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Abstract 

Background subtraction is a classic step in a vision-based localization and tracking workflow. Previous studies have compared background 
subtraction algorithms on publicly available datasets; however comparisons were made only with manually optimized parameters. The aim of 
this research was to identify the optimal background subtraction algorithm for a set of field hockey videos captured at EuroHockey 2015.  
Particle Swarm Optimization was applied to find the optimal background subtraction algorithm. The objective function was the F-score, i.e. the 
harmonic mean of precision and recall. The precision and recall were calculated using the output of the background subtraction algorithm and 
gold standard labeled images. The training dataset consisted of 15 x 13 second field hockey video segments. The test data consisted of 5 x 13 
second field hockey video segments. The video segments were chosen to be representative of the teams present at the tournament, the times of 
day the matches were played and the weather conditions experienced. Each segment was 960 pixels x 540 pixels and had 10 ground truth 
labeled frames. Eight commonly used background subtraction algorithms were considered.  
Results suggest that a background subtraction algorithm must use optimized parameters for a valid comparison of performance. Particle Swarm 
Optimization is an appropriate method to undertake this optimization. The optimal algorithm, Temporal Median, achieved an F-score of 0.791 
on the test dataset, suggesting it generalizes to the rest of the video footage captured at EuroHockey 2015.  
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1. Introduction 

The localization and tracking of players in field sports, such as field hockey, is a vital tool used in the assessment of 
performance [1]. The data can provide both a physiological and tactical insight. Automated vision-based methods provide a non-
invasive way to collect this data; important when radio frequency solutions are unsuitable or opposition data is required. 
Background subtraction, a method for the segmentation of the foreground in a scene, is a classic step in a vision-based workflow. 
An algorithm classifies each pixel in an image as either foreground or background. The development of background subtraction 
algorithms is an active research field and the BGS Library[2] contains some of the most popular. Previous studies have compared 
background subtraction algorithms on publicly available datasets[3,4]; but each algorithm has performance affecting parameters 
that may not be optimal. Without using the optimal values for these parameters the comparison will be biased towards one 
algorithm. [3] made no attempt to optimize the parameters. [4] manually optimized the algorithm parameters using grid search, 
however the optimal values are restricted by the discrete coarseness of the grid.  

Particle Swarm Optimization (PSO) [5] is a stochastic optimization technique based upon the principles of swarm 
intelligence[6]. Each of the candidate solutions (particles) in the swarm moves around the search-space for a defined number of 
generations. The update of a particle’s state from one generation to the next is based upon the swarm’s best solution and the 
particle’s best solution. If the algorithm is allowed to run for enough generations the particles of the swarm will converge. The 

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ISEA 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/42542294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2016.06.261&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2016.06.261&domain=pdf


638   David Higham et al.  /  Procedia Engineering   147  ( 2016 )  637 – 642 

swarm’s best observed solution is deemed the optimal solution. The search-space is continuous, so in contrast to grid search PSO 
is not limited by the need to define the resolution of the grid.  

PSO has been applied to optimize the parameters of a single background subtraction algorithm[7], specifically Gaussian 
Mixture Model [8]. However no attempt has been made to optimize all algorithms in a set and then subsequently identify the best 
algorithm. In [7] the objective of the optimization is to maximize the F-score. The F-score is the harmonic mean of the precision 
and recall. The calculations for precision and recall are illustrated in Fig. 1.  

 

Fig. 1. Calculations for precision and recall given a gold standard foreground image and the classified output of a background subtraction algorithm.  

The aim of this research was to identify the optimal background subtraction algorithm for the video dataset using Particle 
Swarm Optimization. The set of videos was captured at the 2015 EuroHockey Championships. It was shown that this optimal 
algorithm can then be applied to other videos from the same tournament to achieve similar segmentation results. 

2. Method 

2.1. Optimization Video Dataset 
 
15 video segments were used for the training dataset. A further five video segments formed the test dataset. Each segment was 

the starting 13 second sequence, at 25 frames per second, of a different quarter from EuroHockey 2015. The videos in the 
training and test datasets were chosen to be representative of: 1) the teams present at the tournament; 2) the times of day matches 
were played; and 3) the weather conditions experienced. The original quarters were captured at a resolution of 3840 x 2160 (4K) 
using a Sony FDR-AX1 fitted with a 0.3x wide angle lens, however the video segments included in the dataset were of the 
resolution 960 x 540. This decision was made to decrease the execution time of the optimization. A previous unpublished study 
showed a strong correlation (r(24) = 0.96, p < 0.01) between the optimal F-score for an algorithm at 4K and at 960 x 540. The 
optimal parameters themselves were not consistent across resolutions. The frames of the video were resized using average pixel 
interpolation. 

 

 

Fig 2. (a) Initial frame; (b) Frame masked to the pitch area; (c) Player pixel mask. 
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Each video contained 10 comparison frames; those frames for which the gold standard foreground had been manually 
labelled. For each video the first 100 frames were a dedicated learning period, necessary for some of the algorithms. The 
comparison set comprised of the 101st frame and every subsequent 25th frame up to the 326th frame. Therefore there were 150 
frames in the training set and 50 frames in the test set. As illustrated in Fig 2b, each comparison frame was masked to the pitch 
area. This eliminated foreground classifications outside the area of interest. The player pixels were then labelled as in Fig 2c. A 
data access statement for the dataset can be found at the end of this article. 

Table 1. Background subtraction algorithms included in the study. For each algorithm the parameters to be optimized are listed with their default values and 
range of valid values. 

Algorithm Summary Parameter Description Default Min Max 

Frame 
Difference 

Absolute difference with previous frame. Pixel 
is foreground if difference is greater than a 
threshold.  

threshold Pixel foreground if greater than value 15 0 255 

Static 
Frame 
Difference 

Absolute difference with first frame. Pixel is 
foreground if difference is greater than a 
threshold. 

threshold Pixel foreground if greater than value 15 0 255 

Weighted 
Moving 
Mean 

Absolute difference with weighted mean frame. 
Pixel is foreground if difference is greater than a 
threshold. 

threshold Pixel foreground if greater than value 15 0 255 

Temporal 
Median [9] 

Absolute difference with median frame. Pixel is 
foreground if difference is greater than threshold  

threshold Pixel foreground if greater than value 30 0 255 

samplingRate How often background resampled 5 1 20 

historySize Number of frames in sample 16 1 70 

weight Amount of influence given to 
previous samples 

5 1 20 

Average 
Gaussian 
[10] 

Per pixel background represented by a running 
average Gaussian. Pixel is foreground if it does 
not fall within a defined distance of the 
Gaussian.  

threshold Pixel foreground if greater than this 
many variances from mean   

12.25 0.25 100 

alpha Adaptive filter update rate 0.005 0 1 

learningFrames Number of frames for initialization 30 0 24 

Gaussian 
Mixture 
Model [8] 

Per pixel background represented by a mixture 
of Gaussians. Pixel is foreground if does not fall 
within a defined distance of one of the 
Gaussians. Background Gaussians updated as 
more evidence becomes available. 

threshold Pixel foreground if greater than this 
many variances from background 
mean   

12.25 0.25 100 

backgroundRatio Ratio of Gaussians that account for 
the background 

0.75 0 1 

alpha Adaptive filter update rate 0.001 0 1 

numGaussians Maximum number of Gaussians 3 1 5 

Gaussian 
Mixture 
Model 
(Zivkovic) 
[11] 

Extension of Gaussian Mixture Model. Uses an 
exponentially decaying envelope to limit the 
influence of old data. 

alpha Parameter that defines the 
exponentially decaying envelope  

0.05 0 1 

backgroundRatio Ratio of Gaussians that account for 
the background 

0.9 0 1 

threshold Pixel foreground if greater than this 
many variances from background 
mean   

9 0.25 100 

fVarInit Variance of new Gaussian model 15 0 100 

fCT Complexity reduction parameter 0.05 0 1 

Dominant 
Color 

Similar to [12]. Assumes the pitch is the 
dominant color in the scene and everything else 
is a player. Absolute difference between pixel 
and peak value. Pixel is foreground if difference 
in each channel is greater than threshold.   

thresholdChannel1 Threshold on channel 1 of colorSpace - 0 255 

thresholdChannel2 Threshold on channel 2 of colorSpace - 0 255 

thresholdChannel3 Threshold on channel 3 of colorSpace - 0 255 

numberBinsChannel1 Number of histogram bins on channel 
1 of colorSpace 

- 1 255 

numberBinsChannel2 Number of histogram bins on channel 
2 of colorSpace 

- 1 255 

numberBinsChannel3 Number of histogram bins on channel 
3 of colorSpace 

- 1 255 

colorSpace Color Space that the algorithm works 
in. 0 = RGB, 1 = HSV, 2 = Lab, 3 = 
YCrCb 

- 0 3 
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2.2. Background Subtraction Algorithms 
 

Eight background subtraction algorithms were included in the study. These eight algorithms were chosen based upon their 
common use in previous research. The algorithms along with the parameters to be optimized are displayed in Table 1. For all 
algorithms but Dominant Color the BGS Library implementation was used.  
 
2.3 Optimization Procedure 
 

The parameters for each background subtraction algorithm were optimized once using PSO. The optimizations were run on a 
HP Z230 Workstations (Intel® CoreTM i7-4790 processor - 3.6 GHz, 16 GB RAM). For each background subtraction algorithm, 
the number of particles and behavior parameters were based upon the number of parameters and taken from literature [13]. Each 
parameter’s initial state was randomized within the search space. The PSO ran for 100 generations or until convergence. If a 
parameter state is given as a normalized vector, convergence was defined as 60% of the particles within the population having a 
best observed state within 0.1 of the global best state [14]. No attempt was made to optimize the execution time of the algorithm. 
The F-score for a parameter state was calculated using the mean precision and recall across the 150 labeled training frames.  

Following a pilot study, it was deemed that cross-validation was impractical. The average execution time of a single 
parameter state evaluation for the Temporal Median algorithm was approximate real-time (190 seconds). Assuming the 
optimization does not converge, then over 20000 parameters states would be evaluated, making multiple executions unfeasible. 
 
2.4 Test Procedure 
 

The test dataset was evaluated using both the default parameter state and the optimal parameter state. The F-score for a 
parameter state was calculated using the mean precision and recall across the labeled 50 test frames.  

3. Results 

Fig. 3 illustrates for each algorithm the F-score for the default parameters and the F-score for the optimal parameters. The 
default parameters for Weighted Moving Mean did not return an F-score and no defaults were defined for Dominant Color so 
both are omitted.  

 

Fig. 3. For each background subtraction algorithm the observed F-score for the default parameters on the test set and the optimal parameters on the test set and 
training set.  The default values for Weighted Moving Mean did not return an F-score. Dominant Color does not list default parameters. 

Table 2 lists the parameters for the optimal algorithm, Temporal Median.  

Table 2. Optimal observed value for each parameter of the Temporal Median. 

Algorithm Parameter Optimal Value 

Temporal Median threshold 22 

Temporal Median samplingRate 10 

Temporal Median historySize 65 

Temporal Median weight 8 
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4. Discussion 

The aim of this study was to identify the optimal background subtraction algorithm to segment video captured at EuroHockey 
2015. While the dataset is different, the principle of the study is similar to that in [3]. They reviewed the performance of the 
algorithms using the default parameter values defined by the algorithms’ authors. Fig. 3 illustrates, for the test dataset, the F-
scores for the default parameter values are considerably different to the F-scores for the optimal values. These results suggest that 
the optimal parameters must be used for a valid comparison between the algorithms. Without optimization a comparison is 
biased towards certain algorithms. For example, when using the default parameters, Gaussian Mixture Model performed 
relatively poorly compared to the best algorithm, Temporal Median (Gaussian Mixture Model – 0.559 vs Temporal Median – 
0.745). However, when using the optimal parameters it performed much better (Gaussian Mixture Model – 0.761 vs Temporal 
Median – 0.791). Further to this, for Moving Mean Average the default parameters failed to return an F-score as they did not 
classify any pixels as foreground in one of the test frames.   

Having established the optimal parameters a valid comparison can be made between algorithms. Fig. 3 shows the relatively 
simple Temporal Median achieved the highest observed F-score (0.791). The algorithm regularly resamples the entire 
background, providing an up-to-date background model with which to compare. Similarly Frame Difference resamples the entire 
background every frame. However, as only one frame is used, the background is susceptible to noise, which will decrease the 
recall and as such the F-score. Frame Difference does nevertheless perform comparatively to Moving Mean Average despite 
being a simpler algorithm. Static Frame Difference performs the worst of all the algorithms. The player’s positions in the initial 
frame appear as ghosts in the output for subsequent frames. These ghosts decrease the precision and as a result the F-score.   

In general the algorithms that modelled the background using a Gaussian distribution outperformed those that modelled the 
background as a single value. This is due to the variance across previous frames being used to determine a dynamic background 
threshold. Further to this, Gaussian Mixture Model and Gaussian Mixture Model (Zivkovic), which both permitted multiple 
Gaussians, outperformed Average Gaussian. This suggests that the variance of background could not be modelled sufficiently by 
a single Gaussian. The similarity between Gaussian Mixture Model and Gaussian Mixture Model (Zivkovic) should also be 
expected due to the latter being an extension of the former.  

Fig. 3 also displays the F-score for the optimal parameters on the training dataset. For all algorithms but Static Frame 
Difference, a small drop in F-score was observed between the performance on the training dataset and the test dataset. This could 
be a result of overfitting of the parameters to the training set or a result of differences in the distributions of the training set and 
testing set. However it does suggest that the optimal parameters can be generalized to other videos from EuroHockey 2015.   

5. Future Work 

Execution time is a key consideration in time critical applications. An algorithm’s parameters may affect the execution time. 
Therefore execution time should be considered as a factor in future optimizations. This may be achieved by weighting F-scores 
by execution time or by setting a maximum permitted execution time.    

As noted previously, Parameter states at different resolutions were not consistent; therefore the best observed parameter state 
may not be optimal with the original 4K footage. The best performing algorithms must be optimized again using a 4K dataset. 

This work used the F-score, the harmonic mean of the precision and recall, as its objective function. This gave equal influence 
to both the precision and recall. In practice, computer vision techniques can be used to eliminate false positives but not false 
negatives. Consequently better segmentation results may be achieved by biasing to reduce the number of false negatives and as 
such increase the recall. This could be achieved using the Fβ measure that weights recall to “attach β times as much importance to 
recall as precision” [15].  

The test set contained variance in the time of day and weather conditions. Further analysis will be undertaken to assess if the 
best background subtraction algorithm is dependent upon these factors.    

6.  Conclusions 

 The parameters of a background subtraction algorithm should be optimized before a valid comparison between algorithms is 
made.  

 Particle Swarm Optimization is a suitable tool for the optimization of background subtraction algorithm parameters.  
 Temporal Median was the optimal algorithm for a training set from EuroHockey 2015. It also generalizes well to other 

videos from EuroHockey 2015. No statement can be made upon its generalization to other field sport datasets. 
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