [Sutton &
Sprague 78). Accordingly, it seems reasonable to create a single front-end .
subsystem, called the “user interface management system® (or UIMS) [Kasik 82]
[Buxton et al 83] [Pfaff 85]. With such a system available, the application designer
is concerned only with the functionality of the application and the interface
designer with the dialogue. As a result, we can envisage employing specialist
designers to deal with these different aspects df the system {Johnson & Hartson 82]
[Norman 84].

Separating the application from the interf éce handling is thus a means of
simplifying the designers' task, but it brings other benefits as well. Given this
separation, it should be straightforward to provide different interface components
for an application (eg. menus, forms or commands) or to énsure the same style of
interface across many different applications. An example of the latter approach is
the COUSIN system which gives a consistent form-based interface to several
different applications [Hayes 85). In a distlffxbuted environment, a further advantage
is that dialogue components can be located in distributed workstations., If the
components are adapted to take account of individual user characteristics, the user

interface at each workstation can be tailored to its user(s) [Carey 84].

Layers of interaction
Human-computer interaction can be subdivided, corresponding to different

layers of the interaction. The number of layers involved depends on which model of

-20-

interactioh is adopted [Moran 81a] {Foley & van Dam 82] [Neilsen 86]. The most
widespread approach follows a linguistic model, seeking to define the dialogue at
each of the lexical, syntactic and semantic layers.

Within this model, the interface contains two languages - user input and
system response. The individual keystrokes. button pushes or the like that make up
the "words” of the user input are defined as tokens in the lexical layer, as are the
components and characteristics of any system output (such as colour, position,
choice of window). The syniactic layer defines the sequence of input and output. In
particular for user input, it defines valid "sentences” in the user language. ie. the
allowable combinations of tokens which the user may input. The effects of such
sentences are defined by the semantic layer, which specifies the functionality
underlying the interface. Dividing the user interface into these different aspects
simplifies its deéign by allowing different parts of the problem to be considered
separately. .)

| The semantic layer is defined by the application designer in the course of
designing f.he objects and operatibns of the-application. User input is translated into
invocations of the operations supplied by the application system. System responses
are also specified by operations within the application. This layer does not form
part of a UIMS since it is defined by specifying the application. This can be done
using any of the existiné forrﬁai sp;ec\if’ication techniques, such as algebraic or
model-based methods. vAlthough the éemantic operations are not specified as part
of the interface, they will. of cou;f:ze. be used in the interface specification.

Secondly, we consider the"syntactic layer, whi_ch defines the sequence of
inputs and outputs in the dialogue. It specifies more than two individual séque_nces
for input and for output, thvough.’ ‘It'has to ‘specif.y the relationship between the two
languages, the "interaction logic” [Strubbe 85]. It is thus the key to specifying the
dialogue, since it draws together all the various aspects of the dialogue. This layer

defines what we have called the dialogue structure. In a UIMS, it is handled by a

component called the "dialogue manager®. This thesis is primarily concerned with

-21-

specifying this layer and providing a dialogue manager to allow it to be prototyped.

Finally, the lexical layer defines the layout of the screen, windows, colour,
internal representation for user input and so on. In the past, this area has received
the most attention when the user interface has been considered - how tol:en§ are to
be made up ("a HELP button, or the user typing HELP?", "what form of command
abbreviation?”, ...) and screen presentation ("what are the friendliest colours?®,
"how much information ca;n be displayed on the screen?”®, ...) and so on, ad
infinitum. In some ways it is not surprising that this should be so, since this surface
detail is very apparent to the user and is often the first cause for complaints.
However, this part of the UIMS has usually been regarded as straightforward,
performing relatively simple transformations of input from and output to the user
[(Edmonds 82]. More recent investigations involving graphics systems indicate the
correct handling of feedbackl to the user is rather less trivial than first anticipated
[Kamran 85] [Olsen et al 85]. However, since we have chosen to concentrate on the
syntactic layer, we assume the existence of a "presentation manager” within the
UIMS which is responsible for this layer. -

With the components mentioned above, the architecture of a UIMS may be "

pictured as in Fig.2.1.:

presentation: dialogue -~ | application
component ~| manager

uimMS

Fig.2.l Structure of a UIMS
It should be noted that most authors extend or elaborate upon the layers
outlined above. - All those cited above add a conceptual layer to describe the user's

model of the tasks to be peformed by the system. Moran and Nielsen elaborate the

layers by further subdividing their concerns. For example, Moran introduces the

‘-22-

1nteract10n level” whlch 1ncorporates some aspects of dlalogue structure as well as

such details as key presses requ1red from the user.

2.2.2 Prototyplng technlques

A number of techniques have. been devised for prototyping user interfaces.
This section describes tho‘se which are not directly related to a specification
language.

The least formal and least expensive approach is to use fxxed screen displays
to demonstrate what the mterf ace will look like at key pomts in the dlalogue This
may be entirely manual. using printed diagrams, or may involve the use of an
animation system to run through a sequence of screens, with or without user input
[Mason & Carey 83]. Although it ‘provivdes a concrete di’splay to the user and is quick
to set up, it is also restricted in what can be shown to or experienced by the user.

Another method is to substitute the designer for parts of the interface that
are missing [Good et al 84] [Kelley 85]. The user interacts with the system as
intended in the productlon versxon. but for mlssmg t acxlxtles or unrecogmsed input,
the input is sent to a second termlnal where the desxgner responds as required. ThlS
allows a more reahstlc experience of the system and also enables the desxgner to see

“how the user would like to be able to use 1t. However xt may be restncted in the
kinds of systems that can be presented since the desxgner must be able to respond in
a realistic time, and is not appropnate for large-scale trxals w:th many users.

A thlrd approach is to undertake prehmlnary 1mplementatxon Thxs is less
restrictive than either of the prevmus methods and allows any aspect of the user
interface to be included. It can be expensive both to produce and modify such !
implementations, however.

Consequently, methods which allow a realistic prototype to be denved
automatically from a descrxptlon of the lnterf ace are much in demand.
Commercially, this has led to fourth-generation tools such as QuickBuild {ICL 86]

which allow entire interactive application systems to be generated very quickly.

-23-

Such tools tend to be founded on database technology and are usually restrxcted to
commerclal dp systems More generally. a number of methods are dlrectly lmked to
a specxfxcatlon language wh1ch is used as the basis for the prototype, elther dr1v1ng
an 1nterpreter or bemg used to generate the prototype 1tse1f Slnce they are so
closely related to thelr spec1f1cat1on techmque. they are descrxbed in the next H

section where appropnate

2.2.3 Specxficatlon techmques

Thls section surveys the various techmques proposed as means of specxfymg
human-computer interaction. Drawmg on the hnguxstlc model, the most
frequently-used techmques are those derwed from tradltlonal language spec1f xcatlon
and analysis, namely BNF (Backus—Naur Form) and state transxtxon networks, these

are descrlbed first.

BNF |
In BNF the grammar def ines the 1nput language. The termxnals of the
grammar are taken to represent prlmxtlve user 1nput actxons. while non-termxnals
group and structure these actxons. As it stands. BNF is not suf flcxent to descrlbe ;
the syntactlc layer of dlalogues smce 1t has no means of relatmg vahd 1nput to 1ts‘
ef fects, mcludlng outputs However. 1t can be augmented by addmg notation to
describe actlons to be taken when a phrase or sentence of the mput language is
recognxsed This approach is adopted f or example. in the compller-compxler YACC
{Johnson 78]. as well as in specifying the user xnterf ace [Lawson et al 78].
An example of a BNF specxflcatxon for a simple logging-on dialogue, extended
by actions as above, might be:
logon> - ::=LOGON(l1) <user-id> -
<user-id> ::= <bad-user>* <good-user>

<bad-user> = %USER (2)
<good-user> He %USER (3)

where
(1) output: muser name""
(2) condition: not REGISTERED- USER(%USER)
output: "invalid user name, try again®

(3) condition: REGISTERED-USER(%USER)

24~

‘ [Reisner 83] extends BNF in a different way to include the cognitive actions of
the user as well. The resulting specification allows estimation of user performance
with the _interf ace orior to its implementation. This enables the designer to
experiment with alternative interfaces without having to implement them. [Payne
& Green 83] also presents a variant of BNF which is used for analysing specifications
of command languages.

However as suggested earlier, it is often helpful for the designer to
experience the interface personally [Lieberman 83] and to allow users to evaluate it
[Damodaran & Eason 83]. Consequently the formality of BNF is erploited as a
means of generating the user interface. Prototyping is achieved by providing an
interpreter for BNF which allows the designer to generate the user interface
components directly from the specification [Hanau & Lenorot/itz 80] [Olsen &
Dempsey 83]. .

Note that‘these grammar-based approaches are centred on user input, with
output regarded as an "action”. [Shneiderman 82b] moves away- from this
asymmetric treatment of input and output by us1ng a multx-party grammar”. This
labels the source of each utterance, exther the user or the system. [Bleser & Foley
83] presents a specxfxcatxon language based on thls xdea. The language is capable of
describing the three basic layers of the interaction descrtbeo above. For the ﬁ
syntactic layer, it describes the grammar of both input and output, and their
relative sequencing. They use this notation to define interf ace characteristics and
to analyse the resulting specification with respect to the various guidelines given for

human-computer interaction.

State transition networks | |

When state transition networks are used, the specification describes a set of
states (nodes) and transitions between them (directed arcs), either in a text form or
diagrammatically {Parnas 69]. Transitions are labelled with user inputs. A

transition from a state will be traversed if its input is given while the system is in

-25-

that state. To mimic the use of non-terminals in BNF and to reduce the size of
individual specifications, the label on a transition may name a sub-hetwork [Denert
77]. Also, as with BNF, the original concept is extended to allow actions and/or
outputs to be associated with transitions [Woods 70]. The example dialogue given

" above could be specified (using the same actions) as:

[Jacob 85] relates th1s approach /to the 1nteract10n layers descnbed in [Foley &
van Dam 82]. The semantxc layer is def ined by the operatxons supphed by the
apphcatxon The syntax and lexxcal layers are descnbed in separate groups of
dxagrams. with lexxcal sub dxagrams bexng "called” from syntax dxagrams. Each
transxtlon can have various attnbutes attached to it: a condrtxon to be satlsfxed an
input to be matched an output to be generated an actlon to be taken or the name
of a sub-dxagram to be called. The d1agrams, in theu' text f orm, are executable by
an 1nterpreter. thus, as w1th BNF the 1nterface component can be created dxrectly
from the specmcatxon. ‘) : ‘

SYNICS [Edmonds & Guest 84] takes a 51m11ar approach though it uses BNF to
define the user input language whereas Jacob uses state transition networks
‘ throughout It also permits input to be taken from the application. thus allowing the
same analytxc technlques to be used f or system responses as for user 1nput SYNICS

makes 1t exphc1t that the 1nteract10n is seen asa collectlon of dxalogue events. A

dxalogue event corresponds to a named state together with 1ts outgomg arcs and
other attnbutes [Guest 82] found that de51gners pref erred the state-transxtxon—
network version of SYNICS to an earlier version based on BNF, partly because of the
natural way in which the former could express the sequence of events ina dxalogue

{Alty & Brooks 85] descrxbes CONNECT which, like SYNICS, associates the

~26-

attributes for each step with the nodes rather than the arcs of the network. It
identifies different types of node to handle various activities, so that a "task” node
does not communicate with the user but with the task required. A major aim of this
work is to investigate ways of dynamically reconfiguring the network in order to :
provide dialogues which can be adapted to the needs of users as they engage in them.

An alternative method of allowing dif ferent styles of interaction to suit
diff erent.classes of user is proposed in [Hagglund & Tibell 83]. Instead of describingv
a data structure (the state traﬁsitibn network) with a single interpreter, so that
different dialogue styles depend on changes to the data structure, they provide a .
state-transition-network data structure which can be used by several different
interpreters. Each interpreter implements a different style of dialogue control (eg.
menus or forms). All the informaticn needed for the interaction is represented as
attributes of the states. The attributes include prompts, defaults, lexical
information and transition instructions. They are the union of the slightly different
attribute sets needed for the different styles.

This does not cover all of the state-transition-netw.ork—based techniques -
since it is a popular approach there is a sizable amdunt of the literature on the
subjeét." {Jacob 83] gives a comprehensive survey of the use of state transition
networks (and BNF) for specifying human-computer interaciion. “More recent papers

include [Wartik & Pyster 83] [Ho 84] [Olsen 84] (Kieras & Polson 85] and [Wasserman

85

Interaction events [Benbasat & Wand 84]

- An interaction event is defined as a point in the dialogue where user input is

required. A dialogue is then a sequence of basic interaction events, and the
specification of a dialogue consists of event definitions together with a specification
of the flow of control. Like a SYNICS dialogue event, each interaction event is
made up of common generic elements, some of which are mandatory (eg. prompts or

the flow of control) while others are optional (eg. help or input checks). The

-27-

sequence of events is specified by the "flow control” element in each event; that is,

it is defined within the events themselves. Constructs available are based on the

usual programming structures: sequence, choice and iteration. - ‘ |
- In this example, we omit some of the elements and compress the notation for !

the sake of space:

Event-id Prompt Check Flow-control
COMMAND "2" RESP € Valid-Cmds (RESP=LOGON) -> LOG
LOG "user name?” REGISTERED-USER(RESP);

" TEXT="invalid user...”

This method does not make use of the layers of interaction described earlier;
all information about the dialogue is contained in the one description. In particular,
it does not enforcea syntactic/semantic split, as the code implementing actions or
conditions is incorporated into the dialogue description itself. The method is
- primarily desu;ned to handle command languages at present it has no facilities for

screen definition.

F'rame—based techmques

This approach Is of ten found in systems f or computer—alded learning (CAL),
and aims to provxde an authonng language” thh which the author of a CAL lesson
can describe the dxalogue of the lesson. The "frame used here is not related to the
Al notlon 1ntroduced in [Mmsky 75] but i Is merely a unit of 1nformatlon for dxsplay
Like an interaction event, it packages together all aspects relatzng to that step in
the d1alogue. [Barker 84] describes a dialogue programming language, MICROTEXT,
in which each frame contains many of the attributes of interaction events, such as
flow control, 1nput checks, help mformatlon and so on. MICRDTEXT though is
screen-based and so it also allows screen posxtlons and layout to be defined. |

[Lafuente & Gries 78] takes a slightly dlf f erent frame—based approach The
language separates the sequencxng of frames (the flow control) from the
representation of the frames. This alloWs the frames to be entirely declarative in'

nature, with the imperative sequencing handled by the (Pascal) program in which the

-28-

frame descriptions are embedded. In addition to the usual ability to define the
cantant and layout of items in a frame, the designer can incorporate behaviour rules
in a frame descr{ption. Thus a frame description c::ief ines the items contained in it
but also relationships between them and rules governing their behaviour. As an

example, consider aone frame which describes the "new account” display for a

banking application:

(BANK OF CALEDONIA A

NEW ACCOUNT
Press RETURN when all fields supplied

© Name: “
Status: *MARRIED
- *SINGLE

Salary:
Spousa's salary:

o o o

The rules for this frame include

egu1re saléry. nafne.
eguxre card(status) <= 1 . :
require salary? if MARRIED in status and salary < 10000
let salary2. dxsplay be (MARRIED in status).
terminate if RETURN-KEY;
These rules, for examplg, end the frame when RETURN is preséed. will nbt allow the
frame to be sent without entering a salary, only display the sbouse's salary field
when the applicant is married and only require that information uhder certain

conditions.

Object-oriented techniques
A number of techniques use an object-oriented approach. {Jacob 86] defines

an interface using interéction objects, each of which can specify its dialogue with

the user as well as its data and procedures. The dialogue specification itself may be
local or inherited. The ‘multiple-inheritance hechanism means that a sicjnificant
economy in spécif ication can be achieved, since géneric objects can be specified and

then reused by more specialised objects.

-29-

[Cook 86] is also concerned with providing generic interf aces using the
ob)ect-onented approach Instead of state transmon networks, though the entire
interface is spec1f1ed ina non—executable functlonal language. The paper shows how
the specxflcatxon of a sxmple w1ndow manager can be specxallsed to handle windows
of different types. | | -

[Smith et al 84} use an obj;‘ect—oriented programming language with specital
facilities for interf ace handling The system is broken dow'nv’ into indlvidual ‘tasks,
w1th1n a hlerarchxc structure A task is def ined in terms of 1ts attrxbutes, whlch are
called slots, eq. the code. expansxon or port slots. Sequencing 1s described by the
module hlerarchy and by any (partlal) ordenng defined within the module. The port
slot defxnes a pnmltlve step in the flow of data between tasks. The 1nteractlon
style used (eg. menu or command-dnve_n) is not specified exphcltly in the task |
description but is selected by the intert-' ace handler on the basis of information in
the descnptlon. | | o

| A predecessor of the object-onented approach was the artlflcxal 1ntelhgence
concept of frames [Mlnsky 75], which included the concept of inheritance within a
hierarchy of frames. GUS [Bobrow et al 77] explored their use for controlling a
dialogue. More recently, [Sandewall 82] defines command languages for offi ice.
1nformatton systems 1n terms of frames, capxtahsxng on the S1mxlarxt1es between the
languages, eg. create an X delete an X, pnnt an X, where X may represent such
objects as a mail message. an appomtment or a room bookxng

[Lxeberman 85] has a more limited field of interest, namely menu systems, but‘ .

shows how ob]ect-onented technlques can sxmphfy the specification of such systems.

Knowledge-based techniques |

Even before the populanty of expert systems. knowledge-based techniques
were advocated for specifying hei [Hopgood & Duce 80] {Durrett & Stimmel 82].
Inputs are received in workxng-storage and production rules are held in long-term

storage (the "knowledge base" in expert system terminology). The interaction

-30-

handler compares the contents of the working-storage with the conditions in the
productlon rules. When a match is made, the actions of the matched rules are
triggered; this may cause an output, some internal action and/or the addition of
further items to working-storage. The matched items are removed from
working-storage and then the process is repeat;d.

[Kieras & Polson 85] combine the use of production rulés With state transition
networks. The rules describe the user’s view of the task to be performed, based on
the GOMS moadel [Card et al 83]. - The behaviour of the system is defined by state
transition networks. Their interest is in analysing the complexity of both views of a
system and the corresponderce between them.

Hopgood & Duce note that rule-based methods can lead to simplicity and
economy of description (particularly when simultaneous user inputs are permitted),
avoid specifying crder unnecessarily on the sequence of user inputs, and create the
possibility of adaptive dialogues (by dynamic modification of the knowledge base).
These properties are being investigated in an Alvey project, "Adaptive Intelligent

Dialogues” [Alvey 84b] [Durham 85].

Other specialised techniques for hci

Input-output tools propose a hierarchic method of specifying interaction [van

den Bos et al 83]. An input-output tool is a named object with an input rule, an
output rule, internal tool definitions and a tool body. The input rule is analogous to
a production rule in a grammars; it specifies the input pattern capable of triggering
the tool. The nile can name other tools (as non-terminals) and has operators for
selection, interleaving, repetition and sequencing. If the rule can be matched to the
user input, the tool body is executed and output is generated. With the addition of
prefix (guard) functions on input rules and post-test functions on output parameters,
the descriptive power of input-output tools is extended up to that of
context-sensitive grammars.

The Descartes system [Shaw et al 83] is based on principles of language design,

such as the provision of suitable abstractions. The designer specifies individual

-3]1~

elements of the screen display and can then compose them using generic rules. For
example, |
for C‘.OMPOSE use BACKGRDUND-whlte. FORMAT=framed

Dialogue: COMPOSE of Command-area. Help-area
‘ with ALIGN=vertical

~ Help-area: SCROLL of [PROGRAM-VAR of HelpText]
etc

The 1nteraction is ,managed by an application-specific module ‘which can be

generated, in part at least, from the specification.

General formal spec‘i‘fication methods

[Anderson 85] uses general formal specxficatlon technxques (the algebralc
language CLEAR, together with regular expressions, context-free grammars and a
denotational style) for interaction rather than developing a specialised notatlon
Armed with this array of technigques, he is able to state mathematical f ormulatlons
of desirable properties of user interfaces and demonstrate whether or not they hold
for a specified interface. [Mallgren 83] presents event algebras as an extensmn to
an algebraic specxfication method to handle interaction, primarlly to enable the
formal definition of 1nput/output primltives in interactive graphics languages |
Another extension to algebraic specxflcation is proposed in [Chi 85), using the flow
expressions described in [Shaw 80]. | '

The model-based method is also being investigated for specifying hei. A
significant specxficatlon, in that it is of a reasonable size and has been implemented,
is for a display editor [Sufrin 82]. ThlS was def lned using Z a model based notation
that can specify operations either ax1omat1cally or constructlvely. Other proposals
involve VDM. Of these, the most amvbitious project is EPROS [Hekmatpour & Ince
86a), which seeks to integrate all aspects of software development in a single
framework. For dialogues. EPROS uses state transition networks. A primary goal
of EPROS has been to ensure that at each stage of development from specification
to implementation the system. both functionality andiuser interface, is executable.

Functional languages are also addressing the issues of synchronisation and

-32-

input/output directly [Abramsky & Sykes 85] [While 86], but have not yet been
developed sufficiently to offer a clear way to specify hci. Of these, a promising
approach is that advocated by While, in which a language based on temporal logic -
describes constraints on the execution of Hope programs [Bailey 85). [Feldman 82]
presents a syntax-directed approach to interface specification, using the functional

language FP to give meaning to the syntactic constructs of the input language for a

line editor.

Techniques for concurrent input =

with the advent of multiple interaction devices, such as touch-screen, mouse
and keyboard, has come the need to be able to specify concurrent input and the

ability to omit specifying ordering of the inputs where appropriate. - This section

groups a number of methods by their effect (allowing concurrency) rather than by

-

the technique employed.

One notation is flow expressioné (Shaw 80], which is an extension of regular

expressions to provide a notation for describing graphics command languages. ' The
extensions allbw the notation to handle interleaving of symbols, cyclic activities and
synchronisation. [Chi 85] proposes using flow expressions together with algebraic
specification to describe user interfaces, although how they are to be combined is
not made clear in his péper.

Based on CSP and CCS, squeak [Cardelli & Pike 85] is a programming language
developed primarily to address the issue of concurrency among interaction devices.
Although it is mainly concerned with the device level, it can be used to describe
higher-level dialogues such as the logon example. However, the example given here
illustrates a particular feature of squeak; its explicit handling of time. This
example is a process describing the detection of button presses on a mouse:

Click = DN? . (wait[clickTime] . - - -
(UP? . click!. Click)
Il (down! . UP? , up!, Click))

The || construct specifies alternative options dépendent on a timeout. The form of

~33-

this is
wait{x)(a.P) || Q

which means thét P will occur if event a happens within time x. If event a does not
happen in that time, the process continues as Q. In this example, then, when the
button is pressed (event DN occurs), the process waits for it to be released (event
UP). If it occurs within the "click Time™ specified, a non-primitive "click” event is
generated. If not, a non-primitive "down” event shows that the button is being held
down. In this case, when the UP event is received, the "up” event is sent.

A third approach is taken by [ten Hagen & Derksen 85), which describes

dialogue components using dialogue cells. A dialogue is made up of steps, each

defined by a dialogue cell. A cell is built from four basic elements: user action,
external system reaction (echo), internal state changes, and conditions determining -
.whe‘n the action occurs. To allow parallel input, cells may be active simultaneously
and the user may input to any active cell.

Statecharts [Harel 86] are a graphical‘. extended version of state transition
networks. They define states graphically, as nested boxes, and trigger transitions by
events. Statecharts offer a number of features not found in the more usual
state-transition notations. For example, they permit specification of default entry
points to enclosed states, history-dependent defaults, and concurrent processing.
The charts give no detail as to the effect of events, however; this is specified
separately.

In [Jacob 86], the state-transition-network technique is extended to handle
modern "direct ménipulation" interaction techniques [Shneiderman 82a). Jacob
adopts the object-oriented paradigm and represents items on the screen by |
interaction objects. Each object has an associated transition diagram specifying
how the user may interact with the object. An executive activates and suspends the
individual dialogues as co-routines, calling each only when an appropriate token is
available for it, so that the user can switch between interacting with the various

objects displayed on the screen.

34~

2.2.3 Features of the techniques

This section picks out some of the main features found in the techniques

described above.

Defining dialogue steps

Most of the techniques described are based, either implicitly or explicitly, on
breaking the dialogue down into primitive steps, each with a common structure.
These dialogue steps have various mandatory and optional attributes, which together
describe the characteristics of that step. The sequencing of the steps may be
included in these attributes or may be specified separately. QOften this
decomposition of a dialogue is specified in some form of data structure. The

interaction can then be animated by one or more processors which interpret the data

structure representing the dialogue.

Combining dialcgue specifications

Clearly, where a Fiialogue is décomposed into its constituént parts, some
mechanism for creating the overall structure from the parts must be provided. In
some techniques, this is achieved by a hierarchic structuring of the parts (eq.
dialogue t;ells. input-output tools); in ‘others. by explicit command (eqg. "COMPQOSE™
in Descartes); in others, by the nature of the specification (eg. state transition

networks where node and arc descriptions are all part of the one notation).

Offering alternative interaction styles
Interactive systems are used by various classes of user, ranging from "novice”
through "casual” up to "expert”, with different methods of interaction being
appropriate for each [Badre 84]. For example, a menu-driven system may be
suitable for novice or casual users but can be tedious for experts. Consequently, it
is useful to be able to offer different dialogue styles for any given application.
One approach is simply to specify the different dialogues individually and then

rely on the separation of interface from application to allow the appropriate

-35-

interface module to be used with the application. Alternatively, the interface
components can be altered dynamically as the dialogue progresses (as in
CONNECT). [Hagglund & Tibell 83] proposes a sufficiently generic dialogue
structure that can be processed by more than one interpreter, each offering a
different interaction style. The system described in [Smith et al 84] bases the

choice of style on the properties of the information required rather than on the user.

Prototyping interaction

'Rapid prototyping of software is increasingly acceptable as part of the
software development process. It is particularly appropriate when designing
interactive sof fware since it allows the interface designers to see a dynamic
presentation of the interface. For example, [Sufrin 82] notes that some desigﬁ
decisions were only made after experimenting with alternative implementations of
the display editor.

Where the notation used for specification is executable, the specification
itself acts as the prototype. Many of the techniques described in this paper enable
the interface component to be ‘prototyped from the specification, eg. BNF with

actions, state transition networks, interaction events, input-output tools.

2.3 Contributions of this work

The languages, tool and method presented in this thesis (collectively known as
SPI - for specifying and prototyping interaction) bring together many of the
desirable features currently scattered across the techniques described in the -
previous section. | |

SPI sets out the dialogue in terms of discrete events acting on a state, clearly
separating the structure of the dialogue from the effects of the individual events
within that structﬁre. The overall structure is specified in a subset of CSP [Hoare
85]). This defines the order of events, the possible sequences of events that can

occur in a dialogue. Using CSP notation allows concurrent and par(ialiy-ordered

~36~

input to be specified. The events themselves afe’simply me too operations which
specify when an event can occur and what happens to the state when it does. Such
events are defined in a second notation, designed as a shorthand for the me too that
would otherwise have to be written. =~
. The SPI languages have been embedded in me_too, and, like me too, they are
formal, declarative and executable. Embedded in C, the event specification |
‘language provides better performance aﬁd more scope as a production-quality tool.

SPI adopts the me too method for software design: an iterative, prototyping
activity based on formally specifying the behaviour of the system. In addition, it
offers the transition fvrom specification to implementation. A SPI specification can
be reworked in the programming language C and the result can be executed as the
implementation of the dialogue. -

Using CSP as a way of controlling me too operations (in the form of events) is
similar to proposals for using temporal logic to control execution of Hope equations
[While 86). Thus, although not the main intent of SPI, the lanquages offer a way of
handling synchronisation in a f unctional language. In pafticular. SPI allows
input/output in a functional language, as the synchronisation between program and
user.

Overall, SPI demonstrates a way in which formal specification and rapid -
prototyping can be applied to human-computer interaction in order to reap the

benefits of using such techniques in this incre_asingly important area.

-37-

-CHAPTER 3
EARLY PROTOTYPES OF SPI

This chapter describes the background to the present system. It traces the
development from the original _rm language by means of three prototyped
systems which were used to explore different ways of characterising human-

- computer interaction. As such, it serves both to introduce the concepts involved in
the SPI architecture and languages and to illustrate the general method of software
development advocated in me too.

In functional laﬁguages. a natural approach is to consider an interactive
function as mapping an input stream to an output stream. Although adequate for
demonstration purposes, this view becomes overly complex for more realistic
systems. This observation led to the first group of prototypes of SPI which
investigated the use of a more succinct notation for streams. The notation was
based on CSP channels and did make it easier to read and write specifications of
dialogues. However the notation, although useful, was restricted in a number of -
ways, especially for specifications of larger systems.

As a result, a simpler characterisation of interaction was developed. This ‘
second technique, called ECS, moves away from explicit stream handling, using
instead state transformation and interpretation.: while this method. not surprisingly,
clarifies the state transformations involved, it tends to obscure the structure of the
dialogue.

The third set of experiments returned to CSP for modelling a dialogue, but no
longer using a stream-based implementation. In this notation, a dialogue is " -
specif ied as sequences of events, where each event represents an interaction or
other activity occurring in the dialogue. This proved to be an excellent Way of
outlining the structure of a dialogue and led to the architecture and langquages
presented in this thesis.

The sections that follow describe the functional approach originally used in

-38-

me too, then each of the three exploratory systems. me too notation is explained as
it is introduced, but for reference Appendix 1 gives a fuller description of the

language.

3.1 Streams in me too

Since me too is a functional specification language, a natural starting point in
describing dialogues is to experiment with existing methods used in functional
programming. The usual approéch is to view the description of an interactive
system as a function from its input stream to its output stream [Henderson 82), and
to assume that constructing this description is a straightforward task.

Employing this technique may well be adequate for small functional programs,
but experience has shown that for more realistic programs it results in
specifications that are difficult to read and to reason about. me too has been used
to specify a variety of interactive_ applications, including spreadsheets, expert
§ystem shells (Jones et al 85] [Bruce 86] and a decision support tool [Minkowitz 86].
Ih the process of developing these applications, it has become apparent that dealing
with inpgt and output by this traditional method can become compiex and certainly
obscures the meaning of the specification, particularly where a function deéls with
more than one input or output stream [Jones 84]. Since the aims of formal
specification include comprehensibility [Liskav & Zilles 75] and better
communication between designers [Hendérson & Minkowitz 86}, such a shortcoming
has to be taken seriously by those who advocate the u‘s;e of f unctional languages to
specify software. | |

By way of an example, the "logon" example used in chapter 2 is given here
using me too. The operations specifying the dialogue assume the existence of a
table of users and passwords and appropriate underlying operations for checking
them. These constitute the "application®, the semantics of the dialogue, and are -
specified in Appendix 2. |

The structure of the operations is determined by the way in which interactive

-39-

me too prototypes are executed. A prototyping shell for me too, called ProtoKit,
has been built at Stirling. It enables a designer to execute a me too specification,
creating and manipulating the specified objects using the specified operations. For
an interactive operation, that is, one which maps an input stream (the keyboard) to
an output stream (the screen), ProtoKit provides the "run® command. This expects
" the interactive operation to be of a particular type, namely:

(in => (out x user-state x in))

For future reference, we will call this the type runnable-process. The operation

supplied to "run®, therefore, is expected to take an input stream and map that into
an output stream, some form of result and the unused portion of the inpui stream.
In practice, interactive operations usually have functionality.
(user-state -> (in -> (out x user-state x in)))
or, abbreviated:
(user-state -> runnable-process)
This is to allow use of predefined objects as the user-state. In the logon example,
*run” is called with the operation "¢cmd-level(udb)” as its parameter, where the
dialogue is specified by the following me too operation:
cmd-level(udbXkb) =
letrec (sl.dl,kl) =
let cmd = head(kb)
kb = tail(kb)
in
if emd="logon" then logon(udb)(kb)
else if emd=.... -
else letrec (s2,d2,k2) = cmd-level(udb)(kb)
in hst(cons(errmsgl ,52),d2,k2)
in hst(cons(""".sl) dl,kl)

To understand this specification, it is first necessary to appreciate the way in
which "run” drives the interactive operation supplied to it. The "run" command
seeks to display each item in the output stream as it becomes available, and all
other activity in the runnable-process (input and/or computation) is only undertaken

in order to extract the next output item,

In me too, the let and letrec expressions introduce local declarations within an

-40-

operation. Here letrec is used to identify the individual components returned by a
runnable-process.

The first step in this operation is to add the prbmpt “2?" to the output stream,
so that "run” will display it. Next, "run” seeks to evaluate the rest of the output
stream, here identified as "sl”, part of the result returned by the rest of the

operation. In order to obtain the next output item, "run” has to evaluate this inner

-

expression, so it begins by removing the next item from the input stream, referring
to it locally as "emd®. This input is used to determihe the result of the operation. If
a valid logon command has been given, the result is created by célling another
operation "logon” (also of type runnable-process) with what remains of the input
stream. If no valid command has been given, an error message is added to the

output stream and the rest of the result is obtained by recursively calling

“cmd-level®. _

Thus this operation prompts the user for a command and processes the reply,
either calling a further operation or giving an error message before starting again.
The other operations needed to specify this dialogue have a very similar structure,
and so are given below without further explanation.

logon{udb)kb) = -
letrec (sl,dl,kl) =
let user = head(kb)
kb = taxl(kb)
in
if reglstered(udb user)
g then pwd(udb,user)(kb) : IR

else letrec (s2,d2,k2) = logon(udb)(kb)
. iglist(cons(errmsg2.s2) d2,k2) .
in list(cons("user:",s1),d1,kl)

pwd(udb,user)kb) =
letrec (sl,dl,kl)=
let pass = head(kb)
kb = tail(kb) -
in
- if validpwd(udb,user,pass)
then shell(user)(kb) :
else letrec (s2,d2,k2) = logon(udb)(kb)
in list(cons(errmsg3,s2),d2,k2)
in list(cons("password:",sl),dl,kl)

These three operations, which specify just the beginning of an interactive

-4]-

session, all have to deal with the input and output streams explicitly, adding and
remaving elements as appropnate and then handmg streams on the next operation or
returning them to the previous one. thle the specxfxcatxon can be understood, it
requires some effort because the explicit stream handling obscures the meaning of
the operations. This lack.of olarity‘is oompounded when multiple input and output
streams are used. ’ | |

However, the fact that the same structures are repeatedly used in taking input
and constructing output indicated that it wouid be possible to provide some form of
shorthand notation which could be translated into these structures. This

development is described in the next section.

3.2 Introduction to streamCSP

Recognising that a suitable notation canbe a powerful means of
communicating ideas [Iverson 79], the fu'st prototyped system investigated the use
of a notation to express the stream-handhng characterxstxcs of interactive
operations. Clearly, this system went through a number of iterations. but here we
present only the latest version.

The notatxon used stems from the language of commumcatmg sequentlal
processes” (CSP) which was xntroduced by Hoare [Hoare 78] to provxde both a simple
way of describing 1nput to and output from a program (or process) and a means of
achieving concurrency of executxon among processes. Here, notation based on a
subset of CSP is used for the description of input‘ and output in deterministic
systems [Henderson 84]. . | |

It should be made clear at the outset that the CSP introduced in thlS seChOn
differsin a number of 51gn1f1cant ways from that given by Hoare. In order to
distinquish it from the original CSP, it is referred to as "streamCspP». Before

discussing the differences, however, we give the notation used.

-42-

3.2.] StreamCSP notation

In streérf\CSP. a grdéess P 1s defined by a Qroﬁéss expréssion: .
| _ p <process—expr> | : | .
where a process expresswn is def med asf ollows
if P and P' are process expressions, B and B' are boolean

expressions, @ and Q' are processes, then the followmg -
are also process expressxons o

c?2v-+P _ input - on channel ¢, receive a
: o "~ value into v and do P '
cle-»P output - put value of e on
‘ : Sl e channel c and do P
return(xl,...xk) i B termination ("skip") - naming
Lo T components of process state to
- : -+ be returned
(B8P conditional ("alternative”) -
(B »pP S - - if BthenP,if B* then P', ...
s) : .
uQ(xl.....xk) -+ process invocation - call @

with the named components of
: ' - the process state - ‘
T RiQ'(%],.e,xk) : sequential composition - call
‘ R - @ with the process state
supplied; when it terminates,
call @* with the process state
‘ returned by Q
Note that streamCSP uses channels for communication. In the original version
of CSP [Hoare 78], channels were not present; instead processes were uniquely
named and communication was between named processes, eg.
‘R=(Ple+Q?x+R)
which sends data to process P and receives data from process Q. However the
disadvantages of this approach led to the introduction of named channels for
communication [Hoare 83, 85]. StreamCSP adopts this later development and names

input and output channels rather than source and destination processes.

3.2.2 Departures from CSP
In this section we assume a CSP with channels as the basis of comparison.
Firstly, CSP uses ﬂunbuvffére‘d channels whereas streamCSP, which implements

each channel by a lazy infinite list, has buffered channels of potentially infinite

-43-

capacity. Each system can model the odtn.er. since CSP ean sbecify buff ered
channels by using buffer pro'cesses'and‘ strearnCS_F; ckan'.speciyfy systems with -
unbuffered channels by establishing .some form of hand—snakind prdtbcol between
the processes involved. Nevertheless, this is a significant semantic difference
between the t.wo notations.

Secondly, employmg lazy lists as input channels precludes the use of 1nput
guards in alternatxve commands (here ref erred to as cond1txonal process
expressions). In CSP, the presence or absence of 1nput on a channel can be used to
choose between alternative actlons, as in o

(chl"x-»P
lch2?y-+Q)

where the choice between P and Q depends on which of the channels (chl or ch2)
receives an input value first. In streamCSP, lazy evaluation of an input channel
means that it cannot be checked td see if a valbe is present or.not - ProtoKit will
simply wait until an input appears on the first channel it checks (of course, input
may not appear at all on that channel). Consequently the guards in a conditional
process expression are restricted to being of boolean type.

A third difference is in the treatment of non-deterministic choice between
guards. In CSP, non-deternwinism is introduced in the conditional process expression
by allowing more than one condition to evaluate to "true” and by not defining the
order of evaluation. Non—deterrninism is Vavoideddin streamCSP by guaranteeing the
order of evaluation of cond1t10ns. Even 1f several condmons may be true, the choice
of which will be used is determmed by the order of evaluatxon, the order belng that
in which the condmons are specxf ied. Consequently the meamng of
) (B-OP[]B'-DP'....)
is

if8 then P
else if B* then P*

Analogously

if B then P else P”
expresses

(B+P[true+»P")

The two notations are exactly equivalent in streamCSP.

-44-

It can be seen from this discussion that our aim was not ah accurate
implementation of CSP but its use as a convenient notation for stream
manlpulation. The following sections show how this notation has been used and

implemented.

3.2.3 Using streamCSP notaﬁon

As a first example, consider a decision table a‘pplication.‘ The application
s&bpliés various operatiohs to interrégate and manipulate a decision table of the
form shown in F ig.S._l (specified in ‘A'ppendix 3) Wiih thesé operations, we can
specify a dialogue in which the jsystéh 'aéké the user questions from the table until a

decision is reached.

Responses

oM n n
Questions Q y ¥
@}y n yn

Decisions a b b ¢

‘ Fig.3.1 Decision table e'xample‘

This can be specified by th‘e prbcéss :
dts(dt) = (is-decision(dt) - scri<"decision:",dt> -
- returmn(dt) ')
{ true » scri<question(dt),"?™> =+ kb?ans
- dts(prune(dt,question(dt),ans))
) _ o .

In this specification, the bfocéss first decides whether or not the decision has
been reached by calling the appliéation operation "is-decision". If so, the decision is
the remaining tree "dt” and is output to the screen on channel "scr”, whereupon the
process terminates. If more informatipn is needed to make a decision, the user is
asked the next question by sending it to the screen. The user response is accepted
from the keyboard channel "kb” into a local variables "ans”. This response is then

used to change the current version of the table (in the "prune” operation supplied by

the application) and this new version is handed to a new call of the "dts” process.

-45-

Note the use of sequence construction <...> to create a single item of output
text from a number of constituent items. A sample dialogue with this system (with
the user input underlined) might be:

Ql?y
Q2?y
decision: a

Alternatively, we could specify a system which allows the user to choose the order
in which the questions are answered:

dtu(dt) = (1s—decxsmn(dt) -+ scr'<"decxsxon dt>
- return(dt)
{l true » scr!"?” -» kb?q&a
: - dtu(prune(dt.get-q(q&a) get—a(q&:a)))

A sample dialogue with this system might be

? 2y
? Qln
decision:b

In all these examples, we use "kb" to denote the keyboard input channel and "scr* for
the screen output channel.
The earlier "logon" example can be re-specified as
process cmd—level(udb) =
scri*?” -» kb?cmd »
(cmd="logon"” » logon(udb)

0 emd=...
0 tme =+ scrlerrmsgl - cmd-level(udb))

process logon(udb) = ;
scri®user:" » kb?user -»

(registered(udb,user) -+ pwd(udb,user)
(] true + scrierrmsg2 - logon(udb))
grocés pwd(udb,user) = - |
scri”password:” -» kb?pass »
(validpwd(udb,user,pass) - shell(user)
[true » scr'errmsgS - logon(udb))

This description is much more succinct, readable and comprehensible than the
earlier version with explicit stream manipulation. StreamCSP has been used to
specify a variety of dialogue styles (described in detail in [Alexander 85]) and has
proved effective in communicating the structure of interactive operations. Before

discussing its advantages and limitations, though, we outline its implementation.

46~

3.2.4 Implementmg streamCSP

 StreamCSP is 1mplemented as a language embedded in Mg StreamCSP (in
its functional S—expressiOn form) is translated by a'preprocessor into standard '
me too which can then be run as a prototype. The preprocessor systematically
rewntes terms in the source notation usxng a set of rewrite rules until no more rules
can be applied [Fxnn 84). Thus streamCSP is deflned by a set of rewrite rules which
translate processes 1nto stream-handling me too operations of type runnable-
process. The rules for the version of streamCSP described above (which assumes a
single input channel - the keyboard - and a smgle output channel - the screen - both
1mplic1tly named by the preprocessors) are e based on rules devxsed by S. B Jones of

the Universny of Stirling. and are given in Appendix 4

3.2.5 Evaluation of ‘streamCSP
" Compared with the explicittstream‘ manipulation required in me too,
streamCSP.was a significant step forward in making it easier to specify and
prototype 1nteract1ve systems using a functional specification langauge. One reason
for its appeal is that it turns out. to be well—-su1ted to convey the sequence of events
ina dialogue. Since the structure of human—computer 1nteraction is primarily a
sequence of exchanges between the user and the system a notation which clearly
sets out that sequence makes the specxfication easier to understand i ‘
Unlike most other dialogue specification notations, streamCSP does not
decompose a dxalogue 1nto its primitive steps. each w1th certam predefmed
attributes, such as a condxtion or an action. Instead it specif ies a dlalogue as being
made up of one or more processes A process is not restricted to specxfying a single
exchange between user and system. but usually spec1f1es a group of related |
1nteractions. o \ | |
" The version of streamCSP described in this section was only one of a number
of prototypesused to exyplore this approa‘ch to dialogue specification.“ This o
particular version has been presented because it of f ersvthe',clearest way of

introducing the concepts involved, rather than demonstrating \how f ar streamCSP

~47-~-

cah be' taken. Other‘ ideas which were in'vesytigate-d' in.‘cluded’ eltemetive ways of
compasing prolcesses' and use of multiple input and output channels. Each of these
developments added significantlyvto the eorﬁplexiiy obf sbecifications given in\
streamCSP anvd'thus begah to'expose the limitations of this approech. |
A hajor defici'encyk‘in etreemCSP ie that, while 1t sifnpiifies specifications of

simple dialogues, it too becomes unwieldy and complex when more powerful
constructions are required Secondly. streamCSP disgplays an inherently imperative
form ThlS is undoubtedly useful for semng out the structure of the dxalogue. but. is
not consxdered a desxrable f eature of a functxonally-based specmcatxon language A
further problem is the substantial way in whxch it dxf fers from Hoare s CSP since
this can contnbut.e to mxsunderstandmg of flstreamCSP specifications.

| Whue streamCSP did offer‘an irhprdvement in its ability to specify interactive
me too operatiohs, the d:isadvahtages given above encouraged investigation of a

different method.

3.3 | VEdivt—Compute-Sholw (ECS) paradxgm

In searching for an alternative view of dialogue using a functional
specification language an obvious quesiion to ask is'how Lisp, the archetypal
functional language (even if not purely functional), achieves its highly interactive
capability.

The answer lies in its uee of a very simple form of interaction: the
Read-Eval-Print loop. Thus, the Lisp system is in some state, with some functions
defined, perhaps. and some data available. It accepts an inpuf from the user
('Read"). evaluates that agamst the state ("Eval") and nges some appropriate
response ("Print”). In the process of evaluatxng the 1nput. the state itself may be
changed. |

This approach models a finite-state machine[Minskyv72],Awhere both the héw
value ’of the state and the output depend oniy on the current input and the curreht
value of the state. In fact, fini‘te-stvate rhachihes (FSMks) ‘are related to |
stream-processing as well: a process which receives an input stream and the current

-48~

state and returns an output stream and a new value of that state is a function with
internal state, modelling a FSM [Sheeran 84].

The Read-Eval-Print paradigm, then, was adopted as a different way to
specify dialogues. It does not involve any additional language features in me too;

instead it prescribes a way of constructing me too operations.

3.3.1 Introduction to ECS

ECS employs the notion of the "state” of the dialogue advocated by the
proponents of transition networks. \The system is in a particular state until given
some user input. It reacts to that input by transferring to a new state and perhaps
producing some output. .

Thus the current status of the dialogue is modelled by a state. Possible
actions on that state are edit (to change it by providing the input), compute
(constructing ahy output ahd the néw state) and sh_ovl‘}(m‘a’king the output available
to the user). These actions, after some initialisation, are repeatedly executed in a

cycle as shown in Fig.3.2. The name of the techniq'ue is derived from this cycle of

-

start ———p odit

\

compute

v

show -

Fig.3.2 Edit-Compute-Show cycle

events.

Operations for "edit” and “"show" are supplied as standard me_too operations,
together with a further me too operation which executes the ECS cycle and acts as
the interpreter of the state. This interpreter is specified in Appendix §.

The designer's task, then, becomes one of specifying the operation(s) needed to
implement each step of the dialogue. ie. supporting the "compute” action. These
operations have to specify a number,df taské to do with recording the new state of

the dialogue (such as creating output, requesting input or indicating the end of the

-49-

dxalogue) They can then be executed by the ECS-mterpreter. thus provxdmg a

prototype of the dxalogue.

The state is represented as a "flmte function” (or "map”, in VDM

terminology). This can be thought. pf as the table given in Fiqg.3.3.

index antry contains
INPUT ~ ° user input
INPUT-REQD boolean flag for input
CUTPUT created by "compute”
TERMINATE boolean flag to stop
o8B application database

Fig.3.5 ECS state

The properties of this table are:

- all rows are optional and are unordered

- the set of indices for all rows present in the table (ie. the
domain of the table) is given by

dom(state) , -

- the presence of a row is indicated by the presence of 1ls
index in the domain of the table, which can be checked
by the usual set membership test

- state ds {i} removes row i (domain subtract)

- state @ {i»v} overwrites row i with value v

- the contents of row i are accessed by

statefildef
returning the default given by "def" if the row is not
in the table

More formally, it is defined as a me too object:
ECS-state = f f(Index,Contents)

" Index = {INPMUT. OUTPUT. DB, TERMINATE, INPUT-REQD }
Contents = Text U Boolean U AppState
Text = seq(Atom)

where

In particular, for indices INPUT and OUTPUT, the contents are Text; for indices
INPUT-REQD and TERMINATE. the cohtente are Boplean; and for DB, the contents
have the application—specific type AppState; | . - ’
The operations on the ECS-state are
start : AppState -> ECS-state
edit : ECS-state x Text -> ECS-state

compute : ECS-state -> ECS-state
show : ECS-state -> Text

-50~

Of these, the standard operations edit and show are very simple, just adding input
text to the state or extracting output text:
edit (st,i) = st ® {INPUTi}
show (st) = st[OUTPUT]o
. The start operatxon is supphed as part. of the specxfxcatxon.‘ Its purpose is to set up
the dialogue state as requu'ed by the compute operatxon. Thxs may simply be to
include the apphcanon—state. as in
start(as) = = { DB-as }
buf. it hay also initialise o;her parts‘ of the state if required (since the compute

operations can extend the state to save and use local information).

3.3.2 Using ECS

First we specify the decision table example introduced in §3.2.3. The me too
notation used here is that for finite functxons. as given above The operations
needed for the example are:

start(dt) = { DB-dt }
compute(st) = dts(st)

dts(st) =
let inp = st[INPUT]O
dt = st{DB]
st* = st ds { INPUT }
in
st' ®

if is-decision(dt) -
then { TERMINATE-true,
, OUTPUT» <"decision:",dt> }
else if INPUT ¢ dom(st)
then { INPUT-REQD-true,
OUTPUT-question(dt) }
else { DB-prune(dt,question(dt),inp) }

The alternative interaction style where the user controls the order of questions is

specified by:
compute(st) = dtu(st)

dtu(st) =
let inp = st[INPUT]<>
dt = st[DB8] :
st' = st ds { INPUT }
in
st' ®

-5]-

if is~decision(dt)
then { TERMINATE-true,
OUTPUT- <"decision:",dt> }
else if INPUT ¢ dom(st)
then { INPUT-REQRD-true, OUTPUT-"2" }
else { DB-prune(dt,get-q(inp),get-a(inp)) }

I

Unlike streamCSP, the availatility of input is signalled to a compute operation by

the presence of the INPUT entry The absence of 1nput. causes the operation to

prompt for it. The operauons in thxs example remove 1nput. from the state as soon

as it is used but in other situations it might be appropriate for the input to remain

available for more than one ECS-cycle.

For comparison with streamCSP, we also give a specification of the logon

dialogue. This example reveals the major prablem with ECS, namely the way in

which a natural sequence of interactions has to be controlled explicitly by the

designer.

start(udb) = { DB-udb, NEEDS-CMD } - -

compute(st) =
let needs = st[NEEDS]CMD
in ’
if needs = CMD then cmd- level(st)
_elie if needs = USERNM then logon(st)
else if needs = PWD Lh_en_ pwd(st)
else st ® { OUTPUT-"error" }

cmd-level(st) =
let inp = st{INPUT]IO
st' = st ds { INPUT }

in
st' ® «
if INPUT ¢ dom(st)
- then { INPUT-REQD-true, QOUTPUT-"?" }

else if inp = "logon”

then { NEEDS-USERNM }

gls_e { OUTPUT-»"error: bad command” }

logon(st) =

let inp = st[INPUT]O
udb = st[DB]
st' =st ds {INPUT }
in
st' © :
if INPUT ¢ dom(st)
then { INPUT-REQD-true, OUTPUT-"user:" }
else if registered(udb,inp)
then INEEDS-+PASSWD, USER-nnp }
else { OUTPUT-"error: bad user” }

-52-

- pwd(st) =
let inp = st[INPUT]O
udb = st[DB]
user = st{USER]C
st'=st ds { INPUT }
in
st' @ .
if INPUT ¢ dom(st)
then { INPUT-REQD-true, OUTPUT-"password:" }
else if validpwd(udb,user,inp)
then i CUTPUT-"logon completed”, NEEDS-SHELL-CMD}
else { OUTPUT-"error: bad password”,
NEEDS-USERNM }
. 3.3.3 Implementing ECS
Since ECS involves no additional lanquage constructs in me too, all that is
requii'eyd is to implemeht the standard operations for the edit and show operatidns in
the ECS-cycle (which were given in §3.2) and the ECS-state interpreter.
The ECS-interpreter runs through the cycle, giving output if there is any and
ending when the TERMINATE flag is set to "true®. Informally, its behaviour is:
- stop if the TERMINATE flag is set
- request 1nput (the "edit"” step) if INPUT-REQD set
- execute t.he "compute” operatxon
- display output (the "show" step) if there is any
It is specified formally in Append‘ix 5, using me too to hahdle the single input stream
and output stream explieitly. Since this is the bnly\biace where input/output oecurs
and the interpreter is provided as part of ECS the dlalogue designer i is not requ1red

to deal with input/output streams dlrectly.

3.3.4 Evaluation of ECS

ECS provideé a data-bese&. declaretive way uf’ sbecifying the structure of a
dialogue. It conétructs a dialogue frofﬁ a number of éteps, eect; corresponding to
one edit-com‘pute-show cycle.v The activiiies in\n/‘olv'ed' in each stép are determined
by processing the ECS-state data siructure. This data structure and its proeessing
are relatively simple, yet‘ the method is capable of deseribing the same wide variety

of dialogues as streamCSP [Alexander 85].

-53-

In its view of dialogue as consisting of discrete sieps. each having the
potential to use or alter attributes of the state, ECS has adopted a similar style to
many other dialoéue specification techniques. A cempute operation specifies the
possible transfdrmations of the dialogue state, complete with conditions and actions,
and so can be seen to be comparable with state transition networks.

However in practice ECS yields cumbersome specifications. Moreover,
because each use of the compute operation in a cycle is distinct from the previous
use, there is no automatic sequencing of events or actions. The dialogue designer
can be forced into specifying these sequences in detail, where streamCSP handles
them as a matter of course. These defieiences can make it difficult to determine
the structure of the dialogue being specif_ied. Since this is a maidr requirement for

a dialogue specification language, this is a serious flaw in the method.

3.4 Introduction to eventCSP

The ability of streamCSP to express the sequence of interactions and
acti\)ities in a dialogue and the failure of ECS in this respect led to further
experiments with CSP as a notation for dialogue s‘pecificat.ion.

In more recent years, Hoare's presen»tation of CSP Hes moved from its
Algol-like origins which used cqmmenication_ between processes as its rﬁeans of
synchronisation [Hoare 78) to a more generalevent-based approach esing events
(including communication events) as the synchronisation objects [Hoare 82b, 83, 85].
This change in approach prompted the development of a simulator to allow the
ammatxon of processes wntten m thxs later style of CSP The avaxlablhty of this
sxmulator for event-based CSP provoked mvestxgatxon into its use as a notation for
describing interactive systems. This notation, which is a subset of the language
efeseﬁted in [Hoare 85}, is referred to as "eventCSP” in the remainder of this thesis.

In using eventCSP, we seek to abstrect the structure of the dialogue
(represented by events) from the details of the actual inputs, outputs and state
transformations that occur. Unhke streamCSP eventCSP is not merely a notational

convenience, but is intended to implement (a subset of) CSP.

-54-

3.4.1 EventCSP notation

" A process, then, describes the behaviour pattern of some object in terms of -
events which affect it. In choosing the events considered appropriate for an object,
no consideration is given to which are caused by the object (such as an output) and
v_vhich are caused by its environment (such as an input). -As far as the behaviour of
an object is concerned they are all events in which it barticipates in some way,
reqardless of their origin.

In eventCSP, a process is defined as follows: -

if e, el,...,en are events and P, Pl,...,Pn are processes, then
the following are also processes

(e » P) - (prefix) engage in event e then behave like P

(el »Pl - (choice) engage in el then behave like Pl,
(e2»P2 or engage in e2 and behave like P2, etc
ad...

" en-+Pn) ' :
Pl ;P2 - (sequence) Pl followed by P2 if Pl t.ermmates
Pl || P2 - (parallel) Pl in parallel with P2 = o
skip - successful termination
abort - no further interaction

The Qntax for eventCSP, both abstract and concrete, is given in Appendix 6.

Among these definitions, the parallel operator (||) offers considerable scope
for'innovation in specifying interac;ion. For example, we can easily specify
*two-handed" (ie. concurrent) inbut. where the user is free f.o use; say, a pointing
device and keyboard together. Or we can use || to separate and Syechronise the
activities of related processes. Later examples will illustrate both these uses of the
parallel operator.

Unlike streamCSP, both the syntax and the semantics of this notation are

closely based on CSP as defined in [Hoare 85].

3.4.2 Using eventCSP
As a first example, this notation is used to describe the behaviour of the
decision table dialogues intrqduced in §3.2.2:

dts = (is-decision -+ (give-decision - skip)
{ not-decision -+ (ask-question + (user-answer - dts)))

-55-

This specification outlines the behaviour of the system-driven style of interaction. The
process first chooses between the 'is—decision" 'and.."not-decision" events. If a decision
has been reached, it proceeds to deliver that decision, indicated by the "give-decision®
event, and terminates. If not, the events "ask-question” followed by "user-answer”
indicate that the next question from the table is asked and a response accepted from the
user. The process then continues to behave as "dts”, ie. deciding if a decision has been
reached and acting accordingly. |

For a series of events, as occurs abave, the bracketing can be dropped from the
specification, so that the other interaction style for decision tables can be specified as

~ dtu = (is-decision + give-decision -+ skip
{ not-decision - prompt - user-reply » dtu)

These do not provide detailed specifications of the decision table system,
particularly as they rely on the event.' names to give meaning to the specifications.
However each specmcahon does represent the st.ructure of the dxalogue more
clearly than streamCSP sxnce it is so uncluttered by detall |
Another example is the Click process from [Cardelh & kae 85] which was
given in chapter 2. This process handles the button-pressing activity of a mouse:
Click = (DN » (UP » click » Click

J wait>clickTime » down -+ UP -» up -+ Click
))

DN and upP represent the depressmn and release of the mouse button We have ’
dispensed with the special »wait® construct and replaced it by orthodox CSP using an
event which is triggered if the ‘time xs exceeded.: The other events represent the
signals sent to the process currently using the mouse.

. The next example specifies the logon dialogue:

CmdLevel = (prompt » ;
(logon-cmd ~» Logon
(other -+ errmsgl -» CmdLevel

))

Logon = (prompt-f or-user -+
(user-ok » Pwd -
0 not-user-ok » errmsg2 -» Logon

))

56—

Pwd = (prompt-for-pwd -»
(pwd-ok -+ skip ‘
{ not-pwd-ok » errmsg3 + Logon

))

The final example in this section is also taken from (Cardelli & Pike 85] and
specifies concurrent input from a mouse and keyboard. First wé define a simple
process describing the activity of the mouse:

Mouse = (DOWN - get-position + send-position » UP -+ Mouse)
Here the DOWN an:j UP events represent depressing and releasing the mouse
button. When the button is pressed, the current position of the mouse is determined
and communicated to the process which is controlling the screen activity.

The process defining keyboard use is also straightforward:

Kbd = (get-char »
(newline » send-line + Kbd
[text-char » add-to-line + Kbd))
Characters are accumulated in a line buffer until a newline character is received,
then the completed line is made available to the controlling process.

The Mouse and Kbd processes have no events in common so running them in
parallel, as in

Moﬁse Il Kbd
allows interleaved use of the devices, with no constraint on the order of user input.
To manage their joint use, we have a controlling process, Text, with which Mouse
‘and Kbd are independently synchronised. |

Text = (send-position » save-position » Text
[send-line » write-lire » Text)

Receiving a new pdsition from the mouse has no effect on the écreen. although the
fast position sent is remembered. Receiving a line from the keyboard device causes
it to be displayed at the current position. The entire interaction is specified as
Text }| Mouse || Kbd
Although a simple example, this demonstrates the way that concurrent use of
interaction devices can be modelled in eventCSP. Modern direct manipulation

displays can be specified in a similar way. Each object on the screen is represented

-57-

by a process whose initial events determine when that object is selected (eg. by
checkxng the cursor position). The entire display is specified as the parallel
operation of the processes for all the objects it contains. When an object is

selected, the appropriate process is executed.

3.4.3 Process labemng |
A process P labelled by l 1s denoted
TN
and each event of Pis then labelled w1th 1. A labelled eveni e is the pair l.e. Thé
process 1:P engages in the event l e whenever P would have engaged ine.
This labelhng allows us to make multxple use of processes. Suppose we have

two similar front-ends for applications - one for database access and one to access

a frames knowledge base:

dbfe = (prompt -+
(stop? -+ skip - :
0 query? +» query - dbfe
[stats? - statistics » dbfe
J update? » update -+ dbfe

u aoe
g anythlng -+ error - dbfe))

ffe = (await-input »
(end? »skip
~ [list? » listframes » ffe -
-] show? - showframe - ffe
(del? + delframe - ffe

Q..

{ other + error - ffe))
It is useful, given their similar structure, to be able to write a single eventCSP

specification of a general front-end process and then reuse it as necessary. Thus, a

generic front-end is

fe = (prompt »
- (end? -+ skip

0 cmdl1? » actl » fe

 cmd2? » act2 » fe

0 cmd3” +actl -+ fe

0.

Q] other » error - fe))

-58~

which allows the specific front-ends to be defined by

dbfe = db:fe
ffe = f:fe

where “db” and "{" are labels.

3.4.4 Implementing eventCSP

Unlike streamCSP, eventCSP is not a language embedded in me too. Instead,
an eventCSP specification is represented by a data structure which is interpreted to
provide a simulation of the behaviour of the specified processes. The user running
such a simulation acts as the environment for the processes, choosing which event
will happen next and observing the results of that choice.

The implementation of operators in eQentCSP are loosely based on the
implementations given in [Hoare 85]. The primary difference is that processes are
not treated as functions (essentially that is the approach taken by streamCSP and
(Neely 83]), but as a description of possible event combinations. Details of the
simulator, which was originally developed by Peter Henderson of the University of
stirling, will be given in chapter 5.

An example of running the "dts” specification would be

> RUN (call(dts), ...)
PICK ONE OF { 1s-decxsxon. not-decxsxon}
> PICK(bad-event)
WRONG- PICK ONE OF { 1s—dec1sxon. not. decision }
> PICK(not-decision) -
PICK ONE OF { ask-question }
> PICK(ask-question)
PICK ONE OF { user-answer }
> PICK(user-answer) .
PICK ONE OF { is-decision, not-decxslon }
. > PICK(is~decision)
PICK ONE OF { give-decision }
> PICK(give-decision) :
PICK ONE OF { tick }
"D eee

where ™" is the system prompt and the "tick” event is offered by the skip process to
indicate successful termination.

Although tedious to execute and somewhat Qnrealistic. this is a useful way of
examining the behaviour of processes, and can be considered a valid, if limited, form

of vp'rototyping. Despite the limitations, observing this simulated activity in the

- =59-

system is helpf ul in desu;mng the system partxcularly when the parallel construct is
used. Mareover the specxfxcatxon clearly lays out the structure of the 1ntended |

1nteractlons ina precxse. sxmple and f ormal way.

3.5 Summary

) This chapter has descnbed the early prototypes used to explore methods for
spec1fy1ng and prototypxng dlalogues between user and system.

| Imtxally. streamCSP gave us a way to encode stream-handhng me too -
operations more succinctly and comprehensibly. The second approach, ECS, had a
more traditional view of dialogue as composed of primitive interaction steps and
provided a simple model of human-computer interaction. Its deficiences in |
communicating the dialogue structure took us back to CSP but no longer basing it on
stream-handling functions.

It is clear that using eventCSP is not sufficient to formally specify interactive
systems, though, since no actual meaning is given to the events. Also, individual
selection of each event is not an appropriate method for demonstrating a prototype
of an interactive system.

All of these methods of fered improvements over me too stream handling and
all proved adequate for specifying several styles of dialogue. However for the
reasons given in this chapter, none of them could ber considered an 'entirely
satisfactory method.

Taken together, though, it can be seen that the methods possess
complementary strengths and weaknesses. Both streamCSP and eventCSP clearly
set out the structure of the dialogue.. ECS, on the other hand, provides a simpler
and more declarative model for dialogues and makes the state transformations
involved explicit. These various features are desirable in any dialogue specification
language, and so it was felt that it was appropriate to develop some synthesis of the‘
methods.

Of the techniques given in this chapter, only eventCSP is retained in its

entirety. The notations and implementations for streamCSP and ECS have now been

-60~-

discarded. However the ECS madel for dialogue has been kept and combined with
eventCSP, resulting in the method presented in this thesis. The structure of a
dialogue is specified using eventCSP. Each event is then separately specified as a
state transformation operation with an associated predicate over the state which

determines when that event can occur.

The next chapter describes how this combination of eventCSP and state

transformations attached to interaction steps is used to specify and prototype

dialogues.

-6]-

CHAPTER 4 -
DIALOGUE SPECIFICATION USING SPI

The architecture presented ln this chapter recognises f irstly that CSP (1n the
form of eventCSP) of f ers a convement and expressxve descrlptxon of the structure of
a dlalogue and secondly that decomposmg a dialogue into 1ts prxmitive steps with
associated state transformations is a sxmple yet powerful model for human- |
computer 1nteraction. ThlS chapter presents the f ourth (and final) prototype in our
development of a dialogue specxflcation and prototyplng method.

The overall behavxour of the system is specified usmg a subset of CSP (called
eventCSP") in terms of 1nd1v1dual events. each of Wthh def ines a sxngle interaction
and/or activity in the dialogue. The eventCSP specmcation can be exercised simply
as a simulation of the dialogue or it can be used to control the execution of the
events in a prototype of the dialogue. To use it for prototyping dialogue, each event
has to be specmed statlng any output to be ngen. any input requ1red and any state
' transformations to be made. Events are specmed ina separate notation. the
Interaction Specxfication Language eventISL. | | f N

In this chapter. first we show how eventCSP can be used for prototyping
d1alogues by augmenting it w1th event operatxons. The eventCSP language has
already been described in the previous chapter (53 4) so 1t is not given again here.
The second section introduces event}ISLas vala_nguage _for specifying the event
operations. The remaining sections give further. more substantial, examples to
demonstrate the languages. ’

The details of the implementatxon of the SPI system which allows the

simulation and prototyping of dialogues are e deferred to the next chapter.

4.1 Event specification

Given an eventCSP specification, how is it to be extended to allow a more

realistic prototype of the dialogue?

62~

From the brief discussion showing the use of the s1mulator in chapter 3, we
can see that two aspects need to be handled. Flrstly. there must be some
mechamsm for selecting the next event that happens w1thout askxng the user to
make an explicit chou:e. With decxsxon tables. for example, we need to determine
" whether or not the user has reached a decxsxon pomt when choosxng between the
events 1s-decxsxon and not-decxsxon . Secondly, havmg p1cked an event by some
means, that event must be able to cause the appropnate activity in the dialoque
before stepping on to the next interaction point in the dialngne. Again With the
decision tables example, we would expect the event ”give-decision" to output the
result to the user. | | -

In order to address these two requxrements. we return to the ECS use of the

Read—Eval-Pnnt model and of a state which records the current status of the |

dxal_ogue.

a.1. l The dialogue state

As in ECS the dxalogue state xs a finite functxon. cons1st1ng of a system part
with pre-defined entries and an apphcatlon-spemfu: part contalnxng any objects
needed by the apphcatlon. Informally. 1t is an extensmle table as shown in Fxg 4 l.
Note that ECS index names have been abbrevxated for convenxence and postfxxed by

~¢” to dxstmguxsh them from any applxcatxon entnes in the state.

index : entry contains

INS user input

IR$ boolean flag for input

ouTS © .. system output

STOPS boolean flag to stop

pBsg application database -
at start

Fig.4.1 SPI dialogue state

Formally, it is described as the me too object:
DlgState = SysState X AppState

where the system part of the state is as follows

-63-

SysState = ff(SysIndex,SysContents)

SysIndex = { IN§, OUTS$, DBS, STOPS,IR$ } -

SysContents = Text U Boolean U ImtAppState

Text = seq{Atom) :
In particular, for indices IN$ and OUTS$, the contents are Text; for indices IR$ and
STOPS, the contents are Boolean; and for DB$, the contents have the application-
specific type InitAppState. InitAppState is the type of an initial value supplied for
the application. The application can extend the dialogue state and may use
information in this initial object to do so. Typically, several values may be recorded
in this entry which the application later separates into individual entries in the
application-specific part of the state, AppState. This has the type

AppState = ff(AppIndex,AppContents)

where AppIndex and AppContents are dependent on the application involved. The

actual types required by a particular specification are explicitly recorded as part of

that specification.

4.1.2 Event operations

For each event named in the eventCSP specification.l we need to be able 'to
decide when it may be sele;ted and the effect that it has on the dialogue state if it
is selected. Conseﬁuently. an event is specified in two parts: a guard [Dijkstra 75],
or condition, which devtermuines when that event may be selected and an action which
describes the s'tate transformaticns associated‘with that event. ‘(This contrasts with
eventCSP simulation where events are selected by the user and their behaviour is
inferred fi'om their names.)r

These two aspects of an event can be described using me too operations on the
dialogue state. For example, an event whxch is alWays rea;jy to prompt with "2" can
be specxf ied by the pair of operations:

condition: DlgState —> Boolean
condition(dlqg) = true

action: DlgState -> DlgState
action(dlg) = dig @ { DUT$-"2"}

For each event, then, we require two me too operations - one to specify the

-64-

condiuoh. the other to specify the action. These operations are linked to the event
by the event name, so that the operations for an event called *is-decision” lwould be
named "is-decision-C" and "is-decision-A" for the condition and action operations
respectively. The next section shows how the events in the decision table example

can be specified using event operations to extend the eventCSP specification.

4.1.3 Decision table example

This section presents me too specifications of the event operations needed for
the decision table example. Some similarity with the ECS approach can be seen but
here no attempt is made to describe the structure of the dialogue, since this is
specified separately using eventCSP.

As a remindef. we repeat the évehtCSP part of the specification:

dts = (is-decision -+ give-decision - skip
[not-decision + ask-question » user-answer - dts)

dtu = (is-decision - give-decision + skip
] not-decision » prompt - user-reply - dtu)

In addition to the underlymg apphcatxon operations for decision tables, these

event specifications make use of some addmonal operatxons on the dialogue state:

getdb(dlg) = dlg[DB$]
getinp(dlg) = digIN§]C

'The specification assumes that DB$ holds the decision tree and that
AppState uses the types:

Applndex = { QU }
- AppContents = Question

with QU mapped to the current question.

Some pf the events are used by both the interaction modes, user-driven and

system-driven:

is-decision-C(dlg) = is-decision(getdb(dlg))
is-decision-A(dlg) = dlg

not-decision-C(dlg) = not is-decision(getdb(dlg))
not-decision-A(dlg) = dlg

give-decision-C(dlq) = true
give-decision-A(dlg) = dlg ® { OUT$-+<"decision:",getdb(dlg)>}

-65-~

prompt-C(dlg) = : U
prompt-A(dlg) = dlg @ { IR$-true, ours 1

The user-driven mode requires operations to ask for and process a user response:
user-reply-C(dlg) = true |
user-reply-A(dlg) =
let dt = getdb(dlq)
qu = get-g(getinp(dlg))
ans = get-a(getinp(dlg))
in
dlg & { DBS-vprune(dt.qu ans)}

The system-driven mode requires operatxons for ask-questmn and "user-answer”. The
first of these extends the application-specific part of the state to record the question
that has been asked. '
ask-question-C(dlg) = true
ask-question-A(dlg) =
letrec dt = getdb(dlqg)
- qu = question(dt)
in 4
dlg ® { IR$-true, QU-qu, OUTS-qu }
- user-answer-C(dlg) = input-present(dlg)
" user-answer-A(dlg) =
let dt = getdb(dlg)
qu = dlg{QU]0
ans = getinp(dlg)
in
dlg ® { DB$-+prune(dt,qu,ans) }
Now that a formal meaning has been given to the events in an eventCSP specification, it

is time to link the two descriptions together to provide an executable specification for use

as a prototype.

4.1.4 Prototyping with event operations

The first step is to incorporate the state used by the eventCSP simulator (referred
to as the simulator state from now on) into the dialogue state. The simulator state has
not yet been formally defined; we leave this until chapter 5, where the simulator is
described, and simply refer to it as having type SimState. A new entry is added to the

system part of the dialogue state, which now has the form shown in Fig.4.2,

66~

index - entry contains
IN$ ‘ user input
, IR$: boolean flag for input
X ouTs system output
STOPS boolean flag to stop
oes application database
' at start
SS$: simulator state

Fig.4.2 SPI dialogue state (extended)

The me too definition is extended to reflect this:

Sysindex = { IN§, OUTS$, DBS, STOPS, IRS, SS$ }-
SysContents = Text U Boolean U ImtAppState U SimState

with SS$ being mapped toa value of type SlmState.

The event sxmulator can now be used as before, to of er possxble events and to
step on in the current process when glven an event selection. However, the user is
no longer requu’ed to make a direct choice of the next event. Instead this is |
determined by the condxtxon operations for the possmle events. The condxtlon
operation for each of the possmle events is evaluated and of those which evaluate
to true, one is selected. ’ . '

On‘ce an event has been selected: its action operation is invpkedto perform
the ‘required state transformation and the simulator is used to step on to the next
point in the eventCSP specif icatipn. The event manager which controls all this
activity, using the simulator where appropriate, is described in chapter S.

. By providing a formal description of both the structure and the effect of
events in a dialogue, we now have a methed for formally specifying and prototyping
" interactive systems. A primary goal, that of clearly setting out the dialogue
structure, is achieved using a subset of an established formal notation (CSP).
Together with formally specified event operations, the resulting specifications can
be executed to give a prototype of the system.

However, describing event operations in me too involves giving much detail
which could be generated automatically. Consequently a more concise notation has

been developed for specifying these event operations.

-67-

4.2 Introduction to eventISL

Events in an eventCSP specification are éiven meaning by event operations.
Instead of specifying these operations directly in me too, now we use a language
(eventISL) which allows the operations to be specified more concisely. The
constructs in eventISL are translated into me t9o, in the style shown in the previous
section.

EventISL is a language for describing the attribh&s of events and the state
transformations they produce. The current form of eventISL is derived from
experience in specifying several dialogues of different styies. It is minimal, in that
it offers only what has been found to be necessary for conciée. understandable
specifications of events. A nurﬁber of extensions can be suggested, but we defer
discussion’ of this until thapter 7.

The event attributes have been selected for a number of reasons. Essentially,
they allow the designer to access and manipulate the dialogue state. Some (out and
prompt) reflect entries in the system part of the state (QUTS$ and IRS,
respectively). The when attribute defines the conditions under which the event may
be selected. pther constmcis in ’eventISL allow _thé spe'cifier to manjpulate:
application entries in the dialogué sfate. o | o |

An event has the overall form

event <EventName> =
<attribute-list>

where <attribute-list> is a list of the attributes for the event and <EventName> is
one of the event nameé frorh thé eventC:Sl’3 specifica°tion concerned. EvéntISL is
formally defined in Appendix -7.

This section introducgs evgntISL ‘b\y _re-specifying the. decision table example,
In order to relate it to the idealo’f event 6perations. we show the results of
translating thé events into me too, but details of how this is done are left until
chapter 5. As before, we assume that the dialogue state is held in the global object
*dlg”. For the purposes of illustration, we no longer hold the decision table in the

system part of the state (in the DB$ entry). Instead, we assume that it is in the

-68~

application-specific part in an entry labelled "dt". Initially we also assume the
existence of an operation to extract that entry:

getdt: DlgState -> Tree

4.2.1 Basic éttributés of events

Thg first reduirement. is to}be able to spetify the condition o’berati»oh for an
event. This is given by the when attribute which defin;s when the erveﬁt. may be
selected. The 'is-dgcision" and “not-decision” events, for example, use only this

attribute:

event is-decision = \
when is-decision(getdt(dlg))

event not-decision =
. when not is-decision(getdt(dlq))

where the attribute is defined by a boolean-valued me tog expression. This
expression becomes the body of the condition operation, so that the condition
operations for the events above are

is-decision~-C(dlg) = is-decision(getdt(dlg))
not-decision-C(dlg) = not is-decision(getdt(dlq))

The when attribute does not contribute in any way to the action opération for the
event. If, as here, the event has no attributes contributing to the action operation,

that operation has no effect on the sw_tate. The action operations for these events are

is-decision—A(dlg) =dlg
not-decision-A(dlg) = dlg . .

If the when attribute is omitted the condition defaults to true and the event may

therefore be selected at any time.

- The "give-decision” event illustrates a second attribute: the out attribute for
returning output to the user. It is specified as

event give-decision =
out getdt(dlg)

This attribute is defined by a me too expression yielding a value suitable for

-69-

output to the user. The expression sets the OUT$ entry in the state. Thus the
operations for this event are

give-decision-C(dlg) = true
give-decision-A(dlg) = dig & { OUTs-vgetdt(dlg) }

The last basic attribute for an event sets the IR$ flag in the state when input
is required. This is signalled by the prompt attribute. Often it will be used in
association with the out attribute (although this is not essential) as in the "p'ro’mpt"’
event.

ev'ent prompt =
out Y S
prompt true
The event operations for prompt are

" prompt- C(dlg)‘ true
prompt-A(dlg) = dlg & {IR$~true, OUT$->"2" }

These three attributes (when, out and prompt) are the basic attributes of a

dialogue event. In the examples above, the values for the attributes have been
constants or the result of some me too operation, but, as their syntax shows, their

values can be determined by any valid me too expression yielding a value of the

appropriate type.

4.2.2 Saving and retnevmg objects

As in ECS, 1t is useful to be able to hold apphcatmn—spemflc ob;ects in the
state. This section gives the eventISL constructs which allow these objects to be
created and accessed by the application.

In the system-driven decision table example, for instance, it is appropriate to
remember which ﬁuestion has been asked, so that the event involved is specified as

event ask-question =
out question(getdt(dlq))

prompt true

qu = question(getdt(dlq))
This adds an entry named "qu" to the dialogue state which is used to save the value
of "question(getdt(dlg))". The syntax of this expression is

<entry-index> = <Expr>

-70-

The action operation for this event is then
ask-question-A(dlg) =
dlg 63 {IRS»true.
"qu"-+question(getdt(dlg)),
OUT$-»question(getdt(dlg)) }
Given a mechanism forksaving objects in the state, we also need to be able to

retrieve them. For this, eventiSL provides the use expression which lists the entries

required. Each entry index m the hst becomes part of a me too let expression

extractmg 1ts entry from the state For example,
use X in <ALLrEXpr>

becomes
let X = dlg["X"] in <AttrExp>

The value of qu can be retneved by
: ent user—answer = ‘

equin
dt prune(getdt(dlg). qu, getinp(dlg))

,I:

Here we can also create and save a new value of the decision table, as can be seen
from the action o“peration'f or the event. .
user-answer-A(dlg) =
let qu = dlg["qu”]
in «
9lg ® { "dt"»prune(getdt(dlqg),qu,getinp(dlq)) }
Note that with use, we can now rewrite some of the event descriptions to extract
the decision table directly:
event' is-decision =

edtin
when xs-decision(dt)

lC

event not-deeision =
use dt in
~ when | not is-decision(dt)

event nge—decxsxon =
use use dt in -
out dt
Recall that the system entry IN$ holds user input. Events will require access

to this entry, and so an event may refer to it by the index "input”, as in

-71-

event user-answer =
use dt, qu, input in
dt = prune(dt, qu, input)

The request for the "input” entry in the state extracts the IN$ system entry, so the
action operation for this event is:

user-answer-A(dlg) =
let dt = dlg["dt"]
. qu = dlg["qu”]
_ input = digIN§]<>
in
dlg @ { "dt"»prune(dt,qu,input) }

The same idea applies to the DB$ entry which can be referred to as "db” within the

specification.

4.2.3 Local deciarat.ioné

If we rewrite the *ask-question” event as well, we obtain

event ask-qUestion =
e dtin
out questlon(dt)

gromgt true
qu = question(dt)

ThlS still requxres quest.lon(dt)" to be evaluated twice, so we extend eventISL by
borrowmg the IEt expression from me too to permit local declaration. We also add
the retain expressxon. which saves a variable in the state The event. specxf 1cat10n is
now ' '

eveht ask-questidh =

use dt in
let Qu= questlon(dt)

out qu
prompt true
retain qu
and has the action operation
ask-question-A(dlg) =
let dt = dig["dt"]
in let qu = question(dt)
- in
dlg @ { IR$-true, "qu™+qu, OUT$-qu }

Note that retain is simply an alternative way of expressing

nqun =qu

~72-

4.2.4 Removing objects
The last construct in eventISL allows for the removal of objects from the
stete. It could be used with the "ﬁseréreply” event to ensure that user input is not
held in the etete after its use:
event user-reply =
use use dt, input in
T dt = prune(dt, get—q(mput.), get-a(input))
~ remove input
for which the action operation is
user-reply-A(dlg) =
let dt = dlg[*dt"]
input = dig[INS§]O
in
dlg ds {IN§} ©
{"dt™=p rune(dt.get-q(mput) get-a(input))}
Note that here, as in all event specifications, the event attributes and expressions

can be written in any order.

4.2.5 Process initialisetion

The next issue cencems the initialisation of the state (cf. the "start” operation
in ECS). When the specification is executed. the interpreter is given all the |
necessary applicaiion—def'ined objects (ie other‘ than the dialogue objects shown in
F ig.4. 2) in a single argument. It saves thls comp051te object in the DBS entry 1n the
state, ref erred to by the mdex "db" Thxs is unhkely to be the most convement form
for the specxfxcauon however, so a way is provided to initialise the state as
fequi;ed, namely by using a process speeif ication. The process may specify no
actibn; as in | |

&r;_tm_m_ test 7

or it hay perform some etate-transformation and/or output. All the eventISL
cohstructe except when are available and are translated into me too in the same way
as event specifications. | o

For the decision table example, the process specifications might be

process dts =
use db in dt = db

-73-

process dtu =
use db in dt. = db

to set up the table in the requlred entry in the state Altematxvely. the events

could have ref erred dxrectly to the "db“ entry

4.2.6 Process lebeiling in eventISL
Recell that in eventCSP a process P may be labelled by 1 by specifying it as l:P
with labelled events l e. In order to be used with eventCSP specifications containing

labelled processes, eventISL must be able to specxfy labelled events. The syntax for

this is ’ |
event <label>.<EventNarﬁe> .. etc
as in |
event ffe. prompt =
Out n»)» SR
prompt true -
and

event dbfe.prompt =
out "next command:”

- prompt true -~ . -

4.3 SCHOLAR example -

A more substantial example, which demonstrates the use of the parallel
operator, is a specification of the SCHOLAR computer-aided instruction system
(Carbonnell 70].' The originel system exhibited 'a number of distinctive features, one
of which is the style of interaetion. where either partner (student or system) can
take thelhitiative and ask quesiions of the ether. In the example here, we are
concerned to specify this style of 'in-teraction. rather than all the characteristics of
SCHOLAR (such as use of nethral language or inference from the data
'representation).

In a session with SCHOLAR. the student is asked questions and gives answers
in much the sarﬁe way as fdr a ”erill—and-practice“ CAl system. However at any
point the student c}an. instead of answering the question, ask SCHOLAR for

information. SCHOLAR responds as appropriate and then repeats the unanswered

~74-

question. Carb‘onnell coined the phrase "mixed initiative" to describe this style of
1nteract10n' in SCHDLAR it can be charactensed as a system-controlled style
which allows mterruptxon from the user. SCHOLAR also prov1des a user-controlled
mode whxch can be requested by the student. In thrs mode. SCHOLAR answers
questxons posed by the student. W1th user mput underhned the structure of a |
SCHDLAR sessxon mxght look hke . | | ‘

Uruguay isa? countg
- RIGHT - : :
Peru has main language ? French
~WRONG -
Brazilisin ? QU Peru has main lanquage
Spamsh . : :
Brazilis in ? QA
- Confirm (y/n)? y
? QU Bolivia
. Boliviais a country. Bolivia is in South America
2 ML
Confirm (y/n) ?y
 Brazil is in ? South America -
RIGHT

Fxrst we nge the eventCSP specxfxcatxon of SCHOLAR This specmcanon
sphts SCHOLAR 1nto three subsystems. The first (MD) handles the mrxed-lmtxatwe
mode' the second (QA) handles the questxon—answer mode, and the third (sw1tch)
controls the sw1tch1ng between these two modes of interaction. These are specified
as runmng in parallel w1th each other.

scholar = sw1tch 1] MI| QA :
syncnromsed on { select-QA?, select-MI?,
: select-QA, select-MI, initial-MI '}

. switch = (initial-MI -+ switch')
sthch' = (select-QA? » confirm? »
- (yes + select-QA - switch’
0 no - select-MI -» switch®)
[select-MI? -» confirm? +
(yes -+ select-MI » switch'
: “ [l no » select-QA - switch')
)
MI = (initial-MI-» mi
{l select-MI »>mi')
mi = (choose-question » mi’)
mi’ = (ask-question » :
(select-QA? » MI
0 user-answer - check-question - mi
{l user-query - answer = mi'))

-75-

QA= ' (select-QA - qa)
qa= (prompt -+
. (select-MI? + QA
{l user-query - answer »qa))

The SCHOLAR example illustrates the value of the parallel operator, since
each subsystém can be specified separately. Indeed, any other interaction styles
could be added relatiyely easi}y. involving only the switch process in any changes.
Using || makeskfor a succinct, modular description of the system.

o The keventISL specifications for SCHOLAR eventCSP are given below. As
usual, the specification makes use of application types and operations. These are not
given here but are specified in Appendix 8.

The AppState’ is defined by:

Applndex = { "db", "qu" }
AppContents = ScholarDb U SchQu

with "db" holding the SC{HOLAR information base and "qu" holding the current
question. The prbtfies‘,s'ihitialisatilon 6;éfatiqn is

m}s;holar | | T
which makes‘no chahge to the state, since all initialisation in this example is
performed by thg initial-MI event. |
- events for the switch process

evvént initial-MI =

use db in :
~ db = initdb(db)
qu = NullQu

The events which signal selection of a mode have }10 attributes, that is, they are
synchronisation events and their use is controlled entirely by the structure of the
eventCSP. They have no effect on the state.
event select-MI |
event select-QA s
The remaining events for the switch process all examine user input. For these
events we assume the existence of a simple pattern-matching me too operation:
matches : Text x Pattern -> Boolean

(it is specified in Appendix 4 since it is also available in streamCSP).

~76-

Only two of the four event specifications are given here, due to their
similarity:

event select-MI? =
use input in
when matches(input,"MI™)

~ event yes =
use input in
when matches(input,”y™)

- events for MI processes
event choose-question =

use db, qu in
qu = if qu = NullQu then pickq(db) else qu

event ask-question =

event user-answer =
use input in - :
when not (matches(input, "QA")
~ or matches(input,"MI™)
or 1s—quest10n(mput))

event check-quesuon =
use use db, qu, input in
out check(db,qu.input)
db = register{db,qu) .-
qu = NullQu

- events for QA and MI processes
eVent user-query =

use input in
when is-question(input)

use db, input in

out query(db input)
The prompt event from the decision table example (see §4.2.1) is reused for this
specxflcatxon. so we omit 1t here.
Thxs completes the SPI specification of the SCHOLAR dxalogue. It should be
pointed out that this is the product of several iterations in the design, arrived at as
the result of experimenting wifh the dialogue to ensure that it possessed the

required features of SCHOLAR. From this example, we can see that the events for

-77-

a fairly sophisticated system like SCHOLAR can be specified in a straightf orwvard
way and that decomposing a system into its primitive events provides an effective

modularisation of the system.

4.4 Form-based interaction
Using form—filiing as a means of communicating with an interactive system
has been explored by a number of researchers, eg. [Balbin et al 85] (Frohlich et al
85] [Hayes 85]. Advantages claimed for this approach include its flexibility, ease of
construction and ability to offer a consistent interface across different
applications. For/our'fi'na:l example, we give a formal specification of part of such a
 system. [Studer 84] gives a higﬁ-level VDM specification of a forms-based system,
but it is very abstract and not executable.
Here, a form is a sequence of single field entries, each of which can solicit one
input from the user.
FormDb = ff(FormName,Form)
Form = seq(Field)
Field = tuple(FieldName,FieldAttr)
The def-initions‘of other objects, such as the precise form of the field attributes, are
not relevant to the diélogue specification and are omitted here. Suffice to say that
the form structure allows the designer to specify default values, help texts,
mandatory fields and inter-field dependencies. These are among a number of
facilities recommended in [Gehani 83]. Appendix 9 specifies all the objects and .
operations in the forms component. ‘

The AppState is:

entry index txgé ~+ used for

thisf FormName .. name of current form
lastf FormName ~ name of previous form
f ‘ . Form - - current form
flds seq(Field) fields to process

. fld - . Field current field
done seq(Field) fields processed

fdb , FormDb form database

-78-

The system first offers the user a ¢hoice of forms to fill:

forms = (menu »
(valid-form -+ get-form = fill-in ; forms
 repeat? - get-form - fill-in ; forms
§ inv-form - error -» forms)

Only a selection of the events in this process are spegified; the full specification is

given in Appendix 10.

event rnénu =
use fdb in
out form- menu(fdb)

prompt true

event valid-form =
use fdb, input in
when not matches(input,"REPEAT")
and form-exists(fdb,input)
thisf = input
f = clear(get-form(fdb,input))

event repeat? =

use fdb,lastf, input in
when matches(input,"REPEAT") and form-exists(fdb,lastf)
thisf = lastf
f = get-form(fdb,lastf)

event get-form =

use fdb, f, thisf in
out display-f “form(fdb,thisf)
done = &
flds = fields(f)

The fill-in process requests user input, allowing the user to supply a value, ask

for help, skip the field, finish with the current form (with or without saving it) and

to undo the previous field supplied:

fill-in = (fields-left? -+ position -+ old-value

- position » get-input » '

(help? = fill-in

0 skip? - fill-in

{ cancel? » forms

0 undo? - fill-in

{ save? » check-form

0 value? - update - fill-in)
0 not-fields-left? -+ check-form)

Again, a number of event operations are omitted for the sake of space:

event fields-left? =
use flds in
when not flds =
fid= head(flds)

—-79~

event skip? =

use flds, done, fld, input in
when matches(input,“SKIP")
flds = tail(flds)
done = <fld> ° done

event update = -
use f, flds, done, fld, mput in

" f = enter(f, get-name(fld). input)

done = <fld> ~ done
flds = remove-field(flds,fld)

F inally the check-form process ascertains whether or not all the required

fields have been supplied.

check-form = (complete? + save-form -+ skip

{ not-complete? - fill-in)

event not-complete? =

use f in
let to-do = not-complete(f)
in

_when not to-do= <

out "error: some required f xelds not glven

fids = to-do
done=<

The result of this event is that the user will be prompted for each remaining
required field. The specification of this event illustrates how the design of the
application and the dialogug cannot always be independent of each other, since the
application originally returned just a boolean indicator as to the completeness of the
form. After running'the original prototype, it was decided to re-prompt for the

missing fields which meant that extra facilities were needed in the application.

4.5 Summary

- By drawing on the notation of CSP, the Read-Eval-Print paradigm and the

concepts of finite-state machines, we have developed a two-layer model for

specifying human-computer interaction, as in Fig.4.3.

dialogue

L interpreter
specitication

DCS

A

“application

Fig.4.3 Dialogue control system - overview

-80-

EventCSP is b.ased on CSP. using the general model of events without ‘lnterprocess
communication. and is intended as a language for specifying the overall structure of a
dialogue. The activities which take place in that dialogue are specified by event
operations written in a structured fo;m of me tog, namely in eventISL. Tegether they
enable a dialogue to be specified and prototyped separately from the application; see

Fig.4.4.

eventCSP event
specification manager < » application

aventCSP simulator

OCS

Fig.4.4 Dialogue control system - two layers

SPI fits into the UIMS model described in chapter 2 as a dialogue control
system - the component which controls the interactions with the user on the basis of
a supplied dialogue specification. .

As a methad, SPI forms part of the me too framework. Identifying the model,
ie. the objects which are involved in user tasks and the operations upon them,
remains as the first step in the method. These objects and operations are specified
in me too, as before.

The dialogue designer, too, may well need to employ these steps in specifying
objects and operations peculiar to the dialogue éomponents. such as interaction
histories or menu structures. In addition, though, the dialogue designer has to
specify the structure and content of the dialogues to be offered to the user by the
system. In specifying the dialogue events, the model of the application provides the
task objects and operations available to the user through the interface.

With the specifications of both application and dialogue available, the entire
system can be executed as a prototype. As before, this exercise is likely to suggest

changes and reveal errors, so the method remains an iterative one.

-81-

SPI is thus seen as an extension to me too, not a replacement of it. It retains
the me too iterative method; SPI's languages simply proVide ways of imposing
|
constraints on the structure and time of execution of me too operations.

As has been said already, the me too method and notation has been used to

specify and prototype SPIL. In the next chapter we give this me too specification of

SPL

-82-

. CHAPTER S
EXECUTING DIALOGUE SPECIFICATIONS
: |
Given a SPI dialogue specification, consisting of an eventCSP description
together with eventISL operations, the next task is to exercise the specification as a
prototype. This chapter describes the tool which makes this possible - the SPI

dialogue executor.

5.1 Overview of the dialogua executor : -

There are two central components responsible for executing the specification:
the eventCSP simulator and the event manager. |

The eventCSP sxmulator is an 1nterpreter for the eventCSP portlon of the
specification. Its fu'st functxon is to determme whxch events are currently possible
according to the current pOSItIOn in the eventCSP structure Secondly, given an
event from thls set of poss1ble events. it uses that to move to the next position in
the structure. The s1rhulator can be 1nyoked by the user, who is then responsible for
selecting the event th'at is to happen. Alternatively, it can be called from the event
manager which uses the condition operations for the events to select which events
happen.

The event manager uses the eventCSP simulator to control which events may‘
be trlggered at any partlcular pomt 1n the dlalogue leen a set of possible events,
1t calls their condxtxon operatlons and arbltramly chooses one of the events for which
thxs evaluates to true Before movmg to the next lnteractxon pomt it mvokes the
actlon operatxon for the chosen event to ef f ect the requ1red state transf ormatxon.

There are other components 1nvolved as well. F or eventISL to be executed
the events it specmes have to be translated into the correspondmg me too
operatlons. This is done by a separate translation component when an eventISL
specification is read. It is translated mto the correspondmg me too operations

which are then defined as part of the run-time environment. No translation of

-83-

eventCSP is requxred since the specxf ication itself acts as the data structure whxch
is to be interpreted. Overall the dlalogue is controlled by a component which calls
the event manager to execute the dialogue and interacts with the user as dictated
by the dialogue state.

The relationships between these components are shown in Fig.5.1.

SPI
spec'n
SPi
translator
1
(2 L AN
eventCSP event .
specification) operations » APPLICATION
& - 4
U S
S P aventCSP
E ! . simulator
R

4

» event manager p—

DIALOGUE CONTROL SYSTEM

Fig.5.1 SPI dialogue executor

5.2 EventiSL trénsl;tor

A dialogue is specified in two parts - eventCSP and eventISL. The
specificétton‘ rﬁay be read from a file 01; it may be defined (or modifiea)
interactlvely. The eventCSP part is incorporated into the SPI environment as a
named data structure. The eventISL part is translated mto its equivalent me too
operations which are then added to the environment. This section describes how me
too operations are created from the eventISL specification. |

In order to create a me too operation. the translator constructs the text of the
operation from the event description and then evaluates it to add the definition to

the environment. Each event generates a condition operation and an action

-84-

operation, both taking the dialogue state as the sole argument. Thus an event "ex"”
would generate operations with functionality | |

ex-C : DlgState -> Boolean
ex-A : DlgState -> DlgState

Each construct in eventISL is translated 1nto part of a me too operation. This
section describes that translation for each construct, using the following notation:
if‘ e represents some aventISL f.ext. then
. represents its translatxoﬁ[ae; required for the condition operation, and

Ale]
represents its translation as required for the action operation.

The translation rules are based on the formal defini'tion of eventISL in Appendix 7,
but the description below is illustrative rather than completely formal. Appendix 11

gives the formal definition of the rules.

Clevent ex = E] = ex-C(dlg) = C[E]
Alevent ex = E] - = ex-A(dlg) = A[E]

where E is a DIgExpr

use is translated in the same way f or both types of operatxon

C[gs_g a,b in E] = - let a = dilg[™a"] -
b = dig["b"]

| | in C[E]
Aluse a,b in E] = let a = dlg["a"]
o b = dlig["b"]

in A[E]

where E is an AttrExpr

The translation of let only changes the embedded AttrExpr E:
Cllet x = e in E] = let x = e in C[E]
.Ar__x—eylE] = letx-emA[E]

The special names for entries in the system part of the state are
treated in the same way for both types of operation:

Clinput] = Alinput] INS

C(db] = A[db] DB$

The remaining rules are based on the definition of an attribute list
<AttrList> as .

<AttrList> ::= empty | <AttrList> <Attr>
In the rules that follow, let E stand for an AttrList.

true
dlg

Clempty]
Alempty]

The when attribute is only used in condition operations. Its
boolean-valued me too expression is unchanged by the translation.
C[E when B] : = C[Eland B

A[E when when B] = A[E]

-85~

C(E prompt B] = C[E]

A[(E prompt B] = A[E] ® {IR$-B }

C[E out text] = ClE] .
A[E out text] = A[E] ® { OUT$text }
C[E retain x,y] = C[E]

A(E retain x,y] = A[E] ® { "x"-x,"y"svy }
C[Ex=e] . = CIE]. ;

A[E x = €] = A[E] ® { "x"~e }

where eis an Expr

Removmg entries from the state is achieved by subtracting the
entry indices from the domain of the state.
C[{E remove u,v] ClE]

. A[E remove u,v] A{E] ds {"u", "Vv"}

5.3 EventCSP simulator
EventCSP is implemented by an interpreted data structure. This structure is a
process database which is a finite function mapping process names to their
definitions. Simulating the behaviour pattern of a process is achieved in two steps.
For the current process defi 1n1t1on. the set of possible next events is deterrmned of
these, one is selected by some means (to be discussed later) and is used to advance
one step in the definition. ’ /
First we considér how tobdetermine the possible events by specifying the
behaviour of a "next:eyents” operation for each construct in the language.
nextevents : Prb_cess x ProcessDb -> set(EvehtName)
For bre\)ity. the me too definition of nextevents is given using pattern-matching on
the langbage constructs to distinguish the cases and to name the constituent parts of
each construct: |
nextevents((a-P), pdb) = {a}

nextevents(P] Q, pdb) =
nextevents(P.pdb) U nextevents(Q pdb)

nextevents(Pname. pdb) = nextevents(pdb{"Pname"],pdb)
nextevents(skip, pdb) = { TICK }
nextevents(P;Q, pdb) =

if TICK € nextevents(P,pdb)

then nextevents(Q,pdb)
else nextevents(P,pdb)

-86-

nextevents(1:P, pdb)=
{(I e) | e« nextevents(P.pdb) }

nextevents(PIIQ. pdb) =
let N1 = nextevents(P,pdb)
N2 = nextevents(Q,pdb)
- § = synchronisers(P||Q)
in
(NI-S)U (N2-S)U (N1 N N2NS)
where "synchronisers” returns the set of events on whxch Pand Q
are synchronised. , . :

Given a set of poesible events, one is chosen and used to advance one step in
the current process definition. (How that choice is made depends on whether the
event manager or the user is dnvmg the smulator, an issue that will be addressed in
later sectxons of this chapter.) The smulator uses an operanon called "step” to
move on, given the chosen event:

step : Procees x EventName x ProcessDb -> P.rocess
As before, we use M with peitefh-matthing for brevity:
step((a-P), ev, pdb) = P ' | -

step(P [Q, ev, pdb) =
if ev € nextevents(P,pdb)
then if ev € nextevents(Q,pdb)
then step(P,ev,pdb) { step(Q,ev,pdb)
else step(P,ev,pdb)
else step(Q.ev,pdb)
(Note that this implements a "benevolent” non-determinism which does not
choose between alternative processes until forced to do so.)

step(Pname, ev, pdb) =step(pdb{"Pname"),ev,pdb)
step(skip, ev, pdb) = abort

~ step(P:Q, ev, pdb) =
if TICK € nextevents(P,pdb)
then step(Q,ev,pdb) . '
else step(P ev.pdb) Q

step(1 P 1. ev. pdb)=1: step(P ev.pdb)

) step(PHQ. ev, pdb) =
let N1 = nextevents(P,pdb)
N2 = nextevents(Q,pdb)
S = synchronisers(P}|Q)

ifeveNINN2NS .

then step(P,ev,pdb) || step(Q ev.pdb)
else if ev € NI

then step(P ev,pdb) || Q

else P |] step(Q,ev,pdb)

-87-

These two operations, nextevents and step, form the core of the eventCSP
simulator. The simulator maintains a state to cont.rol its 'ectiviiies. it is defined as
the rhe feo object | o

SimState = tuple(ProcessDb Process.set(EventName) Msg)
where the fu'st element. is the onglnal eventCSP specification (the process
database), t.he second is the current process def 1n1txon. and the third 1s the set of
possible next events for that defmltlon and the last element is used to give messages
(errors. prompts. or menus) to the user.

| ProcessDb = ff(ProcessName, Process)
Process = concrete syntax of eventCSP (see Appendix 6.2)
Msg = seq(Atom)
The controlling operations for the simulation are

L]

initstate : Process x ProcessDb -> SimState
nextstate : SimState x EventName -> SimState

and are specified as
initstate(p,pdb) = (pdb,p,nextevents(p,pdb), "PICK ONE OF:")
nextstate(ss,e) =
letrec (pdb p,n msg) = ss
in ‘
ifee n
then let p' = step(p,e,pdb) :
in (pdb.p .next.events(p .pdb). "OK PICK ONE OF >)
else (pdb,p,n,<"WRONG- PICK ONE OF: ">)
An additional operation to show the appropriate part of the state to the user is:
~ showsim(ss) = fourth(ss) * sort(third(ss)) -
The simulator as described above is used unaltered by the event manager to
prototype dialogues. For direct use, the user employs a number of special .

commands which create and manipulate the simulator state and display it on the

screen, as illustrated in chapter 3.

5.4 Event manager

The eventCSP specification can be run as a prototype, not just a simulation, by

linking it with the event operations specified in eventISL.

-88-

To do this, the event rﬁapager uses a state which amalgamates the simulator
state and the dialogue state (see §4.1.1). The entire simulator state is included as
a single entry in the dialogue state to ensure that the simulator can be run
unchanged. It is extracted from the overall dialogue state by

simstate(dlg) = dig[5S$]
The operations in the event manager correspond to those in the ECS cycle.

Fig.5.2 shows the corresponding operations.

start — 9;‘“ S 7 initdlg—editdlg '
com‘pute S “ nextdlg
v :)
show : ‘ -~ showdlg
F1g.5.2(a) ECS executlon cycle o Fig.5.2(b) SPI execution cycle

The major difference is that the dialogue designer does not have to supply any
operations in ihe cycle explicitly, since these are all part of the event manager.
The cycle is inﬁplementecj by the SPI interpreter; the event-manager simply supplies
the operations needed for it. In thislsection. we specify the major operations of the
interpreter, as shown in Fig.5.2(b). Subéidiary operations are specified in Appendix
13. o | ‘ | |
Initialisation is accomplished by the initdlg operation which has funﬁtionality
initdlg: ProcessName X ProceséDb x InitAppState -> DlgState
and which éets abdut the initialisation in two steps. First it creates a new dialogue
state cohtaining the application state éiven and a new simulator statve (created by
the call on the simul'ator in‘itstat)e’l oberation). Se;ondly. it invokes the pfocess
initialisation operation f.oxv' the.nrame‘cA! process. The "call-actipn" operation
constructs the name of the acti_on operation from a process or event name and calls

it to perform the state transformation. The operation is specified by

-89~

initdlg(proc-nm,pdb,udb) =

let dlg = { SS$-initstate(pdb(proc-nm]0,pdb), -
DB$-udb }
in call-action(proc-nm,dlq)
. User input is added to the state by:
editdlg(dlg,text) = dig ds {IR$} © { IN§-text }
and output is shown by

showdig(dlg) = dig{OUT$]"no output”

The bulk of the work is performed by the "nextdlg” operation. This uses the
simulator state and the event operations to control the dialogue. If the simulator
indicates no further progress is possible, the termination flag is set and no more is
done. Otherwise the conditicn operation for each of the possible events is evaluated
against the state and one chosen arbiirarily.: For the chosen event, its action
operation is invokéd; a new simulator state is created and the new version of the
dialogue state is returned. If no event is bossible. a special error event is returned.
This event has a system-defined action operation which is called to give an error
mess”age to the ué‘er. | | ' |

nextdlg(dlg) =

: letrec ss = simstate(dlqg)

(pdb,p,n,msqg) = ss
in
if process-end(p,n)
then dlg ® { STOP$-true } -
else let e = choose-event(n,dlq)
-in call-action(e,dlg) ® { SS$-nextstate(ss,e) }
As with the eventCSP simulator, the event manager can be run directly by the

user with various commands but in practice it is invoked by the SPI interpreter.

5.5 The SPI interpreter

As in ECS, the interpreter controls the dialogue by calling the underlying
operations and interpreting the dialogue state. After initialisation, a loop is entered
to repeatedly accept ény input, create a new version cf the state and show any
output generated as a result. This continues until the termination flag is set.

This component is currently written in Lisp and u;ed to replace the

-90-

Read-Eval-Print mechanism in the Lisp system. However, here we outline its
specification in SPI (omitting the less important event specifications for the sake of
space):
rep = (header - repl)
The repl process requests the parameters for the call to "initdlg” which is made in
the init event.
repl = (get-params -+ init -» rep2)
The rep2 process detects when the termination flag is set and offers a choice
between rerunning the shell or finishing.
rep2 = (dlg-end? -+ end-run -+ options »
(restart? »repl
[finish? » exit - skip)
0l not-dlg-end? »
(input? - in - rep3
" not-input? »rep3))
At this meta-level of description, we cannot fully specify events in eventISL since
the events for'the interpreter deal with the system ehtries in the dialogue state and

with the state as a whole. To describe the behaviour of the interpreter, therefore,

we have to allow ourselves the licence to use and set the dialogue state "dlg” in the

events.

event input? =
when dlg [IR$] false

prompt true

event in =

use mput in
dlg = nextdlg(edltdlg(dlg.xnput)) ® {IR$-»f alse}

event not-input? =
when not dlg{IR$]false
dig = nextdlg(dlg)
The rep3 process is responsible for g1v1ng output from the state 1f any is present

rep3 = (output? » out »rep2
0l not-output? -+ rep2)

event out =
out dlg[OUT$]<>
dlg dlg ds {OUTS}

-9]-

This interpreter is adequate for prototyping purposes, although clearly there
are many improvements that could be made (such as to allow direct, menu-driven
interaction with the evéntCSP simulator or single-stepping the event manager for .
debugging purposes, and so on). At this stage, such enhancements are unnecessary,
but they will have to be considered for a full production version of this tool.

One extension has been made to the system, however. This is based on the
concept of traces found in CSP [Hoare 85] and provides a way of monitoring the
events occurring in a dialogue as it is executed. This development is described in

the next section.

5.6 Traces

"A trace of the beiyhav‘io‘u.r "of a brocess{is a f'inifé seduence of symbols
rgcorsﬁng the events in which the process has engaged up to some moment of
Hme. (Hoare 85, p.41] |
For example, fox; the proc'ess |
P=(a+(bsPlc+P)
the traces of P include k' . |
<ababa> v>ahd”<a'cé'bac>
but not <aa> or <abé>
Hoaré uses traces to characterisé proéesseS‘ f oi' much of tﬁe mathematiéal
theoryfof CSP. In §PI. they can be used more practically as a means of monitoring
the progress qf a dialogue. - o b - |
Since part of the rationale for prototyping interaction is to allow the
prototype tb be subject to some fofm of trials and experiments with other designers
aﬁd potential ‘users. clearly evéluation of those experiments is necessary to provide
the feedback for ihe "nextv it;eration of the design. The exact nature of that
evaluation is the subject of much discussion in the human factors literature (see, for

example, [Bleser & Foley 82] [Good et al 84] [Lindquist 85]). Nevertheless, one

component of evaluation is widely accepted: the dialogue prototype should provide

~92-

some means of recording the activity of its users [Williges 84], perhaps for analysis
or "re-playing” the dialogue [Neal & Simons 83].

Traces in CSP offer a simple model for logging each event as it happens. In a
practical tool, of course, this would involve adding information to each entry in the
log, such as timestamps, but for now we simply extend SPI to record each event.

This extension requires no changes to the eventCSP or eventISL languages, but
to the eventCSP simulator and its state. The simulator state is extended to include
two new entries: a boolean flag indicating whether or not tracing is required and the
trace itself, which is defined as . -

. Tréce = seq(EventName).
so that SimState is now

tuple(processDb, Process, set(EventName), Msg, Boolean, Trace) -
The trace is maintained by the nextstate operation (§5.2.2) which is now specified as:
nextstate(ss,e) =
let (pdb,p,n,msg,trf,tr) = ss
in .
ifeen
then let p’ = step(p.e.pdb)
tr' = if trf then tro<e> else tr
in (pdb,p’,nextevents(p’,pdb), "OK- PICK ONE OF:",trf,tr")
else (pdb,p,n,"WRONG- PICK ONE OF:",trf,tr)

As far as the user interface to SPI is concerned, we introduce two
meta-commands to the SPI shell, one to switch tracing on and off and another to
extract the trace from the state.

We could also implement some of the CSP trace operations to provide a trace
analysis package:

trfA restricts trace tr to symbols in the set A
sintr determines whether or not s is a subsequence of tr
fitr yields the length of tr :
so that #(tr]A) gives the number of occurrences
in tr of symbols in A
six = #(s}{x}) to count the occurrences of symbol x
Together with the usual me too operations on sequences, these operations provide

some tools for analysing the events in a monitored dialogue. It would also be

possible to allow "replays” of a dialogue using trace files.

-93-

5.7 Summary

The combination of SPI and me too described so far allows a software designer

to specify many aspects of an interactive system: its functionality, the structure of
its interactions with users, and input and output formats. The current tools are -
adequate for the stated purpose, specifying and prototyping dialogues, but many
additions and improvements are immediately apparent. *

'~ The me too/Lisp-based implementation of SPI is, however, only a prototype,
limited in its functionality and in its performance. In developing SPI, we have
employed the me too method in an iterative process of designing a software
product. In this case, the product happens to be a tool for specification and
prototyping. Having specified and prototyped its design, and redesigned it in the ._
light of experience with the prototype, we are now in a posit.ion to implement a

production version. - The next chapter discusses such an implementation.

-94-

CHAPTER 6
TOWARDS A CONVENTIONAL IMPLEMENTATION

Thus far, we have sought to demonstrate the viability of the SPI languages for
dialogue specification by applying them to a variety of examples. This chapter
takes a different approach but with the same end in mind. In order to demonstrate
that the SPI architecture and languages provide a sufficiently complete design for
dialogue specification, we show how the system can be implemented by an
imperative language on a conventional system. The implementation described here
is not seen as the final version, but as the first steps in that direction.

The previous chapter showed how a SPI diaiogue specification is executed, and
described the various cohponents of the dialogue executor. Scme were specified in
me too (and are executable as a result) while others were written in Lisp. Together,
they act as a prototype of the dialogue executor. They make few concessions to
usability and show barely adequate performance, f ea'tures acceptable in a prototype
of the tools but not in the tools themselves. Implementing the languages and the
dialogue executor in C under UNIX enabled some of these issues to be addressed.

In this chapter we show one way in which SPI can be implemented as a set of
~ usable tools with acceptable performance, and discuss some of the implementation

decisions which were taken.

6.1 Initial implementation decisions .

Some early decisions affected much of the way in which the implementation
was tackled and so these are presented here before the individual components are
described.

The first decision was to follow the me too specifications for the eventCSP
simulator and event manager quite closely, retaining both the internal structure of
" the various operations and the overall architecture. Thus the simulator is

implemented independently of the event manager and, as in the prototype, can be

-95-

run separately to simulate the dialogue. The event manager calls functions in the
simulator, and is in turn called by the SPI interpreter.

| .In the same way that the computational structure of the prototype was
retained, so also many of the data structures were kept. In particular, sets were
considered a useful data type and so a module implementing sets (as linked lists) was
provided.

The major difference in data structure concerned the representation 4of o
eventCSP. In the prototype, the eventCSP specification was represented by a finite
function mapping process names to their definitions. In the implementation
described here, a single process definition is created, with pointers to processes
replacing process names, for reasons given in the next section. This change is

responsible for the majority of the differences between the prototype and the

implementatlon.

; .2 Processxng the eventCSP language

Dne method of 1mplement1ng eventCSP 1s to translate 1t mto a more
conventlonal language, This approach s taken in lmplementlng squeak" a lanouage
1ncorporat1ng many of the features of CSP [Cardellx & Plke 85] Amongst other “ |
thlngs. thls mvolves expandlng the parallel construct to allow all the 1nterleav1ngs of
events that thxs expresses. | \ ‘ -

| | Alternatxvely, eventCSP can be 1mplemented as an 1nterpreted data structure.

~asin the SPI prototype ThlS 1s not dlssmxlar to the extensxon to Hope proposed in
[While 86] whxch employs a data stmcture to control the use of Hope recursxon -
equatlons Here we use the eventCSP data structure to control the mvocatlon of |
_rp_ﬂg_g operatxons or C functions. This is the method employed in the current
version of SPL

In the me too prototype, the S-expression version of the eventCSP
specif 1catlon ltself acts as the data structure. Ina conventlonal language such as C,

the symbol mampulatlon mvolved in malntalnlng a textual version of the structure is

-96-

jnefficient and so it was decided to create a pointer version of the structure
instead. Where the prototype refers to called processes by name, the
implementation uses pointers to process definitions. An eventCSP specification is
"compiled” into this data structure, ready for use by the simulator. It can also be
saved in text form in a file so that it can be kept after compilation.

Some changes to the notation were made to ease implementation. Firstly, by
way of concession to the ASCII character set, the choice operator is denoted by °,
asinP " Q and arrows by -=>,asin(a->P).

Secondly, the process definitions should be fully bracketed. Thirdly, the
synchronisation events for the parallel operator have to be given explicitly. These
are the events common to both processes, so if we have

P=(a->b->P)
Q= (b->c->Q)

then the set of common events for P and Q is {b} and the parallel operator would be
written thus: '

(P || Q (b}) |

F1nally. the C restrictions on 1dent1f ier names have to be noted an 1dentif ier must
begin thh a letter but subsequent characters may be alphanumeric. Underscore (_)
is regardedas a letter. In 'most implententations of C, the signifiioant portion of an
xdentmer is restricted to the first few characters (8in C under PNX). Longer event
names may be used but the desxgner should be aware that they wxll be truncated by
the C compxler. |

Allowing for these\modif ications, the eventCSP specifications given in this
thesis have all been compiled and run on tne simulator. F‘or examole. the eventCSP

specification for decision tables becomes

dts = ((is-decision => (give-decision -> skip))

(not-decision ~> (ask-question -> (dser-answer -> dts)))

)
The syntax for the C version of eventISL is defined in Appendix 6.

-97-

| EventCSP has been implemented using LEX and YACC [Johnson & Lesk 78].
As each eventCSP construct is recognised by the YACC-generated parser, it is
treated as an internally-named process and entered in a temporary process
database. When the entire specification has been read, this process database is
either transformed into the required process definiticn or it is written to a text file
fdr later use. |
| Translating an eventCSP specification to its internal form and then to a

process definition is achieved with very acceptable performance.

6.3 . EventCSP simulator

This section outlines how the me too specification of the simulator was used to
guide its implementation. As in the prototype, the heart of the simulator is the pair
of functions, nextevents and step. The computation and structure of these functions
are the same as for their me too counterparts. Most differences arose from the
representation of processes as a single process definition rather than as a database
of named definitions. The implementation retains the benevolent non-determinism
of the prototype.

- The simulator maintains a state corresponding to the SimState of the
prototype. It no longer needs to keep a copy of the process database, so this
component of the state is omitted. The state is represented by global variables in
the simulator module. Tbe "current process definition" is actually a pointer into the
dynamically-extended process definit_ion. ' '

The control loop of the simulator again reflects that of the prototype, offering
the possible events, accepting a choice of event and stepping on to the next position
in the process definition. Termination is defined as being when the single event -
*TICK" is offered, ie. when a skip pro;:ess is encountered that is not part of an
enclosing parallel or sequence procéss. :

It can be seen from this outline of the simulator that the decision to follow the
prototype so closely made its implementation a straightforward matter. However,
although it was convenient and the result outperforms the prototype, it is not

-98-

space-efficient, building up extensions of the process definition during execution.
This is due to the change in process representation. - -

There are, of course, alternative implementation strategies. This particular
one was almost entirely determined by the early decisions described in §6.1.
Different decisions at that point would have resulted in a different implementation.
We regard this impiementation as one of a number of possible "refinements” of the
specification. It is not necessarily the best, but it has the merit of being
constructed quickly. In its own way, the implementation is a prototype, the next
step in the evolution from initial requirements ("a way of specifying and prototyping

hei”) to a fully-fledged set of tools capable of meeting those requirements.

6.4 Processing the eventISL language

In the prototype, eventISL is embedded in me too; that is, its constructs use
me too expressioﬁs and the’spe’cific;\ation is translated into me too operations. In the
implementation.veventISL is émbedaed in C, so that its cénstructs use C expressions
én;j ihe specification is translated into a C program. Although the approach is the
same, the.dif f érence§ betwgen a ‘functional specification language and an imperative
programming language mean that there are differences between the me too and C
versions of event.ISL. This section is concerned simply with outlining the changes to
the notation and the reasons for them. .

The syntax is defined in Appendix 7 and, to illustrate some of the differences,
the C version of the eventISL specification for the forms example is given in
Appendix 10. In §5.2.1, we listed the rules for translation that are employed in the
prototype; the corresponding rules for the implementation are given in Appendix 12.

Many. of the changes result from the fact that values can be held in ordinary
variables, using the normal assignment and access mechanisms provided in C.-
Consequently, using an explicit dialogue state to hold system and application objects
is no longer necessary. The system part of the state is declared as variables within
the event manager module. The application part is declared by the designer as C

data within the eventISL specification.

-99.

Being able to store and access data in the state directly in C means that we no
longer require explicit language constructs for this in eventISL. The use expression
becomes redundant, and the saving of values is achieved by assignment to . . -
application variables. This implies the need to incorporate C code into the body of
an event, since we now need to use C assignment statements. A new attribute, text,
has been added to allow this; an event may have more than one text attribute. It
should be noted that order is significant in an imperativ'e language and so, unlike the
me too version, the order in which attributes are given in an event becomes
significant.

The use of text attributes in an event also removes the need for the let

expression. The event

event user-reply =
use input, dt in -
let uq = get-q(input)
‘ua = get-a(input)
dt = prune(dt,uq,ua)
can be written as V
EVENT userreply -~
TEXT uq = get_g(input);
ua = get_a(input);
dt = prune(dt,uq,ua);
in the concrete syntax of the C version of eventISL.

Using variables to represent the state means we no longer have the option to
remove data from the state, since C does not allow variables to be "un-declared"
once declared. Instead, a specification must set a null value in a "removed” variable
to signal the non-availability of data\. |

As a result of these changes to the language, an eventISL specification now
only needs to use the basic attributes (when, out and prompt) together with the new
text attribute. Of these, the boolean-valued attributes are used in the same way as
before, being supplied now with a Soolean-valued C expression.

A number of op‘tions were possible for the out attribute, since C provides a

number of ways of constructing text output. The choice made was that the

- -100-

attribute should supply the text in the form réquired by the "printf" function, giving
a format and data to be output. This is an experimental decision, and open’ to
change as the language is used. In particular, we will require some mechanism to
allow the output of graphical as well as textual information.

A minor change, made necessary by the requirements of C, is that all
application functions must be declared as external functions before use.

As an example, we give the C version of one of the decision table
specifications in Fig.6.1.

DIALOGUE

/**N&*
*

* dts - eventISL specification
*

lli**/

{tinclude "dt.h"

extern unsigned check_decision();
extern char *question();

extern DT_PTR prune();

extern DT_PTR dt_example();

/l*

* declarations for decision tables
l'*/

DT PTR dt;

char qu(256];

PROCESS dts ~
TEXT dt = dt_example();

EVENT is_decision
WHEN check_decision(dt)

EVENT not_decision
WHEN !check_decision(dt)

EVENT give_decision -
OUT ™\ndecision: %s\n",dt->text

EVENT ask_question
TEXT strcpy(qu,(char *)question(dt));
PROMPT TRUE
OUT "\n%s ? ",qu
EVENT user_answer
TEXT dt = prune(dt,qu,input) ;

Fig.6.1. Decision table example - C version

-101-

An example of how the screen display Would appear during execution of this dialogue

is given in Fig.6.2

FPI-DER trace .
choose an option
run simulaﬁr
execute dialdgue
toggle trace flag
toggle log flag

> SPI

name of eventCSP file? dts.csp

Tracing begins Choose an event from:

is_decision

not_decision not_decision

ask_question ? not_decision

Choose an event from:
ask_question

? ask_question

Choose an event from:
user-reply

Fig.6.2 SPI screen display

The translation of eventISL is also implemented using LEX and YACC, and
follows a similar pattern to that in the prototype. Each event causes the creation of
two C functions - a condition function and an action function. Each attribute
causes a fragment of C to be added to the generated program as part of the
appropriate function. For ease of implementation, we impose the restriction that
the when attribute, if present, must precede all other attributes for that event.

Some additional C code is also required. Various system files are "included"

into the program and links to the system part of the state are established. At the

-102-

end of the program, the translator defines a function table which maps the event
names to their condition and action functions.
' The program generated by eventISL translation has to be compiled and linked
in with the SPI modules in the usual C fashion. Together with an eventCSP process
definition, it can be used by the event manager to prototy.pe dialogues.

This exercise showed how it is possible to embed eventISL in a language other
than me too. Such a development, though, has the potential .to change the syntax of
eventISL considerably. This depends on the nature of the host language so it might

be expected that eventISL embedded in Pascal, say, would not be vastly different

from the C version.

6.5 Event manager

Again, ;his module follows the structure of the prototyped version. Some -
differences arise from using permanent global variables to represent the system part
of the dialogue state, such as providing functions to accesé these variabies ,
appropriately. Secondly, holding the event-to-functions mapping in a function table
means that the new mechanisms were needed to find and call the appropriate
functiohs for an event. Traces are implemented differently, as described below, but
otherwise the code is a straightforward "hand-translation” of me too into C.. -

The trace of the execution of a process is no longer held as an entry in the
state. In a practical tool, we recbgnise that there are (at least) two different uses
for a trace of execution. First, for monitoring or feedback purpéses. we require a
time-stamped permanent log recording not only each event but, at a minimum, the
user input supﬁlied as well. On the other hand, for debugging, a dynamic display of
each event selected is probably sufficient. Accordingly, we distinguish between
logqing events (to a file) and tracing events (to a screen window). The screen shown
in Fig.6.2 includes the trace window.

Where, in the prototype, an event was added to the sequence held as the trace,

now calls are made to a logging function and a. tracing function which add the event

-103-

"to the log file and trace window respectively. In addition, when an input is received,
another logging function is called. Entries in the log and output of trace only occur
when their respective flags have been set by user commands. These commands, as

before, are processed by the SPI interpreter, which is described in the next section.

6.6 The SPI interpreter

In chapter 5, we gave an outline of how the dialogue state is interpreted in
order to allow prototyping of the specified dialogue. Although this module followed
the same structure (the Read-Eval-Print paradigm essentially), it also afforded -
some scope for experimenting with the uéer interface to SPI.

Part of the module implements the specified interpreter as one option which
may be selected by the user. Other options are to run the simulator, to toggle the
trace flag, to toggle the log flag or to quit. All options are presented in a pop-up
menu with selection by mouse button press. There are other possibilities which
could be imblemented. such as dynamic creation or modification of dialogue

specifications, but for now the front-end is adequate to demonstrate the tool.

6.7 Summary

This chapter shows how we have begun to address the implementation of SPI
using an imperative language in a conventional system. A number of questions are
raised by such a process, as is to be expected when moving from specification to
implementation. The choice of representation for data structures, improving
efficiency, maintaining a correspondence between specification and implementation,
considering the user interface in more detail: these are all traditional concerns at
this point in product development and all have been touched upon in the discussion
above.

Implementing SPI in this way has, as required, improved both its performance
and its presentation. These are subjective judgements, based on experience with
both the prototyped and implemented versions. The difference is marked, even if

not measured.

-104-

In one instance, namely traces, the implementation differed from the
specification, as practical experience was gained with SPI. These differences were
. anticipated in the specification, which stated what was required (a tracing
mechanism) and an approach (based on event names as selected) while
acknowledging that ﬁuore detail would be needed for the implementation.

As it stands, this implementation incorporates the functionality of the
prototype. Experienée with the system, though, has revealed that a number of
enhancements are desirable. These include dynamic creation and modification of
SPI specifications, the ability to single-step through a dialogue, the establishment of
libraries of interaction techniques and tools for using and 'analysing log files. These
are important features if SPI is to be of use in practical situations, but the present
implementation suffices to show that the SPI architecture has tackled the major
issues, that it can be implemented within a conventional system and that it has the

potential for use in product development.

-105-

.. CHAPTER 7
COMPARISONS AND CONCLUSIONS

This chapter reviews the work reported in this thesis. We begin by comparing
SPI with other techniques advocated for specifying and prototyping human-computer
dialogues. Before concluding the thesis with a summary of what has been achieved

with SPI, we suggest ways in which SPI could be used and extended.

7.1 Comparisons with other techniques

This section compares SPI with techniques advocated by other authors. We
select some of the significant features found in these other methods and examine
SPI in the light of them. |

Many of the methods can be regarded as data-based, describing all (or a
significant amount) of the dialogue in some data structure, perhaps augmented by
actions or with separate control of the sequencing, as with the frames of [Lafuente
& Gries 78]. This data structure may consist of such objects as BNF rules, state
transition diagrams, frame descriptions or interaction event tables. It is then
processed by an interpreter or is used to create an interpreter, thus providing a -
prototype of the dialogue described. SPI adopts a similar approach, but uses two
separate data structures: the dialogue state and that derived from the eventCSP -
specification.

The first of these, the dialogue state is def.ined by the actions of the events
and is processed by the SPI interpreter. Thus it is a dynamic description of the -
dialogue, subject to change in each cycle of the dialogue. In the other methods
mentioned, the data structure is static, its contents defined at the outset. An
advantage of the static aﬁproach is that the data structure describing the dialogue
can be used to drive on-line help facilities automatically. One system [Feyock 77]
uses the state transition diagrams to answer such questions as "what are valid

commands in the current state?” or "how can state X be reached from here?".

~-106-

In SPI, the second data structure is the representation of the eventCSP -
specification, which is static and could be used as the basis for similar analytic tools.

Several methods consider a dialogue to be made up of distinct step's. each step
having various pre-determined characteristics. Examples are state transition
diagrams, interaction events and DMS [Hartson et al 84). SPI takes a similar view of
the dialogue, considering each event as having the potential properties of input,
action (state transformation) and output.

In a production system, rules are specified to determine the actions taken in
the dialogue, depending on the contents of the working—.memory. If these actions
include modification of the rules themselves, then it is possible to develcp dialogues
which adapt to the behaviour of the user. The CONNECT state-transition-network
system [Alty & Brooks 85] offers a measure of adaptability by extending the
dialogue description to include production rules which can be us_,ed to modify the
network. SPI does not yet address this issue of adaptability.

Another advantage claimed for production systems is that they make it
possible to describe dialogues where there is no ordering or only a partial ordering
on events. Other notations offering such capabilities include statecharts, flow
expressions and the supervisory cells of SUPERMAN [Yunten & Hartson 85]. The
parallel operator in eventCSP allows SPI specifications to give a similar degree of
flexibility in dialogues. This is particularly useful in specifying concurrent input and
direct manipulation screen-based interfaces.

The ability to specify interactions by composing, or bringing together, smaller
specifications is evident in most of the methods. For some, such as not'ation based
on CLG [Browne et al 86] and GUIDE [Gray & Kilgoﬁr 85], it is fundamental to the
method since they are based on hierarchic stn)cturing: in GUIDE, the hierarchy is
based on the UNIX filing system. In other methods, like state transition networks, it
is a feature which as been added to enable the specification to be decomposed into
smaller, more comprehensible parts. For SPI, the unit of specification is the
process. These units can be combined as defined in the eventCSP language.

SPI shares with EPROS [Hekmatpour & Ince 86a] and UML/GUSL (Green 85]

-107-

the goal of being able to specify all aspects of an interactive system within a single
framework. SPI achieves this by ac?ding notation for dialogue control to me too; the
re!sult is that both the application alnd the dialogue can be specified within this
augmented me too method.

A number of techniques distingquish the two layers identified in SPI: the
structure and the content of a dialogue. Examples include the systems described in
(Christensen & Kreplin 84] and [Lafuente & Gries 78]. ADDS makes a similar -
division [Burns & Robinson 86], defining a dialogue using "scripts” and state
transformations. EventCSP is a more powerful notation than the scripts they
describe, however.

Finally, some methods, like state transitiori diagrams, are particularly
appropriate for conveying the sequence of events in a dialogue. CSP was chosen as
the basis for one of the SPI languages because it was found to share this property.
Abstracting from the details of the dialogue and expressing the resulting abstract
structure in evehtCSP clearly shows the possible sequences of events in the

dialogue. Moreover this structure can be explored interactively using the eventCSP

simulator.

7.2 Suggestions for further work
Comparing SPI with these other methods suggests a number of ways in which

this work might be extended.

7.2.1 Analysing dialogue specifications

Analysing formal specifications of dialogue is a useful technique for a number
of reasons. It can be a way of determining -whether or not the dialogue
specifications meet various guidelines [Bleser & Foley 82] [Anderson 86], finding
paths through the dialogue [Brown 82] [Alty 84}, estimating performance times [Card
et al 80] and predicting potential user reaction [Reisner 83] [Lindquist 85]). CSP is a
formal language that also lends itself to analysis and derivation of properties of

specifications [Goltz & Reisig 84] [Barringer et al 85] [Hoare 85]. It would be useful

-108-

to provide tools for analysing dialogue specifications written in eventCSP."

7.2.2 Extending event descriptions

As a language, eventISL contains only as much as is necessary for dialogue
speéification and prototyping. Its generality means that a dialogue designer is free
to make use of the dialogue state to control such aspects as help and
error-handling. However, explicitly coding them into the dialogue structure can
obscure the meaning of the specification. One solution is to add standard, built-in
ways of dealing with such issues, such as the "pervasive” states of [Olsen 84] or
"diversions” [Wartik & Pyster 83]. This sort of approach would lead to new
attributes for events, for example, help, errors, levels and escapes. This in turn
would mean enhancing the SPI interpreter to deal with the new attributes.

Such changes would also offer a way of introducing adaptability, since events
could operate in different modes, using different attributes, depending on the
required repr;sentation of the interfacé. o

Extending eventISL offers considerable scope for making dialogue .
specification easier, but.‘at the cost of complicating the very simple
Read-Eval-Print model of dialogue at the heart of SPL .' It remains to be seen how
~these conflicting requirements can best be balanced.

Other work primarily involving eventISL would be to experiment with
embedding it in other languages. Some work has started on transforming me too
specifications in Ada* [Clark 86}; it would be worth exploring how SPI could be set

into an Ada environment, especially since Ada offers concurrent execution of tasks.

7.2.3 Using the cbject-oriented paradigm
The combination of encapsulation and inheritance found in object-oriented

programming [Goldberg & Robson 83] [Cox 86] seems to offer a particularly

* Ada is a trademark of the U.S. Government-Ada Joint Program Office

-109-

powerful way of constructing systems. It is natural, therefore, to consider how
systems might be specified in this style as well. Already, work has begun which
extends me too in this direction [Minkowitz & Henderson 86]. In chapter 2, we saw -
that several ways of applying the object-oriented paradigm to dialogue specification
are being developed, and we would like to explore how it might be incorporated into

SPL.

7.2.4 Industrialising SPI

Based on experience with SPI, we believe it to be a useful, practical way of -
specifying and prototyping dialogues. Until tested in the world of industrial
software development, this is merely a subjective opinion. Logicélly, the next step
for SPI should be case studies based on more realistic use of the tools and techniques.

Experience with SPI has already suggested a number of improvements or
additions to the tools: ways of handling standard interaction techniques such as
menus and windows, structure editors for eventCSP and eventISL, process and event
libraries, a more flexible outer shell with better debugging and on-the-fly
maodification facilities,... and so on. Better facilities for input parsing along the
lines of Language-By-Example [Johnson 85] are also required. A debugger capable
of handling CSP would be an asset [de Francesco et‘al 85], as would the ability to
execute incomplete specifications [Zave & Schell 86]. - e

Ancther issue not yet fully explored is how best the SPI method and tools can
be used in the context of a software project. Assuming the ;separability gf the
interface from the functionality, SPI would seem to offer a useful communication-
tool between the two groups of designers involved. This needs to be tested in
practice, as well as the underlying assumption that the languages are simple enough

for use by human factors personnel unfamiliar with formal notations.

7.3 Conclusions
In SPI, we have presented an architecture for dialogues, an architecture |

| supported by languages and tools that enable designers to specify and prototype

-110-

human-computer dialogues.

This architecture separates the sequence of events in a dialogue from the
state transformational nature of those events. It was derived after experimentation
with both stream-based and state-based approaches. As a result, it was found that
this separation is a good way of defining d_ialogues. retaining both the aspects of
stru‘cture and effect but not allowing either to abscure the other. -

- The use of CSP gives us a formal, expressive, succinct and powerful notation
for specifying dialogue structure. CSP was, in many ways, a "natural” choice as a
notation for expressing dialogue structure. In its earlier form, it was used because
channels were an appropriate way to specify input and output streams in
stream-handling operations. In its later form, processes are specifically intended to
‘describe possible sequences of events, which is exactly what we required of a
notation for dialogue structure. -

There are other notations for such an event-based approach, eg. [Gorski 85]
(Avrunin et ;l 86); there are other notations for considering sequences of events, eq.
LUCID {Wadge & Ashcroft 85]; and there are other notations for expressing
concurrency, such as temporal logic [Manna & Pneuli 81], CCS [Milnér 85], NIL
{Strom & Yemini 85], Petri nets [Thiagarajan 85}, occam {INMQS 84] and other CSP
derivatives [Haase 85]). Any of these may well have proved suitable, but CSP had -
the advantages of familiarity, an easily implementable formal notation, our eérlier
experiments using streamCSP and the reported experience of others who found CSP
a useful design tool [Hull & McKeag 84].

In CSP. the parallel operator (||) offers considerable scope for innovation in
specifying dialogues. For example, we can easily specify concurrent input.
Alternatively, it can be used to separate and s&nchronise the activities of related

-processes, thus allowing the decomposition of a dialogue into sub-dialogues. Such
decomposition is illustrated in the specification of a syntax-directed editor in
[Alexander 86}, and is a well-known and much-advocated technique for managing

complexity in software development.

-111-

Because we have been concerned with the syntactic layer of dialogues, little
has been said about SPI's lexical capabilities. As stated in chapter 2, this layer
covers a number of issues, such as primitive device handling (mouse, screen,
keyboard, external sensor, ...), token representation and analysis, screen laycut and
interaction techniques (menus, forms, windows. dials, ...). It could be argued that
much of this level is best defined using a traditional programming language or a
specialised notation [Green 85], since it involves low-level device handling. It is

true that the me too version of SPI is not particularly appropriate for the very

detailed level of device handling, key presses, icon drawing etc, largely due to the
nature of me too, since it was not designed to deal with such issues. Embedding SPI
in C is more appropriate for this layer and offers the opportunity to handle all
aspects of user interface design.

SPI does not directly address layout issues, since much of this can be specified
in separate me too components and the remainder is conce;ned with device
handling. [Rowles 86] aescribes a functional layout language embedded in me too
which enables text-based screens to be designed and saved in a screen dictionary.

The me too-based implementation of SPI prdvides a specification and |
prototyping environment for dialogues. The combination of SPI and me too allows a
software designer to formally specify and prototype most aspects of an interactive
system:‘its functionality, the structure of its interactions with users, and input and
output formats. However, .t.his version of SPI can also be seen as a prototype in its
own right, limited in its functionality (as outlined in the previous section) and
particularly in its performance. Having followed the me too method in designing
SPI, the next step was to use the design to implement the tools in a more
conventional way. |

The first phase of this implementation has been completed, offering SPI under
UNIX and embedding eventISL in C. The resulting system, while not yet a

fully-fledged production-quality tool, has yielded much improved performance and

presentation, and now offers an implementation environment for dialogues.

-112-

Implementing SPI in this way has demonstrated that there are no major difficulties
left to be resolved.

In summary, SPI has achieved its original goals; its languages are formal and
executable, and it offers an integrated technique for specifying and prototyping -
human-computer dialogues, supported by the necessary tools. Work on related areas
remains, but we believe the SPI's architecture and languages are more than an

adequate foundation for that work.

-113-

APPENDIX 1

me too notation

In chapter 2, the me too method for specification and rapid prototyping was
introduced. This appendix describes the me too notation that is used throughout the
thesis so that the reader can understand the specifications that are given. This
appendix is intended only as'v an outline of me too; further details can be found in the

me too manual [Henderson et al 85).

Al.l LispKit notation
Since me too is embedded in the functional language LispKit [Henderson 80],

all the LispKit notation is imported into me too. : This section gives a summary of

LispKit notation available in me too.

arithmetic: Xty Xx-y x*y x/y xremy
boolean: bl and b2 | |
') bl or b2
not b
el=e2
x<=y (less than or equal)
cbnditional: if b then el else e2
lists: list(a,b,d) creates the list (a b d)
. head(l) extracts the first list element
tail(l) returns all but the first list
' element '
cons(x,]) adds element x at the start of
o list |
append(l1,12) concatenates lists 11 and 12

funbction applicatioh;
- fnlel,....ek) ‘
returns value of thelfunction named fn appiied to the varguments ei.
Application can bek nested to any depth. For example, if
 double(x) = x * 2 |
then

double(5) = 10
double(double(1+2)) = 12

-114-

local declarations:

let nl =el
: ;{I.<=ek
e

returns the value of e, evaluated in a context enriched by binding the names
ni to the values ei
letrecnl = el

;1.|.< = ek
e

recursive version of the abaove, so that the ni may be used vyithin the

expressions ei.
The functionality (or type) of a function is given by

f:TIx T2 x.0x Tk =>Tkel

where f is a function with arquments of type T1,..,Tk and a result of

type Tk+l. .
There are strict and lazy versions of LispKit available. In most me too
specifications, the evaluation strategy is immaterial; however, it should be noted

that streamCSP relies on lazy evaluation of the input and output channels in order

to handle input/pu_tput processing.

Al.2 Sets |
enumeration: {e‘l. vees €K }“

‘with {} or @ for the empty set
basic set operations:

sl Us2 union

slNs2 - intersection
sl -2 ' difference
eEs : member

| slCs2 ; - subset
cardinality (size): cfa_rd 3 o
selection: ' the S
selects the member of the singleton set S. The result is undefined if S has

more than one member.

-115-

distributed union: union S
where § is a set of sets. For example, if A = (121, 8 = (2.5}, C = (3,1}
and S = {A.,B,C}
then
“ . union S = {5,1,3,2}
set construction: {e]lneS}
constructs a new set by taking each element from the set S, naming it n and
building a new element using e (where e is an expression involving n). "n « S” is
called a generator ciause.
If Sis {1,2,3}, then { x+1 | x « S }is {2,3,4}
-"{e|lneS;b}.
as above, except that the elements of S are tested using the predicate'(or
»filter” b before being used to build the new set. Elements not satisfying the
predicate are not used. "n « S ; b" is also a generator clause. -
With S as above, { x+] | x «S; x<3 }is {2,3}
- {e]gl;..agk}
the most general form of set construction, where each gi is a generator

clause (with or without filter).

reduction: - - n/eS
collapses the set S into a single element with the same type as e, -
using binary function with name n. If S is the set { el, ..., ek } then
- n/e S z=n(el,...n(ek,e)...)
For example, -
+/0 {3.4,5} =12
U/Q0 = union
An object is declared to be a éét by’
obj = set(T)

where T is some type. All elements of a set are of the same type.

Al.3 Relations
A binary relation is a set of pairs. Since it is a set, all the set operations given

in the previous section may be used with binary relations.

-116-

In what follows, we assume that x = {(a,1), (b,2), (a,3), (c,4) }
enumeration: = {(el,e2), ..., (ek,ek+1) }.
relation operations:
domr
_returns the set of elements in the domain of r, so dom x = {a,b,c}
mnr
returns the set of elements in the range of r, so ran x = {1,2,3,4}
rdrS |
returns a new relation, containing pairs from r whose domain element occurs
in tﬁe sét S, S0 X d_r; {a} = {(a,1), (a,3) } B | |
ies o .
returns a ‘new 'rélatibn. containing pairs from r whose domain element does not
occur in the set S, so x ds {a} = {(b,2), (c,4) }
An object is declared to be a binary relation by
obj =rel(T1,T2)

where domain elements are of type T1 and range elements are of type T2.

Al.4 Finite functions
A finit‘e function is a binary relation with uniqué entries in the domain, that is,
if F is a finite function then |

card F = card dom F -

In VDM terminology, this type is known as a "map”. Since it is a binary relation, all

the operations given in the previous section may be used with finite functions.

enumeration: { else2, ..., eksek+] }

E.onétmction: {n+e|neS}
constructs a finite function by taking each element from S (the domain),
naming it n and compbtihg the corresponding range element as e (where e
is an expréssion involving n). |
Thusif Sis {1.5,7}
then {non+l |meS} s {12, 546, 78}

-117-

{n-e | neS;bl |
as above. but the fllter bis apphed to the elements in S.
application: f[e] 7
if the value of e appears in the domam of f, the result is the correspondmg
range element. Otherwxse the result is undef med
Iff= {l-bred. 7-blue, 2-+green}

f{7] = blue
f(6] is undefined

f[el]e2
as above. except that if el does not occur in the domaxn of f, the default

expressxon e2is returned as the result of the application. With f as above,

f [l]purple red
f [6]purple purple

override: . fl © 12

creates a new finite function whose domain contains the domain elements of
| fl and f2. If an element occurs in the domalns of both f1 and f2, the new

range element is taken from 2 (hence f2 ovemdes f 1) Otherw1se the new

finite functxon contams all the paxrs in f1 together with all the pairs in f2.

If { is as above and ' = { 3+pink, T-yellow } then '

fof ={ l-»red; 2-green, 3-pink, 7+yellow }
f* ® f = { l-red, 2+green, 3-pink, 7-blue }

An object is declared to be of type finite function by
obj = ff(T1,T2)

where domain elements are of type Tl and range elements are of type T2.

Al.S - Sequences

enumeration: <el, «.,ek>
with empty sequence < or nil

or { 19el, ..., k+ek }
since sequences can be regarded as finite functions mapping integers (the

position in the sequence) to sequence elements,

-118-

concatenation (append): ql * q2
returns a vsequence starting with all the elements of ql followed by all the
elements of q2. | -

cons: t‘:ons(e,q)
feturns a géquence-wit‘h first element e followed by the elements of gq.

sequence operations:

Head(d)

tail(q) oo

len q length of sequence

elems q set of elements in sequence
inds q indices of sequence

q(x] selects element at position x

If We define Q = <c,é,b.d;f.a> then

head(Q) = c
. tail(@) = <a,b,d.f,a>
len@=56

elems Q = {a,f,d,b,c}
inds Q = {1,2,3,4,5,6}
Qs}="1
override: q ® { xl-el, ..., xnsen}
returns a sequence which is the same as q, except that expressions ei are
now in positions xi. With Q as defined above,
Q @ { 3-x, 14y} = ¢y,a,x,d,f,a> -
distributed concatenation: conc Q
where ® is a sequence of sequences.
If Q = <<a,b>, <b,d>, <c>>
then
- conc Q@ = <a,b,b,d,c>
construction: o <elneqg>
constructs a néw sequénce by taking each element from the sequence q,
naming it n and building a new element e (where e is an expression involving
n). As with set construction, "neq" is called a generator clause.
" For example, < x*x|xe<2,-1,3>> is <4,1,9
<elneqib>
as above, except that only the elements of q which satisfy the predicate (or

"filter”) b are used to build the new sequence. "n «q; b" is also a generator

=119~

clause (with filter).
<e | gl; s gk >
is the general form of sequence:construction. where each gi is a t‘lgenerator
clause (with or without filter).
An object is declared to be a sequence by - |
obj = seq(T)

where T is some type. All elements of a sequence are of the same type.

Al.6 Tuples | |

A tuple is én ordered group of elements which may be of different types.
enumeration: (el;..:..'ek) ‘

tdnétructs a k-tuple

selection: first(t) | second(t)

third(t) - fourth(t)

fifth(t)
| ére the only opefatiohé availaSle fof 'tuples m M. They éélect tﬁe
appropriate ehtry of a tuple. |
patterns: (nl,...,nk)=e
where e evaluates to a k-tuble. This is an alternative (non-standard) notation
for selecting and naming components of a tuple.
If x is the tuple (1, fred, <3,7,2>) and a local declaration is made

letrec (3,b,c) =x
inE

this is equivalent to

let a = first(x)

b = second(x)
¢ = third(x)
inE
Thus, in E, a=1, b=fred and c=<3,7,2>.
An object is declared to be a tuple by
obj = tuple(T1,...,Tk)

where the Ti may be different types.

-120-

Al.7 Constants
Strictly, all constants used in me too specifications should be quoted, ég.
F{"red"]
but where the intention is clear, constants are not quoted. As a further aid, all

atoms given entirely in uppercase are deemed to be constants.

Al.8 Types

In addition to the individual type declarations shown above, an object may be
declared as being of type T1 or of type T2 by
obj=TI1UTZ
eg Flag=Int U Boolean -
Composite types can be declared as
‘ | " obj=TI1 X T2
so that an object pf this typér haé a component of type Tl and a com‘pdnent'of type

T2.

-12]-

APPENDIX 2

Specification of logon example

This component supplies operations to support the checking of users and passwords

for a logon dialogue.

Objects

The system maintains a table of users and their passwords. This is represented as a
finite function, mapping each user name to the appropriate password:

"~ UserDb = ff(UserName,Password)
UserName, Password = Atom

Operations
Two operatlons are supphed The first checks that the given user name is registered

in the table; the second checks the supphed password agamst that i in the table.

registered : UserDb x UserName -> Boolean
validpwd : UserDb x UserName x Password -> Boolean -

where the dperations are defined as follows:

registered(udb,u) = u € dom(udb)
- validpwd(udb,u,pw) = pw = udb(u]

-122-

APPENDIX 3

Specification of decision table example

This component supplies operations on a decision table containing questions, answers

and decisions.

Objects

The table is represented by an n-ary tree, with questions in composite nodes, and
. branches labelled with possible answers.

Tree = Decision U ff(Question,f f(Answer.Tree))
Decision, Question, Answer = Atom
QA-pair = tuple(Question,Answer)

Operations

Is-decision checks to see if the tree has been reduced to a single node, ie. a
decision. The next question to be asked is returned by the operation question and
prune reduces the tree according to the answer given to the question.

is-decision : Tree -> Boolean

get-q : QA-pair -> Question

get-a : QA-pair -> Answer

question : Tree -> Question

prune : Tree x Question x Answer -> Tree

is-decision (t) = atom(t)
get-q(q&a) =f irst(q&a)
get-a(q&a) = second(q&a)
question (t) = the dom(t)

prune (t,q,a) =
let pruned = { (a',prune(t’,q,a)) | (a’.,t’) « t{question(t)] }
in
if is-decision(t)
then t
else if q = question(t)
then t(q](a]
else { question(t)»pruned }

-123-

APPENDIX 4
. Rewrite rules for streamCSP

StreamCSP is implemented as a language embedded in me too. It is translated
by a preprocessor from its S-expression form into standard me too which can then
be compiled as usual and run as a prototype. The preprocessor systematically.
rewrites' terms in the source notation using a set of rewrite rules until no more rules
can be applied {Finn 34]. This appendix describes the rewrite rules used by the ‘
preprocessor f pr st.relarhCS'.lD; ihey are based on rules originally devised by Simon
Jones of thé Univérsity of Stirling. o

As indicated by the example in §3.1, the translation transforms the process
function from ‘havving fpnctiopality. ‘

(user—stateh-> uéex“'-‘-.st'a‘te)
to having the f unctionality |

* “(user-state -=> (in -> (out x user-state x in)))
ie. - (user-state ~> runnable-process)
as required by the ProtoKit “run" pommand which is used to execute interactive
prototypes. ’ _

In the rules that fpllrJW. eac)h is in the form of a 3-list:
(set-of-bound-variables | .
term-to-be-written
result-after-rewriting)

The first DODEFS ruleb specifiés the first term to be rewritten, then the
remaining DDDEFS rules deal with indi‘vidual processes, rewriting them as me too
operations with the appropriate functipnélity. Non-process functions are left
uncﬁanged. The final rule enables internal operations to be addep tp the |
specif ication at the end.

((el)(processes e. l‘) (letrec e DODEFS 1))

((pid iv 1 body) -

(DODEFS ((pid process ivbody). 1))

((pid lambda iv (lambda (kb) (DOBQDY body)))
DODEFS 1))

-124-

((id otherl)
(DODEFS ((id .other).1))
((id . other) DODEFS 1))

(0 (DODEFS NIL) ADDFUNI)
As a result. of the DODEFS rule, each process function body is flagged by DOBODY.
The DOBODY rules recognise and expand the streamCSP notation. Note that the
rule for input (c?x->P) forces the evaluation of each input as it is requested in

order to ensure the correct interleaving of input and output.

((cxp)
(DOBODY(C"x-op))
(let :
(let(lf(atom x) the-rest the-—rest) :
(the-rest DOBODY p)) - L
(xheadkb) - =
(kbtailkb))) -

(cep)
(DOBODY (cte-p))
(letrec
(list (cons e ®os) *ov *is)
((*os *ov *is) DOBODY p)))
((oe) (DOBODY (return oe)) (list nil oe kb))
when calling another'process. only the input state is explicitly given. This rule adds
the implicit input stream (kb) to the call,

(Cpid' ie) 7
(DOBODY (pid’' . ie))
((pid*.ie) kb))
Sequential composition is implemented by an internal operation called SEQ (see
below). This rule translates the ; construct into a call on SEQ, adding the input
stream parameter as for a process call.

((pid] pid2 ie)
(DOBODY ((pid] ; pid2).ie))
(((SEQ pidl pid2).ie) kb))

The following rules carry the DOBODY translations through the normal me too
constructs.
((cplp2)

(DOBODY (if cpl p2
1)(

))
(if c(DOBODY p DOBODY p2)))

=125~

((pl)
(DOBODY (letp.1))
(let (DOBODY p). 1))

((pl)
© (DOBODY (letrecp.l))
(letreq(DOBODYp)fl))

The rules below add the SEQ operation required for sequential composition and a
simple pattern-matching operation.

(NIL
ADDFUNI
((SEQ lambda (P Q)
(lambda (st)
(lambda (kb))
(letrec
: (list (append outl out2) st2 kb2)
((outl stl kbl)(Pst)kb)
((out2st2 kb2)(Qstl)kbl)))))
. ADDFUN2))"

(NIL
ADDFUN2
((matches
lambda
(xt)
(if
(atomt)
(or(eqt(quote ANYTHING))(egxt))
(if
(atom x) false
(if \
(eq(headx)(headt))
(eq (length (tail X))(length(tailt)))
false))))))

-126-

APPENDIX §

Specification of ECS-state interpreter

Objects

ECS-state (see chabiér 3)
in and out are the input and output streams respectively

Operations

The interpretér is i'mplrementred by a group of me too stream-handling operations.
The outermost operation has type

ECS : AppState —> (in —> (cut x AppState x in))
The remaining processes are: .

ecsl : ECS~state —> (in —> (out x ECS-state x in)) .
~ecs2 : ECS-state = (in —> (out x ECS-State x in))

ECS(asXkb) = ecsl(start(as))(kb)

ecsl(st)(kb) =
if st{TERMINATE]f alse
then list(nil,st[DB],kb)
else if st[INPUT-REQD]false
' then ‘
let inp = head(kb) , .
kb = tail(kb) »

- in ecs2(edit(st ds {INPUT REQD}.lnp))(kb)

else ecs2(st)(kb)

ecs2(st)(kb) =
let newst = compute(st)
in _
f OUTPUTEdom(newst) ~
then let (out,newst’,kb') =
ecsl(newst ds {OUTPUT]})Xkb)
in hst(show(newst)‘out newst’, kb’)
else ecsl(newst)(kb) -

show(st) = st[OUTPUT]O
edit(st,i) = st ® INPUT-i}

-127-

APPENDIX 6

Syntax definitions for eventCSP

The first section gives the definition of the abstract syntax given in chapter
3. The following sections define the concrete syntax by showing how each construct
from the abstract syntax is represented. Note that there is no explicit

representation for the "abort” process.

A6.1 Abstract syntax
A process is defined as follows:

if e, el,...,en are events and P, Pl,...,Pn are processes, then the following
are also processes

(e »P) - (prefix) engage in event e then

. behave like P

(el »Pl - (choice) engage in el ,

0 e2-»P2 - then behave like P1, or engage in e2

a... and behave like P2, etc

Jen-Pn)

Pl ;P2 - (sequence) Pl followed by P2 if P1
terminates

Pl || P2 - (parallel) Pl in parallel with P2

l1:P - (label) label P with 1

skip " - successful termination

abort - no further interaction

A6.2 Concrete syntax for me too
This version adopts the S-expression form used in the concrete syntax of me

too. For ease of reading, this definition shows constant strings thus: ‘seq

(e=>P) (‘eveP)

PIQ (taltP Q)

P:Q ('seqP Q)

P (‘callP)

PIIQ ('parPQ(SETxyz))
synchronised on {x,y,Z}

1:P ("label 1 P)

skip 'skip

Pname = Q (Pname Q)

-128-

A6.2 Concrete syntax for C

e+ P) (e -> P)

(

PIQ ’ o (Pt R)

P:Q P;Q)

Pl Q (PllQ{xyz})
synchronised on {x,y,z}

1:P (s P)

skip skip

Pname = Q o : : Pname = Q

-129-

- "APPENDIX 7

Syntax definitions for eventISL

The first section below defines_ thev‘abstract s&ntax ‘f or eventISL. EventISL is
an embedded language and so its concrete syntaitisheavily influenced by its host
language. Thus far it has been embedded in me too and C The remaining sections
in the appendxx give the concrete syntax for these versxons.

In the following sectxons. the syntax is defxned usmg the following notation:

<XYZ> XYZ names anon-terminal’ symb-ol

{(XYZhH XYZ repeated one or more times
{XYZ}* XYZ repeated none or more times
(XYZ] XYZ is optlonal |

ABC | XYZ ABC or XYZ

A7.l- Abstract syntax

Dialogue 1= <ProcessOp> {<Event0p>}*
ProcessOp =groces s <ProcessName> = <DIgExpr>

EventOp event <EventName> <DIgExpr>
DlgExpr u= <UseExpr> | <AttrExpr>
UseExpr ::= use {UseVarh in <AttrExpr>
AttrExpr = <LetExpr> | <AttrList>
© LetExpr = let {LetPair}+ in <AttrExpr>
LetPair = <LetVar> = <Expr>
AttrList = 1= empty | <AttrList> <Attr>
Attr . .. 13= when <BoolExp>| ~
= prompt <BoolExp> |
out <Expr> |

retain {<KApprvVar>}+ |
remove {<KRemVar>}+ |
; - <AppVar> = <Expr>
Expr any valid expression in host language
LetVar, UseVar, AppVar, RemVar, EventName, ProcessName
any valld 1dent1f1er in host language

Note that thxs does not rule out the use of when ina process specxf ication; however

any condxtlon operatxon generated is not used.

-130-

A7.2 Concrete syntax for me too
Thxs versxon adopts the S—expressmn f orm used in the concrete syntax of me

too. For ease of reading, this definition shows constant. strings thus: ‘event

Dialogue = <ProcessOp> . <EVentOpLi§t>)

ProcessOp := ('process <ProcessName> <DIgExpr>)
EventOplist ::= NIL | (<EventOp> . <EventOpList>)
EventOp 1= ('event <EventName> <DIgExpr>)
DlgExpr ' = <UserExpr> | <AttrExpr>

UseExpr s:= ('use <UseVarList> <AttrExpr>)
UseVarlist u:i= NIL | (<UseVar> . <UseVarlList>)
AttrExpr Cu=<LetExpr> | ('attrs . <AttrList>)

- LetExpr = ('let <LetPairList> <AttrExpr>)
LetPairList = NIL | (<L.etPair>. <LetPairList>)
LetPair 0= (<LetVar> <Expr>)

AttrList 2= NIL | (KAtLr> . <Attrlist>)
Attr 1= ('when <BoolExp>) |
('prompt <BoolExp>) |
(‘out <Expr>) |
(‘retain <AppVarlist>) |
(‘remove <AppVarlist>)|~
(<AppVar> <Expr>)
AppVarlList = NIL | (<AppVar> . <AppVarbList>)

For example,
('event user-answer
('use (dt qu input)

(‘attrs
(dt (prune dt qu input)))))

or
(‘event ask-question
('use (dt)
('let
(‘attrs
('out qu)
('retainqu))
(qu question dt))))

A7.3 Concrete syntax for C

This version of eventISL is strongly influenced by the imperative nature of C.
The most significant difference reflects the fact that all application-specific data is
declared as variables in the eventISL specification. As a result none of the state

manipulation expressions are included in this version of the language.

-131-

Dialogue

ProcessOp
EventOp

DlgExpr

When

Text
Chunk

::= DIALOGUE <Text> <ProcessOp>
{<EventOp>}* -

::= PROCESS <ProcessName> <DIlgExpr>

si= EVENT <EventName> [<When>] <DIgExpr>

1:= PROMPT <Text> <DIgExpr> |

OUT <Text> <DIlgExpr> |

TEXT <Text> <DIgExpr> | nothing
HES WHEN <Text>

::= {Chunk}+
the words "input”, "db”, or any other text except
one of the keywords above.

In other words. any unrecognised text. (xn the nght places) is ignored by the syntax

and assumed to be valid C code. For example.

EVENT user_answer
TEXT dt = prune(dt,qu,input) ;

EVENT ask_question :
TEXT strepy(qu, (char *)questlon(dt)).
PROMPT TRUE :
OUT \n%s ? ",qu

-132-

APPENDIX 8
Specification of SCHOLAR example

SCHOLAR is a CAI system described in [Carbonnell 70]. The original system
exhibited a number of distinctive features, of which two are modelled by this
component. One is the style of interaction: Carbonnell coined the phrase "mixed
initiative” to describe this style‘. where either partner (student or system) can take
the initiative and ask questions of the other. The other is that questions are derived
from inf_ormati.on in the database, instead of being stored directly. This
specification describes a simplified version of this feature, in that it does not
include any inferehce mechanism which would allow the system to deduce, for

example, that if Lima is the capital of Peru and Peru is in South America, then Lima

is in South America.

A8.1 SCHOLAR

Objects

ScholarDb = FDM-database
UserInp, Answer = seq(Atom)"
UserQu = tuple({QU},Entity, TableName) U tuple({QU} Entlty)
SchQu = tuple(Entity,TableName,{?})
Reply = { RIGHT, WRONG }
.and aconstant Null Qu=<
For definitions of FDM-database, Entity and TébleName, see A8.3 below

(specification of FDM).

Operations |
Initdb and register set up and update (respectively) a table in the database which

records questions that have already been asked. Pickq constructs a question from
the information in the database, avoiding questions already used; a question is made
up from an entry and the name of a table in which it appears, eg "Bolivia

has-capital?”

-133-

initdb : ScholarDb ~> ScholarDb

register : ScholarDb x SchQu => ScholarDb

pickq : ScholarDb —> SchQu
The student may élsb ask questions. These have the general form

QU paraml param2

where péraml is mandakto‘ry and names an entity. param2 is optional and names an
attribute‘(ié. a TableName). If the full format is used, a single answer is given; if
the short form is used, all informatioh‘ about the entity is returned; for example

*QU Peru has-capital” yields "Lima" .

"QU Bolivia” " yields "is-a country;

is-in South America”

The next three operations all deal with user questions: is-question checks for the QU
keyword. query answers the questibn. Using all-about if the short question form is
given.

is-question : UserInp —> Boolean

query : ScholarDb x UserQu —> Answer .

all-about : ScholarDb x Entity -> set(Answer)
when a student answersua‘ d‘ﬁest‘ion. éhyéck compafes the answer with the facts in the
database. | o

_ check : ScholarDb x SchQu x Usethp -> Réply

The SCHOLAR database holds both the subject information and some

meta-information for system control. }The system maintains a dictionary of tables
in the CONTAINS table, flagging subject tables as "T" and meta-tables as "MT",
The TYPE table is a dictionary of entities and their types. The ASKED table notes
which questiqns have been asked for each entry in the subject information.
init(db) = dbadd(dbdel(db,ASKED),

ASKED, .
" fnadds(@,dom(get(db,TYPE)),2))

register (db,q) = dbadd(db,
| ASKED,
fnadd(get(db,ASKED),first(q),second(q)))

pickq (db) =
let ETpairs = {(e,t,?) | e « used(db);
, t « tables-in(db);
e € dom(get(db,t)).
and t ¢ asked-about(db,e) }

-134-

if ETpairs=0
then "No more questions”
else any(ETpairs)

where any(s) = head(s)

is-question (ui) = not atom(ui) and first(ui) = QU
query (db,uq) =
if length(uq) = 2

then all-about(db.second(uq))
else apply(get(db,third(uq)), {second(uq)})

all—about (db, e) ': { <e t.apply(get(db,t),{e})> |
" t « tables-in(db); e € dom(get(db, t)) }

check (db,g,a)= ° .
let SCHans = apply(get(db 2(q)) {l(q)})
in if a € SCHans then RIGHT else WRONG

A8.2 ‘Subsxdlary operations o
tables-in : ScholarDb —> set(TableName)

used : ScholarDb -> set(Entity) -
asked-about ScholarDb X Entuy -> set(TableName)

tables—m (db) = apply(get(db CONTAINS) {T})

used (db) = union { dom(get(db t)) | t « tables-in(db) }

asked-about (db,e) = apply(get(db,ASKED),{e})

For descriptions of get, dbadd, dbdel, dom, apply. fnadds and fnadd, see section

below.

A8.3 Specification of FOM

This component provides some operations associated with the Fenctional Data
Model [Gray 84]). The database can be regarded as a collection of named tables. We
give only the me too model of FDM; ie. the objects and an informal description of

the operations.

Objects

FDM-database = ff(TableName,Table)
Table = ff(Index,EntitySet)

Index = Entity

EntitySet = set(Entity)

TableName, Entity = atom

-135-

Operations

Get retrieves a named table from the database. ’Apply returns all entities in the
rows indicated by the set of index entities given tb it.

get : FDM-database x TableName —-> Table
apply : Table x set(Entity) —> set(Entity) .

Dom returns all entities in the first columq of a table; ran returns all entities
appearing in the second column of a table.

dom : Table => set(Entity)
ran : Table —> set(Entity)

The database can be updated by adding or deleting named tables.

- dbadd : FDM-database x TableName x Table = FDM-database
dbdel : FDM~-database x TableName —> FDM-database

The next operations cfeaté a single row. thén‘édd or remove its contents from the
table. For addition, thlS may create a new row (1f the index entity was not already
present m the first column) or add to the EnntySet of an existing row. For removal,
removing the last member of an EntitySet in a row deletes the row from the table

fnadd Table X Enuty X Enuty —> Table
fndel : Table x Entity x Entity —=> Table

These operations are similar but create a number of rows (the cross-product of the
two sets supplied) instead of just one.

fnadds : Table x set(Entity) x set(Entity) —> Table
fndels : Table x set(Entity) x set(Entity) => Table

-136-

APPENDIX 9

Specification of forms example

A form is a sequence of single {ield entries, each of which can solicit one input
from the user. The formv structure allows the designer to specify default values,
help tex;s. mandatory fields and inter-field dependencies. These are among a

number of facilities recommended in [Gehani 83].

Objects ‘
FormDb - = ff(FormName,Form)
Form = seq(Field)
Field = tuple(fn:FieldName,fa:FieldAttr)

FieldAttr = tuple(def:FieldValue,val:FieldValue,
i ' pos:Position,help:Text,
requ:Boolean,depd:set(FieldName))
FieldValue, FormName, FieldName = Text
Position = tuple(x:Int,y:nt) ‘
Text = seq(Atom)
For compactness of specifica‘tion.‘ we have associated identifiers with each element
in a tuple. These act as "selectors”, so that an element ina tuple is extracted as
this-form.fn
or any-field.fa.pos.x
to yield the form name and x coordinate, respectively. This is not standard me too

notation, but does make the specification shorter and easier to read [Clark 86].

Constants

xstart, ystart : define an initial position on the screen

Operations

Creating fields .
mkfield : FieldName x FieldAttr -5 Field
mkfield(fn,fa) = list(fn,fa)

Extracting form and field n’ames i

forms : FormDb —> set(FormName)
fields : Form —> seq(FieldName)

-137-

~ forms(fdb) = dom(fdb)
fxelds(f) =< fldfn|fldef>

Database query and update .

get—form Forme X FormName -> Form
update : FormDb x FormName x Form —> FormDb
form-exists : FormDb x FormName —> Boolean

get-form(fdb,fb) = fdb{fn]
update(fdb,fn,f)=fdb ® {fn->f}
form-exists(fdb,fn) = fn & forms(fdb)

Updating and checkmg forms

clear : Form -> Form

remove-field : seq(Field) x Field —> seq(Field)
enter : Form x FieldName x FieldValue —> Form
in-form : Form x FieldName -> Boolean
defaults : Form —> Form

not-complete : Form => seq(Field)

newvalue : Field x FieldValue —> Field

clear(f) < newvalue(fld, o) | fld e« f >

remove-field(flds,fld) = - .~
< fld’ | fld* « flds; fld.fn # fld'. fn>

enter(f,fdn,fdv) =
< if fdn = fld.fn then newvalue(fld,fdv)
else fid|fldef>

- in-form(f,fdn) = fdn € elems fields(f)

defaults(f) = o = S
< if fld.fa.def # © and fld.fa.val= &
th en newvalue(fld,f1d.fa. def)

else fld |fldef>

not-complete(f) =
let given = elems < fld.fn | fld « f;
fld.fa.val=< >
in
<fld | fld « f; fld.fawval = O
and (fld.fa.requ
or given (N fld.fa.depd # l2)) >

newvalue(fld,v) =
let a = fld.fa
i_r_‘_ .
mkfield(fld.fn,list(a.def,v,a.pos,a.help,a.requ,a.depd))

Extracting field attributes

get-name : Field -> FieldName
get-value : Field => FieldValue
get-help : Field => Text

get-name(fld) = fld.fn

get-value(fld) = fld.fa.val
get-help(fld) = fld.fa.help

-138-

Displaying forms

form-menu : FormDb —> Text =
display-form : FormDb x FormName -> Text
display-title : FormName -> Text
display-fields : Form —> Text

display-field : Field —> Text

vstart : Field —> Posmon v

form—menu(fdb) =
let m = sort(forms(fdb))
in
< "Forms available:” > * conc < nl() “ opt | opt «m >

display-form(fdb,fn) =

let f = get-form(fdb,fn)

in pretty(dlsplay—tltle(fn) " dlsplay-f 1elds(f))
display-title(fn) '—_' { curs(start.ys;art). f n’ >
dxsplay-fxelds(f) = conc < dlsplay-fleld(f ld) [fldef>

dlsplay—fxeld(fld)
let start = vstart(fld)
in
< curs(xstart+fld.f a.pos.x, ystart+fld.fa.pos.y),
fld,fn. curs(start.x.start.y). fld.fa.val >

vstart(fld) ‘ ‘
hst(xstart+fld fa.pos. x+length(explode(fld fn)),
ystart+fld.fa.pos. y) o
External operations
The forms component imports operatiohs from a screen component. One allows the

cursor to be positioned; the other creates a "newline™:

“ - curs : Int x Int => Text
nl:—=> Text

-159-

APPENDIX 10

~ Specification of forms dialogue

This appendix gives the full specification of the forms dialogue, including the

C version.

Al0.l EventCSP specxfxcatmn

forms = (menu -+ . ,
(valid-form » get-f orm - fxll-m forms
{l repeat? -» get-form - fill-in ; forms
Ql inv-form - error -» forms)

“fill-in = (fields-left? - position - old-value
- position -+ get-input »
(help? + fill-in
0 skip? = fill-in
0 cancel? » forms
g undo? -+ fill-in
Ql save? + check-form
0 value? -» update - fill-in)
ﬂ not-fields-left? » check-form)

: check form = (complete? - save-form - skip
0 not-complete? - fill-in)

A.10.2 EventISL specification - me too version

The AppState is:

entry index type used for

thisf : FormName name of current form
lastf FormName name of previous form
f S Form current form

flds seq(Field) fields to process

fld _ Field current field

done - . seq(Field) fields processed

fdb FormDb form database

The events are:

event menu = '
use fdb in
out f orm-menu(f db)

prompt true

-140-

event valid-form =
use fdb, input in
when not rnatches(mput "REPEAT™)
and form-exists(fdb,input)
thisf = input
lastf = thisf
f = clear(get-form(fdb,input))

event inv-form =
use fdb, input in
when not (matches(input,"REPEAT")
or form-exists(fdb,input))

event repeat? = e

use fdb, input, lastf in
when matches(input,"REPEAT™) and form-exists(fdb,lastf)
thisf = lastf
f = get-form(fdb, lastf)

event get-—form =

use fdb, f, thisf in PR
out display-form(fdb, thle) :
done = & S
flds = f1elds(f)

event error= .
out error: no such form

eve nt flelds—left? =,
use flds in

when flds £
f1d = head(flds)

event not-fields-lef t? =
use use flds in
when flds = <>

event posmon =
use fld in
out vstart(fld)

event old-value =
use fld in
out get-value(fld)

|

event get-input =
prompt true

event skip? =

use flds, done, fld, input in
when matches(input, "SKIP")
flds = tail(flds)
done = <fld> “ done

event cancel? =

use mput in
. when “matches(input "CANCEL")
flds= o
done = O

-141-

" event undo? =

- use flds, done, input in
when matches(input,"UNDQO")
flds = head(done) * flds
done = tail(done)

event save? =

use input in .
when matches(input,”"SAVE™)
done =

event help? =
" use input,fld in -
when matches(input,"HELP")
out get-help(fld)

event value? =
use input in
when not (matches(input,"CANCEL")
or matches(input,"UNDQC")
or matches(input,"SAVE")
or matches(input,"SKIP")
or matches(input,"HELP"))

- event update =
use f, flds, done, fld, input in
f = enter(f, get-name(fld). input)
done = <fld> “ done
flds = remove-field(flds,fld)

"event complete? =
use f in
when not-complete(f) =

event not-complete? =
use use f in
let to-do = not-complete(f)
in
when not to-do <>
out error: some required fields not given"
flds = to-do o
done=

event save-form =
use use fdb, f i in

T flds= O

done =<

fdb = update(fdb, f)

Al10.3 EventISL specification - C version

DIALOGUE

/'l*l*
»

* forms - eventISL épecificatiori a
»
Iﬁnll/

#include "form.h"”

-142-

/%% axternals to patterns component **x*/
extern unsigned matches();

/*** axternals to forms component **¥*/
extern FDB_PTR form_example();
extern FDB_PTR update();

extern unsigned exists_form();
extern char *form_menu();

extern char *display_form();
extern char *vstart();

extern FLDS PTR get_form():
extern FLDS PTR enter();

extern FLDS_PTR clear();

extern FLDS_PTR fields();

extern FLDS_PTR not_complete();
extern FLDS_PTR join();

extern FLDS_PTR copy_field();
extern FLDS_PTR remove_field();

/%% axternals to screen component *%**/

extern char *curs();
extern char *cls();

/*** declarations for forms application ***/
static char this_form([25],
. last_form(25);
static FDB_PTR fdb;
static FLDS PTR f, flds, fld, done.
static char *str, *ctrl; »

PROCESS forms
TEXT fdb = form_example();

EVENT menu .) IR
TEXT str= form menu(fdb).

ctrl=cls(y = - '
OUT "%s\n\n%s\nType name of form: ",ctrl,str
PROMPT TRUE . L
TEXT free(str); free(ctrl)

EVENT valid_form
WHEN (!matches(input,”"REPEAT") && exists_form(fdb,input))

TEXT strepy(last_form,this_form);
strepy(this_form,input);
f = clear(get f orm(fdb 1nput)).

EVENT inv_ form o
WHEN '(matches(mput "REPEAT") || exists_form(fdb,input))

EVENT is-repeat
WHEN matches(input, "REPEAT") & & exists form(fdb last_form)

TEXT strcpy(this_form,last_form);
f = get_form(fld,this_form);

EVENT error
QUT "\nerror: can't find form %s\n" .mput

-143-

EVENT get form
TEXT str = display form(fdb thxs _form); -
QUT "%s”,str
TEXT free(str);
TEXT done = NULL; flds = flelds(f),

EVENT fields_ left
WHEN flds '= NULL - -
TEXT fld = copy_ fxeld(flds—>fn.f1ds—>fa NULL).

EVENT not_ fxelds left
WHEN flds == NULL

EVENT posmon :
QUT "%s” .vstart(fld)

EVENT old_value
QUT "%s",(fld—>fa)->value

EVENT get_input
PROMPT TRUE

EVENT is_help
WHEN matches(input*"HELP™)

OUT "%s\n",(fld->fa}->help

EVENT is_skip
WHEN matches(input,"SKIP")
TEXT flds = remove_field(flds,fld->fn);
done = join(fld,done);

EVENT is_undo

WHEN matches(input,”"UNDQG"™)

TEXT /* take the last field done ... */
fld = copy_field(done—>fn,done->fa,NULL);
/* ... put it on the "fields-to-do" list ... */
flds = join(fld,flds);
/* ... and take it off the "done” list */
done = remove_field(done,done->fn);

EVENT is_save
WHEN matches(input,"SAVE™)
TEXT done = NULL;

EVENT is_cancel
WHEN matches(input,"CANCEL")
TEXT flds = done = NULL;

EVENT is_value
WHEN !(matches(input,"HELP") || matches(input,"SKIP") ||
matches(input,"UNDQO") || matches(input,"SAVE") ||
matches(input,"CANCEL"))

EVENT update
TEXT enter(fld,input);
done = join(fld,done);
flds = remove_field(flds,fld->fn);

-144-

EVENT completed
WHEN not_complete(f) == NULL A
TEXT free_names(done); free_names(flds);

EVENT not_completed
WHEN not_complete(f) != NULL
TEXT flds = not complete(f).
. done = NULL; :
OUT "™\nerror: some mandatory flelds omxtted\n

EVENT save-form
'~ TEXT str = display_form(this_form K
ctrl = curs(0,40);
OUT "%s%sForm saved\n\n",str.ctrl
TEXT fdb = update(fdb,this_form,f);
© - free(str);
free(ctrl);

~145-

APPENDIX 11

Translatxng eventISL to me too
This appendix formally defines the rules which were given in chapter 5.
All.l EventISL syntax

The rules are defined in terms of abstract syntax for eventISL, which we

repeat here for reference.

Dialogue = 1= <ProcessOp> {<EventOp>}* '
ProcessOp 2= process <ProcessName> = <DIgExpr>
EventOp ::= event <EventName> = <DIgExpr>
DlgE'xbr. = <UseExpr> | <AttrExpr>
UseExpr = use {UseVar}+ in <AttrExpr>
“AttrExpr T - u=<letExpr> | < AttrList>
-~ LetExpr u= let {LetPair}+ in <AttrExpr>
LetPair 1= <LetVar> = <Expr>
~ AttrList - - u=empty | <AttrList> <Attr> . -
- Attr ::= when <BoolExp> |
prompt <BoolExp> |
out <Expr>| -

retain {<AppVar>}+ |
remove {KRemVar>}+ |
: , <AppVar> = <Expr> ‘
Expr -) any valid expression in host language
LetVar, UseVar. AppVar, RemVar, EventName, ProcessName
' any vahd identifier in host language

We make use of the same syntactxc notatmn, ie. {}* and {}+, in the rules to

allow concise expression of rules for repeated constructs.

Al ly.2 Translation rules

- This section describes that translation for each construct, using the following

notation:

if e represents some eventISL text, then
Cle]

represents its translation as required for the condition operation;
Ale]

represents its translation as required for the action operation.

C[<Dialogue>] = {C[<EventOp>] }*
A[<Dialogue>] = A[<ProcessOp>] { A[<EventOp>] }*
A[<ProcessOp>] = A[<EventOp>] '

-146-

C[<EventOp>]
A[<EventOp>]

<EventName>-C(dlg) = C[<DIgExpr>]
<EventName>-A(dlg) = A[<DIgExpr>]

The use expression is translated in the same way for both types of operation:

Cl<UseExpr>] = let { C{<UseVar>] }* in C[<AttrExpr>]
A[<UseExpr>] = let { A[<UseVar>] }* in A[KALttrExpr>]
C[<UseVar>] = <UseVar> = dlg[“<UseVar>"]
A[<UseVar>] - = - C{<UseVar>]

The translation of a let expi'ession only affects the <AttrExpr> it contains:

let {<Le£Pa1r> } in C[<AttrExpr>]
et { <LetPa1r> K in A[<AttrExpr>]

Cl<LetExpr>]
A[<LetExpr>]

The special names for entnes in the system part of the state are treated in the same
way for both types of operation.

C[mput] = Alinput] = IN$
C{db] =A[db] = DB$

The next group of rules all deal w1th the translation of an <AttrList>:

true

Clempty] o
- dlg

Alempty]

C[<At&List> when <BoolExp>] C<AttrList>] and <BoolExp>

A[<AttrList> when <BoolExp>] A[<AttrList>]
C[<AttrList> grorhgt <BoolExp>] Cl<AttrList>]

A[<AttrList> prompt <BoolExp>] A[<AttrList>] & { IR$-» <BoolExp> }
Cl<AttrList>]

Cl<AttrList> out <Expr>] |
A[<AttrList>] ® { OUT$~+ <Expr>}

A[<AttrList> out <Expr>]

C[<AttrList> retain {<AppVar>}*]
A[<AttrList> retain {<AppVar>}*]

Cl<AttrList>]
A[<AttrList>] ® { {A[<AppVar>]}* }

"

A[<AppVar>] "<AppVar>" + <AppVar>

C[<AttrList> remove {<RemVar>}*]
A[<AttrList> remove {<RemVar>}*]

Cl<AttrList>]
A[<AttrList>] ds { {A[<RemVar>]}* }

"<RemVar>"

A[<RemVar>]

C[<AttrList> <AppVar> = <Expr>]
A[<AttrList> <AppVar> = <Expr>]

C[<AttrList>)
A[<AttrList>] ® { "<AppVar>"+ <Expr> }

~-147-

APPENDIX 12
Translating eventISL to C

We use the following notation:
if e represents some eventISL text, then
Te]
represents its translation. -

The translation rules are illustrative in nature, showing the effects of translating

each construct by example, rather than formally in terms of the syntax:

T{PROCESS ex E] o= unsigned A_ex() { T[E] }
TIEVENT ex e -
WHEND . ~ R
E] SRR = unsigned C_ex()

B { TIWHEN bl }
pnsigned A_ex() {T(E]}

T[EVENT ex

E] = unsigned A_ex() {T[E]}
T[WHEN b] = ~retumnb;
T[PROMPT b] = prompt =b ;
T[OUT txt] = ~ sprintf(_out,txt) ;
TITEXT txt] = txt :
T{input] = _input
T[db] = db

-148-

APPENDIX 13

Specification of the event manager

This appendix gives specifications of subsidiary and external operations called
by the eyeht manager. The main operations (initdlg, editdlg, nextdlg and showdlg) are

specified in chapter 5.

Subsidiary operations

choose-event : set(EventName) x DlgState -> EventName
call-cond : EventName x DlgState —> Boolean
call-action : Name x DlgState —> DigState

where Name = ProcessName U EventName
GenName = { Name-A, Name-C }

choose-event(evs,dlg) =
let poss = { ev | ev « evs; call-cond(ev,dlg) }
in if poss = @ then ABORT
else arb(poss)
where "arb” arbitrarily selects one member from a set
call-action (nm,dlg) = APPLY (ev-act(nm), (dlq))
call-cond (ev, dlg) = APPLY (ev-cond(ev), (dlqg))
where "APPLY" is a Lisp function, applying the function labelled by the name given

in the first argument to the parameter list given in the second argument

ev-act : Name => GenName

ev-cond : EventName => GenName
add-suffix : Name x seq(Char) —> GenName
expand-name : seq(Atom) —> seq(Char)

ev-act(nm) = add-suffix(nm, "-A")
ev—conﬁ(en) = add-suffix(en,”-C")
add-suffix(n,suf) =
let n' = if atom(n) then < n, suf >
else < head(n), ":", tail(n), suf >

in
implode (expand-name(n'))

~-149-

expand-name(n) =
ifn=<Cthenn
, else explode(head(n)) expand—name(taxl(n))
where 1mplode and “explode” are primitive operat.ions that pack and unpack

characters in an atom.

External operatxon

The event manager calls one operatxons provxded by the eventCSP sxmulator. to

determme when the eventCSP process bemg executed has finished.
procees—end : set(E\)entName) - Boblean ‘

process-end (evs) =
evs={}or(cardevs=1] and TICK € evs)

~150-

REFERENCES

Abramsky S, Sykes R (1985)
“SECD-m: a virtual machine for applicative programming” .
in Functional Programming L anquages and Computer Architecture (LNCS
201) pp.81-98
ed. J.P.Jouannaud; publ. Spnnger-Verlag. Berlin

Alexander H (1989)
*Formal specification and rapid prototypmg techmques for
human-computer interaction”
Technical Report TR.26
Dept. of Computing Science, University of Stirling

Alexander H (1986) i
"SPI: specifying and prototypmg interaction”
submltted to International Journal of Man-Machine Studies

Alty J L (1984) » : ‘ ‘
*Use of path algebras in an interactive adaptive dialogue system”

in INTERACT 84] pp.351-354

Alty J L, Brooks A (1985)
*Microtechnology and user—fnendly systems - the CONNECT dialogue
executor”
Research Report MMIGR. 139
Henot-WatUStrathclyde MMI Unit, University of Strathclyde

Alvey Directorate (1984a) '
Alvey MMI Strategx. publ IEE London

Alvey Du’ectorate (l984b) ' ‘
Alvey Programme Annual Report 1984, publ. IEE, London

Anderson 5 0 (1985)
- “Specification and implementation of user interfaces: Example: a file

browser” .
Draft Report
Dept. of Computer Scxence. Heriot-Watt University

Anderson SO (1986)
"Provmg properties of 1nteract1ve systems”

in [HCI 86] pp.402-416

Avrunin G S, Dillon L K, Wileden J C, Riddle W E (1986)
"Constrained expressions: adding analysis capabllxtles to design methods for

concurrent software systems”
IEEE Transactions on Software Engineering SE~12, 2 pp.278-291

Backus J (1978)
*"Can programmlng be hberated from the von Neumann style?”
Communication of the ACM 21, 8 pp.613-641

Badre A N (1984)
"Designing transitionality into the user-computer interface”
in [Salvendy 84] pp.27-34

-151-

Bailey R(1985) =~
*A HOPE tutorial®

Byte 10, 8 pp. .235- -258

Balbin I, Poole P C, Stuart C J (1985)
-~ *On the specification and manipulation of forms”
in System Description Methodologies pp.239-252
ed. D.Teichroew. G.David

Barker P G (1984)
N *MICROTEXT - a new dialogue programming language for microcomputers”
Journal of Mlcrocomputer Applications 7, 2 pp 167-188

Bamnger H, Kuxper R, Pneuli A (1985)
»A compositional temporal approach to a CSP-like language”

" in Formal Models in Programming pp.207-227
ed. E Neuhold G Chroust

Belkhouche B, Urban J E (1984)
- "An executable specification language for abstract data types"

in Software Enqmeean' Practlce and Experience pp.66-70
ed. E.Girard

Benbasat I, Wand Y (1984)
»A structured approach to designing human-computer dialogues®

International Journal of Man-Machine Studies 21, 2 pp.105-126

Berry D M, Wing J (1985) ’
*Specifying and prototypmg some thoughts on why they are successful”

in [Ehrig et al 85] pp.117-128

Bewley W L, Roberts T L, Schroit P, Verplank W L (1983)
*Human factors testing in the design of Xerox's 8010 ‘Star’ ofhce
workstation”
in [CHI 83] pp.72-77

Bjorner D, Jones C B (1982) : :
Formal Specification & Software Development

publ. North-Holland, Amsterdam

Bleser T, Foley J D (1982)
*Towards specxfyxng and evaluating the human factors of user-computer
interfaces”
in [Gaithersburg 82] pp.309-314

Blum B I(1983)
*Still more about rapxd prototyping”
ACM SIGSOFT Software Enqineering Notes 8 3 pp. 9-11

Bobrow D, Kaplan R, Kay M, Norman D, Thompson H, W1nograd T (1977)
*GUS - a frame-driven dialogue system”
Artificial Intelliqence 8, 2 pp.155-174

Boehm B, Gray T E, Seewaldt T (1984)
"Prototyping vs. specifying: a multi-project experiment”
IEEE Transactions on Software Engineering SE-10, 3 pp.290-303

-152-

Bonet R, Kung A (1984) - .
*Structuring into subsystems the experience of a prototyping
approach”
ACM SIGSOFT Software Engineering Notes 9, 5 pp.23-27

van den Bos J, Plasmeijer M J, Hartel P H (1983)
"Input-output tools a language f acxhty for interactive and real-time
systems”

IEEE Transactlons on Software Engmeenng SE-9, 3 pp.247-259

Botting R J (1985) ' -
*On prototypes vs. mockups vSs. breadboards
ACM SIGSOF'T Software Engineering Notes 10, 1 p.18

Bourmque R Treu S (1985) , .
"Specification and 1mplementatxon of vanable. personahzed graphxcal

interfaces”
; Internatxonal Joumal of Man-Machine Studxes 22, 6 pp.663-684

Brooks F B (1989) . o .
The Mythlcal Man—Month :
publ. Addlson-Wesley. Massachusetts

Brown J W (1982) »
*Controlling the complexxty of menu networks

Commumcatxons of the ACM 25, 7 pp.412-418

Browne D P, Sharrat B D Norman M A (1986)
*The formal specification of adaptive user interf aces using CLG"

in [CHI 86] pPpP.256-260

Bruce E (1986)
»A formal specification of a 'Prospector -type expert. system shell”

Technical Report SETC/IN/213
STL NorthWest, Kidsgrove

Budde R, Kuhlenkamp K, Mathiassen L, Zullighoven H - editors (1984)
Approaches to Prototyping
publ. Springer-Verlag, Berlin

Bumms A, Robmson J(1986) -
"ADDS - a dialogue development system for the Ada programmmg
language”
International Journal of Man-Machine Studies 24, 2 pp.153-170

Bury K (1984) '
*The iterative development of usable computer interfaces”

in INTERACT 84] pp.743-1750

Buxton W, Lamb M R, Sherman D, Smith K C (1983)
"Towards a comprehensive user interface management system”
ACM Computer Graphics 17, 3 pp.35-42

Carbonnell J R (1970)
"Al in CAIL an artificial intelligence approach to computer-aided

instruction”
IEEE Transactions on Man-Machine Systems MMS-11, 4 pp.190-202

~153-

Card S K, Moran T P, Newell A (1980)
"The keystroke-level model for user performance time with interactive

systems”
Communications of the ACM 23, 7 pp.396-410

Card S K, Moran T P, Newell A (1983)
The Psycholoqy of Human-Computer Interaction
publ. Lawrence Erlbaum Associates, New Jersey

Cardelli L, Pike R (1985) ,
"Squeak - a lanqguage for communicating with mice”
ACM Computer Graphics 19, 3 pp.199-204

Carey T T, Mason R E A(1983)
*"Information systems prototyping: techniques, tools. and methodologies”

INFOR 21, 3 pp.177-191

Carey T (1984) ‘ '
*Dialogue handling with user workstations”

in INTERACT 84] pp.127-134

Casey B E, Dasarathy B (1982)
*Modelling and validating the man-machine interface”
Software - Practice and Experience 12, 6 pp.557-569

CHI (1985) ' ‘
Proceedings Conference on Human Factors in Computer Systems (CHI'BB)

ed. A.Janda; publ. North-Holland, Amsterdam

CHI (1985) S
Proceedings Conference on Human Factors in Computer Systems II (CHI'89)

ed. L.Borman, W.Curtis; publ. North-Holland, Amsterdam

CHI(1986) , ‘ '
Proceedings Conference on Human Factors in Computer Systems I

(CHI'86)
publ. ACM, New York

Chi U H (1985) ‘
*Formal specification of user interfaces: a comparison and evaluation of

four axiomatic approaches”
IEEE Transactions on Software Engineering 11, 8 pp 671-688

Christensen N, Kreplin K (1984)
"Prototyping of user interfaces"”
in [Budde et al 84] pp.59-67

Clark R G (1986)
"Ada programs from me too specmcatlons

Technical Report TR.30
- Department of Computing Science, University of Stirling

Cockton G (1986)
*Where do we draw the line?”

in [HCI 86} pp.417-432

Cohen D, Swartout W, Balzer R (1982)
"Using symbolic execution to characterize behaviour”
in [Squires 82] pp.25-32

-154~

Cook S (1986) -
"Modelhng generic user—mterf aces w1th f unctwnal programs

in [HCI 86] pp.369-385

Cox B J (1986) :
Object-oriented programming -
publ. Addison+Welsey. Massachusetts

Damodaran L, Eason K D (1983)
"Procedures for user involvement and support”
in [Sime & Coombs 83] pp.373-388

Darlington J (1981)
"An experimental program transformation and synthesis"

Artificial Intelligence 16, 16, 1 pp.1-46

Darlington J, Henderson P, Turner D A - editors (1982)
Functional Progqramming and its Applications: an advanced course
publ. Cambridge University Press, Cambridge

Darlington J (1985) ‘
*Program transform nation”

yte 10, 8 pp 201-214

Davis G B (1982)
. "Strategies for information requirements determination”

IBM Systems Journal 21, 1 pp.4-30

Dearnley P A, Mayhew Pl (1983)
: *In favour of system prototypes and their integration into the systems
development cycle” :
The Computer Journal 26, 1 pp 36-42

Degano P, Sandewall E - editors (1983)
Inteorated Interactive Computing Systems
publ North-Holland, Amsterdam

Denert E (1977) :
“Specxftcatlon and desxgn of dlalogue systems with state diagrams”

in Proceedings International Computing Symposxum 1977 pp.417-424
ed. D.Ribbens - (‘ .
publ. North-Holland, Amsterdam B

Denvir B T, Harwood W T, Jackson M I, Wray M J - editors (1985)
The Analysis of Concurrent Systems (LNCS 207)
publ. Springer-Verlag, Berlin

Dijkstra E W (1975)
*Guarded commands, non-determinacy and formal derivation of programs®
Communications of the ACM 18, 8 pp.453-457

Dix A, Runciman C (1985)
. "Abstract models of interactive systems"
in [HCI 85] pp.13-22

Duce D A - editor (1984)
Distributed Computing Systems Programme
publ. Peter Peregrinus Ltd, London

-155-

Duce D A, Fielding E V C (1984)
*Better understanding through formal specxflcatlon
Technical Report RAL-84-128; Rutherford-Appleton Laboratory

Durham A (198%) *
*User-shaped sof tware

Computing - the magazme July 25 pp.5- 6

Durrett J, Stimmel (1982)
"A production-system model of human-computer interaction”

in [Gaxthersburg 82] pp.393 -399

Edmonds E A (1982)
. *"The man-computer interface: a note on concepts and design”
International Journal of Man-Machine Studies 16, 3 pp.231-236

Edmonds E A Guest. S (1984)
; *The SYNICS2 user interface manager”
in [INTERACT 84] pp. 53-56 '

Ehrig H, Floyd C. Nivat M, Thatcher J - editors (1985)
Formal Methods and Software Development
(LNCS 186; Proceedings TAPSOFT Conference, vol.2)
publ. Springer-Verlag, Berlin

Feather M S (1982) - ..
*"Mappings for rapid prototypmg
in [Squxres 82] pp.l7-24

Feldman G (1982)
. "Functional specifications of a text editor”
in Proceedings ACM Conference on Lisp and Functional Programming

Lanquages pp.37-46"

Feldman M B, Rogers G T (1982)
"Towards the design and development of style—mdependent interactive
systems
m [Galthersburgh 82] pp.lll -116

Feyock S (1977) '
"Transition dxagram—based CAI/HELP systems
Intematxonal Journal of Man-Machine Studies 9, 4 pp.339-413

Fxnn5(1984) : Lo B : :
"The CONVRULES productlon rule compxler - a user manual”

Internal note -
Dept. of Computmg Science, University of Stirling

Floyd J D. van Dam A (1982) ‘ ,
Fundamentals of Interactive Computer Graphics
publ. Addison-Wesley, Massachusetts

de Francesca N, Latella D, Vaglini G (1985)
"An interactive debugger for a concurrent language”

in Proceedings 8th Int. Conference on Software Engmeermg pp.320-325
publ. IEEE .

Frohlich D M, Crossfield L P, Gilbert G N (1985)

"Requirements for an intelligent form-filling interface”
in [HCI 85] pp.102-116

-156-

Gaines B R, Shaw M L G (1984)
The Art of Computer Conversation :
publ. Prentice-Hall International, New Jersey

Gaines B R, Shaw M L G (1986b)
"Foundations of dialog engineering - the development of hci. (Part)"
International Journal of Man-Machine Studies 24, 2 pp.101-123

i

Gaithersburg (1982)
Proceedings Conference on Human Factors in Computer Systems
Gaithersburg, Maryland, USA
publ. ACM, New York

Galitz W 0 (1985)
A handbook of screen format design
publ. QED, Massachusetts

Gehani N H(1983) =
"High-level form definition in office information systems"”

The Computer Journal 26, 1 pp.52-59

Gilb T, Weinberg G M (1977)
Humanized Input -
publ. Winth;op :

Goguen J A, Tardo J J (1979) ,
»An introduction to 0BJ: a language for writing and testing formal
algebraic program specifications”
in Proceedings Specification of Reliable Software pp.170-189

Goguen J A, Meseguér J(1982)
- "Rapid prototyping in the OBJ executable specification language*
in [Squires 82] pp.75-84

Goguen J A (1984)
*Parameterized programming”
IEEE Transactions on Software Enqgineerinqg SE-10, 5 pp.528-543

Goldberg A, Robson D (1983)

~Smalltaik-80: the lanquage and its implementation
publ. Addison-Wesley, Massachusetts

Goltz U, Reisig W (1984)
*CSP-programs as nets with individual tokens”
in Advances in Petri Nets (LNCS 188) pp.169-196
ed G.Rozenberg; publ. Springer-Verlag, Berlin

Gomaa H, Scott D B (1981)
"Prototyping as a tool in the specification of user requirements”
in Proceedings Sth IEEE Int. Conference on Software Engineering
pp.333-342 -
publ. IEEE, New York

Gomaa H (1983)
"The impact of rapid prototyping on specifying user requirements”
ACM SIGSOFT Software Engineering Notes 8, 2 pp.17-28

-157-

Good M (1981)
*Etude and the folklore of user interface desxgn
ACM SIGPLAN Notices 16, 6 pp.34-43

Good M, Whiteside J, Wixon S, Jones S (1984)
*Building a user-derived interface”
Commumcatxons of the ACM 27, 10 pp. 1032—1043

Gorski J (1985)
"A technique for formal specxf 1cat10n of parallel systems based on
message-passing semantics”
in 3rd Int. Workshop on Software Specification & Design pp.77-82

Gray P M D (1984)
Logic, Algebra and Databases ;
publ. Ellis Horwood Limited, Chichester

Gray P, Kllgour A (1985)
*GUIDE - a UNIX~based dialogue design system”
m [HCI BS] pp. 148 160

Green M (1985) :
*The design of graphxcal user interfaces”
Technical Report CSRI-170 (PhD Thesis)
Computer Science Research Institute
University of Toronto, Canada

Gregory S T (1984)
"On prototypes vs. mockups”
ACM, SIGSOFT Software Enqmeermq Notes 9, S p.l3

Guedj R A, ten Hagen P J W, Hopgood F R A Tucker H A Duce D A - edltors (1980)
Methodology of Interaction
publ. North-Holland, Amsterdam

Guest S P (1982)
"The use of software tools for dialogue design”
International Journal of Man-Machine Studies 16, 3 pp.263-285

Guttag J V, Horning J J (1978)
"The algebraic specification of abstract data types”

Acta Informatlca 10 1 pp.27-52 "

GuttagJ Vv, Horning J J (1980)
*Formal specification as a design tool”
in Proceedings Symposium on Principles of Proqrammmg L.anquaqes
pp.251-261; publ. ACM, New York

GuttagJ Vv, Hormng J J, Wing J (1982)
"Some notes on putting formal specifications to productive use”
Science of Computer Programming 2, 1 pp53-58

Haase V H (1989)
*Modular design of real-time systems”
in System Description Methodologies pp.91-102
ed. D.Teichroew, G.David ‘

-158-

ten Hagen P J W, Derksen J (1985)
*Parallel input and feedback in dialogue cells”
in (Pfaff 85] pp.109-124

Hagglund S, Tibell R (1983)
*Multi-style dialogues and control independence in interactive software”
in The Psychology of Computer Use PP. 171 189
ed. TR G Greenet al°

Hammond N, Jorgensen A, Macl.ean A, Barnard P, Long J (1983)
*Design practice and mterf ace usability: evidence from interviews with
designers”
in [CHI 83] pp. 40-—44

Hanau P R, Lenorovitz D R (1980)
"Prototyping and simulation tools for user/computer dialogue description”
ACM Computer Graphics 14, 3 pp.271-278

Harel D (1986)
' »*Statecharts: a vxsual approach to ccmplex systems”

Technical Report CS86-02
. Dept. of Applied Mathematics, Weizmann Institute of Science, Israel

Hartson H R, Johnson D H, Ehrich R W (1984)
*A human-computer dialogue management system”™
_ in[INTERACT 84] pp.379-383

Hartson H R - editor (1985)
Advances in Human-Computer Interaction (vol.l)
publ. Ablex Publishing Corp., New Jersey

Hayes P J (1985)
*Executable interface definitions using form-based interface abstractions”

in [Hartson 85] pp.161- 190

HCI(1985) :
People and Computers Designing the Interface, (Proceedings HCI'85)

~ ed. P.Johnson, S.Cook
publ Cambndge Umver51ty Press, Cambrxdge

HCI (1986) , S o ,
: People and Comguters: Designing for Usabilitz, (Proceedings HCI'86)
ed. M.Harrison, A.F.Monk

. publ. Cambridge University Press, Cambridge

Hekmatpour S, Ince D (l986a)
"A formal specification-based prototypmg system”
in Software Engineering'86 (Proceedlngs) pp. 317-335
ed. D.Barnes, P.Brown
publ. Peter Peregrinus Ltd, London

Hekmatpour S, Ince D (1986b)
*Rapid software prototyping”
Technical Report 86/4
Computer Discipline, Faculty of Maths
Open University, Milton Keynes

Henderson P (1980)

Functional Programming: application and implementation
publ. Prentice-Hall International, New Jersey

~159-

Henderson P (1982)
*Purely functional operatmg systems”
in [Darlington et al 82] pp.177-192

Henderson P (1984)
.1 "Communicating functional programs
Internal Report FPN-8 : '
Dept. of Computxng Science, Umversxty of Stirling

Henderson P, Mlnkothz C (1986)
- "The me too method of software design™
ICL Technical Journal May pp.64-95

Henderson P, Minkowitz C J>.' 'Rov;/les J S (1985)
me too Reference Manual
SETC, ICL Kidsgrove

Ho T-P (1984)
"~ *"The dialogue designing dialogue system*
PhD Thesis, California Institute of Technology

Hoare C AR (1978) o
*Communicating sequentxal processes
Commumcahons of the ACM 21, 8 pp.666-677

Hoare C A R (1982a) o : : :
*Programming is an engineering prof ession”
Technical Monograph PRG-27
Oxford University Programming Research Group
Umversny of Oxford

Hoare C AR (l982b) o ‘
"Specifications, programs and 1mplementat1ons
* Technical Monograph PRG-29
Oxford University Programming Research Group
University of Oxford

Hoare C A R (1983)
~ - "Notes on Communicating Sequential Processes”
Technical Monograph PRG-33
Oxford University Programming Research Group
University of Oxford

Hoare C A R (1989)
Communicating Sequentxal Processes
publ. Prentice-Hall International, New Jersey .

Hoare C A R, Shepherdson J C - editors (198%)
Mathematical Logic and Programming L anquages
publ. Prentice-Hall International, New Jersey

Hopgood F R A, Duce D A (1980)
"A production system approach to interactive graphic program design
in [Guedj et al 80] pp.247-263

Hormng JJ (1985) .
*Combining algebraic and predxcatxve specnf xcatxons in Larch"
in [Ehrig et al 85] pp.12-26

-160-

Huckle B A, Bull G M (1984)
»A model for software descriptions facilitating man-machine interface

variations”
ACM SIGCHI Bulletin 16 2 pp.70-75

Hull M E, McKeag R M (1984)
*Communicating sequential processes for centralised and distributed

operating system design”
ACM Transactions on Programming Lanquages and Systems 6, 2 pp.175-191

ICL (1986)
*ICL application development”

Sales information; ICL, London

INMQS (1984)
occam Proqrammmq Manual

publ. Prentice-Hall International, New Jersey

INTERACT (1984) ~
Human-Computer Interaction (Proceedings INTERACT'84)

ed. B.Shackel
publ. Elsevier (North-Holland), Amsterdam

Iverson K E (1979)
*Notation as a tool of thought”
Communications of the ACM 23, 8 pp.445-465

Jacob R J K (1983)
"Survey and examples of specification techniques for user-computer
interfaces”
Draft Report
Naval Research Laboratory, Washington DC

Jacab R J K (1985)
»An executable specification technology for describing human-computer

interaction”
in [Hartson 85] pp.211-242

JacobR I K (1986)
"A specification language for direct manipulation user interfaces”
Draft Report - -
Naval Research Laboratory. Washmgton DC

Jensen R W, Tonies C C - editors (1979)
Software Engineering
publ. Prentice-Hall International, New Jersey

Johnson D H, Hartson H R (1982)
*The role and tools of a dxalogue author in creating human-computer

interfaces’ :

Technical Report CSIE-82-8

Department of Computer Science

virginia Polytechnic Institute and State University

Johnson D H (1985)
"The structure and development of human-computer interfaces”
PhD thesis, Virginia Polytechnic Institute & State University

-161-

Johnson S C (1978)
"YACC - Yet Another Compiler-Compiler”

Unix Programmers’ Manual (Vol.2)

Johnson S C, Lesk M E (1978)
"Lanquage development tools”
Bell Systems Technical Journal 57, 6 pp.2155-2175

Jones C B (1980)
Software Development - a rigorous approach
publ. Prentice-Hall International, New Jersey

Jones C B (1986) _
Systematic Software Development using VDM

publ. Prentice-Hall International, New Jersey

Jones S B (1984) .
“A range of operating systems written in a purely functional style”
Technical Report TR.16
Dept. of Computing Science, University of Stirling

Jones V M, Jones S B, Minkowitz C J (1985)
"A formal specification of an expert system shell”
Technical Report TR.20
- Dept. of Computing Science, University of Stirling

Kamran A (1989) , -
*Issues pertaining to the design of a UIMS"

in [Pfaff 85] pp.43-48

Kasik D J(1982)
"A user interface management system”
ACM Computer Graphics 16, 3 pp.99-106

Kelley J F (1985)
"Validating an empirical methodology for writing user-friendly natural
language computer applications”
IBM Research Report RC-10127 (45001)

Kemmerer R A (1985)
"Testing formal specifications to detect design errors”
IEEE Transactions on Software Engineering SE-11, 1 pp.34-42

Kieras D, Polson P G (1985)
“An approach to the formal analysis of user complexity”
International Journal of Man-Machine Studies 22, 4 pp.365-394

Kowalski R (1985)
"The relation between logic programming and logic specification”
in [Hoare & Shepherdson 85] pp.11-24

Lafuente J M, Gries D (1978)
"Language facilities for programming user-computer dialogues”
IBM Journal of Research and Development 22, 2 pp.145-158

Lawson H W, Bertran M, Sanagustin J (1978)
*The formal definition of human/machine communications”
Software - Practice and Experience 8, 1 pp.51-58

~162-

Lee S, Sluizer S (1985)
"On using executable specifications for high-level prototyping”
in 3rd Int. Workshop on Software Specification & Design pp.130-134

Lieberman H (1983)
"Designing interactive systems from the user's viewpoint®
in [Degano & Sandewall 83] pp.45-59

Lieberman H (1989%)
- "There's more to menu systems than meets the screen”
in ACM Computer Graphics 19, 3 pp.181-189

Lindquist T (1985)
*Assessing the usability of human-computer interfaces”
- IEEE Software 2, |1 pp.74-82

Liskov B, Zilles S (1975)
"Specification techniques for data abstractions”
ACM SIGPLAN Notices 10, 6 pp.72-87

Mallgren W R (1983)
Formal Specification of Interactive Graphics Programming L anquaqes

publ. MIT Press, Massachusetts

Manna Z, Pneuli A (1981)
"Verification of concurrent programs: the temporal framework”
in The Correctness Problem in Computer Science pp.215-273
ed. R.S.Boyer, J.S.Moore
publ. Academic Press, London

Martin J (1973)
Design of Man-Computer Dialoques

publ. Prentice-Hall International, New Jersey

Mason R E, Carey T T (1983)
"Prototyping interactive information systems”

Communications of the ACM 26, 5 pp.347-354

McCarthy J (1960)
"Recursive functions of symbolic expressions and their computation by
machine” :
Communications of the ACM 3, 4 pp.184-195

Meadow C T (1970)
Man-Machine Communication
publ. John Wiley & Sons

- Milner (1985)
- "Using algebra for concurrency : some approaches”
in [Denvir et al 85] pp.7-25

Minkowitz C J (1986)
: *A formal design of a decision analysis system®
Technical Report TR.27
Dept. of Computing Science, University of Stirling

Minkowitz C J, Henderson P (1986)
"A formal description of object-oriented programming using VODM"
Internal Report FPN-13 ,
Dept. of Computing Science, University of Stirling

-163-

Minsky M L (1967)
Computation : finite and infinite machines

publ. Prentice-Hall International, New Jersey

Minsky M L (1975)
*A framework for representing knowledge”
in The Psycholoqy of Computer Vision pp.211-277
ed. P.H. Winst.on. publ. McGraw-Hill, New York

Moran TP (l981a) ‘
"The Command Language Grammar a representation for the user
interface of interactive computer systems”
International Journal of Man-Machine Studies 15, | pp.3-50

Moran T P (1981b)
»An applied psychology of the user”
ACM Computer Surveys 13, 1 pp.1-12

Moskowski N (1986)
Executing tempaoral loqic specifications
publ. Cambridge University Press, Cambridge

mulisp (1983)
mulisp 83 Reference Manual

publ. Microscft Corp.

Naur P (1982)
*Farmalization in program development”
BIT 22, 4 pp.437-453

Neal A S, Simons R M (1983)
"Playback: a method for evaluating the usability of software and its

documentation” -
in [CHI 83] pp.78-82

Neely R (1983)
"A protocol simulation tool”

MSc thesis, Oxford University

Nielsen J (1986)
"A virtual protocol model for computer-human 1nteractxon

International Journal of Man-Machine Studies 24, 3 pp.301-312

Norman D A (1984)
"Cognitive engineering principles in the design of human-computer

interfaces”
‘in [Salvendy 84] pp.11-16

Olsen D R, Dempsey E P (1983)
*Syntax directed graphical interaction”
ACM SIGPLAN Notices 18, 6 pp.112-117

Olsen D R (1984) '
"Pushdown automata for user interface management”
ACM Transactions on Graphics 3, 3 pp.177-203

Olsen D R, Dempsey E P, Rogge R (19'85)
- "Input/output linkage in a User Interface Management System”
ACM Computer Graphics 19, 3 pp.191-197

-164-

Orr W D - editor (1968)
: Conversational Computers
publ. John Wiley & Sons

Otte F (1982)
*Consistent user interface®
in [Vassilou 82] pPp.261-276

Parnas D L (1969)
. "On the use of transition diagrams in the design of a user interface for an
interactive computer system”
in Proceedings 24th National ACM Conference pp.379-385
publ. ACM, New York

Patton B (1983)
"Prototyping - a nomenclature problem”
ACM SIGSOFT Software Enqgineering Notes 8, 2 pp.14-16

Payne S J, Green T R G (1583) :
*"The user's perception of the interaction language: a two-level model”
in [CHI 83] pp.202-206

Pfaff GE- edxtor(l985)
“ User Interface Management Systems
publ. Springer-Verlag, Berlin .

Pressman R S (1982)
Software Engineering: a practmoner s approach
publ. McGraw-Hill

Reid P (1985)
Trip report on CHI'85 conference
Alvey Software Engineering mailshot, August 1985

Rexsner P (1983)
"Formal grammar as a tool for analysing ease of use: some fundamental
concepts”
in Human Factors in Computer Systems pp.53-78
ed. J.C.Thomas, M.Schneider
publ. Ablex, New Jersey

Rowles J 5 (1986)
*Describing screen layouts in a purely functional style”
Technical Report SETC/IN/217
STL Northwest, Kidsgrove

Salvendy G - editor (1984)
Human-Computer Interaction
(Proceedings 1st USA-Japan Conference)
publ. Elsevier, Amsterdam

Sandewall E (1982) ‘
"Unified dialogue management in the Carousel system®
in Office Information Systems pp.175-197
- ed. N.Naffah
publ. North-Holland, Amsterdam

Schneider M (1982)
"Ergonomic considerations in the design of command languages”

in [Vassilou 82] pp.141-161

-165-

Shackel B (1986) '
*IBM makes usabxhty as 1mportant as functionality”

The Computer Journal 29, S5 pp.475-476

Shaw A C (1980)
*On the specification of graphics cornmand languages and their processors”

in [Guedj et al 80] pp.377-392

Shaw M, Borison E, Horowitz M, Lane T, Nichols D, Pausch R (1983)
*Descartes - a programming language approach to interactive display

interfaces”
: ACM SIGPLAN Notices 18. 6 pp.lOO-—lll

Sheeran M (1584)
*muFP, an language for VLSI de51gn
in Proceedings Conference on Lisp & Functional Langquages pp.104-112

Shneiderman B (1982a)
*The future of mteractxve systems and the emergence of direct
manipulation”
in [Vassxlou 82] pp.1-27

Shneiderman B (l982b)
"Multiparty grammars and related f eatures for defining 1nteractxve
systems”™ ..
IEEE Transactxons on Systems, Man and Cybernetics SMC-12, 2 pp.148-154

Sime M E Coombs M J(1983) .
Designing for Human—ComDuter Commumcation
publ. Academic Press, London

Smith D A (1982) ,
*Rapid software prototypmg «
PhD thesis, Univesity of Cahforma. Irvme

Smith R G, Lafue G M E, Schoen E, Vestal § C (1984)
"Declarative task description as a user-interface structuring mechanism”
Computer 17, 9 pp-29-38

Sommerville I (1982)

Software Engineering ‘
publ. Addison-Wesley, t.ondon

Sproull R F (1983)
*Programming the user interface”
in Proceedings Joint IBM/University of Newcastle-Upon-Tyne Semmar

pp.135-143
Umversxty of Newcastle-Upon-Tyne

Squires S L - editor (1982)
ACM SIGSOFT Software Engineering Notes 7, 5
(Special issue on Rapid Prototyping)

Stavely A M (1982)
*Models as executable designs”

in [Squires 82] pp.167-168

-166-

Strand E M, Jones W T (1982)
“Prototyping and small-scale projects”

in [Squires 82] pp.169-170

Strom R, Yemini S (1985)
"The NIL distributed systems programming language: a status report”
ACM SIGPLAN Notices 20, 5 pp.36-44

Strubbe H J (1989)
"Components of interactive applications”
in [Pfaff 86] pp.49-57

Studer R (1984) -
‘ *Abstract models of dialogue concepts”
in Proceedings 7th IEEE Int. Conference on Software Engineering
pp.420-429
publ. IEEE

SufnnB (1982) o
*Formal specmcatxon of a display-oriented text editor”
Science of Computer Programming 1, 3 pp.157-202

Sutton J A, Sprague R H (1978)
"A study of display generation and management in interactive business
applications”
IBM Research Report RJ2392

Swartout W, Balzer R (1982)
"On the inevitable intertwining of specification and implementation"
. Communications of the ACM 25, 7 pp.438-440

Tavendale R D (1985)
"A technique for prototyping directly from a specification”
in Proceedings 8th Int. Conference of Software Engmeermg
pPp.224-229; publ. IEEE

Taylor T. Standish T A (1982)
"Initial thoughts on rapid prototyping techniques®
in [Squires 82] pp.160-166

Thiagarajan P S (1985)
. *Some aspects of net theory”
in [Denvir et al 85] pp.26-54

Thimbley H (1982)
"Dialogue determination”
Intemational Journal of Man-Machine Studies 13, 3 pp.295-304

Thomas J C (1982)
"Orgamsxng for human factors

in [Vassilou 82] pp.29-46

Turner D A (1982)
"Recursion equations as a programming language®”
in [Darlington et al 82] pp.1-28

Turner D A (1985) v
*Functional programs as executable specifications™

in [Hoare & Shepherdson 85] pp.29-54

-167-

Underwood M (1985)
»Alvey MMI - opportunities for multx—dlscxphnary research”
Seminar, University of Glasgow

Vassilou Y - editor
Human Factors in Interactive Computer Systems
publ. Ablex, New Jersey

Wadge W W, Ashcroft £ A (1985)
Lucid, the dataflow programming language
publ. Academic Press, London

wartik S P, Pyster A (1983)
*The 'diversion’ concept in interactive computer systems specifications”
in Proceedings IEEE 7th Int.Computer Software and Applications
Conference (COMPSAC '83) pp.281-286; publ. IEEE

wasserman A I, Shewmake D T (1982)
"Rapid prototyping of interactive information systems”
in [Squires 82] pp.171-180

wasserman A I(1985)
"Extending state transition diagrams for the specification of
human-computer interaction”
IEEE Transactions on Software Engineerinqg SE-11, 8 pp.699-713

Wasserman A I, Pircher P A, Shewmake D T, Kersten M L (1986)
"Developing interactive information systems with the User Software
Engineering methodology”
IEEE Transactions on Software Engineering SE-12, 2 pp.326-345

Weiser M (1982)
*Scale models and rapid prototyping”
in [Squires 82] pp.181-185

while L (1986)
“Synchronisation in functional languages”
Draft report, Imperial College, London

williges R C (1984)
"Design of human-computer dialogues”
in [Salvendy 84] pp.35-42

Woods W A (1970)
*Transition network grammars for natural language”
Communications of the ACM 13, 10 pp.591-606

Yunten T, Hartson H R (1985)
*A SUPERvisory Methodology And Notation (SUPERMAN) for

human-computer system development”
in [Hartson 85] pp.243~282

Zave P, Schell W (1986)
»Salient features of an executable specification language and its

environment”
IEEE Transactions on Software Enqineering SE-12, 2 pp.312-325

~168~

