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Abstract 

We report seven experiments that investigate the influence that head orientation exerts on the 

perception of eye-gaze direction. In each of these experiments participants were asked to decide 

whether the eyes in a brief and masked presentation were looking directly at them or were 

averted. In each case the eyes could be presented alone, in the context of a congruent stimulus, or 

an incongruent stimulus. In Experiment 1a the congruent and incongruent stimuli were provided 

by the orientation of face features and head outline. Discrimination of gaze direction was found 

to be better when face and gaze were congruent than in both of the other conditions, an effect that 

was not eliminated by inversion of the stimuli (Experiment 1b). In Experiment 2a, the internal 

face features were removed but the outline of the head profile was found to produce an identical 

pattern of effects on gaze discrimination, effects that were again insensitive to inversion 

(Experiment 2b) and which persisted when the lateral displacement of the eyes was controlled 

(Experiment 2c). Finally, in Experiment 3a nose angle was also found to influence participants’ 

ability to discriminate direct from averted gaze, but here the effect was eliminated by inversion of 

the stimuli (Experiment 3b). It is concluded that an image-based mechanism is responsible for the 

influence of head profile on gaze perception whereas the analysis of nose angle involves the 

configural processing of face features. 
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Gaze direction represents a biologically significant stimulus that demands rapid and precise 

discrimination. Indeed, researchers have long been interested in our particular sensitivity to eye 

direction and the social significance of gaze behaviours. However, there has been rather less 

interest in the perception of head orientation despite evidence suggesting that head angle can 

influence the perception of gaze (Anstis, Mayhew & Morley, 1969; Cline, 1967; Gibson & Pick, 

1963; Maruyama & Endo, 1983, 1984; Wollaston, 1824). One exception to this is the work of 

Wilson, Wilkinson and Castillo (2000) who have recently suggested that humans make use of 

two cues to determine head orientation: deviation of head profile from bilateral symmetry, and 

the angle of deviation of the nose from vertical. The goal of the present paper was to marry the 

research on head perception with that of gaze perception to examine whether either, or both of 

these cues to head orientation are those that influence the perception of eye-gaze direction. 

Gaze Perception 

Another’s eyes provide a rich source of social information concerning, for example, their 

owner’s disposition towards you, their current emotional state, or whether it’s your turn to speak 

in a conversation (for reviews see Baron-Cohen, 1995; Kleinke, 1986). However, the eyes also 

signal another biologically significant piece of information: the direction in which another’s 

attention is directed. Humans and most other species tend to look at things in their environment 

which are of immediate importance to them; so you might be rewarded with another’s gaze 

because of a lover’s affection or perhaps because you look like a hearty meal. On the other hand, 

a shift in another’s gaze away from you may signal the approach of a predator, prey, or an 

attractive conspecific (see Byrne & Whiten, 1991). Therefore, an efficient ability to detect a 

mutual gaze and to compute precisely where another’s eyes are directed offers significant 
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adaptive advantages. Indeed, research has shown that we are very efficient at searching for a 

direct gaze amongst averted gaze distracters – the so called “stare-in-the-crowd” effect (von 

Grünau & Anston, 1995) – whilst our particular sensitivity to gaze direction has been well 

established (Anstis, Mayhew & Morely, 1969; Cline, 1967; Gibson and Pick, 1963). Cline 

(1967), for example, found that humans could detect gaze deviations of just 1.4˚ at a distance of 

just over 1 m. Similarly, Anstis et al’s research indicated that humans can detect a displacement 

of the iris by as little as 1.8 mm from the same viewing distance. Moreover, there is some 

suggestion that this peculiar sensitivity may arise – at least in part – from the operation of 

functionally specific neural mechanisms (e.g., Perrett et al., 1985; Heywood & Cowey, 1992; 

Campbell et al., 1990; Hoffman & Haxby, 2000). 

In terms of the cues we use to determine another’s gaze direction, researchers have 

traditionally emphasised the spatial or geometric information present within the eye region (e.g., 

Anstis et al., 1969). So, for example, the high contrast of the limbus (the junction between the 

sclera and the iris) could be easily located and compared to a fixed feature such as the corner of 

the eye (the canthus), or the nose. This would give a measure that is proportional to the angle of 

rotation of the eyeball in the head. However, there are other plausible non-spatial accounts of 

gaze perception. Watt (1999; see Langton, Watt & Bruce, 2000), for example, has argued that the 

cue to gaze direction might be the contrast in luminance between the two parts of the sclera on 

either side of the iris, making eye direction a simple measurement to perform on the image of the 

eye. In support of this account, Watt found that sensitivity to gaze direction did not vary with 

viewing distance up to a cut off point beyond which, presumably, the relevant luminance cues 

could not be resolved (see also Lord & Haith, 1974). An account based on the geometry of the 
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eye, on the other hand, would predict that performance should deteriorate with increased viewing 

distance. 

The results of a recent study by Ricciardelli, Baylis and Driver (2001) could also be 

interpreted as offering support for an image-based account. They showed that judgements of gaze 

direction were highly impaired when the normal contrast polarity of the eyes was reversed so that 

the sclera appeared to be much darker than the iris. In a similar way, Sinah (2000) contrived the 

so-called “Bogart Illusion” where contrast negation of a photograph of the eponymous actor’s 

face caused an apparent reversal of his gaze direction. Finally, in Ando’s “bloodshot illusion” a 

bias in participants’ gaze judgements was induced by darkening one side of the sclera without 

shifting the actual location of the iris (e.g., Ando, 2002). Of course, neither contrast negation nor 

the darkening of the sclera affect the spatial relationships between the “features” of the eye 

suggesting that a geometrical mechanism cannot be entirely responsible for normal judgements of 

gaze direction.  

The Perception of Head Orientation 

Logically, determination of another’s direction of gaze must be based not only on the angle 

of rotation of the eyeball – however it is computed – but also on the direction in which the head is 

oriented (Wilson et al., 2000, but see Langton, et al, 2000). For example, if the iris is located 

close to the left hand corner of a gazer’s eye, this might mean the gazer is looking to your (the 

viewer’s) right, but if – in addition – their head is rotated to your left, their gaze might then be 

oriented directly into your eyes.  

The importance of head orientation as a cue to attention direction is evident in research in 

developmental psychology, comparative studies with non-human primates and recent 



6 

experimental work with human participants. Infants are able to follow a change in their mother’s 

head and eye orientation from 3 – 6 months of age (Scaife & Bruner, 1975; Butterworth & 

Jarrett, 1991), but it is not until 14 – 18 months that they show any indication of following the 

eyes alone (Moore & Corkum, 1998). Prior to this, it seems as though children actually ignore the 

orientation of the eyes and simply use the position of the head as an attention following cue 

(Corkum & Moore, 1995). By and large, non-human primates – the non-ape species in particular 

– also use head orientation as the primary cue to another individual’s direction of attention (e.g., 

Emery et al., 1997; Itakura & Anderson, 1996). Experimental studies with human participants 

have indicated that head cues are able to trigger rapid and reflexive shifts of a viewer’s spatial 

attention (Langton & Bruce, 1999) and are very difficult to ignore, even when attempting to 

respond to directional information presented auditorily (Langton, 2000; Langton & Bruce, 2000). 

Finally, single cell recordings of activity in the STS region of the macaque brain have revealed 

cells that are responsive to certain head orientations and body postures as well as to directions of 

eye-gaze (e.g., Perrett et al., 1985). 

Despite the importance of the head as a cue to the direction of social attention, the perception 

of its orientation has received relatively little research. Recently, however, Wilson et al (2000) 

investigated humans’ thresholds for discriminating head orientation and examined the cues with 

which we might make this discrimination. Their participants were able to perceive a change in 

head rotation from a base angle of 0˚ or 15˚ of as little as 1.9˚ and 2.1˚ respectively, with mean 

threshold falling off to 4.9˚ for a base head angle of 30˚. Furthermore, they showed that these 

thresholds were not significantly affected by removal of either the internal features, or the outline 

head contour suggesting that head orientation can be discriminated using either of these two 

equal-strength cues. Finally, by using surrogate nose and head shapes Wilson et al. established 
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that, for the internal features, the deviation of nose angle from vertical is the likely source of head 

orientation information, and that the “external” cue is the deviation of the head contour from 

bilateral symmetry. To elaborate, when the head is oriented directly at you, its outline contour 

projects an approximately symmetrical shape about the vertical midline, and a line drawn from 

the bridge to the tip of the nose will be roughly vertical. As the head rotates, its shape becomes 

increasingly asymmetrical and the nose angle shifts away from vertical. Wilson et al’s evidence 

suggests that the visual system is able to compute these deviations from bilateral symmetry and 

vertical angle, respectively, and use them as cues to the orientation of the head.  

The Influence of Head Angle on Gaze Perception 

Since the pioneering work on gaze perception carried out in the 1960’s, it has been known 

that the perceived direction of eye-gaze can be influenced by the angle of rotation of the head 

which further attests to the importance of the head as a cue to attention direction. In general there 

seem to be two kinds of perceptual effects. First, under certain circumstances, the perceived 

direction of gaze can be “towed” toward the orientation of the head. In this case the direction of 

gaze is perceived to be somewhere between the angle of the head and the true line of regard of 

the eyes (Cline, 1967; Maruyama & Endo, 1983, 1984). This kind of effect was first recorded by 

William Wollaston as long ago as 1824 and is illustrated in his original drawings reproduced 

here, along with photographic versions, in Figure 1. The second kind of influence of head angle 

on the perception of gaze is a kind of “overshoot” or “repulsion” effect where an error in gaze 

perception is introduced in the opposite direction to the angle of rotation of the head. For 

example, imagine someone standing in front of you with their head 30˚ or so to your right and 

with their eyes either staring straight back at you, or back towards your left shoulder. Apparently, 
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under these conditions, you might perceive their eyes to be gazing a little further to the left than 

they actually are (Anstis et al., 1969; Gibson & Pick, 1963).  

Figure 1. Head orientation influences the perceived direction of gaze. The top two 
pictures are taken from Wollaston's original paper. Face B seems to be gazing directly at the 
viewer whereas Face A appears to be looking slightly to the viewer's right. By covering the lower 
and upper parts of each face you can see that the eye regions of both are, in fact, identical. The 
lower two faces illustrate a similar effect with greyscale images. The eye region from D has been 
pasted onto C where the head is rotated slightly to the viewer's left. 



9 

As described in the preceding section, Wilson et al’s work suggests that humans are able to 

use head contour and nose angle to judge head orientation. However, it is not clear whether these 

are the cues which are actually used in practice and which will interact with information extracted 

from the eye region to yield the direction of gaze. Thus, the question that concerns us here is 

whether the cues used to judge head orientation are the same as those which influence the 

perception of gaze direction. In order to study this, we made use of the Wollaston illusion (see 

Figure 1). In Experiment 1 we first establish an experimental method for quantifying the illusion. 

Then in Experiments 2 and 3 we investigate whether head contour and nose angle, respectively, 

can produce a perceived shift of gaze. The basic design of all experiments was the same. 

Participants viewed brief masked presentations of eyes which were either directed towards them 

or were angled slightly to their left or to their right and their task was simply to decide whether 

the gaze was direct or averted. These eyes could be placed in one of several contexts: the head 

angle – as signalled by either the head and nose (Experiments 1a and 1b), the head outline alone 

(Experiments 2a, 2b and 2c) or the nose angle (Experiments 3a and 3b) – could be oriented in the 

same (congruent) or in a different (incongruent) direction to that of the eyes, or the head context 

could be absent altogether. We were then able to measure how well participants were able to 

discriminate direct from averted gaze under congruent, incongruent and absent conditions. Using 

this technique we were also able to examine whether a direct gaze could be “pulled” to one side 

by a comparison of hit rates (proportion of trials where participants correctly judged that a direct 

gaze was indeed oriented at them) in congruent and incongruent conditions. By making this same 

comparison using false alarm rates (proportion of trials where an averted gaze was incorrectly 

judged as being direct) as the dependent measure, we were also able to determine whether an 

averted gaze could be made to appear more direct by an incongruently angled head. Finally, we 
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also examined whether each cue could influence the perception of gaze direction when the 

stimuli were rotated through 180˚, a manipulation considered to disrupt the configural or 

spatial/relational processing of faces. 

Experiment 1a 

Experiment 1 was conducted to establish an experimental paradigm for demonstrating that 

head angle, as signalled by both head contour and nose angle, can influence the perceived 

direction of gaze. Participants made gaze judgements in the context of greyscale images of heads 

oriented in congruent or incongruent directions to the eyes. In addition, we examined 

participants’ ability to distinguish direct from averted gaze in the absence of any face context. If 

head orientation produces a towing effect as in the Wollaston illusion (Figure 1) we would expect 

performance to be poorer in incongruent compared to congruent conditions. Moreover, this 

reduction in overall discriminability should be caused by both a reduction in hit rates and an 

increase in false alarm rates in incongruent versus congruent conditions. We predicted that hit 

rates would be decreased because incongruent heads should produce an illusory shifting of a 

direct gaze, and false alarm rates increased as averted gazes will tend to be misjudged as being 

direct when accompanied by an incongruent, as opposed to a congruent head. 

Method 

Participants. These were 17 Open University students attending a summer school at the 

University of Stirling. All had normal or corrected-to-normal vision. 

Materials and Apparatus. Digitised images of eyes gazing straight ahead, approximately 16˚ 

to the left, and 16˚ to the right were obtained from greyscale photographs of the face of a male 

individual with his head oriented forwards. These images all had the same shape (see Figure 2) 
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and measured 3.8˚ wide by 1.3˚ in height. In addition, full face images of the same individual 

were obtained with his head oriented straight ahead, 16˚ to the left and 16˚ degrees to the right. 

These images subtended 7.1˚ of horizontal angle and 9.5˚ of vertical visual angle. The materials 

to be used in the congruent conditions of the experiment were obtained by pasting the three gaze 

stimuli onto the appropriately oriented head stimuli using Adobe Photoshop software. Thus, the 

leftward gaze from the full-face image was pasted onto the image of the head oriented to the left 

and so forth. A blending tool was then used to eliminate sharp lines so that the resulting face 

appeared smooth. Incongruent images were obtained by pasting the straight ahead gaze stimuli 

onto the left and right head images, and by pasting the left and right gaze stimuli onto right and 

left head images respectively. In this way the same direct and averted gaze stimuli could be 

presented either alone, in the context of a congruent head orientation, or an incongruent head 

orientation. Examples of the experimental stimuli are shown in Figure 2. 
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Figure 2. Reproductions of some of the stimuli used in Experiments 1a and 1b. The left 

column contains stimuli in the face absent condition; the middle column stimuli in the face 
congruent condition; and in the right hand column, stimuli in the face incongruent condition. The 
upper row of stimuli have direct gazes and those in the lower row, gazes averted to the left. 

The experimental stimuli were presented at fixation on a white background. Each was 

preceded by a black fixation cross comprising vertical and horizontal lines measuring 0.6˚, and 

followed by the presentation of a pattern mask. This measured 7.6˚ by 9.5˚ and was created by 

pixelating the full face image using Photoshop’s pointillize tool with cell size set to 16. All 

stimuli in this and subsequent experiments were presented using SuperLab software (Cedrus 

Corp.) on a Macintosh G3 computer. Participants were seated 0.6 m from a 15 inch colour 

monitor set to greyscale.  

Design. The direct and averted gaze stimuli were presented in a within subjects design with 

one factor: head context. The head was either absent, congruent or incongruent with the gaze 
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direction. On each trial participants were asked to decide whether the eyes were averted or were 

looking at them and their proportions of hits and false positives under each condition were 

recorded. From these an A' score – a measure of participant’s ability to discriminate direct from 

averted gaze – was computed for each of the three conditions and served as the main dependent 

variable in the experiment. 

Procedure. Trials began with the presentation of the fixation cross which remained on the 

screen for 1000 ms. This was then replaced by a 140 ms presentation of one of the gaze stimuli 

followed by the pattern mask which remained on the screen for 200 ms. The screen then went 

blank and remained so until the participant had made their response. Participants were asked to 

judge whether the eyes were averted or were looking directly at them by pressing, respectively, 

either the “m” or “z” keys on a standard keyboard. They were asked to respond as accurately as 

possible and to take as long as they needed to make their response as only their accuracy was 

being recorded. Following a response, a 1000 ms delay preceded the beginning of the next trial. 

Each participant saw 64 trials in each of the three experimental conditions. These comprised 

32 direct gaze stimuli and 16 stimuli with gaze averted to the left and 16 with gaze averted to the 

right. These were divided into two identical blocks of 96 trials, in which trial presentations were 

randomised. Prior to the two experimental blocks, participants completed a sequence of 48 

practice trials: 16 in each condition with an equal number of direct and averted stimuli. 

Results 

In this, and all subsequent experiments, hit rates (proportion of direct gaze trials in which 

participants made a correct response) and false alarm rates (proportion of averted gaze trials in 

which participants indicated gaze was direct) were first computed for each participant under each 
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of the three experimental conditions. As some participants recorded no misses or false alarms in 

some conditions, corrected hit and false alarm rates were computed by first adding 0.5 to the 

number of hits and false alarms, respectively, in each condition and then incrementing the 

number of trials in each condition by 1 in order to calculate the probabilities. From each single 

pair of corrected hit and false alarm rates in each condition, A' and B" scores were then obtained 

following the procedure outlined by Snodgrass and Corwin (1988). A' is a non-parametric 

measure of discriminability; in other words, a measure of how well participants were able to 

distinguish direct from averted gaze. B" is the equivalent non-parametric measure of response 

bias which indexes whether participants tended to prefer one response over the other. A B" score 

of zero represents a neutral bias, and - in our experiments - a negative value of B" represents a 

conservative bias (i.e. the participant tends to respond “averted”) and a positive score, a liberal 

bias (i.e. a tendency to make more “direct” responses).  

Table 1. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 1a. 

 Face Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.68 (0.18) 0.95 (0.06) 0.21 (0.13) 

Hit Rate 0.93 (0.06) 0.93 (0.08) 0.22 (0.18) 

False Alarm Rate 0.71 (0.25) 0.11 (0.16) 0.65 (0.16) 

Response Bias (B") 0.39 (0.33) 0.07 (0.45) -0.18 (0.36) 

 

Mean values of A', hit rates, false alarms and B" in each condition of Experiment 1a appear 

in Table 1. Examination of the A' data indicates that participants were well able to discriminate 
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direct from averted gaze in the congruent condition (mean A' = 0.95) but their performance 

deteriorated when the face context was removed (mean A' = 0.68) and deteriorated still further 

when head angle and gaze direction were incongruent (mean A' = 0.21). 

An ANOVA comparing mean A' values in the three conditions yielded a significant effect of 

head context (F(2, 32) = 112.34, p < 0.001). Post-hoc Newman-Keuls tests (α = .05) confirmed 

the above observations; participants’ ability to discriminate direct from averted gaze was 

significantly superior in congruent than in both incongruent and absent conditions. Moreover, 

performance in the incongruent condition was significantly poorer than in the absent condition.  

Clearly, head context influenced participants’ performance. However, this overall effect on 

discriminability could have originated from one – or both – of two sources: first, when eyes 

directed straight ahead were placed in the context of a head that was oriented to either the left or 

right, participants might have perceived the direction of gaze as being “pulled” in the direction of 

the head turn; second, an averted gaze directed to a viewer’s left, say, may have been perceived 

as directed straight ahead when in the context of a head rotated to the right (see Figure 1). The 

first type of effect (direct gaze being “pulled” to the left or right) will cause participants to “hit” a 

smaller proportion of direct gazes in incongruent compared to congruent conditions. The second 

type of effect (an averted gaze being pulled towards the centre by a head rotated in the opposite 

direction) will produce a higher proportion of false alarms (mistakenly responding “direct” to an 

averted gaze) in incongruent compared to congruent conditions. Either, or both, of these effects 

could have produced the observed decrease in discriminability when head and gaze were oriented 

in incongruent directions. In order to examine these two possibilities, separate analyses of hit and 

false alarm rates were undertaken. 
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From Table 1, it is clear that mean hit rates were much lower in the incongruent (mean = 

0.22) compared to the congruent condition (mean = 0.93) which would suggest that a turn of the 

head produces an illusory shift of a direct gaze. A repeated measures ANOVA comparing mean 

hit rates across the three context conditions yielded a significant effect (F(2, 32) = 211.93, p < 

0.001) Furthermore, a planned comparison revealed that the mean hit rate was significantly lower 

in the incongruent condition than when head and gaze were congruent (t(32) = 17.84, p < 0.001), 

confirming the above observation. 

False alarm rates also differed across the three context conditions. In particular, participants 

made a higher proportion of false alarm responses in the incongruent condition (mean = 0.65) 

than in congruent condition (mean = 0.11) suggesting that a head turn was able to make an 

averted gaze appear to be directed toward the observer. In support of these observations, a 

repeated measures ANOVA yielded a significant effect of condition (F(2, 32) = 49.48, p < 0.001) 

and a planned comparison confirmed that participants made significantly more false alarms in the 

incongruent than in the congruent condition (t(32) = 7.83, p < 0.001). 

In order to determine whether any of the face context conditions produced a systematic 

response bias, B" scores in each condition were compared with a score of zero - the B" value 

corresponding to a neutral bias. The B" values presented in Table 1 indicate that participants’ 

responses were only slightly biased in congruent and incongruent conditions but that when the 

face was absent, they tended to set a rather more liberal criteria, resulting in a bias toward 

responding that gaze was “direct”. A series of one-sample t-tests comparing the mean B" values 

with zero confirmed these observations. There were no significant biases in congruent or 

incongruent conditions (p’s > 0.05) but a significant positive bias when the face was absent (t(16) 

= 4.88, p < 0.001). 
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Discussion 

The results of this experiment clearly confirm that head context, and its orientation in 

particular, has an effect on gaze perception. Participants’ ability to discriminate direct from 

averted gaze was significantly poorer when head and gaze were incongruent than when both were 

oriented in a congruent direction. Moreover, the results suggest that this effect on discriminability 

can be attributed to illusory shifts of both direct and averted gazes. When the eyes were paired 

with an incongruent as compared to a congruent head, participants were less likely to respond 

that a direct gaze was actually looking at them. Similarly, a gaze directed to either the viewer’s 

left or right was more likely to be misjudged as a direct gaze when paired with a head oriented in 

the opposite direction than when paired with a congruent head cue. Thus, as with the Wollaston 

illusion (see Figure 1) and in line with findings of Cline (1967) and Maruyama and Endo (1983, 

1984), it seems that head orientation produces a “towing” effect on the perceived direction of 

gaze so that it falls somewhere between the true line of regard of the eyes and the angle of 

rotation of the head. 

However, before concluding that the effect arises as the result of some kind of perceptual 

illusion we should perhaps consider some alternative explanations. First of all, the influence of 

head angle on gaze discriminability found in this experiment cannot simply be attributed to 

participants adopting a strategy of responding, when uncertain, on the basis of the most visually 

salient cue: head orientation. Although this strategy would indeed produce a reduced rate of 

“direct” responses (hits) in the congruent condition and a corresponding reduction in overall 

discriminability (A') as found in Experiment 1a, it would not produce the observed increase in 

false alarms observed in the incongruent condition where neither head nor gaze were actually 

oriented towards the observer.  
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It is also difficult to attribute the results of Experiment 1a to some kind of response 

competition effect where information from head and gaze compete more in incongruent than in 

congruent conditions. First, these kinds of effects are only usually apparent when a speeded 

response is required. In contrast to this, participants in Experiment 1a were asked to respond as 

accurately as possible and were explicitly told that their response speed was not being recorded. 

Second, if there were some kind of response competition effect operating here, we might expect 

that in incongruent conditions participants would respond on the basis of the actual gaze direction 

on roughly half of the trials and the orientation of the head on the other half of the trials. The data 

do not, however, support such an interpretation. Under this account, the mean hit rate for direct 

gazes in the incongruent condition would be expected to be roughly 0.5 as participants respond 

on the basis of gaze (direct) and head orientation (averted) in half of the trials. However, the 

recorded figure was a significantly lower 0.22 (one sample t-test, t(16) = 6.41, p < 0.001). 

Participants in Experiment 1a also made a substantial number of false alarm responses to averted 

gazes in incongruent trials (Mean = 0.65). Under a response competition account this figure 

would actually be expected to be closer to zero as in the incongruent condition both head and 

gaze direction are averted in opposite directions. Participants responding randomly on the basis 

of either cue would therefore rarely ever make a “direct” (false alarm) response. Of course, the 

recorded mean false alarm rate of 0.65 was found to be significantly higher than zero (t(16) = 

16.85, p < 0.001) which again argues against a response competition account.  

Thus it seems unlikely that the findings of this experiment can be attributed to some kind 

response bias (respond to the most salient cue) or a response competition effect. Instead, it is 

argued that the pattern of results obtained here is consistent with observers’ perceived direction 



19 

of gaze being “towed” towards the angle of the head making averted gazes appear to be direct 

and direct gazes appear to be averted.  

As noted in the introduction, other researchers have obtained a rather different effect when 

head and gaze are placed into conflict in photographic images of faces. Rather than the perceived 

direction of gaze being towed toward the orientation of the head, both Anstis et al (1969) and 

Gibson and Pick (1963) noted that gaze direction is perceived to be shifted in the opposite 

direction to the orientation of the head. This “repulsion” or “overshoot” effect might occur when, 

say, leftward gazing eyes in a rightward oriented head are perceived as more leftward gazing than 

they appear to be in a frontward oriented head. As this kind of combination of eye and head 

orientation occurs in certain conditions of Experiment 1a (see, for example the lower right image 

in Figure 2), we might ask why a similar repulsion effect was not observed in this study. One 

possibility is that the repulsion effect occurs, not as a direct result of some interaction between 

head orientation and gaze direction, but because the effect of a head turn is to expose more 

visible sclera on one or other side of the eye. As the relative proportion of sclera on either side of 

the iris can be used as a cue to gaze direction (Ando, 2002; Watt, 1999), changing this ratio by 

exposing more sclera might result in an illusory shift in gaze. For example, imagine someone 

facing you with their eyes gazing directly into yours; roughly the same amount of sclera will be 

visible on either side of each iris. The contrast in luminance between these parts of the sclera will 

therefore be roughly zero yielding the percept of a direct gaze. If that person then turns their head 

to your left whilst maintaining eye-contact, proportionately more of their sclera will now be 

visible on the left side of their eyes – from your point of view – compared to the right. As this 

luminance configuration ordinarily signals a rightward directed gaze you will therefore 

erroneously judge the eyes to be oriented slightly to the right. Indeed, the scleral contrast account 
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of gaze perception predicts just this kind of repulsion effect for certain viewing angles of the face 

(see Langton, Watt & Bruce, 2000). 

The absence of a repulsion effect in the present experiment can therefore be explained by the 

fact that the relative proportion of sclera visible on either side of the iris was held constant across 

all changes of head orientation. This was achieved by cutting leftward and rightward facing eyes 

from images of frontward oriented head and pasting them onto heads with congruent and 

incongruent angles of rotation. In view of this, we argue that the Wollaston illusion and the 

towing effects obtained here and elsewhere index some kind of integration between information 

coding the orientation of the head and the direction of eye gaze rather than an error introduced as 

a consequence of the way in which a turn of the head alters one of the cues used to determine 

gaze direction. 

Another notable finding of this experiment was the significant decrease in A' when the 

congruent head context was removed so that gazes were presented in isolation from the head. 

This is in line with the results of a study by Vecera and Johnson (1995) who showed that 

disruption of the face context by scrambling the features of a schematic face significantly reduced 

participants’ ability to distinguish between direct and averted gazes. In our own work, (Jenkins 

and Langton, in press) we have also reported that thresholds for gaze judgements were higher 

when greyscale images of eyes were presented in isolation than when in the context of an upright 

face. We suggest there at least two possible reasons for this effect, related to the two components 

necessary for accurate gaze judgements: locating the position of the eye in relation to the head 

and combining this with the angle of orientation of the head. First, removal of the face context 

also removes a good deal of information that might be used in the spatial computation of the 

location of the eye in relation to the head. However, it would seem that sufficient information 
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remains to make this relational computation even after removal of the face context. The location 

of the iris need only be computed in relation to some fixed part of the head, and the canthus (the 

corner of the eye) or bridge of the nose would suffice (See Langton, Watt & Bruce, 2000). 

Inspection of Figure 2 reveals that these “features” remain intact in the face absent stimuli. Thus, 

it is more likely that removal of the face context disrupts the second component necessary for 

accurate gaze judgements: perception of the angle of rotation of the head. With no information 

available from the head contour or from the angle of deviation of the nose, perception of head 

angle might well be impaired.  

Removal of the face context also had an effect on participants’ response bias. More 

specifically, in the absence of a face context participants tended to lower their criterion for 

making a “direct” response. This seems to be a reasonable strategy; with less information with 

which to make a decision, defaulting to assuming gaze is directed at you is, adaptively speaking, 

a “safe” strategy. In other words, it’s better to run the risk of making a few false alarms than to 

miss one occasion when a predator is eyeing you for its next meal. 

To summarise, Experiment 1a was successful in inducing a Wollaston-type illusion in our 

participants. Moreover, the design is such that it allows the size of the effect to be quantified so 

that we can go on to manipulate the available cues to head orientation and examine the impact of 

these manipulations on the magnitude of the effect. Before embarking on this, however, we first 

assess whether or not the effect of head context on gaze discriminability is sensitive to inversion 

of the stimuli (i.e. rotation through 180˚). 
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Experiment 1b 

In this experiment we ask whether the influence of head rotation on gaze perception noted in 

Experiment 1a might be caused by a low-level image-based mechanism or a higher-level process 

perhaps specific to faces. In order to examine this, the gaze and masking stimuli used in the 

previous experiment were each rotated about 180˚ to produce a set of inverted images.  

Numerous studies have demonstrated that inversion severely disrupts various aspects of face 

processing (e.g., Bruce & Langton, 1994; Diamond & Carey, 1986; Valentine & Bruce, 1986; 

Yin, 1969). For instance, Yin (1969) showed that recognition memory for upright faces was 

better than that for pictures of houses, aeroplanes, or schematic men-in-motion, but when all 

these materials were inverted, performance on the faces became worse than that on the other 

pictures. At present, it is unclear exactly what causes the inversion effect, but it is generally 

agreed that it disrupts a mode of processing variously described as configural (e.g., Sergent, 

1984), holistic (e.g., Tanaka & Farah, 1993), relational (e.g., Goldstone, Medin & Gentner, 1991) 

or non-componential (e.g., Barton, Keenan & Bass, 2001). The basic idea is that the encoding of 

an upright face involves not only processing of information about individual face features 

(mouth, nose, eyes etc.) but also processing about the spatial arrangement or configuration of 

these features (e.g., Leder & Bruce, 2000; for a recent review of configural processing see 

Maurer, Le Grand & Mondloch, 2001). It is thought that inversion selectively disrupts – or at 

least has a greater effect on – the encoding of this configural information. Some direct evidence 

for this comes from work by Leder and Bruce (1998) and Searcy and Bartlett (1996). In these 

studies, faces were made to look more grotesque (Searcy & Bartlett, 1996) or distinctive (Leder 

& Bruce, 1998) by either manipulating individual face features (e.g., blurring the pupils or 
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darkening the lips) or distorting the relationships between these features (e.g., narrowing the 

interocular distance). When inverted, faces made distinctive or grotesque by feature changes still 

appeared to be distinctive or grotesque, whereas faces changed by manipulating the relationship 

between features looked more like the original, unaltered versions. In other words, these studies 

suggest that feature information is still encoded in inverted faces, but the encoding of the 

relationship between these features is disrupted. Furthermore, the idea that inversion has its effect 

at the perceptual encoding stage of face perception is consistent with studies using event-related 

brain potentials which have established that inversion exerts consistent effects as early as 170 ms 

after stimulus presentation. (Bentin, Allison, Puce, Perez & McCarthy, 1996; Eimer, 2000; 

Rossion, Delvenne, Debatisse, Goffaux, Bruyer, Crommelinck & Guérit, 1999). 

There is also evidence that extensive experience with faces may be required to produce the 

inversion effect as face recognition by children below the age of 10 is less affected by inversion 

(Carey & Diamond, 1977). Indeed, extensive experience with other categories of object normally 

encountered in a particular orientation may also make these objects susceptible to the inversion 

effect. So, for example, Diamond and Carey (1986) showed that dog-show judges’ ability to 

recognise dogs was also disrupted by inversion. The implication is that we have to learn to 

encode the relevant configural information in order to make within category discriminations. 

Encoding this information becomes difficult with stimuli with which we are not familiar, such as 

upside-down faces. 

Regardless of the precise mechanism behind the inversion effect, this manipulation provides 

a way of discriminating between a low-level image based account, and a higher level mechanism 

based perhaps on face-specific (or expertise-specific) configural processing. If the influence of 

head orientation on the processing of gaze direction is caused by a higher-level mechanism 
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concerned with encoding the configural arrangement of face features we would expect it to be 

eliminated by inversion of the stimuli. If, on the other hand, the effect emerges much earlier in 

processing as the result of an interaction of image-based features it should persist when the 

stimuli are inverted.  

Method 

Participants. These were seventeen volunteers attending an Open University residential 

Summer school at the University of Stirling. All had normal or corrected-to-normal vision. 

Materials, Design and Procedure. These were identical to Experiment 1a; however, the gaze 

stimuli and pattern mask were all rotated through 180˚. 

Results 

Mean A' and B" values, along with mean hit and false alarm rates in each condition of 

Experiment 1b are presented in Table 2. The pattern of results was very similar to that of 

Experiment 1a. Participants were less able to discriminate direct from averted gaze in the 

incongruent condition (Mean A' = 0.22) compared to the congruent condition (Mean A' = 0.96). 

Moreover, incongruently angled heads reduced hit rates and increased false alarm rates compared 

to heads oriented in congruent directions to the angle of gaze. 
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Table 2. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 1b. 

 Face Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.74 (0.24) 0.96 (0.02) 0.22 (0.10) 

Hit Rate 0.91 (0.06) 0.93 (0.07) 0.24 (0.14) 

False Alarm Rate 0.54 (0.29) 0.08 (0.08) 0.62 (0.25) 

Response Bias (B") 0.37 (0.38) 0.03 (0.62) -0.05 (0.44) 

 

A series of repeated measures ANOVAs and follow-up comparisons conducted on the A' 

scores, hit rates and false alarm rates confirmed the above observations. Head context exerted a 

significant effect on discriminability scores (F(2, 32) = 103.56, p < 0.001) and post hoc Newman-

Keuls tests (α = 0.05) indicated that the differences between all pairs of means were significant. 

The effect of context was also significant for hit rates (F(2, 32) = 346.96, p < 0.001) and false 

alarm rates (F(2, 32) = 24.46, p < 0.001). Separate planned comparisons comparing hit rates and 

false alarms in congruent and incongruent conditions revealed significant differences in both 

cases (for hit rates, t(32) = 23.08, p < 0.001; and for false alarms, t(32) = 6.51, p < 0.01). 

As with the upright stimuli, participants operated with a positive bias in judging gaze (i.e. 

they made more “direct” responses) when the head context was absent, but showed little bias in 

the other conditions. One sample t-tests confirmed that the mean bias score in the absent 

condition was significantly greater than zero (t(16) = 4.03, p < 0.01) but that participants 

displayed no significant bias in congruent or incongruent conditions (p’s > 0.6). 
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Discussion 

The results of Experiment 1b were almost identical to those of Experiment 1a. Even with 

inverted stimuli, head context produced an effect on gaze discriminability; participants showed 

reduced A' scores with incongruent compared to congruent stimuli. Moreover, as in Experiment 

1a, hit rates were lower and false alarms higher when head and gaze were incongruent than when 

they were congruent. The influence of head angle on the perception of gaze therefore persisted 

when the face stimuli were inverted licensing a conclusion that the root of the effect is a low-

level image-based mechanism, and not a process that is necessarily specific to faces, nor one 

based on the relational aspects of the gaze/head stimuli.  

The findings of this experiment are, however, at odds with those of Maruyama and Endo 

(1984) whose Wollaston-like illusion was markedly reduced by the inversion of their face 

stimuli. They concluded that inversion disrupted the configural integration of face features which 

they took to underpin the effect. However, their studies differed from ours in at least two 

important respects, both of which might explain the discrepant findings.  

First, Maruyama and Endo used a finer-grained measure of perceived gaze direction: 

participants were asked to indicate where they perceived the gaze to be directed by marking a 

point on a Perspex arc positioned in front of the schematic face. Thus, it is possible that their 

measure of the Wollaston-like illusion was more sensitive to any effects of inversion than the 

measure used in our experiments. However, we believe that, given the strength of the illusion 

found with our stimuli, a finer grained measure would – at best – simply reveal a slightly weaker 

effect in inverted compared to upright faces (readers might like to satisfy themselves of the 

robustness of the illusion by viewing Figures 1 and 2 with the pages turned upside down). Even if 
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the illusion is actually slightly weakened in inverted faces it still begs the question as to why it 

persists at all under conditions where the encoding of relations between face features is known to 

be severely disrupted, and probably particularly so in the brief, masked displays we have used. 

The likely explanation is that the effect emerges as the result of an interaction between image-

based features, rather than face-specific representations. 

Having said this, the discrepancy between our findings and those of Maruyama and Endo is 

perhaps more likely to rest on a second major difference between the two studies: their use of 

schematic as opposed to greyscale images of faces. Maruyama and Endo used a circle to 

represent the outline contour of their schematic faces, even in conditions where the head was 

rotated. Their participants were therefore unable to use the overall shape of the head as a cue to 

head orientation. Instead, they had to rely on two other potential cues: the shape of a line 

denoting the profile of a nose, mouth and chin drawn within the circular face frame; and the 

horizontal displacement of the eyes and the profile shape, again within the circular face outline. 

These cues were evidently successful in producing the illusion of a rotated head and, in turn, an 

illusory shift of eye-gaze in upright faces. Although these cues were also potentially present in 

the greyscale stimuli used in Experiments 1a and b, these images also include what Wilson et al 

(2000) regard as being one of the strongest cues to head orientation: the shape of the head profile 

or, more specifically, its degree of deviation from bilateral symmetry. The discrepant findings 

between our experiments and those of Maruyama and Endo might therefore be due to the fact that 

different cues to head orientation were available in these studies, and that these cues might well 

influence the perception of gaze in rather different ways. The occluding contour formed by the 

shape of the head, for example, might be sufficient on its own to exert an effect on the processing 

of eye gaze direction, but it may do so at an early stage in processing which is insensitive to 
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inversion. Cues such as nose angle and eye-displacement, on the other hand, might also be 

capable of influencing the extraction of gaze, but they do so later in processing as the result of 

some kind of configural mechanism that is disrupted by inversion. The remainder of the 

experiments reported here explore some of these issues. Experiments 3a and 3b examine whether 

a Wollaston type illusion can be induced by deviations in the angle of the nose. Meanwhile, in 

Experiments 2a-c we examine whether the outline contour of the head is sufficient to influence 

the perception of gaze direction. 

Experiment 2a 

In order to test whether head shape alone is able to influence gaze perception the face images 

used in Experiments 1a and 1b were first subjected to a high-pass filter and then the internal 

features, apart from the eyes, were removed from the resulting images, leaving only the outline 

contour of the head. As before, we then examined how well participants were able to discriminate 

direct from averted gaze under conditions where the head outline alone was congruent, 

incongruent or absent. If head outline is indeed used to perceive head orientation, and this 

information then used to influence gaze perception, we would expect the context provided by the 

head contour to exert an effect on gaze discrimination. 

Method 

Participants. These were 17 Open University students drawn from the same population as in 

Experiment 1. Again, all had normal or corrected-to-normal vision. 

Materials, Design and Procedure. In order to create stimuli where only the outline contour 

of the head could provide information as to head angle, the internal features were removed from 

the original greyscale images of the head directed straight ahead, angled to the left and to the 
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right. This was accomplished in the following way. First, Adobe Photoshop was used to subject 

each of these three images to a high-pass filter. Following filtering, a paintbrush tool was used to 

replace the internal region of each face with the same grey level as that of the background leaving 

only the outline contour of the head visible. This resulted in three separate images of head outline 

shapes: one angled to the left, one to the right and a third straight ahead. Next, the stimuli used in 

the head absent context condition in Experiment 1a were also subjected to the same high-pass 

filter, and the paintbrush tool used to remove any information from the areas surrounding the 

eyes. The resulting eyes-only images served as stimuli in the head absent condition of 

Experiment 2a. Copies of these stimuli were then pasted onto the appropriate head outline images 

to create the congruent and incongruent stimuli analogous to those used in Experiment 1. Care 

was taken to ensure that the eyes were pasted onto the identical position, relative to the head 

outline, as in the original digitised greyscale images. Examples of the stimuli used in each 

condition of Experiment 2a are shown in Figure 3. 
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Figure 3. Reproductions of some of the stimuli used in Experiments 2a and 2b. The left 
column contains stimuli in the head absent condition; the middle column stimuli in the head 
congruent condition; and in the right hand column, stimuli in the head incongruent condition. The 
upper row of stimuli have direct gazes and those in the lower row, gazes averted to the left. 

The pattern mask used in Experiment 1a was also high-pass filtered and used as the mask in 

this experiment. Stimuli were presented on a background with the same grey level as the median 

level of that of the experimental stimuli. All other aspects of the design and procedure remained 

the same as in Experiment 1a. 

Results 

Measures of discriminability (A') and bias (B") were calculated as in Experiments 1a and 1b 

and the means of these values in each experimental condition are reported in Table 3, along with 

mean hit and false positive rates. From this table it is clear that the effect of head outline context 

on gaze perception was strikingly similar to that of the full face in Experiment 1a. Participants 



31 

were well able to discriminate direct from averted gaze in the congruent condition, rather less so 

when the face was absent and their performance was poor in incongruent conditions.  

Table 3. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 2a. 

 Head Outline Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.86 (0.01) 0.98 (0.01) 0.50 (0.20) 

Hit Rate 0.90 (0.11) 0.96 (0.03) 0.53 (0.06) 

False Alarm Rate 0.36 (0.26) 0.04 (0.03) 0.54 (0.25) 

Response Bias (B") 0.41 (0.44) - 0.02 (0.40) 0.04 (0.24) 

 

A one way repeated measures ANOVA conducted on the A' data confirmed that head context 

produced a significant effect on participants’ performance (F(2, 32) = 65.75, p < 0.001). Post-hoc 

Newman-Keuls tests (α = .05) confirmed that sensitivity scores were higher in the congruent 

condition (Mean A' = 0.98) compared to both the absent (Mean A' = 0.86) and incongruent (Mean 

A' = 0.50) conditions, and that discriminability in incongruent conditions was poorer than when 

the face was absent. 

The mean hit rates in the congruent (0.96) and in the absent condition (0.90) were also higher 

than in the incongruent condition (0.53) indicating that a gaze stimulus which participants judged 

to be looking at them when presented alone or in the context of a centrally oriented face, was 

more likely to be judged as averted when in the context of a head angled to the left or right. A 

repeated measures ANOVA comparing hit rates in the three conditions confirmed that context 

influenced performance (F(2, 32) = 183.62, p < 0.001). Furthermore, a planned comparison 
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comparing hit rates in congruent and incongruent conditions was also significant (t(32) = 17.62, p 

< 0.001) suggesting that participants were indeed experiencing an illusory shift of direct gaze in 

this experiment.  

The context manipulation also influenced false alarm rates as can be seen in Table 3. 

Specifically, participants made a higher proportion of false alarms in the absent and incongruent 

conditions (means = 0.36 and 0.54 respectively)  compared to the congruent condition (Mean = 

0.04). A repeated measures ANOVA confirmed that context produced a significant effect on false 

alarm rates (F(2, 32) = 27.08, p < 0.001). A planned comparison also confirmed that the false 

alarm rate was significantly higher in the incongruent than in the congruent condition (t(32) = 

7.26, p < 0.001), suggesting that averted gazes were also subject to an illusory shift caused by an 

incongruently rotated head outline. 

The mean bias index values were also very similar to those obtained in Experiment 1a. These 

indicate that participants were using a neutral criteria in congruent and incongruent conditions but 

operating with a liberal bias when the face context was absent. One sample t-tests comparing 

these scores with a bias score of zero provided support for these observations. Bias scores in 

congruent and incongruent conditions were not significantly different from zero (p’s > 0.5) but 

participants were operating with a significantly negative bias when the eyes were presented with 

no face context (t(16) = 3.82, p < 0.01). 

Discussion 

The results of this experiment were very similar to those obtained with full-face images in 

Experiment 1a. Again, participants were less able to discriminate direct from averted gaze in 

incongruent than in congruent images. Moreover, this reduction in discriminability could be 
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attributed to both an increase in the false alarm rate and a decrease in hit rate when the head 

outline was incongruent with the gaze direction. These findings suggest that head contour alone 

is sufficient to induce a Wollaston-like effect and hence exerts an effect on the perception of gaze 

direction. 

Experiment 2b 

In order to examine whether or not an image-based process is responsible for the effects 

obtained in Experiment 2a, we repeated this experiment but with the stimuli rotated through 180˚. 

Given that the full face images used in Experiments 1a also produced an effect on gaze 

perception when inverted (Experiment 1b), we expected that the effects of head contour would 

also persist in inverted images in this experiment. 

Method 

Participants. These were again 17 Open University students attending a summer school at 

the University of Stirling all of whom had normal or corrected-to-normal vision. 

Materials, Design and Procedure. These were identical to Experiment 2a save for one detail: 

the full face, eyes-only and masking stimuli were each rotated through 180˚. 

Results 

Mean discriminability and bias values, hit rates and false positive rates are presented in Table 

4. A comparison of the sensitivity data in this table with those from Experiment 2a (Table 3) 

indicates that inversion seems to have had little influence on the pattern of effects. Once again, 

participants’ discriminability scores were high in the congruent condition (Mean A' = 0.94), but 

reduced when the head context was removed (Mean A' = 0.81) and reduced still further when the 
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head was incongruent with the direction of gaze (Mean A' = 0.25). A repeated measures ANOVA 

conducted on the A' data confirmed that participants’ ability to discriminate direct from averted 

gaze was influenced by head context (F(2, 32) = 218.81, p < 0.001). Furthermore, Newman-

Keuls tests (α = .05) revealed that all comparisons between pairs of mean A' scores were 

significant. 

Table 4. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 2b. 

 Head Outline Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.81 (0.12) 0.94 (0.04) 0.25 (0.12) 

Hit Rate 0.89 (0.09) 0.91 (0.06) 0.24 (0.21) 

False Alarm Rate 0.48 (0.28) 0.12 (0.10) 0.57 (0.22) 

Response Bias (B") 0.35 (0.44) 0.15 (0.33) -0.20 (0.29) 

 

An analysis of hit rates was also conducted to examine whether participants were likely to 

have experienced an illusory shift of direct gaze caused by the rotation of an inverted head 

outline stimuli. Mean hit rates in both congruent (0.91) and absent (0.89) conditions were higher 

than when head and gaze were incongruent (0.24). A repeated measures ANOVA confirmed that 

context did indeed affect hit rates (F(2, 32) = 143.07, p < 0.001). A planned comparison indicated 

that mean hit rate in the congruent condition was significantly higher than in the incongruent 

condition (t(32) = 14.82, p < 0.001) suggesting that participants were once again experiencing an 

illusory shift of a direct gaze when paired with a rotated, and inverted, head outline.  
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The false alarm rates presented in Table 5 were also influenced by the context manipulation. 

In particular it is clear that participants made markedly more false alarms when the head context 

was either incongruent (Mean = 0.57) or absent (Mean = 0.48) compared to when head and gaze 

were congruent (Mean = 0.12). This would suggest that participants were experiencing an 

illusory shift of averted gaze towards themselves. A repeated measures ANOVA conducted on 

the false alarm data yielded a significant effect of context (F(2, 32) = 27.69, p < 0.001) and a 

planned comparison confirmed that false positive rates under the incongruent condition were 

significantly higher than in the congruent condition (t(32) = 7.17, p < 0.001).  

The pattern of bias scores across the three conditions with inverted heads was rather different 

from that with upright faces. As before, there was a bias towards responding that gaze was direct 

when the face context was absent. However, inversion seems to have introduced a similar - but 

smaller - bias with congruent stimuli, and an opposite bias (i.e. towards responding that gaze is 

averted) when head and gaze were incongruent. One sample t-tests largely confirmed these 

observations. The mean bias score in the absent condition was significantly smaller than zero 

(t(16) = 3.26, p < 0.01) but the bias in the congruent condition was only marginally positive 

(t(16) = 1.93, p = 0.072). Participants were significantly biased towards responding that gaze was 

averted when head and gaze were incongruent (t(16) = 2.75, p < 0.05). 

Discussion 

The main finding of this experiment was that, as in all the previous experiments, the context 

manipulation – this time of the inverted head contour – produced a significant effect on 

participants’ ability to distinguish direct from averted gaze. In particular, as with the upright head 

contour stimuli, A' scores were significantly lower when head contour and gaze were incongruent 
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than when they were congruent with one another. Again, this reduction in discriminability could 

be attributed to both an increase in the false alarm rate, as participants mistakenly judged an 

averted gaze to be directed at them when it was accompanied by a head oriented in the opposite 

direction, and a decrease in hit rate, as an incongruent head contour “towed” a direct gaze to one 

side or the other. Inversion therefore had no influence on the Wollaston-type effect we have 

observed with either the full face contexts (Experiment 1a) or head contour alone (Experiment 

2a). These findings suggest that the effect arises as a result of low-level image-based processes. 

The inversion manipulation did, however, introduce some bias in participants’ responses. As 

in previous experiments, in the absence of any face context, participants tended to make more 

“direct” than “averted” responses whilst no particular bias existed in either of the other two 

conditions. However, here inversion of the head contour introduced a bias towards responding 

that gaze was averted in the incongruent condition. It seems that, with conflicting head and gaze 

information, participants bias their responses towards the more salient stimulus (the head 

contour). 

Experiment 2c 

The findings of experiments 2a and 2b suggest that the shape of the head contour is sufficient 

to influence the perception of gaze. However, it is possible that participants in these experiments 

were using another cue to head orientation that was present in the images used. When head and 

gaze are directed straight ahead, the outline shape of the head is bilaterally symmetrical and the 

eyes are located in the horizontal centre of this shape. Now, as the head rotates, not only does the 

shape of the head contour deviate from bilateral symmetry but the eyes are displaced laterally 

from the centre of the shape bounded by the occluding contour of the head. Since the eyes are 
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also displaced in this way in conditions with rotated heads in Experiments 1a and 2a (see Figures 

2 and 3) it is possible that participants were using the horizontal displacement the eyes within the 

face surround to compute head angle and it is this cue, rather than the shape of the head contour, 

that influences the perceived direction of gaze. Indeed, Maruyama and Endo (1983, 1984) 

showed that a Wollaston-like effect could be induced in schematic faces by simply displacing the 

eyes alone to the left or right within a circular head outline.  

In Experiment 3, therefore, the stimuli used in Experiment 2a were manipulated so that the 

eyes always appeared in the centre of the shape bounded by the face contour. If the displacement 

of the eye region was responsible for the effects obtained in the previous experiments we would 

expect no effect of head context in this experiment. On the other hand, we would expect the 

effect to persist if the shape of the head outline is used as a cue to head orientation which, in turn, 

influences the perception of eye gaze.  

Method 

Participants. Once again 17 Open University students acted as participants in this 

experiment. All had normal or corrected-to-normal vision. 

Materials, Design and Procedure. The design and procedure remained identical to those 

used in the previous experiment. However, the materials used in this study differed from those 

used in Experiment 2a in the following respect. For all those stimuli where the heads were 

oriented to the left or right the eye region was shifted horizontally so as to offset the displacement 

caused by the rotation of the head. In heads rotated to the viewer’s left, for example, Adobe 

Photoshop software was used to shift the eye-region 6 mm (0.6˚) to the viewer’s right. The eyes 
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were shifted by the same distance to the left in heads rotated to the viewer’s right. Examples of 

the stimuli used in this experiment are illustrated in Figure 4. 

Figure 4. Reproductions of some of the stimuli used in Experiment 2c. The left column 
contains stimuli in the nose absent condition; the middle column stimuli in the nose congruent 
condition; and in the right hand column, stimuli in the nose incongruent condition. The upper row 
of stimuli have direct gazes and those in the lower row, gazes averted to the left. 

Results 

Mean discriminability and bias values, hit rates and false positive rates are presented in Table 

5. The pattern of data displayed in this table is clearly very similar to that of Experiment 2a. 

Participants were well able to discriminate direct from averted gaze in the congruent condition 

(mean A' = 0.93) but their performance was slightly poorer when the head was absent (mean A' = 

0.88) and poorer still when head angle and gaze were incongruent (mean A' = 0.80). Furthermore, 

in the incongruent condition participants’ hit rates were lower compared to those in the congruent 
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condition (means = 0.53 and 0.96 respectively) and their false alarm rate was higher (means = 

0.54 and 0.04 respectively). Again, the pattern here is similar to that in the previous experiments. 

Table 5. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 2c. 

 Head Outline Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.88 (0.07) 0.93 (0.07) 0.80 (0.12) 

Hit Rate 0.87 (0.14) 0.92 (0.06) 0.67 (0.20) 

False Alarm Rate 0.31 (0.15) 0.13 (0.16) 0.23 (0.16) 

Response Bias (B") 0.42 (0.42) - 0.03 (0.40) - 0.12 (0.31) 

 

A series of one way repeated measures ANOVA conducted on the A', hit rate and false alarm 

rates confirmed these observations. First, head context produced a significant effect on 

participants’ ability to discriminate direct from averted gaze (F(2, 32) = 17.31, p < 0.001). Post-

hoc Newman-Keuls tests (α = .05) confirmed that A' scores were significantly higher in the 

congruent condition than in both the absent and incongruent conditions and that performance was 

significantly poorer when head and gaze were incongruent than when the head outline was 

absent. Second, hit rate scores were also significantly affected by the head context manipulation 

(F(2, 32) = 17.31, p < 0.001) and a planned comparison indicated that scores in the congruent 

condition were significantly higher than in the incongruent condition (t(32) = 5.47, p < 0.01). 

Head context also produced a significant effect on false alarm rates (F(2, 32) = 9.50, p < 0.01) 

and a planned comparison confirmed that participants made significantly more false alarms in the 

incongruent condition than in the congruent condition (t(32) = 2.46, p < 0.05). 
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Finally an inspection of Table 4 reveals the pattern of bias index scores was also very similar 

to that obtained in Experiment 2a. Once again, participants seemed to operate with neutral criteria 

in congruent and incongruent conditions (means = -0.02 and -0.12 respectively), but adopted a 

more liberal criterion (mean = 0.42) when the gaze stimuli were presented in the absence of the 

head context. A series of one-sample t-tests comparing the mean B" scores with a neutral 

criterion of zero confirmed these observations. There were no significant biases in congruent or 

incongruent conditions (p’s > 0.1) but a significant positive bias when the head context was 

absent (t(16) = 4.09, p < 0.01). 

Discussion 

The results of this experiment confirm that head outline is sufficient to induce a Wollaston-

like effect on the perception of gaze direction. Even when the horizontal displacement of the eyes 

in rotated heads is controlled, A' scores were significantly lower when head contour and gaze 

direction were incongruent than when they were oriented in the same direction. As in 

Experiments 1 and 2, this reduction in participants’ ability to discriminate direct from averted 

gaze could be attributed to both a higher false alarm rate and a lower hit rate in incongruent 

compared to congruent conditions.  

Although the effect most certainly persisted in the absence of any displacement of the eyes, 

its magnitude was reduced compared to that obtained in Experiments 1a and 2a. Thus, it may 

well be that the horizontal displacement of the eyes within the overall face frame is used as 

another cue to head orientation and does indeed contribute to the perception of gaze direction as 

shown in the work of Maruyama and Endo (1983, 1984) with their schematic faces. However, the 
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results of Experiment 2c confirm that the shape of the head profile is sufficient to influence the 

perception of gaze direction when eye displacement is controlled.   

So far we have established that the context provided by the angle of rotation of both a full 

face, and the head contour isolated from the internal features, exerts an influence on the 

perception of gaze. Furthermore, they do so by virtue of some low-level image-based processes. 

What of nose angle, the other major cue that Wilson et al (2000) argue is important in head 

perception? Is a deviation in nose angle from vertical sufficient to influence the perception of 

gaze? This question was addressed in the final pair of experiments.  

Experiment 3a 

In this experiment, the shape of the head contour in congruent and incongruent conditions 

remained symmetrical (i.e. directed straight at the viewer) but the relationship between the nose 

angle and gaze direction was manipulated. We therefore investigated whether participants’ ability 

to distinguish direct from averted gaze was influenced by the context provided by the angle of the 

nose. Wilson et al (2000) maintain that head contour and nose angle provide cues of equivalent 

strength for discriminating head angle. If, in order to compute gaze angle, the visual system 

integrates information from these same cues with information extracted from the eyes we would 

also expect nose angle to influence gaze perception. Two lines of evidence hint that this might 

actually be the case. First, some more of Wollaston’s (1824) original drawings seem to indicate 

that a change in the angle of the nose is sufficient to induce a change in the apparent direction of 

a person’s gaze. Second, Maruyama and Endo (1984, Experiment 2). showed that a line denoting 

the profile shape of the nose, mouth and chin could indeed influence judgements of gaze 

direction in schematic faces. Thus, although cues other than nose angle were available in these 
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stimuli, participants may well have been using the deviation of nose angle from vertical as a cue 

to head orientation and this cue may, in turn, have influenced the perception of gaze direction. In 

view of these studies, we predicted that nose angle would indeed produce similar effects on gaze 

perception to those observed in Experiments 1 and 2. 

Method 

Participants. Seventeen Open University students acted as participants in this experiment. 

Again, all had normal or corrected-to-normal vision. 

Materials, Design and Procedure. In this experiment, the head outline context was held 

constant, directed toward the observer in all conditions. In order to achieve this, the eyes-only 

stimuli used in Experiment 1a were pasted onto copies of the original greyscale image of the head 

directed toward the observer. In this way, eyes-only stimuli and full-face stimuli were created 

with gaze directed straight ahead, to the left and to the right. In order to vary the nose context, the 

nose regions were cut from the full grayscale images of the left and rightward angled heads used 

in Experiment 1a. These left- and right-angled noses were then pasted onto full-face stimuli to 

create stimuli where nose and gaze were congruent and incongruent. The incongruent images 

were created by pasting copies of the left- and right-angled noses onto the full-face images with 

gaze directed to the right and left respectively, as well as onto images where the gaze was 

directed straight ahead. Similarly, congruent stimuli were created by pasting the left- and right-

angled noses onto faces with gaze oriented to the left and right respectively. Examples of the 

stimuli used in this experiment are illustrated in Figure 5, all were identical in size to those used 

in Experiment 1a. 
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All other aspects of the materials, design and procedure remained identical to those in 

Experiment 1a. 

Figure 5. Reproductions of some of the stimuli used in Experiments 3a and 3b. The left 
column contains stimuli in the nose absent condition; the middle column stimuli in the nose 
congruent condition; and in the right hand column, stimuli in the nose incongruent condition. The 
upper row of stimuli have direct gazes and those in the lower row, gazes averted to the left. 

Results 

The means of participants’ A' and B'' scores are summarised in Table 6. An inspection of the 

discriminability data in this table reveals that the context manipulation  - this time of the nose - 

produced similar, but smaller, effects on participants’ performance as did the full face and head 

outline manipulations in Experiments 1a and 2a. Participants’ discriminability was greatest when 

gaze and nose were congruent (Mean A' = 0.90), but fell off when the face context was removed 

(Mean A' = 0.83) but was reduced only slightly further when the nose was oriented in an 
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incongruent direction to the eyes (Mean A' =0.80). In support of these observations, a repeated 

measures ANOVA conducted on the A' data yielded a significant effect of nose context (F(2, 32) 

= 5.33, p < 0.05). Post hoc Newman-Keuls tests (α = .05) indicated that discriminability was 

significantly greater in congruent compared to both absent and incongruent conditions, but 

performance in these latter two conditions did not differ. 

Table 6. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 3a. 

 Nose Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.83 (0.12) 0.90 (0.09) 0.80 (0.17) 

Hit Rate 0.89 (0.12) 0.85 (0.12) 0.74 (0.17) 

False Alarm Rate 0.41 (0.26) 0.18 (0.16) 0.27 (0.21) 

Response Bias (B") 0.41 (0.33) 0.33 (0.47) 0.04 (0.47) 

 

The hit rate scores also suggest that the nose manipulation affected participants’ perception 

of direct gaze. Mean hit rates in absent (Mean = 0.89) and congruent (Mean = 0.85) conditions 

were higher than in the incongruent condition (Mean = 0.74). A repeated measures ANOVA 

confirmed that these means differ (F(2, 32) = 6.85, p < 0.01) and a planned comparison indicated 

that participants were less likely to decide that a direct gaze was looking at them when the nose 

was angled to one side than when directed straight ahead (t(32) = 2.63, p < 0.05). 

Context also had a small effect on participants’ false alarm rates. Of particular relevance is 

the observation that more false alarms were made when nose and gaze were incongruent (Mean = 

0.27) than when congruent (Mean = 0.18). This suggests that nose orientation can influence the 
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perception of an averted, as well as a direct gaze. Indeed, a repeated measures ANOVA 

confirmed that nose context had a significant effect on false alarm rates (F(2, 32) = 17.80, p < 

0.001) and a planned comparison revealed that participants were significantly more likely to 

misjudge that an averted gaze was actually looking directly at them when the nose was 

incongruent than when congruent with the true direction of gaze. 

Turning to the bias data, Table 6 shows that participants set neutral criteria in the congruent 

and incongruent conditions, but that - as in previous experiments - they showed a bias toward 

responding “direct” when the face context was removed. One sample t-tests indicated that this 

bias was indeed significantly different from zero (t(16) = 5.23, p < 0.001) and that bias was 

neutral in the other two conditions (p’s > 0.5). 

Discussion  

The results of Experiments 1a – 2c have suggested that the full face and head outline contour 

exert an influence on gaze perception. Similarly, the findings of this experiment suggest that the 

deviation of the nose angle alone can influence the perception of gaze direction, as suggested by 

Wollaston’s (1824) drawings and by Maruyama and Endo’s (1984) study. When the nose angle 

was incongruent with the true line of regard of the eyes, participants were less able to distinguish 

direct from averted gaze than when nose and gaze were congruent. As in previous experiments, 

the poorer discriminability with incongruent stimuli could be attributed to both a decrease in hit 

rate and an increase in the rate of false alarms. Participants made fewer hits as a deviated nose 

“towed” the line of regard of a direct gaze toward the direction indicated by the nose angle. 

Conversely, the increased rate of false alarms could be attributed to a leftward gaze being 
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“pulled” toward a nose deviated to the right - and vice-versa - so participants perceived the gaze 

as being less averted; in other words, more likely to be direct. 

Another point to note is that the effect of nose context is very much smaller than that of the 

full face, or the head contour manipulation in previous experiments. So, although nose deviation 

might, in principal, provide a cue to head direction of equal strength to the shape of the head 

contour (Wilson et al., 2000), the latter exerts a greater influence on gaze perception. However, 

we should be somewhat cautious in drawing this conclusion because – in effect – nose angle was 

actually in competition with head orientation in this experiment (head contour remained fixed in 

the “direct” orientation in both congruent and incongruent trials) whereas no equivalent 

competition existed for the head contour in Experiment 2a. Nevertheless, regardless of the size of 

influence of the nose cue, the fact that nose angle has exerted an effect on gaze perception, in 

spite of the presence of the head outline context, is good evidence that this cue is used in the 

perception of gaze direction. 

Inversion of both the full face and head contour stimuli failed to eliminate the influence that 

these signals exert of gaze perception. In Experiment 3b, we ask whether the same is true of the 

nose angle cue. 

Experiment 3b 

In this experiment, the stimuli used in Experiment 3a were rotated through 180˚ and 

participants’ ability to distinguish direct from averted gaze was again assessed. Again, if a 

higher-level configural process is responsible for producing the effect of nose angle on gaze 

perception, we would expect it to be eliminated when the faces are inverted. Persistence of the 

effect under inverted conditions, on the other hand, would implicate a lower-level image-based 
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account. As mentioned in the discussion of Experiment 1b, Maruyama and Endo’s (1984) 

Wollaston-like illusion was influenced by inversion of their schematic face stimuli leading them 

to conclude that a configurational integration was responsible for the illusory shift in gaze. To the 

extent that their Wollaston effect was induced by the angle of the nose (see above) we might also 

expect the influence of nose angle on gaze perception to be similarly sensitive to inversion of the 

face stimuli.  

Method 

Participants. Seventeen individuals from the same population as tested in previous 

experiments served as participants in this experiment. 

Materials, Design and Procedure. The face, gaze and masking stimuli used in Experiment 3a 

were all rotated through 180˚, otherwise all aspects of the design and procedure remained the 

same as in Experiment 3a.  

Results 

Means of participants’ discriminability and bias scores in the three experimental conditions 

are presented in Table 7. From this table it is clear that with inverted stimuli, nose context did not 

greatly influence participants’ ability to discriminate direct from averted gaze. Indeed, a repeated 

measures ANOVA comparing A' scores across the three conditions failed to yield an effect of 

context (F(2, 32) = 0.43, p = 0.66).  
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Table 7. Mean A' values, hit rates, false alarm rates and B" values(standard deviations in 
parentheses) in each condition of Experiment 3b. 

 Nose Context 

 Absent Congruent Incongruent 

Discriminability (A') 0.78 (0.12) 0.76 (0.13) 0.78 (0.09) 

Hit Rate 0.75 (0.15) 0.70 (0.17) 0.70 (0.13) 

False Alarm Rate 0.36 (0.23) 0.34 (0.17) 0.32 (0.16) 

Response Bias (B") 0.05 (0.32) 0.03 (0.30) 0.01 (0.29) 

 

Nose context also appears to have exerted little effect on hit rates or false alarm rates, 

observations confirmed by separate repeated measures ANOVAs conducted on these data neither 

of which approached statistical significance (p’s > 0.2). 

Although, once again, participants’ operated with a rather more liberal bias in the absent 

condition compared to congruent and incongruent conditions, the bias scores were very close to 

zero throughout. One-sample t-tests confirmed that none of the bias scores differed significantly 

from zero (p’s > 0.4). 

In order to compare the effects of nose context on gaze discriminability with upright and 

inverted stimuli an omnibus ANOVA was conducted on the A' data from this and the previous 

experiment. Context (absent, congruent and incongruent) was entered as a repeated measures 

factor and orientation (upright and inverted) as a between-subjects factor. This analysis yielded a 

marginally significant effect of orientation with better discrimination of upright as opposed to 

inverted gaze stimuli (F(1, 32) = 3.99, p = 0.054), and a significant interaction between 

orientation and context (F(2, 64) = 4.82, p < 0.05). Simple main effects analysis confirmed that 
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context exerted an effect on discriminability scores for upright (p < 0.05), but not for inverted 

stimuli (p = 0.56).  

Discussion 

In Experiments 1b and 2b, the influence of head context on gaze perception was found to 

persist when the head/gaze stimuli were inverted. In contrast, the results of this experiment 

indicate that the influence of nose angle is eliminated under inverted conditions. Whilst some 

kind of image-based process seems to be responsible for the effects exerted by head contour, a 

rather different account – perhaps based on the encoding of spatial relations between face 

“features” – is implicated for the influence that nose-angle exerts on gaze perception. 

General Discussion 

The aim of the experiments reported here was to investigate whether the cues that are 

thought to be used in the perception of head orientation – the deviation of the head profile from 

bilateral symmetry and the deviation of nose angle from vertical – are also those which influence 

the perception of eye-gaze. In Experiment 1a we confirmed that the orientation of the head and 

internal face features can indeed influence the perception of gaze. Participants’ perception of both 

direct and indirect gazes were “towed” in the direction of an incongruently oriented head so that a 

direct gaze was judged to be averted, and an averted gaze more likely to be judged as direct. 

Moreover, the effect on gaze discriminability was found to be uninfluenced by inversion of the 

stimuli (Experiment 1b), suggesting that the locus of the effect was at an early stage of 

processing, prior to categorisation of the stimuli as faces. The remaining experiments attempted 

to isolate the cues responsible for the effect. In Experiment 2a, stimuli consisting of only the 

outline head contour gave rise to a near identical pattern of effects on gaze perception as the full 
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face images. This pattern was maintained when the stimuli were inverted (Experiment 2b) and, 

though reduced in magnitude, persisted when the eyes were always located in the centre of the 

surrounding face pattern (Experiment 2c). As for the second cue to head orientation – the 

deviation of nose angle from vertical – Experiment 3a showed that this cue also influenced 

participants’ ability to distinguish between direct and averted gazes. Although the magnitude of 

the effect was much smaller than that exerted by the head contour images in the previous 

experiments, the pattern was identical. Finally, at odds with previous experiments, the influence 

of nose angle on gaze judgements was eliminated when the stimuli were inverted (Experiment 

3b) implicating the operation of a higher-level mechanism perhaps based on the 

configural/relational encoding of the face stimuli. 

So, our results suggest that those cues deemed important by Wilson et al (2000) for judging 

another’s head angle are also capable of influencing the perception of gaze, although they seem 

to do so in rather different ways: head contour via a low-level process, and nose angle at a later 

stage in processing. In the remainder of this section, we discuss each of these mechanisms before 

turning to more general issues concerning the role of head orientation in social interactions. 

Image-based processing of head orientation and gaze direction 

Wilson et al’s (2000) work together with findings by Watt (1999), Ricciardelli et al (2000) 

and Sinha (2000) suggest that both head orientation and gaze direction can be coded very early in 

processing by mechanisms that are insensitive to inversion. For example, Wilson et al. (2000) 

show how head shape can be coded from the visual image by V4 units that are sensitive to 

concentric and radial structures. When the head is oriented at 0˚ (i.e. looking directly towards an 

observer), the outputs from each of a number of these units arranged in an hexagonal array 
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encode the overall head shape and the vertical axis of face elongation. Moreover, Wilson et al 

showed how the responses of these units are bilaterally symmetric about this axis. As the face 

turns, the relative pooled responses of the units to the right of the axis of elongation will differ 

from those to the left so that a ratio describing the degree of asymmetry can be computed. Wilson 

et al. showed that such a ratio has a linear relationship with the angle of deviation of the head 

from 0˚ up to 23˚. Thus, the symmetry axis and angles of deviations of the head outline can be 

extracted early in processing from the image of the face1, a procedure that does not require the 

categorisation of the face as such, nor the localisation or explicit categorisation of any face 

features. As these V4 units essentially operate as asymmetry detectors, inversion would not be 

expected to affect judgements of head orientation based on this cue since the symmetry, or 

otherwise, is maintained in inverted images. Indeed, Wilson et al’s data indicate that perception 

of head orientation, as signalled by a combination of head contour and internal face features, was 

unaffected by the inversion manipulation. Our data go one step further in indicating that the 

influence that head contour exerts on gaze perception is unaffected by inversion.  

There is a suggestion that the cues to eye-gaze direction can also be extracted very early in 

processing. The fact that contrast negation has an effect on judgements of gaze direction 

(Ricciardelli et al, 2000, Sinah, 2000) points towards an image-based, rather than a purely 

spatially-based, representation of eye-gaze. As described earlier, Watt (1999, see Langton, Watt 

& Bruce, 2000) also favours an image-based account. He has argued that the contrast in 

luminance between the areas of sclera on either side of the iris provides a reliable cue that the 

visual system might use to determine gaze direction. Furthermore, he showed how this 

information could be extracted from the image of the eye by vertically oriented simple cells in 
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striate cortex. As with the computation of head angle, this method of determining gaze direction 

would proceed equally well with inverted as with upright stimuli.  

Thus, both head and gaze direction can, in principle, be computed early in processing by 

mechanisms that would be insensitive to inversion of the stimuli. Having extracted the relevant 

information concerning gaze direction and head angle respectively, presumably some kind of 

additive (e.g., Cutting, Bruno, Brady and Moore, 1992) or multiplicative (e.g., Massaro & 

Friedman, 1990) interaction takes place combining information from the two cues. An important 

point to note is that with these kinds of integrative interactions, the integrity of the component 

signals is lost; that is, a new representation of gaze direction is created from the combination of 

eye and head angle. This seems appropriate in the case of head contour and eye-gaze direction 

given that the same eye stimuli can give rise to two different percepts of gaze direction depending 

on the congruity or otherwise of the head contour. Whatever the precise nature of this interaction, 

as with the extraction of information from the component cues, it is also presumably insensitive 

to face inversion.   

Configural Processing and Nose Angle 

What of the influence of nose angle on the perception of gaze? The effect we noted in 

Experiment 3a was very much smaller than that exerted by the head shape in Experiment 2a and 

was actually eliminated when the stimuli were inverted. As suggested earlier, the reduced 

magnitude of the effect could have been caused by the fact that head orientation and nose angle 

were effectively in competition in this experiment. It is therefore difficult for us to draw any firm 

conclusions about the relative ability of nose angle and head-shape cues to influence the 

perception of gaze and it also makes our interpretation of the inversion effect a little more 
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circumspect. However, in view of the fact that Maruyama and Endo’s (1984) illusion – also 

probably triggered by a nose angle cue – was similarly sensitive to inversion, we suggest that the 

influence of nose angle on gaze judgements is unlikely to be the result of some early integration 

of information extracted from the image of the face, simply because the relevant image features 

will still be present in the inverted stimuli. The implication is that the effect arises at a later stage 

in processing. Another possibility, consistent with this suggestion, is that the sensitivity of the 

nose-effect to inversion could be caused by a difficulty in actually encoding the relevant face 

feature – in this case the nose – because of our unfamiliarity with upside-down faces. However, 

as discussed earlier, the evidence suggests that face features (nose, eyes, mouth etc.) are, in fact, 

encoded in inverted faces whereas the relationship between these features is not (e.g., Leder & 

Bruce, 1998, 2000; Searcy & Bartlett, 1996). In view of this, a more likely explanation for the 

inversion effect is that the nose contributes to the perception of gaze direction as part of a 

configuration of face features. 

The term “configuration” is somewhat vague and has been used in rather different ways by 

different researchers. Holistic processing of gaze direction – an extreme version of the configural 

processing view (e.g., Tanaka & Farah, 1993) – would imply that neither the nose angle nor eye 

direction are represented separately, but that some kind of gestalt involving the internal face 

features signals the direction of attention. Alternatively, a somewhat less extreme “relational” 

processing view (e.g., Diamond & Carey, 1986) would imply that nose, eyes etc. are represented 

but that the processing of, say, the nose provides some kind of contextual modulation of the 

processing of gaze direction (e.g., Phillips & Singer, 1997). This form of interaction can be 

contrasted with the additive or multiplicative interactions suggested to operate to combine head 

outline and gaze direction. In the latter types of interaction, information from the two sources is 
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actually integrated to create a new representation. Contextual modulation, on the other hand, does 

not involve an actual integration of signals but rather a facilitation of the processing of one 

variable (e.g., eye direction) by information in another processing channel (e.g., nose angle). 

Thus, it is possible that early in processing some kind of integrative interaction operates to 

combine head outline and eye-gaze direction to yield a new representation specifying gaze 

direction. The processing of this information might then be modulated at a later stage by the 

context provided by the orientation of the nose. 

However, it may also be the case that the computation of nose angle itself involves a kind of 

configural/relational processing, so that face inversion may have disrupted this process as well as 

- or instead of - the contextual interaction between nose angle and eye-direction. Configural or 

relational processing may be involved in the extraction of nose angle because, in order to give a 

reliable indication of head rotation, the deviation of angle of the nose must be computed in 

relation to the vertical axis of elongation of the face, and not simply as the deviation of the nose 

angle from vertical in space (Wilson et al., 2000). In order to see that this must be so, consider a 

deviation in the angle of nose to the viewer’s left. This could signal that the head is turned to the 

left (rotation in the horizontal plane), or that the head is tilted to the viewer’s right (rotation in the 

coronal plane). The estimation of head angle using the nose as a cue thus involves location of the 

nose region2, a computation of the vertical axis of elongation of the face and, of course, a 

computation of the nose angle itself. It seems as though this process is not as simple as the coding 

of head angle and involves a good deal of relational processing: the kind of activity thought to be 

disrupted by face inversion.  

To summarise, we speculate that head outline operates to influence eye-direction at a very 

early stage in processing, possibly through some kind of integrative combination of information 
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extracted from the visual image concerning head outline asymmetry and scleral contrast. Nose 

angle, on the other hand, seems to influence the processing of gaze direction through a configural 

interaction at a later stage in processing after the integration of head and gaze information. 

However, the precise nature of these interactions awaits further research. 

We have shown that head angle, as signalled by whole face, head outline and nose angle, can 

influence the perception of eye-gaze direction. The choice of head and gaze angles in the present 

experiments were deliberately chosen to best produce the Wollaston illusion with the full face 

images; however, further work should explore whether an interaction exists over a range of head 

and gaze angles. Wilson et al. speculate that as head angles approach 30˚, deviations of the head 

profile from bilateral symmetry might be ineffective in coding head angle and that nose angle 

might be the principal cue under these conditions. Thus, it may be that with greater incongruities 

between head and eye-gaze angle, that the nose angle will exert a larger effect on gaze 

perception. 

Although this paper has focussed on the relationship between the perception of head 

orientation and that of eye gaze, we should be mindful of the importance of the former as an 

independent social signal in its own right, and not simply as a vehicle for the eyes. We have 

already mentioned how the head acts as the primary cue to attention direction in infants and many 

non-human primates. However, perhaps it also serves as a “special” cue in adults. When 

engaging in a conversation research has shown how a speaker’s gaze will often be averted from 

their partner only to return when, for example, they have finished their conversational turn 

(Kendon, 1967). However, during this aversion of gaze, it may be critical for the listener to 

maintain their attention on the speaker’s face in order to process more efficiently their facial 

expressions and gestures or changes in face and mouth shape that can help disambiguate speech 
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sounds (e.g., McGurk & MacDonald, 1976). Perhaps a speaker holds a listener’s attention by 

ensuring that the orientation of their head does not stray too far from the line of regard of the 

listener, even though their actual eye gaze might. If this is true, the implication is that the angle of 

the head might actually be the more powerful cue to the direction of another’s “social” as 

opposed to their “visual” attention direction.  
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Footnotes 

1 Hancock, Bruce and Burton (1998) have serendipitously shown that Principle Components 

Analysis (PCA) of image pixel values can encode the angle of the head. PCA is a technique that 

extracts statistical regularities in a set of images and can encode various facial dimensions such as 

identity, expression and gender with, it is claimed, some psychological plausibility (e.g., 

Hancock, Burton & Bruce, 1996; Turk & Pentland, 1991; O’Toole, Deffenbacher, Valentin & 

Abdi, 1994). 

2 The location of face features is, itself, a far from trivial problem. However, Wilson et al 

(2000) suggest that location of the bridge of the nose region could, in principle, be achieved by 

V4 units before the sampling of orientation specific cells below this point could code its angle of 

deviation from vertical.  
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