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Abstract: Optical feedback effects in lasers may be useful or problematic, depending on the

type of application. When semiconductor lasers are operated using pulsed-mode excitation, their

behavior under optical feedback depends on the electronic and thermal characteristics of the laser,

as well as the nature of the external cavity. Predicting the behavior of a laser under both optical

feedback and pulsed operation therefore requires a detailed model that includes laser-specific

thermal and electronic characteristics. In this paper we introduce such a model for an exemplar

bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a

selection of pulsed operation scenarios. Our results demonstrate significant interplay between

electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding

QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in

interferometric applications, thermal modulation via low duty cycle pulsed operation would be

an alternative to commonly used adiabatic modulation.
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A. G. Davies, and A. D. Rakić, “Terahertz inverse synthetic aperture radar imaging using self-mixing interferometry

with a quantum cascade laser,” Opt. Lett. 39, 2629–2632 (2014).

22. H. S. Lui, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, E. H. Linfield,
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1. Introduction

Terahertz quantum cascade lasers (THz QCLs) are compact, electrically driven sources of radia-

tion in the ∼ 1–5 THz band [1] that hold enormous potential for sensing [2,3] and communication

applications [4–7]. Laser feedback interferometry (LFI) with THz QCLs is a recently-developed

coherent sensing technique [8–10], ideally-suited to the development of compact sensing sys-

tems, in which radiation is reflected back into the internal laser cavity from an external target

of interest. This optical feedback gives rise to measurable changes in the electronic and optical

behavior of the laser, in a phenomenon referred to as “self-mixing” [11–13]. Optical feedback

occurs to a greater or lesser extent in all laser applications, regardless of whether it is intentional,

thereby necessitating its inclusion in operating models of many laser systems. Intentional optical

feedback can be used in interferometric sensing applications [8, 14], for example, to infer the

properties of a target from the measured self-mixing voltage [15–17], and has been applied

recently to applications including THz biomedical imaging, explosives detection, and THz radar

imaging [18–24]. Conversely, optical feedback in communication applications is usually undesir-

able and has the potential to cause problems such as unwanted self-mixing fringes, coherence

collapse, chaotic behavior, or unwanted transitions between laser operating regimes [25, 26].

Seemingly weak optical feedback can affect optical communication systems markedly, making it

a vital component of any analysis.

All THz LFI systems to date have employed THz QCL sources in continuous-wave (cw)

operation. Nevertheless, pulsed THz QCL operation yields superior performance over short

timescales compared with cw operation, owing to the lower internal Joule heating within the THz

QCL, and hence higher optical gain, lower net electrical power consumption, and higher wall-

plug efficiency. Indeed, pulsed THz QCLs have been demonstrated with operating temperatures

as high as 200 K [27] and peak THz output powers in excess of 1 W [28]. As such, the

development of reliable pulsed THz LFI techniques would potentially enable operation using

efficient cryo-coolers and also open up new applications (such as nonlinear optical studies) that

require very high instantaneous THz powers. Preliminary studies have already exploited a pulsed

modulation scheme to achieve a tenfold increase in data acquisition rate in a THz LFI imaging

application [20] compared with the use of a cw source under mechanical modulation.

A challenge remains, though, in the interpretation of LFI signals when a pulsed source is used,

since the lasing dynamics are significantly more complex than in cw operation. This is caused by

the interplay between the electro-optic response to the retro-injected THz field and to the thermal
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transients occurring in a pulsed THz QCL. In this study we present the first comprehensive model

of these coupled effects, thereby providing an accurate platform for predicting and analyzing the

behavior of a pulsed THz QCL under optical feedback.

Temperature change contributes to laser behavior in a number of complex ways, including

altering the refractive index and the physical dimensions of the internal laser cavity [13], which

in turn alter the lasing emission frequency. Furthermore, the changing temperature affects carrier

dynamics and thus the laser state over a wide range of timescales, from picosecond-scale electro-

optical dynamics [29] to microsecond-scale thermal modulation. It also affects modulation

bandwidth and static characteristics such as the L–I and I–V responses [30]. High-powered

THz QCLs can require drive currents in the region of amperes, producing several watts of Joule

heating (self-heating) power [31]. The thermal transients and accompanying effects brought

about by self-heating are far more prominent in these devices than in other types of laser [32,33],

to the extent that they may be used as a tool for tuning QCLs [34].

The optical feedback model we introduce here draws on and parallels that of an early seminal

paper for diode lasers [35], in which terms representing re-injection of photons into the internal

cavity are included in a reduced set of rate equations. Using this model, we reproduce all optical

feedback-related phenomena, including the compounding effect of re-injected photons on laser

electro-optical dynamics, external cavity oscillations [36], altered threshold current [37, 38],

and modulation bandwidth [39]. In most lasers, changes in temperature or drive current [40]

cause a slight perturbation in the emission frequency. In the presence of feedback from a static

external cavity, this changes the relative phase of re-injected photons. The interference with

photons already in the internal cavity in turn produces a change in optical output power and

terminal voltage, i.e. an observable self-mixing effect. In pulsed QCLs, the effect is significantly

more complex, since the laser dynamics are affected simultaneously by the feedback, and by the

thermal and electronic transients associated with pulsed excitation. The model of a pulsed QCL

must, therefore, account for the coupling between these effects, which gives rise to complex

time-dependent phenomena that cannot be reproduced by studying each effect in isolation.

We begin in Section 2 with a description of the model. Using a single-mode bound-to-

continuum (BTC) THz QCL emitting at 2.59 THz as an exemplar device [18, 41], we then apply

the model to pulsed mode excitation in Section 3, and conclude in Section 4.

2. Laser-specific RRE model under pulsed operation and optical feedback

In contrast to more computationally demanding density-matrix or non-equilibrium Green’s

function formalism approaches [42–44], the static behavior of a THz QCL can be modeled

efficiently using a full electron-scattering rate equation (RE) solver [45, 46], including energy

balance. However, modeling the dynamic behavior under thermal transients in the presence of

optical feedback would present a significant computational challenge even with an RE approach.

Reduced rate equations (RREs) [47], on the other hand, being a simplified and condensed

representation of full REs, are less computationally demanding and thus more suited to modeling

dynamic behavior under the desired operating conditions. Dynamical behavior of THz QCLs due

to pulsed operation occurs as a result of three mechanisms operating on very different timescales:

(i) picosecond-scale intrinsic electro-optical laser dynamics, governed by semiconductor

material characteristics and carrier subband states. These are included in RREs through

carrier scattering rates and carrier and photon lifetimes. All parameters depend on both

lattice temperature and the electric field, dictated by the laser terminal voltage and internal

carrier and dopant distributions in the active region (AR). As a result, these picosecond-

scale laser dynamics are slowly modified by evolving thermal transients [see (iii) below].

(ii) nanosecond-scale effects due to optical feedback from the external cavity, which typically

introduces a round-trip path length of 0.1–1 m.
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(iii) microsecond-scale emission frequency changes (modulation or chirp) due to self-heating in

the laser, and concomitant self-mixing effects. The timescale of thermal changes, typically

in the tens of nanoseconds to tens of microseconds range, is determined by the thermal time

constants of the device which are in turn dictated by its temperature-dependent thermal

resistance and heat capacity. In combination with the external cavity, thermal modulation

results in self-mixing behavior that is observable in both the optical power output and laser

terminal voltage [13].

Adiabatic modulation, caused by changing carrier density, is a second mechanism of emission

frequency change. It can occur simultaneously with thermal modulation and may counteract or

augment it, depending on the characteristics of the laser. Unlike thermal modulation, adiabatic

modulation can be better controlled to occur on a timescale dictated by the waveform of the

excitation (driving) current.

Clearly, a laser-specific model is needed to reveal the interplay between free-running laser

characteristics, thermal effects, and feedback from an external cavity. Our model comprises:

(i) a set of RREs that include terms modeling photon re-injection due to optical feedback, (ii) a

thermal model for predicting laser temperature change (i.e., self-heating) as a function of current,

which is used to calculate other temperature-dependent parameters, and (iii) a model to predict

the temperature- and bias-dependent emission frequency, which affects optical feedback related

behavior.

The three main components of our model all use parameters derived specifically for the

exemplar QCL, described in Section 2.1. For this paper, some modeling parameters were

calculated from a full energy-balance scattering transport RE model using structural design

data for the device. Others, such as temperature-dependent thermal parameters and emission

frequency, are behavioral models based on laboratory measurements. In general, the choice

of parameter modeling method is a matter of expediency and one could, for example, use a

theoretical or analytical expression for a parameter where necessary.

2.1. Exemplar device

Figure 1 shows the band structure diagram of the exemplar QCL studied in this work, calculated

using the full self-consistent Schrödinger–Poisson energy balance scattering transport method [48,

49].
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Fig. 1. Band structure and electron wavefunction moduli squared of the exemplar device

showing upper lasing level (ULL) and lower lasing level (LLL), along with mini-band

extraction states (dashed lines), under an applied electric field of 2.4 kV/cm (corresponding

terminal voltage of 2.784 V).

Starting from the injection barrier (see Fig. 1), the Al0.15Ga0.85As/GaAs layer sequence for
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each of the 90 periods in nanometers is, from left to right, 3.5 / 11.6 / 3.8 / 14.0 / 0.6 / 9.0 / 0.6 /

15.8 / 1.5 / 12.8 / 1.8 / 12.2 / 2.0 / 12.0 / 2.0 / 11.4 / 2.7 / 11.3. AlGaAs layers are shown in bold,

and the 12.0 and 11.4-nm-thick quantum wells are n-doped at concentration 2.40 ×1016 cm−3.

The wafer was grown to an AR thickness of 11.6 µm and then processed into a semi-insulating

surface-plasmon ridge waveguide of width 140 µm and cleaved to a length of 1.78 mm [18, 41].

2.2. Reduced Rate Equations

To correctly predict the behavior of a QCL under optical feedback we require a free-running RRE

model that reproduces both the static and dynamical behavior of the device. Well known QCL

RRE models [29, 50–54] have been used successfully to study a narrow range of temperatures

and excitations. However, since they do not account fully for the thermal and electric field (bias)

dependence of the RRE parameters, they cannot correctly predict QCL behavior under arbitrary

excitation signals such as low duty-cycle pulsing. By contrast, our model accounts for both

the bias and temperature dependence of the RRE parameters by using the approach described

in [39]. First, the Schrödinger and Poisson equations were solved self-consistently with a full

scattering transport–energy balance RE model of the RRE parameters G, η3, η2, τ3, τ32, and τ21

(see Table 1 and Eqs. (1)–(4) below), and deducing them for a range of lattice temperatures (T)

and biases (V ). A two-dimensional polynomial in both V and T was then fitted to the calculated

values for each parameter, enabling the function to subsequently be interpolated rapidly for use

in Eqs. (1)–(4). This initial fitting process allows the RRE model to be solved any number of

times for different choices of current-drive excitation, ambient temperature and external cavity

characteristics. Reference [39] describes the free-running model.

The equations for our complete model in the presence of optical feedback read as follows:

dS(t)

dt
= −

1

τp
S(t) + M

βsp

τsp(T,V )
N3(t) + MG(T,V )(N3(t) − N2(t)) S(t)

+
2κ

τin
(S(t)S(t − τext(t)))

1
2 cos (ωthτext + ϕ(t) − ϕ(t − τext))

︸                                                                        ︷︷                                                                        ︸

Feedback Term

, (1)

dϕ(t)

dt
=
α

2

(

G(N3(t) − N2(t)) −
1

τp

)

−

κ

τin

(

S(t − τext(t))

S(t)

) 1
2

sin (ωthτext + ϕ(t) − ϕ(t − τext))

︸                                                                   ︷︷                                                                   ︸

Feedback Term

, (2)

dN3(t)

dt
= −G(T,V )(N3(t) − N2(t)) S(t) −

1

τ3(T,V )
N3(t) +

η3(T,V )

q
I (t) , (3)

dN2(t)

dt
= +G(T,V )(N3(t) − N2(t)) S(t) +

(

1

τ32(T,V )
+

1

τsp(T,V )

)

N3(t)

−

1

τ21(T,V )
N2(t) +

η2(T,V )

q
I (t) , (4)

dT (t)

dt
=

1

mcp(T )

(

I (t)V (T (t), I (t)) −
(T (t) − T0(t))

Rth(T )

)

. (5)
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Equations (1)–(4) without the “feedback terms” identified by under braces, amount to the

model for the free-running QCL. Table 1 summarizes the meaning of all symbols used in the

equations. Given the drive current forcing function I (t) and cold finger temperature T0(t), the

equations allow us to solve for the photon number S(t), ULL and LLL carrier numbers N3(t)

and N2(t) respectively, and the AR temperature T (t). The cold finger temperature T0(t) may

be varied but is assumed to be a constant value in this work. The voltage V (t) at the device

terminals is found from I (t) using experimentally determined temperature-dependent current–

voltage (I–V) curves (see Fig. 2), and is thus expressed as V (T (t), I (t)) in Eq. (5). Once solved,

the optical output power P(t) can be found from the photon number S(t) using the relation

P(t) = η0~ωS(t)/τp. The output coupling efficiency η0 in this equation is defined in [29], and

here is computed as η0 = 0.2593. Since the RRE parameters G, η3, η2, τ3, τ32, and τ21 are all

temperature and bias dependent, we interpolate their values from the associated polynomial

fittings according to the state of the system at each iteration of the time-domain solution.

This approach properly reproduces the experimentally-measured light–current characteristics

of the free-running QCL over its entire dynamic range of operation [39], when the collection

efficiency of the detection system is accounted for. Figure 2 shows the laboratory measured

light–current–voltage (L–I–V) characteristics of our exemplar QCL, for a range of cold finger

temperatures. Inset in the figure, for comparison, are the calculated emitted optical power-current

characteristics produced by the free-running model at the same temperatures. The calculated total

emitted optical power is about four times higher than measured collected power at the detector

due to limited collection efficiency of the detection equipment.

Fig. 2. Free-running L–I–V characteristics of exemplar 2.59 THz BTC QCL. Main fig-

ure: laboratory measured characteristic at four cold finger temperatures. Inset: Modeled

characteristic at the same temperatures.

2.3. Incorporating Optical Feedback

Optical feedback is included in Eqs. (1) and (2) through the additional “feedback terms” identified

by under braces. These equations (for photon density and phase, respectively) are derived from

the Lang and Kobayashi model [13]. The feedback coupling coefficient κ relates to the emission

facet mirror and target reflectivities (R2 and R respectively), and the re-injection loss ε as

follows [17]:

κ = ε (1 − R2)

√

R

R2

. (6)
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Table 1. Meaning of symbols used in Eqs. (1)–(5). Values for variables dependent on

temperature and voltage are given at the instant t = 1 µs in the example below, at which

time T = 46.1 K and V = 2.94 V.

Symbol Description Value / Units

M Number of periods in QCL 90

S(t) Photon number 3.69 ×107

N3(t) Carrier number in upper lasing level (ULL) 1.03 ×107

N2(t) Carrier number in lower lasing level (LLL) 2.54 ×106

ϕ(t) Phase of electric field Radians

I (t) Total current into / out of device terminals 0.465 A

G(T,V ) Gain factor [29] 1.42 ×104 s−1

τ3(T,V ) Total carrier lifetime in ULL 7.94 ×10−12 s

τ32(T,V ) Non-radiative relaxation time from ULL to LLL 1.52 ×10−10 s

τ21(T,V ) Total carrier lifetime in LLL 1.94 ×10−11 s

η3(T,V ) Injection efficiency into ULL 46.4 %

η2(T,V ) Injection efficiency into LLL 0.60 %

τsp(T,V ) Spontaneous emission lifetime 5.10 ×10−6 s

τp Photon lifetime 9.02 × 10−12 s

βsp Spontaneous emission factor 1.63 ×10−4

ωth Emission frequency at threshold (no optical feedback) 2.59 THz

τext Round-trip time of the external laser cavity τext = 2Lextnext/c 11.3 ×10−9 s

Lext External cavity length 1.704 m

next Refractive index of external cavity 1.00

τin Round-trip delay in laser diode τin = 2Linnin/c 3.92 ×10−11 s

Lin Internal cavity length of laser 1.78 mm

nin Refractive index of internal laser cavity 3.30

κ Feedback coupling coefficient in external cavity 9.96 ×10−3

ε Re-injection loss factor 0.01

R2 Internal reflection coefficient of emitting laser facet 0.324

R Reflectivity of external target 0.7

α Henry’s linewidth enhancement factor [55] −0.1

q Charge on the electron 1.60 ×10−19 C

k Boltzmann’s constant 8.62 ×10−5 eV K−1

V (T, I) Voltage at device terminals 2.94 V

m Effective mass of laser chip 1.53 ×10−8 kg

cp(T ) Effective specific heat capacity of laser chip 79.6 J kg−1 K−1

Rth(T ) Effective thermal resistance — laser chip to cold finger 6.2 K W−1

T0(t) Sub mount / cold finger temperature 45 K

T (t) Lattice temperature of active region 46.1 K
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Values for the parameters in Eq. (6) are given in Table 1. The optical feedback path shown

schematically in Fig. 3 is characterized by R, ε, and the external cavity round-trip time τext =

2Lextnext/c, where next is the refractive index of the external cavity and c is the speed of light. In

interferometric applications, any of these parameters may be manipulated to suit the requirements

of the measurement being made. For example, variation of Lext(t) with time may represent a

moving target or changes in surface relief during a raster scan over the object surface [16];

time variation of ε(t) or R(t) may represent an optical chopper in the collimated beam path;

and the target reflectivity R may be a complex number for the purpose of a refractive index

measurement [18]. The linewidth enhancement factor of THz QCLs, α in (2), is low and known

to vary slightly with drive current and optical feedback [56]. In this work we use the value

α = −0.1 [9].

Current pulser
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Back Injection T
a
rg

e
t

M1 M2 M3

 Thermal
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Temperature 
Controller

Fig. 3. Three-mirror optical feedback model. The internal cavity is the QCL active region

with length Lin, refractive index nin, and round-trip propagation time τin. Light leaves the

internal cavity through the partially transmissive mirror M2, traverses the external cavity of

length Lext and refractive index next and is reflected back toward the QCL at target M3. The

proportion of light reflected by the target is the reflectivity R of M3 and the phase change

introduced by M3 is θR. The round-trip propagation time in the external cavity is τext. A

portion of the reflected light, dictated by the re-injection loss ε, re-enters the laser through

M2 and mixes with the field inside the laser cavity, altering the operating state of the laser.

2.4. Thermal model

Self-heating in QCLs is a significant contributor to temperature changes in the AR, with increases

of > 10 K possible during long pulses [57]. Furthermore, the temperature-dependent RRE

parameters τ31, τ32, τ21, η3, η2, and G can change substantially over just a few kelvin. Thus,

inclusion of a thermal model is vital in order to correctly predict QCL behavior when the AR

temperature is changing. In addition, emission frequency (not modeled by our RREs) is markedly

affected by temperature.

Equation (5) is the thermal model, which predicts the lattice temperature T (t) of the QCL

as a function of time. It is coupled with the other equations and must therefore be solved

simultaneously with them. The solution to the thermal equation depends on the cold finger

temperature T0(t), the electrical power I (t)V (t), the thermal resistance Rth(T ) of the AR to the

cold finger, the mass of the chip m, and the effective specific heat capacity cp(T ) of the AR

material.
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As the solution of the equation set progresses, each new temperature value obtained from

(5) is fed back into the temperature-dependent parameters of the remaining equations, giving a

self-consistent result. Even where the lattice temperature is not of direct interest, the thermal

model must be solved in order to determine the constantly changing temperature-dependent RRE

parameters in Eqs. (1)–(4).

The coefficients cp(T ) and Rth(T ) in (5) are both strongly temperature dependent, especially

at low operating temperatures (around 10 K) [58], making the coupled Eq. (5) highly non-linear.

The specific heat capacity cp(T ) for GaAs and AlGaAs increases non-linearly with temperature

according to the Debye equation [59], and a third-order polynomial fit to measured data [60] was

obtained for use in (5). The thermal resistance Rth of QCL ARs is both temperature-dependent

and anisotropic, and can be up to ten times higher perpendicular to the quantum wells than

in-plane [61,62], owing to the enhanced phonon scattering at heterointerfaces [63]. Experimental

studies reporting the temperature dependence of Rth are scarce, and our approach was thus to

scale the measured temperature dependence of bulk GaAs’s thermal resistivity [64] to match

a single laboratory measurement of our QCL’s Rth (8.2 K W−1 at 60 K). We then applied a

polynomial fit to the resulting data, finding that a simple linear fit was satisfactory for the

temperature range 10 K – 60 K.

For our QCL, cp(T ) ranges from 1.0 to 114.0 J kg−1K−1 and Rth(T ) from 0.7 to 8.2 K W−1 over

the temperature range 10 K – 60 K. Thus the notion of a “thermal time constant” τT = mcpRth is

not particularly meaningful but, as will be seen, can be useful in describing AR thermal behavior

at a specific temperature. The variability of both cp and Rth give a very wide-ranging value of τT,

and hence within a single excitation pulse, thermal effects may be observable all the way from

the timescale external of cavity dynamics to tens of microseconds [57].

2.5. Emission Frequency Modeling

As evident from Eqs. (1)–(4), the behavior of a laser under optical feedback depends strongly

on the emission frequency, principally through the round-trip phase of the external cavity. The

emission frequency of a QCL depends on the cold finger temperature and the laser driving current.

The mechanisms responsible for the change in emission frequency with laser current are thermal

and adiabatic in nature (i.e. caused by the changes in AR temperature and carrier density) [65,66].

Although the adiabatic mechanism is complex and non-linear, the linear component dominates in

our QCL and provides a satisfactory approximation. For our exemplar modeling demonstration

we used a laboratory-determined emission frequency coefficient of −12 MHz/mA for the driving

current range of interest, 420 mA – 510 mA. Thermal frequency modulation is due to thermal

expansion of the cavity [67] as well as change in refractive index with AR temperature [34]. The

two effects together can produce a complex emission frequency vs. temperature characteristic

which varies from laser to laser.

Figure 4 shows the measured emission frequency change vs. cold finger temperature for our

exemplar BTC THz QCL. We use this data as the source for a behavioral model of emission

frequency running concurrently with the RRE solver. We do this by mapping lattice temperature

to cold finger temperature, and then interpolating with cubic splines to calculate the emission

frequency used in the solver. This approach allows us to easily reproduce the relatively complex,

non-linear temperature-dependent behavior of emission frequency while solving the RREs.

Emission frequency change due to the adiabatic and thermal mechanisms takes effect in our

model by adjusting the value of ωth, the laser mode frequency in the absence of optical feedback

at threshold, in Eqs. (1) and (2).

3. Results and Discussion

Optical feedback effects in lasers can be observed using a photo-detector or the laser’s ter-

minal voltage, which is known to be proportional to optical output power under small signal
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Fig. 4. Laboratory measured change in emission frequency with cold finger temperature,

under static (cw) conditions. This characteristic is a result of change in both cavity length

and refractive index change with temperature. Circles are the actual data points, with the

curve to guide the eye.

conditions [13]. For laboratory work on THz QCLs, fast photo-detectors are presently bulky

or expensive devices and the usual method is terminal voltage measurement. Our preference

however is to present optical power output since it is a product of the model. Having calculated

the temperature- and bias-dependent RRE parameters (a once-off operation), Eqs. (1)–(5) may

be repeatedly solved with a delay differential equation (DDE) solver for differing experimental

conditions. The choice of experimental conditions includes selection of the external cavity

length Lext, target reflectivity R, cold finger temperature T0, re-injection loss ε, and drive current

waveform I (t).

3.1. Picosecond and nanosecond regime — laser dynamics, external cavity effects,

and thermal effects

For this simulation we chose a 100 ns rectangular current pulse of amplitude 450 mA. This

value of excitation current maximizes the thermal transient and optical output power for the

purpose of illustration, while remaining within the region of positive slope efficiency. The cold

finger temperature was set to 10 K and an external cavity length Lext = 1.704 m was used,

giving a round-trip time of 11.3 ns. We ran the simulation for target reflectivities of 0.0 (for

reference), 0.3, and 0.7, and two slightly different external cavity lengths, the difference being

42.8 µm — slightly less than a half-wavelength. This small distance change serves to illustrate

the marked difference seen in the response with phase changes of about π (or multiples thereof)

in the external cavity. The values for α, τin, Lext, ε given in Table 1, together with R = 0.7,

give a feedback coupling coefficient κ = 9.94 × 10−3 and Acket’s characteristic parameter

C = 2.90, placing the optical feedback in the moderate feedback regime [68]. For R = 0.3

we have κ = 6.51 × 10−3 and C = 1.90. These conditions are typical of our experimental

setup [18, 19] and are well-suited to illustrate the application of our model.

The results are shown in Fig. 5(a). Between t = 0 ns and t = 11.3 ns, all traces are coincident

with the black “no feedback” trace because the external cavity round-trip time has not elapsed.

After the point marked (i), re-injected photons cause a sudden change in optical output (see

blue and red traces). After a second round-trip period there is another change in optical output

[indicated by (ii)], and so on, leading to characteristic “external cavity oscillations” that become

more pronounced for higher target reflectivities (compare solid traces with dashed ones). Altering

the external cavity length slightly can markedly retard the onset of external cavity oscillations
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(red traces) — in this example, achieved by adding 42.8 µm, about a half-wavelength, to Lext.

Changes in Lext will of course also alter the size of the settled self-mixing signal (compare solid

blue and red traces after settling), where “self-mixing signal” is defined as the difference between

outputs with and without optical feedback present.

In the first few nanoseconds the black trace (no feedback) can be seen to rise as a result of

rapid temperature change at the start of the pulse, due to a small thermal time “constant” τT
of around 16 ns. Thereafter, and near the end of the 100 ns pulse, the optical output settles as

temperature changes more slowly. The temperature nevertheless continues to increase well into

the microsecond regime, giving rise to relatively long-lasting effects. These are illustrated in

the section to follow. The example of this section was chosen to illustrate thermal behavior

observable in the nanosecond regime by using T0 = 10 K. For higher T0, we have found that such

effects are not be visible in this regime due to the longer thermal time constant associated with a

higher AR temperature.

Picosecond scale effects, due purely to high-speed laser dynamics at turn on (in the absence

of optical feedback), are shown in parts (b) and (c). In (b), we see the well-documented QCL

overshoot without relaxation oscillation [69], and at turn-off (c), light remaining in the internal

cavity decays with the expected photon lifetime. The four traces of part (a) are still present in (c)

but not visible due to the much larger scale of the abscissa. Considering the narrow linewidths of

THz QCLs (typically 1-2 meV, corresponding to about 1 ps [70]) and the nanosecond timescale

of the shortest phenomena explored in this study, one could safely ignore the coherent interactions

between the electronics and the electromagnetic field (photons).

3.2. Microsecond regime — thermal effects

For the microsecond regime we chose a rectangular pulse of magnitude 465 mA and length

20 µs, long enough to observe the effects associated with a thermal time constant of between

7 µs (when T = 45 K) and 12 µs (when T ∼ 55 K). The cold finger temperature T0 was set to

45 K, the external cavity length was 2.272 m, and target reflectivities of 0.0 (for reference) and

0.7 were used. This T0 was chosen to obtain as large as possible a frequency change under pulsed

operation, corresponding to the steep right-hand part of the emission frequency curve in Fig. 4.

The results are shown in Fig. 6.

Part (a) shows the free-running L–I curves of the QCL at different lattice temperatures, with a

vertical gray line tracing the operating point “trajectory” during the pulse. Dots denote the start

and end conditions and an arrow head indicates chronological progression. Part (b) shows the

response of lattice temperature to the drive pulse and part (c) the corresponding optical output

power (black R = 0 “no feedback” trace and blue R = 0.7 trace). In both cases, the decay in

optical output is attributed to rising lattice temperature. The cause of the decay can be seen from

part (a), which shows how light output falls with time and progressing lattice temperature while

constant current is maintained during the pulse. The approximately exponential temperature

trace in (b) (τT = 7 to 12 µs) thus maps via the trajectory to a similar (optical output) trace in (c).

It should be noted that the static L–I curves in (a) for constant lattice temperature are not the

same as those inset in Fig. 2 (for constant cold finger temperature).

When optical feedback is present [blue trace in Fig. 6 (c)], in addition to the slowly decaying

optical output, self-mixing fringes are evident. The self-mixing signal, due purely to optical feed-

back, is shown inset. In typical experimental arrangements, such fringes are usually synthesized

through a frequency modulation due to application of a linear current sweep (i.e. adiabatic modu-

lation) [17, 18], and thus are evenly spaced. In this case, however, the separation between fringes

is proportional to the rate of frequency change which is thermally induced. As the temperature

transient settles, frequency change becomes less rapid in concert with the less rapidly changing

temperature, resulting in LFI fringes that are spaced further apart. We anticipate such fringes to

be easily observable in the laboratory using a fast-sampling oscilloscope. The magenta trace in
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Fig. 5. Pulse response on the timescale of laser and optical feedback dynamics. External

cavity length used was 1.704 m (round-trip time τext = 11.3 ns), cold finger temperature

was set to 10 K, and the stimulus was a 100 ns rectangular current pulse of amplitude

450 mA. Part (a) shows the complete response for different target reflectivities (blue traces),

with sudden changes in optical output occurring at multiples of the external cavity round-

trip time, indicated by labels (i) and (ii). The amplitude of external cavity oscillation is

seen to diminish at lower target reflectivities (dashed blue trace). Responses for a length

increment of about half a wavelength in the external cavity are shown in red. The self-mixing

signal (i.e. deviation of traces from the black “no feedback” line) is indicative of the target

reflectivity. Part (b) is a zoom of the startup response, showing a turn-on delay of τd = 550 ps

and overshoot but no relaxation oscillation. The zoom in part (c) illustrates the turn-off

characteristic, an exponential decay consistent with the photon lifetime τp in the active

region. Separation of the four traces is still present but not visible in (c) due to the large

abscissa scale. Acket’s parameter for the solid blue and red traces (R = 0.7) is C = 2.90.
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Fig. 6. Pulse response on the timescale of laser thermal dynamics. Part (a) indicates the

region of operation on the free-running L–I curves for constant lattice temperatures. For the

rectangular excitation pulse, the operating trajectory is a vertical (i.e. constant current) line

beginning at a lattice temperature of 45 K and ending slightly below 55 K. The excitation

pulse of magnitude 465 mA and resulting lattice temperature response are shown in (b).

Optical power output (blue) is shown in (c), and for reference the optical output power

under free-running conditions is shown in black. The magenta trace is the thermally induced

change in free-running emission frequency. Inset in the figure, the orange trace shows the

self-mixing signal, i.e. the difference between the black and blue traces.
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Fig. 7. Pulse response on the timescale of laser thermal dynamics. Part (a) indicates the

region of operation on the free-running L–I curves for constant lattice temperatures. For

the rectangular excitation pulse, the operating trajectory is a vertical (i.e. constant current)

line beginning at a lattice temperature of 45 K and ending at about 55 K. The excitation

current pulse of magnitude 510 mA and resulting lattice temperature response are shown in

(b). Optical power output (blue) is shown in (c), and for reference the optical output power

under free-running conditions is shown in black. The magenta trace is the thermally induced

change in free-running emission frequency. Inset in the figure, the orange trace shows the

self-mixing signal, i.e. the difference between the black and blue traces.
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(c), which shows change in emission frequency during the driving pulse, is directly responsible

for the self-mixing fringes when optical feedback is present, and is calculated by mapping lattice

temperature in (b) using the frequency curve of Fig. 4.

To show the effect of pulse amplitude on the microsecond-scale response, we include a result

for a 510 mA pulse magnitude in Fig. 7. Operating a QCL on the descending part of the L–I

curve is not usually performed in practice due to the negative effects of increased thermal loading,

which include reduced bandwidth. However, in this case, it causes the trajectory to coincide with

an operating regime in which a small change in output power with respect to the temperature is

observed [see Fig. 7(a)], giving far less decay in optical output over the timescale of the driving

pulse [blue curve in Fig. 7(c)]. Correspondingly, the self-mixing fringes in this case represent a

relatively larger modulation depth of the output power. This would make it easier to filter out the

self-mixing signal. Interestingly, there is a slight increase in the size of successive self-mixing

peaks that is not present in the previous example — compare inset with that in Fig. 6(c).

4. Conclusion

We have presented a detailed model of a BTC THz QCL under optical feedback and pulsed

operation, which allows prediction and exploration of lasing dynamics in not only applications

relying on feedback, such as interferometry, but also applications in which feedback is incidental,

such as free space communication. We reproduce observable phenomena such as bandwidth

change, fringes due to adiabatic and thermal modulation, and chaotic behavior, and explore or

discern the boundaries between the five operating regimes of the laser. These findings are of

primary interest in developing new higher temperature optical feedback interferometry applica-

tions with pulse-driven THz QCLs, and we propose that our modeling method will be useful in

applications using other types of laser. For use with another laser the model would have to be

adapted as required, depending on the type of laser. RREs and RRE parameters specific to the

laser type, along with an appropriate thermal model, would then produce results representative

of that laser type.
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