
Verification of Model Transformations

K. Lano, S. Kolahdouz-Rahimi, T. Clark

Dept. of Informatics, King’s College London

Abstract. Model transformations are a central element of model-driven
development (MDD) approaches such as the model-driven architecture
(MDA). The correctness of model transformations is critical to their ef-
fective use in practical software development, since users must be able
to rely upon the transformations correctly preserving the semantics of
models. In this paper we define a formal semantics for model transfor-
mations, and provide techniques for proving the termination, confluence
and correctness of model transformations.

1 Introduction

Model transformations are an essential part of development approaches such as
Model-driven Architecture (MDA) [43] and Model-driven Development (MDD).
Model-transformations are becoming large and complex and business-critical
systems in their own right, and so require systematic development. In particular
there is a need to verify the syntactic and semantic correctness of transforma-
tions.

At present, a large number of different model transformation approaches ex-
ist, such as graph transformations (eg., Viatra [45]), declarative (QVT-Relations
[41]), imperative (Kermeta [20]) and hybrid (ATL [19]) languages [7]. These are
all primarily based around the concept of transformation rules, which define one
step within a transformation process. The overall effect of a transformation is
then derived from the implicit (QVT-Relations, ATL) or explicit (Kermeta, Via-
tra) combination of individual rule applications. These descriptions are closer to
the level of designs, rather than specifications, and are also specific to particular
languages, ie., they are PSMs (platform-specific models) in terms of the MDA.

However for effective verification a higher level of structuring and specifi-
cation is required, to define the complete behaviour of a transformation as a
process, for example, by pre and postconditions. This level of specification also
provides support for the correct external composition of transformations, such
as by the sequential chaining of transformations.

Model transformation verification remains a poorly developed field, with rela-
tively few research publications prior to 2010 (for example, [25, 52, 26, 46, 5]) and
no dedicated conference prior to 2012. Current research into model transforma-
tion verification has investigated several different formalisms for model transfor-
mation specification and verification, such as graph patterns in [16], type theory
[54] and OCL/first order logic in [32]. None of these approaches has yet provided

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/42541751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

detailed techniques and practical tools to carry out transformation verification,
however.

In this paper we will describe the following components of a systematic ap-
proach for specifying and verifying model transformations, together with tool-
supported techniques for specification analysis and verification:

– A formal semantics for UML and transformations (Section 2).
– A constraint-based style of model transformation specification, using specifi-

cation patterns and the UML-RSDS approach to model-driven development
(Sections 3, 4).

– A formal computational model for transformation execution (Section 5) and
correctness conditions for transformation specifications (Section 6).

– Verification techniques for model transformation specifications, using syn-
tactic analysis (Section 7) and the B formal method (Section 8).

– Automated design and implementation strategies for these specifications. We
give proofs of correctness of these strategies (Section 9).

– Verification techniques for internal and external compositions of transforma-
tions (Section 10).

Section 11 evaluates the approach. Section 12 describes related work, and
Section 13 summarises the paper.

2 Model transformation semantics

We use the four-level metamodelling framework (MOF) of UML as the context
for transformations [44]. This framework consists of levels M0: models which
consist of run-time instances of M1 models, which are user models such as class
diagrams, which are in turn instances of metamodels M2, such as the definition
of the class diagram language itself. Level M3 contains the EMOF and CMOF
languages for defining metamodels. Other languages such as EMF Ecore could
alternatively be used at level M3 [10].

Most transformations operate upon M1 level models, so we refer to the M2
level as the language level (the models at this level define the languages which the
transformation relates) and to the M1 level as the model level (the models which
the transformation operates upon). Transformations themselves are specified by
constraints at the M2 level, and they will be implemented by activities and
operations at this level also.

It is often the case that a transformation which operates on a class diagram or
state machine model will also need to operate on the internal constraints of the
model, to re-express them in the target model in a way that correctly captures
their original meaning. This is referred to as model-level semantic preservation.

For each model M at levels M2 and M3, we can define (i) a first-order logical
language LM that is the formal syntactic representation of the type structure of
M , and (ii) a logical theory ΓM in LM , which defines the semantic meaning of
M , including any internal constraints of M [32]. The set-theory based axiomatic
semantics of UML described in Chapter 6 of [27] is used to define ΓM and LM .

If M at level M1 is itself a UML-based model to which a semantics ΓM can be
assigned, then also ΓM and LM will be defined for M .

LM consists of type symbols for each type defined in M , including primitive
types such as integers, reals, booleans and strings which are normally included
in models, and types C for each entity type C defined in M . The boolean
operators and , implies, forAll , exists, one of OCL are semantically interpreted
by the logical connectives ∧, ⇒, ∀, ∃, ∃

1
. For each entity C of M there are

logical attribute symbols f (c : C) : Typ′ for each data feature f of type Typ in
the feature set of C , where Typ′ is the semantic type corresponding to Typ, and
action symbols op(c : C , p : P ′) for each operation op(p : P) in the features of
C .

Attributes and single-valued associations att : Typ of C are essentially repre-
sented as functions att : C → Typ′, set-valued associations f are represented as
functions f : C → F(D) where D is the target entity of f , and sequence-valued
associations f are represented as functions f : C → seq(D) where D is the target
entity of f . There are attributes C to denote the set of instances of each entity
C (corresponding to C .allInstances() in OCL). These represent the extension of
C . The collection and primitive types of the OCL standard library [40] and the
operations of these types can be represented in LM .

A structure for LM is a tuple

(E1, . . . ,En , f1, ..., fm)

of sets Ei interpreting the extension of each entity Ei of LM , and of maps fj :
Ei → Typ representing the values of data features (attributes and associations)
of these entities.

This semantic representation is used as the basis of the translation to B
notation.

Tables 1 and 2 show some examples of semantic interpretations of OCL col-
lection types and operators.

The theory ΓM includes axioms expressing the multiplicities of association
ends, the mutual inverse property of opposite association ends, deletion propa-
gation through composite aggregations, the existence of generalisation relations,
and the logical semantics of any explicit constraints in M . Constraints of M

are expressed as axioms in ΓM . Some variation points of UML semantics can be
expressed by the variation of some axioms of ΓM , for example, we assume that
distinct subclasses of a class have disjoint sets of instances, and therefore include
the axiom:

B ∩ C = {}

in ΓM if B and C are distinct direct subclasses of a class A. Likewise for distinct
root classes.

For a sentence ϕ in LM , there is the usual notion of logical consequence:

ΓM ⊢ ϕ

OCL Term e Condition Semantics e ′

s→size() set or sequence s cardinality #s ′

s→size() bag s sum of s ′(x) for x ∈ dom(s ′)
s→includes(x) set s x ′ ∈ s ′

s→excludes(x) set s x ′ 6∈ s ′

s→includes(x) sequence s x ′ ∈ ran(s ′)
s→excludes(x) sequence s x ′ 6∈ ran(s ′)
s→includes(x) bag s x ′ ∈ dom(s ′)
s→excludes(x) bag s x ′ 6∈ dom(s ′)
s→asSet() s set s ′

s→asSet() s sequence ran(s ′)
s→asSet() s bag dom(s ′)
s→includesAll(t) sets s and t t ′ ⊆ s ′

s→includesAll(t) sequences s and t ran(t ′) ⊆ ran(s ′)
s→excludesAll(t) sets s and t s ′ ∩ t ′ = {}
s→excludesAll(t) sequences s and t ran(s ′) ∩ ran(t ′) = {}
s→sum() set s sum of elements of s ′

s→sum() sequence s, #s ′ = n s ′(1) + ... + s ′(n)
Table 1. Semantic mapping for OCL collection operations

OCL Term e Condition Semantics e ′

objs→select(P) set objs {x | x ∈ objs ′ ∧ x .P ′}
objs→collect(e) set objs map c with domain {x .e ′ | x ∈ objs ′} and

c(y) = #({x | x ∈ objs ′ ∧ x .e ′ = y})
objs→collect(e) sequence objs {i 7→ objs ′(i).e ′ | i ∈ dom(objs ′)}
s→subSequence(i , j) sequence s (s ′↑j ′)↓(i ′ − 1)
s→count(x) sequence s #(s ′

∼

[{x ′}])
s→indexOf (x) sequence s min(s ′

∼

[{x ′}])
Table 2. Semantic mapping for selection expressions

means the sentence is provable from the theory of M , and so holds in M . We
may specify inference within a particular language L by the notation ⊢L if L is
not clear from the context.

If m is at the M1 level and is an instance of a language L at the M2 level,
then it satisfies all the properties of ΓL, although these may not be expressible
within Lm itself. We use the notation m |= ϕ to express satisfaction of an LL

sentence ϕ in m.
A structure m for language LM is said to be a (semantic) model of M if

m |= ϕ for each ϕ ∈ ΓM .
A pair (m,n) of models of languages L1 and L2 can also satisfy predicates ϕ

in the union language L1 ∪ L2. This is denoted by (m,n) |= ϕ.
The collection of M1 level models of an M2 model L is ModelsL. We may

simply write m : L to mean m ∈ ModelsL.
Models are considered isomorphic if they cannot be distinguished on the

basis of feature values. Two models m = ((Ei), (fj)) and m ′ = ((Ei
′

), (f ′j)) of the

same language L are isomorphic, m ≡ m ′, if there is a family hi : Ei → Ei
′

of
bijections such that:

1. hi(x) = x ′ ⇒ fj (x) = f ′j (x ′) for each attribute feature fj : Typ of Ei , x ∈ Ei

2. hi(x) = x ′ ⇒ hk (fj (x)) = f ′j (x ′) for each single-valued role feature fj : Ek

of Ei , x ∈ Ei

3. hi(x) = x ′ ⇒ hk (| fj (x) |) = f ′j (x ′) for each set-valued role feature fj with

element type Ek of Ei , x ∈ Ei .
4. hi(x) = x ′ ⇒ fj (x); hk = f ′j (x ′) for each sequence-valued role feature fj

with element type Ek of Ei , x ∈ Ei .

A model transformation τ from a language S to a language T can be char-
acterised by a domain of (pairs of) models to which it can be applied:

Domτ ⊆ ModelsS × ModelsT

and a relation defining which models should correspond under the transforma-
tion:

Relτ : ModelsS ↔ ModelsT

A computation of τ maps a pair (m,n) ∈ Domτ to a pair (m ′,n ′) ∈ Relτ .
Transformations are termed input-preserving if they do not modify the source

model. Such transformations usually have computations of the form

(m, ∅) −→τ (m,n)

Transformations that operate on a single model are termed update in place

transformations, their computations have the form

m −→τ m ′

A model transformation τ is invertible if there is an inverse transformation
τ∼ from T to S such that τ followed by τ∼ is effectively the identity relation on
ModelsS .

That is, if there are computations

(m, ∅) −→τ (m,n)

of an input-preserving transformation τ and

(n, ∅) −→τ∼ (n,m ′)

of its inverse, then

m ≡ m ′

(ie., τ∼ is a right inverse of τ).
Operationally, τ∼ takes a model n of T and an empty model of S , and

reconstructs a minimal model m of S that would map to n (or an isomorphic
copy of n) under τ .

This is a desirable property since it provides a means to view a model of T

as a model of S , and therefore to check that the semantic meaning of the source
model has been preserved by the transformation.

This property is directly related to the existence of an interpretation χ from
S to T , a mapping of languages which defines a representation χ(E) in T for
each entity E of S , and a representation χ(f) in T for each feature f of S [35].

3 A model-driven development process for model

transformations

In this section we outline a general model-driven development process for model
transformations specified as constraints and operations in UML. We assume that
the source and target metamodels of a transformation are specified as MOF class
diagrams [44], S and T , respectively, possibly with OCL constraints defining
semantic properties of these languages.

For a transformation τ from language S to language T , we can express its
requirements in a graphical form such as the SySML requirements diagrams used
in [16], or as equivalent structured text.

The formal specification of τ can be expressed in OCL or a similar first order
logic by four separate predicates which characterise the global properties of τ ,
and which need to be considered in its specification and design [32]:

1. Asm – assumptions, expressed in the union language LS∪T of S and T ,
which can be assumed to be true before the transformation is applied. These
may be assertions that the source model is syntactically correct, that the
target model is empty, or more specialised assumptions necessary for τ to
be well-defined. Asm0 denotes the assumptions which refer only to S . Asm

is the syntactic equivalent of the Dom relation.

2. Ens – properties, usually expressed in LT , which the transformation should
ensure about the target model at termination of the transformation. These
properties usually include the constraints of T , in order that syntactic cor-
rectness holds. For update-in-place transformations Ens may refer to the
pre-state versions E@pre, f @pre of model entities E and features f .
Ens is considered separately from Cons because it may contain predicates
which cannot be interpreted operationally, but which nonetheless should be
established for the target model.

3. Pres – properties, usually expressed in LS , which the transformation should
preserve from the source model to the target model, under a language-level
interpretation χ. This could include language-level semantic preservation.
Properties at the model level may also be specified for preservation via a
model-level interpretation ζ.

4. Cons – constraints, expressed in LS∪T , which define the transformation as
a relationship between the elements of the source and target models, which
should hold at termination of the transformation. These constraints should
have an operational interpretation using the stat() operator (Table 9).
If τ is input-preserving, Cons is also the relation between the initial state of
the source model and the final state of the target model. For update-in-place
transformations Cons can refer to the initial state of modified source model
features and entities by postfixing such entity and feature names by @pre.
Transformations between multiple models can distinguish entities in these
models by prefixing them with the model name and $: m1$E , m2$E , etc.
Cons is the syntactic specification of the semantic relation Relτ .

We can express these predicates using OCL notation, this corresponds directly
to a fully formal version in the axiomatic UML semantics given above, and also
to a formalisation in the B notation.

Together these predicates give a global and declarative definition of the trans-
formation and its requirements, so that the correctness of a transformation may
be analysed at the specification level, independently of how it is implemented.

The following two correctness properties should be provable for input-preserving
transformations. (I) syntactic correctness:

Asm0,Cons, ΓS ⊢
LS∪T

Ens

where ΓS is the source language theory. A checking transformation should be
used to verify that ΓS holds for the source model.

Likewise, Cons should prove that Pres is preserved, via a suitable interpre-
tation χ from the source language to the target language. (II) semantic preser-
vation:

Asm0,Cons,Pres, ΓS ⊢
LS∪T

χ(Pres)

These are internal consistency properties of the specification: that any imple-
mentation which establishes Cons at its termination, starting from a model
satisfying Asm0, will also establish Ens and preserve Pres. By using internal

consistency proof in B, we can establish (I) and (II) for a wide range of possible
implementations, in particular for the phased implementations produced by the
UML-RSDS synthesis process.

Development of the transformation then involves the construction of a de-
sign which ensures that the relationship Cons holds between the source and
target models at termination of the transformation. This may involve decom-
posing the transformation into phases or sub-transformations, each with their
own specifications. Different phases may be implemented using different model
transformation languages, appropriate for the particular task of the phase.

By reasoning using the weakest-precondition operator [] the composition of
phases should be shown to achieve Cons. (III) semantic correctness:

ΓS ⊢
LS∪T

Asm ⇒ [activity]Cons

where activity is the algorithm of the transformation design.

3.1 Case studies

We will consider three small running examples of transformations: (1) a version
of the UML to relational database transformation [42]; (2) the computation of
the non-reflexive transitive closure of an association; (3) computation of the
GCD of two integer attributes of a class.

(1) maps attributes to columns, and classes to tables, with all subclasses of
a given root class being merged into a single table, which has columns for each
attribute of any of the subclasses, together with a primary key for the table
(Figure 1).

The requirements are:

1. The objective is to produce a relational data model able to represent the
data of the UML class diagram.
(a) The source model should not be modified by the transformation.
(b) The result is given by instances of RDBElement .
(c) Each root class of the source model is represented by a table in the target

model, with the same name, and with a primary key column.
(d) Each attribute of a class in the source model is represented by a column

with the same name, in the table of the root superclass of the class.

Requirements (c) and (d) are formalised as Cons constraints:

∀ c : Entity · c.parent = {} implies

∃ t : Table; k : Column · t .rdbname = c.name and

k .rdbname = c.name + “ Key” and k : t .column

and

∀ c : Entity ; a : c.ownedAttribute ·
∃ cl : Column · cl .rdbname = a.name and cl : Table[c.rootClass().name].column

Fig. 1. UML to relational mapping transformation

The notation E [v] denotes lookup of E elements by their primary key values:
E [v] is the E instance with primary key value v , if this is a single value, otherwise
it denotes the set of E instances with primary key values in v .

The assumptions Asm are that the source model is well-formed (name is a
primary key in the model, and association multiplicities are satisfied, also that
parent has no cycles) and that the target model is empty:

RDBElement = {}

and that is not used in names:

∀ a : NamedElement · “ ”/ : a.name

An Ens property is that every table has at least one column:

∀ t : Table · t .column.size > 0

A possible Pres property is that all attributes have a non-empty name:

∀ a : Attribute · a.name.size > 0

The interpretation χ in this case is only a partial interpretation, since ownedAttribute

has no interpretation in the target language (information about which attributes
belong to which classes has been lost by the transformation, ie., it is an ab-
straction in this respect). However, Entity is interpreted by Table, Attribute by
Column, and name by rdbname, so χ(Pres) is:

∀ a : Column · a.rdbname.size > 0

(2) is a generic transformation which computes the transitive closure of a
many-many self association parent on an entity E , as a derived many-many
association ancestor on E (Figure 2).

E

parent

ancestor

*

*

*

*

Fig. 2. Transitive closure metamodel

The requirements are:

1. The objective is to compute the non-reflexive transitive closure of an asso-
ciation.

(a) The original association parent should not be modified by the transfor-
mation.

(b) The result is given by a new association ancestor which represents parent+

at termination of the transformation.

There are two Cons constraints:

∀ s : E · s.parent ⊆ s.ancestor

∀ s : E · s.parent .ancestor ⊆ s.ancestor

Asm asserts that ancestor is initially empty:

∀ s : E · s.ancestor = {}

Ens asserts that ancestor is always a subset of the non-reflexive transitive
closure:

∀ s : E · s.ancestor ⊆ s.parent+

(3) computation of the GCD of two positive integer-valued attributes of a
class (Figure 3).

A

x : Integer
y : Integer

Fig. 3. GCD metamodel

The assumption Asm is:

∀ a : A · a.x > 0 and a.y > 0

This is also the Ens predicate.
The Cons constraints are:

∀ a : A · a.x < a.y implies a.y = a.y − a.x
∀ a : A · a.y < a.x implies a.x = a.x − a.y

4 Model transformation specification

In this section and the following section we describe how the general development
framework described above can be implemented in UML-RSDS. UML-RSDS is a
model-driven development approach which has the following general principles:

– Systems are specified using declarative UML models and OCL constraints,
at a CIM (computationally independent model) level, where possible.

– Designs and executable implementations are automatically derived by means
of verified transformations, so that they are correct-by-construction with
respect to the specification.

– Capabilities for formal analysis are provided, for use by specialised users.

As an approach to transformation specification, this means that transformations
are specified purely using UML notations, with no additional specialised syntax
required.

Each transformation is defined as a UML use case (Chapter 16 of [39]), these
have a set Asm of assumptions, which are the preconditions of the use case (ie,
the precondition of the BehavioralFeature associated to the use case), and a set

Cons of postconditions. Logically, the transformation is interpreted as achieving
the conjunction of the postconditions, under the assumption that the conjunc-
tion of the preconditions holds at its initiation. Procedurally, the postcondition
constraints Cn can be interpreted as transformation rules or statements stat(Cn)
which establish Cn.

The precondition constraints define checks which should be carried out on the
source model, whilst the postconditions also define consistency conditions that
should hold between the source and target models as a result of the transforma-
tion, and which should be maintained by a change-propagation implementation
of the transformation.

The structure and organisation of the constraints will be used to automati-
cally derive the design and implementation of the transformation.

There are two primary forms of Cons specification structure: (i) conjunctive-

implicative form, consisting of an ordered series C1, ..., Cn of constraints of the
general form

∀ s : Si · SCond implies Succ

where the primary quantification is over a source language entity Si . Logically
Cons is the conjunction of the Ci .

Recursive form (ii): an ordered disjunction of clauses

∃ s : Si · SCond and Succ

In the first case, the ordering of constraints represents an implicit sequential
ordering of the transformation implementation, and a potential decomposition of
the transformation into sequenced phases or sub-transformations. In the second
case, which is used when the constraints do not have a literal interpretation
as postconditions of the transformation, but only as definitions of incremental
steps in the transformation, the ordering represents a relative priority in the
application of the steps.

For conjunctive-implicative specifications, the constraints define the post-
conditions of the entire transformation, ie, what relation it should establish, at
its termination, between the source and target model data – independently of
any design or implementation strategy to enforce this relation. In this respect
the constraints are more abstract and declarative than QVT-Relations or TGG
rules.

The constraints have a dual aspect: they express what conditions should
be true at the completion of an entire transformation, but they can also be
interpreted as the definitions of specific rules executed within the transformation.

That is, the individual constraints, and the entire use case, have both a
logical and a procedural interpretation. Logically, they can be used as a platform-
independent specification to reason about the correctness of the transformation.
Procedurally, they can be used to generate a correct-by-construction design and
executable implementation of the transformation.

The procedural interpretation of conjunctive-implicative constraint Cn is a
UML activity stat(Cn) (in the activity language of Figure 5) which establishes

the truth of Cn, given certain assumptions AsmCn :

AsmCn ⇒ [stat(Cn)]Cn

AsmCn includes conditions def (Cn) to ensure that expression evaluations in Cn

are well-defined. Table 9 defines stat(P) for different kinds of predicate P .
The ordering of the constraints has no significance to their logical interpreta-

tion as a conjunction. However, the procedural interpretation uses this ordering
to generate the design as a sequence of phases, and the ordering is also used to
establish the design correctness.

In general there may be several related use cases for a given transformation:

– A checking transformation, which checks that the source and target models
satisfy Asm.

– The forward transformation τ that establishes Cons, assuming Asm.
– A reverse transformation τ∼, derived from τ , which takes a well-formed

target language model MT and generates a source model MS which τ would
map to MT .

We recommend a constraint-based specification approach for transformations
for several reasons:

1. Constraints have the key advantage that they are unambiguous, with a trans-
parent semantics, and they can be understood without knowledge of the
execution semantics of a particular tool. In contrast, even the most declara-
tive style of transformation rule specification, in QVT-Relations or a graph
transformation language, requires knowledge of the particular rule schedul-
ing and selection strategies of the language. Simple specifications (such as
replacing names of elements) can fail to terminate because of such strategies
[37].

2. Constraints are usually more concise than transformation rules or executable
versions of a transformation.

3. Constraints can be analysed at the specification level, to identify if the trans-
formation implementation synthesised from the constraints is terminating,
confluent, complete, etc.

4. Constraints facilitate verification, since they are in a form close to that used
by theorem-proving and analysis tools, such as B [24] and OCL checkers such
as the Dresden OCL tools [9].

5. The inverse of a transformation can be directly computed from the con-
straints in many cases, as can a change-propagation version of the transfor-
mation.

5 Computational model for transformations

A transformation implementation typically executes as a collection of individual
transformation steps, which are applications of a transformation rule or con-
straint to specific source elements that match the application conditions of the

rule or constraint, to produce an incrementally modified target and/or source
model.

The application conditions of a conjunctive-implicative constraint

∀ s : Si · SCond implies Succ

are the positive application conditions SCond and the negative application con-
ditions not(Succ).

A computation of a general transformation τ with assumptions Asm and
postconditions Cons maps a pair (m,n) of a source model m and an initial
target model n, which satisfy Asm, to a pair (m ′,n ′) which satisfies Cons.

We denote this by

(m,n) −→τ (m ′,n ′)

For each starting pair (m,n) satisfying Asm, the result (m ′,n ′) is minimal such
that Cons holds: no strict subset of the transformation steps of this computation
produces a pair (m ′′,n ′′) which satisfy Cons.

Such general transformations arise as model migrations where the source
and target metamodels are not disjoint (for example, [34]). The definition can
be directly generalised to cases of more than 2 involved models.

Many restructuring transformations only modify a single source model, ie.,
they are update in place. Their computations can be represented as:

m −→τ m ′

where m ′ is the result of a minimal set of transformation steps applied to an m

which satisfies Asm, to establish Cons for m ′.
Input-preserving transformations such as refinements, abstractions and mi-

grations between disjoint languages usually have an initially empty target model:
they map a source model m and an empty target model ∅, satisfying Asm, to a
pair (m,n) which satisfies the postcondition constraints Cons of τ . We denote
this by

(m, ∅) −→τ (m,n)

If the steps of τ only create target elements and extend target element roles, then
the minimality condition can be expressed by saying that no strict submodel of
n satisfies Cons with respect to m.

The minimality can be logically expressed by including Cons∼ in the as-
sumptions of obligations of (I) and (II) in Section 3. Cons∼ can also be included
as an Ens property, for B consistency proof (Section 8).

This concept of transformation computation was referred to as transforma-

tion state in [8]. A similar concept, in the domain of graph transformations, is
used in [46]. For triple graph grammars, a transformation step consists of the
application of a single rewrite rule to specific elements matching the application
conditions of the rule [5]. For QVT-Relations, a transformation step could be

considered as a complete application of a top-level relation (including all its in-
voked non-top-level relations), or at a finer level of granularity, an application
of any relation, not including its invoked relations.

Typically, the computations of constraint-based specifications will be divided
into computations of individual phases [8]: all the steps for the first phase, ie.,
for the first constraint, C1, will execute first, then, once C1 is established, the
steps for the second phase will commence, and so forth.

6 Model transformation correctness

By using the above semantics and computational model for transformations, we
can precisely define correctness criteria for a model transformation τ from a
language S to a language T [21].

We will use the concept of a transformation model from [5]: the theory Γτ

formed from the union of ΓS and ΓT together with constraints representing the
semantics of the transformation itself. In order to carry out formal verification,
this theory will be expressed in the B language as one or more B components.

The following notions of transformation correctness at the level of individual
constraints or rules have been defined [52, 5]:

Applicability A constraint Ci is forward applicable if there is a pair (m,n)
of models, where m ∈ ModelsS and n is a structure for T , such that Ci ’s
application condition holds in (m,n).
Failure of this property would indicate an ill-defined rule that can never be
applied, perhaps because of an over-restrictive application condition.

Executability A constraint Ci is forward executable if for every model pair
(m,n) with m ∈ ModelsS and n a structure for T , such that Ci is applicable
in (m,n), there is an extension n ′ of n such that (m,n ′) |= Ci and n ′ ∈
ModelsT .
Failure of this property indicates that Ci is inconsistent with ΓT , that is,
the effects specified in its postcondition contradict the constraints of T .

Completeness For individual transformation rules, completeness means that
all elements and settings in the target model intended to be established by
the rule are explicitly defined in the rule, unless these can be deduced from
the explicit definitions of the rule.

Definedness The expressions within the constraint or rule are well-defined, ie.,
division by zero or other invalid expression evaluations cannot occur.

Determinacy The rule cannot produce more than one possible modified model,
when applied to a particular model and specific elements in that model, so
that all its required input values are fixed.

At the level of complete transformations τ : S → T there are corresponding
global properties on implementations1 I of input-preserving transformations,

1 Implementations are defined by activities/algorithms in terms of basic transforma-
tion steps. Eg., apply the first transitive closure constraint to all instances of E
concurrently, then sequentially iterate applicable instances of the second constraint.
It is assumed that only finitely many applications can occur in a finite time interval.

using (m,n) −→I
τ

(m ′,n ′) to denote that there is a completed computation of
the implementation I of τ from (m,n) to (m ′,n ′):

Syntactic correctness For each model which conforms to (is a model of the
language) S , and to which the transformation implementation can be ap-
plied, the transformed model conforms to T :

∀m : S ; n · m |= Asm0 ∧ (m, ∅) −→I
τ

(m,n) ⇒ n : T

If Ens includes ΓT , then this is ensured by property (I) of Section 3.
Semantic correctness Each target model that can be produced by the trans-

formation implementation satisfies the required transformation postcondi-
tion Cons:

∀m : S ; n · m |= Asm0 ∧ (m, ∅) −→I
τ

(m,n) ⇒ (m,n) |= Cons

For input-preserving transformations where Asm requires an initially empty
target model, this property is established by property (III) of Section 3.

Semantic preservation At the language level this means that for each prop-
erty of the source model which should be preserved (correctness properties),
the target model satisfies the property, under a fixed interpretation χ of the
source language into the target language.
There may also be model-level properties which should be preserved via a
model-level interpretation ζ.
1. (Language-level semantic preservation): each language-level property ϕ :

LS satisfied by a source model m is also satisfied, under an interpretation
χ on language-level expressions, in the target model n:

m |= (Asm0 and ϕ) ∧
(m, ∅) −→I

τ
(m,n) ⇒ n |= χ(ϕ)

This shows that T is at least as expressive as S , and that users of n can
view it as a model of S , because the entities and features of S can be
expressed in terms of those of T . In particular, no information about m

is lost by τ .
For ϕ as Pres, this is established by property (II) of Section 3.
χ can be expressed in B by means of B machine invariants and verified
by internal consistency proof (Section 8).

2. (Model-level semantic preservation): each model-level property ϕ in Lm

of a source model m is also true, under an interpretation ζ on model-level
expressions, in a target model n:

m |= Asm0 ∧ Γm ⊢ ϕ ∧
(m, ∅) −→I

τ
(m,n) ⇒ Γn ⊢ ζ(ϕ)

This means that internal constraints of m remain valid in interpreted
form in n, for example, that subclassing in a UML model is mapped to
subsetting of sets of table primary key values, in a transformation from
UML to relational databases [42].

Model-level semantic preservation means that the diagram of Figure 4 com-
mutes: each formula ϕ ∈ Γm has

Γn ⊢ ζ(ϕ)

where Γm is the semantics of m under Sem1, and Γn is the semantics of n under
Sem2.

m n
τ

ζ

Sem1 Sem2

Γ Γm n

Fig. 4. Model-level semantic preservation

Notice that if τ and σ are semantically preserving, so is their composition
τ ; σ, if the composition of the interpretations is used.

More generally, we have the properties:

Uniqueness The transformation implementation should produce a unique re-
sult (up to isomorphism) from a given starting model. This is also termed
confluence: for each pair (m,n) of starting models satisfying Asm, if (m,n) −→I

τ

(m ′,n ′) and (m,n) −→I
τ

(m ′′,n ′′) then m ′ ≡ m ′′ and n ′ ≡ n ′′. In other
words, the transformation implementation always produces essentially equiv-
alent target models from the same source model.
Implementations of transformations τ should normally satisfy the stronger
condition of being isomorphism-preserving:

(m,n) −→I
τ

(p, q)

and

(m ′,n ′) −→I
τ

(p′, q ′)

where m ≡ m ′ and n ≡ n ′, should imply that p ≡ p′ and q ≡ q ′.

Termination An implementation of transformation τ is terminating if every
set of computation steps starting from (m,n) satisfying Asm, permitted by
the implementation, is finite.

Model-level semantic preservation has not been fully addressed by any sup-
port tool for model transformations, despite its importance for ensuring the
integrity of a development using transformations. The paper [52] defines a model-
checking technique for testing that a transformation preserves selected proper-
ties, on a model-per-model basis, but does not provide a means to verify trans-
formations on a global basis, for arbitrary models of the source language.

Some transformations may be inherently non-functional, for example, the
transformation (translation) between the abstract syntax trees representing texts
in different natural languages. However, as [5] points out, non-determinism can
also result from specification errors such as under-specification and omission of
intended predicates.

7 Verification using syntactic analysis

We can perform some analysis of constraints and use cases using data-dependency
analysis. This analysis is used to (i) identify possible flaws in the specification
to the developer, and (ii) to determine the choice of design and implementation
of the constraints and use case.

For each predicate P we define the write frame wr(P) of P , and the read

frame rd(P) (Table 3). These are the sets of entities and features which stat(P)
may update or access, respectively.

The write frame wr(P) of a predicate is the set of features and classes that
it modifies, when interpreted as an action (an action stat(P) to establish P).
This includes object creation. The read frame rd(P) is the set of classes and
features read in P . The read and write frames can help to distinguish different
implementation strategies for constraints. In some cases, a more precise analysis
is necessary, where wr∗(P) and rd∗(P), which include the sets of objects written
and read in P , are used instead.

If an association end role2 has a named opposite end role1, then role1 de-
pends on role2 and vice-versa. Deleting an instance of class E may affect any
superclass of E and any association end incident with E or with any superclass
of E . The read frame of an operation invocation e.op(pars) is the read frame of
e and pars together with that of the postcondition Postop of op, excluding the
formal parameters v of op. Its write frame is that of Postop , excluding v . wr(G)
of a set G of constraints is the union of the constraint write frames, likewise for
rd(G).

A dependency ordering Cn < Cm is defined between distinct Cons con-
straints by

wr(Cn) ∩ rd(Cm) 6= {}

A use case with postconditions C1, . . . ,Cn should satisfy the syntactic non-

interference conditions:

P rd(P) wr(P) rd∗(P) wr∗(P)

Basic expression e Set of features {} Set of objects × features {}
without quantifiers, and entities and entities referred
logical operators or used in P to in P
=, ∈, ⊆, E [] + dependents + dependents

e1 ∈ e2.r rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) rd∗(e2) × {r}
r multiple-valued

e1.f = e2 rd(e1) ∪ rd(e2) {f } rd∗(e1) ∪ rd∗(e2) rd∗(e1) × {f }

e1 ⊆ e2.r rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) rd∗(e2) × {r}
r multiple-valued

E [e1] rd(e1) ∪ {E} {} rd∗(e1) ∪ {E} {}

∃ x : E · Q rd(Q) wr(Q) ∪ {E} rd∗(Q) wr∗(Q) ∪ {E}
(in succedent)

∀ x : E · Q rd(Q) ∪ {E} wr(Q) rd∗(Q) ∪ {E} wr∗(Q)
(at outer level)

C implies Q rd(C) ∪ rd(Q) wr(Q) rd∗(C) ∪ rd∗(Q) wr∗(Q)

Q and R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)
Table 3. Definition of read and write frames

1. If Ci < Cj , then i < j .
2. If i 6= j then wr(Ci) ∩ wr(Cj) = {}.

Together, these conditions ensure that the activities stat(Cj) of subsequent con-
straints Cj cannot invalidate earlier constraints Ci , for i < j .

A use case satisfies semantic non-interference if for i < j :

Ci ⇒ [stat(Cj)]Ci

Syntactic non-interference implies semantic non-interference, but not con-
versely.

Constraints Ci may also satisfy the condition

wr(Ci) ∩ rd(Ci) = {}

We refer to such constraints as type 1 constraints. Subject to further restrictions,
they have an implementation as bounded iterations over the source model entity
Si of their outermost ∀ quantifier.

The general form of a conjunctive-implicative constraint is an implication:

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

where SCond is a predicate over the source model elements only, S1, ..., Sn are
the entities of S which are relevant to the transformation, Tj is some entity of
T , TCond is a condition in T elements only, eg., to specify explicit values for t ’s
attributes, and Post refers to both t and s to specify t ’s attributes and possibly
linked (dependent) objects in terms of s’s attributes and linked objects. Post

can be expressed as a conjunction LPost and GPost to specify these two aspects

(local versus global relationship between s and t). TCond does not contain quan-
tifiers, Post may contain ∃ quantifiers to specify creation/lookup of subordinate
elements of t . If the t should be unique for a given s, the ∃

1
quantifier may be

alternatively used in the succedent of clauses. Additional ∀-quantifiers may be
used at the outer level of the constraint, if quantification over multiple source
model elements is necessary, instead of over single elements. Each source entity
type Si which is ∀-quantified over at the outer level is referred to as a source

domain of the constraint. The Tj are target domains of the constraint.
We can classify transformation constraints into several types, of increasing

complexity:

– Type 0 constraints: no quantification over source elements, instead only up-
dates to specific objects are specified. For example:

Account [“33665”].balance = 0

to set the balance of a specific identified account.
– Type 1 constraints with 1-1 mapping of identities (structure preserving con-

straints): these have disjoint wr and rd frames. For example, the first con-
straint of the transitive closure computation:

∀ s : E · s.parent ⊆ s.ancestor

– Type 1 constraints with merging of source entity instances into target in-
stances, ie, with a many-1 mapping of identities.

– Type 2 constraints:

wr(Cn) ∩ (rd(Post) ∪ rd(TCond))

is non-empty, but

wr(Cn) ∩ (rd(SCond) ∪ {Si}) = {}

These constraints usually need to be implemented by a fixpoint iteration:
the basic transformation step stat(Succ) is iterated over applicable source
elements until no applicable source element remains.
An example is the second constraint in the transitive closure computation:

∀ s : E · s.parent .ancestor ⊆ s.ancestor

– Type 3 constraints: these have

wr(Cn) ∩ (rd(SCond) ∪ {Si}) 6= {}

These constraints need to be implemented by a fixpoint iteration: each trans-
formation step may modify the sets of applicable source objects for subse-
quent steps.

– Recursive form constraints: constraints that are not intended to hold literally
in the post-state of the transformation, but which describe instead incremen-
tal transformation steps. Type 2 or type 3 in terms of data-dependencies,
they typically contain a succedent which is false when interpreted as a logical
assertion, as in the GCD computation:

∀ a : A · a.x < a.y implies a.y = a.y − a.x

Alternatively, the succedent may contradict the antecedent, for example:

∀ e : E · SCond implies e→isDeleted()

which removes from the model all instances of E that satisfy SCond .

Some forms of analysis apply regardless of the constraint type. Each con-
straint should use correct syntax and should be type-correct in the context of
the source and target metamodels. Internal completeness checks that for each in-
stance t of an entity E that is created in the constraint, all defined data features
of E are set for t . Syntactic checks can be applied to ensure that constraints
are determinate and well-defined (they contain no division by zero, or refer-
ence to other undefined expressions, and the succedent of constraints cannot use
indeterminate choice: any , or). For each constraint, a definedness condition is
produced, this condition is a necessary assumption which should hold before the
constraint is applied, in order that its evaluation is well-defined. Likewise with
determinacy.

Examples of the clauses for definedness are given in Table 4.
Examples of the clauses for determinacy are given in Table 5.

7.1 Analysis of type 1 constraints

For type 1 constraints, many of the verification properties (such as confluence,
semantic correctness and termination) can be established by syntactic checks
on the constraint to ensure that distinct applications of the constraint cannot
semantically interfere.

Given a type 1 constraint Cn:

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

the following conditions (internal syntactic non-interference) ensure that appli-
cations of Cn on distinct s1, s2 : Si , s1 6= s2, cannot interfere with each other’s
effects:

Cn should only read source data navigable from s. There should be no
reference to any primary key of Tj in the succedent of Cn, except in an
assignment to it of the primary key value of s: t .tid = s.sid . Updates in
TCond and Post should be local to t or s: only direct features of t or s

should be updated. Updates t .f = e, e : t .f or e ⊆ t .f to direct features

Constraint expression E Definedness condition def(E)

a/b b 6= 0

s[ind] ind > 0 and ind ≤ s.size
sequence, string s

E [v] v ∈ E .id
entity E with
primary key id ,
v single-valued

s→last() s.size > 0
s→first()
s→max()
s→min()
s→any()

v .sqrt v ≥ 0

v .log v > 0

A and B def (A) and def (B)
A implies B def (A) and def (B)
∃ x · A ∀ x · def (A)
∀ x · A ∀ x · def (A)

Table 4. Definedness conditions for constraints

Constraint expression E Determinacy condition det(E)

s→any() s.size = 1

P or Q false

Case-conjunction Conjunction of
(E1 implies P1) and ... not(Ei and Ej)
(En implies Pn) for i 6= j , and each

det(Pi)

A and B det(A) and det(B)
A implies B det(A) and det(B)
∃ x · A ∀ x · det(A)
∀ x · A ∀ x · det(A)

Table 5. Determinacy conditions for constraints

f of t are permitted, in addition t can be added to a set or sequence-
valued expression e which does not depend on s or t : t : e. Likewise for
s.
These conditions can be generalised slightly to allow 1-1 mappings of Si

identities to Tj identities.

Notice that Si is not equal to Tj or to any ancestor of Tj , and that no feature
is both read and written in Cn (by the type 1 property).

Taken together, these conditions prevent one application of Cn from over-
writing the effect of another application, because the sets wr∗ of write frames of
the two applications are disjoint, except for collection-valued shared data items
(such as Tj itself), and these are written in a consistent manner (both applica-
tions add elements) by the distinct applications.

The standard implementation of type 1 constraints is a fixed for-loop iteration
over their source domains (Section 9). The execution of the individual constraint
applications in any sequential order by this implementation will achieve the
required logical condition Cn once all applications have completed. Semantic
correctness and termination therefore hold for the standard implementation of
internally syntactically non-interfering type 1 constraints.

For confluence of this implementation, we need the further conditions that
the Cn are determinate, and that additions of t or s to a sequence are not
permitted.

Theorem 1 If a type 1 constraint Cn is syntactically restricted as described
above, then its standard implementation is confluent.

Proof By determinacy, each individual application act of Cn has a unique (up
to isomorphism) result from a specific starting state.

Two applications act1 and act2 of Cn for distinct s1, s2 in Si have disjoint
wr∗ frames, except for collection-valued shared data items (such as Tj itself),
because these are based on distinct Tj objects t1 and t2 or on the distinct s1 and
s2. Hence the effects of act1 and act2 are independent on these write frames. If
a set-valued expression e is written in Post by a formula t : e or e→includes(t),
then e is not read in Cn, so its value cannot affect applications of Cn. The order
of addition of t1 and t2 to e does not make any difference to its resulting value,
so such updates are order independent. Likewise with additions of s to a set. 2

Counter-examples to confluence when the conditions do not hold can easily
be constructed. If elements of Si are simply added to a global sequence:

∀ s : Si · s : Root .instance.slist

for a singleton class Root , with an ordered association end slist : seq(Si), then
two different executions of the transformation could produce two different or-
derings of slist .

Likewise, if the mapping of identities is not 1-1, then the same Tj instance
could be updated by two different source objects, with only the second update

being retained:

∀ s : S1 · ∃ t : T1 · t .id = s.id/2 and t .y = s.x

where all attributes are integer-valued. This is also a counter-example to seman-
tic correctness of the standard implementation.

Update of objects other than t and s can violate confluence and semantic
correctness in a similar way, for example:

∀ s : S1 · ∃ t : T1 · t .r = T0[“1”] and t .r .att = s.x

Analysis of syntactic correctness and semantic preservation for type 1 con-
straints can be achieved by internal consistency proof in B (Section 8).

7.2 Analysis of type 1 entity and instance merging constraints

Instance and entity merging occurs when two or more source objects, possibly of
two or more source language entities, are merged into a single object of a target
language entity.

The constraints are written in conjunctive-implicative form, but the same
target entity Tj may appear on the right-hand side of two or more constraints.
In the first constraint to be applied, instances of Tj are created, in subsequent
constraint applications that identify existing Tj instances, these are looked-up
and their data supplemented by the effect of the applications.

An example are the constraints for the UML to relational database transfor-
mation, in which the same table object may be written by different constraint
applications.

Internal syntactic non-interference needs to be considered carefully for such
transformations. In addition to the restrictions on type 1 constraints defined
above, we add the following:

Updates to the same target entity instance t : Tj in different constraint
applications must: (i) not change the primary key value of t after its
initialisation; (ii) modify disjoint sets of attributes and single-valued as-
sociations of t ; (iii) modify collection-valued associations r of t in a
consistent way, if r is written by different constraint applications: these
updates must all be additions; (iv) mixtures of additions and removals
of t to collections e are forbidden. Only additions are permitted.

For confluence, additions to sequence-valued roles r in case (iii) or sequences
e in case (iv) are forbidden. Individual applications of the constraint must be
determinate.

Semantic correctness of the standard implementation follows from the dis-
jointness of wr∗ frames for distinct constraint applications: if the objects being
updated are the same, then the features are different, except in the case of non-
interfering updates to collection-valued roles.

Confluence follows since the updates to a specific t by multiple constraint
applications are order-independent by the above restrictions.

The UML to relational database example satisfies these conditions, since
t .column is added to by each distinct constraint application that affects t : Table.

A simple counter-example for semantic correctness and confluence in this
case is the constraint:

∀ s : S1 · ∃ t : T1 · t .id = s.id/2 and

(s.x > 0 implies t : e) and (s.x ≤ 0 implies t / : e)

where all attributes are integer-valued, and e is a set-valued collection indepen-
dent of s and t . Depending on the order in which S1 elements are processed, a
specific t may or may not be in e at termination.

Type 1 constraints that fail the internal non-interference restrictions can
be analysed using the techniques for type 2 and 3 constraints in the following
sections.

7.3 Analysis of type 2 and type 3 constraints

A constraint Cn of form

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

is termed a type 2 constraint if

wr(Cn) ∩ (rd(Post) ∪ rd(TCond))

is non-empty, but

wr(Cn) ∩ (rd(SCond) ∪ {Si}) = {}

This means that the order of application of the constraint to instances may
be significant, and that a single iteration through the source model elements may
be insufficient to establish Post for all elements. A least-fixed point computation
may be necessary instead, with iterations repeated until no further change takes
place.

A constraint is of type 3 if Si ∈ wr(Cn) or wr(Cn)∩rd(SCond) 6= {}. Again in
this case a fixpoint computation is necessary, with additional complexity because
the set of source objects being considered by the constraint is itself dynamically
changing.

A measure Q : ModelsS ×ModelsT → N on the source and target model data
is used to establish the termination, confluence and correctness of type 2 and
type 3 constraints, and should be defined together with the constraint. Q should
have the property that it is decreased by each application of the constraint, and
Q = 0 at termination of the phase for the constraint.

Formally, Q is a variant function for applications of the constraint:

∀ ν : N · Q(smodel , tmodel) = ν ∧ s ∈ Si ∧ SCond ∧ ν > 0 ⇒
[stat(Succ)](Q(smodel , tmodel) < ν)

and

Q(smodel , tmodel) = 0 ≡ {s ∈ Si | SCond ∧ ¬ (Succ)} = {}

Succ abbreviates the constraint rhs ∃ t : Tj · TCond and Post .
Q will be syntactically defined as an expression in the union language S ∪T .
The variant function property of Q establishes termination of the fixpoint

implementation of Cn: each application of Cn strictly reduces Q , and Q ≥ 0,
so there can only be finitely many such applications. Semantic correctness also
follows, since when Q = 0, there are no remaining instances of Si which violate
the constraint, ie, Cn holds true.

Confluence requires that the Q = 0 state is unique:

Theorem 2 If for each particular starting state of the source and target models
there is a unique (up to isomorphism) possible terminal state of the models
(produced by applying the constraint until it cannot be applied further) in which
Q = 0, then the fixpoint implementation of the type 2 or 3 constraint is confluent.

Proof The terminal states of the transformation are characterised by the condi-
tion

{s ∈ Si | SCond ∧ ¬ (Succ)} = {}

But in such states we also have

Q(smodel , tmodel) = 0

Therefore, there is a unique termination state. 2

In some cases the existence of a Q variant function can be deduced from
the form of the constraint. A type 2 constraint Cn with wr(Cn) = {r}, for a
many-valued association end r : F(Tj) of entity Ti , and that updates r only by
addition of elements (ie., by formulae e ⊆ x .r , e : x .r or equivalent forms) must
have a Q function bounded above by

Σt:Ti
#(Tj − t .r)

since the sets Ti and Tj are not modified by Cn. − denotes set subtraction.
Likewise, for cases where such an r is updated by removal of elements only

(formulae x .r→excludesAll(e) and equivalents), we have an upper bound:

Σt:Ti
#t .r

For example, a Q measure for the second transitive closure transformation
constraint is:

Σs:E#(s.parent+ − s.ancestor)

where parent+ is the non-reflexive transitive closure of parent .
Verification of the variant function and unique 0 state properties of Q require

refinement proof in B, syntactic correctness and semantic preservation also re-
quire proof in B (Section 8).

7.4 Recursive form constraints

These constraints are interpreted as defining clauses of a recursive function

τ : ModelsS × ModelsT → ModelsS × ModelsT

with τ(m,n) = τ(m ′,n ′) where (m ′,n ′) are m and n modified by the updates
specified by the constraint.

For example, for the GCD computation, the constraints correspond to the
following definition of τ :

∃ ax ∈ A · x (ax) < y(ax) ∧ τ(A, x , y) = τ(A, x , y ⊕ {ax 7→ y(ax) − x (ax)}) ∨
∃ ax ∈ A · y(ax) < x (ax) ∧ τ(A, x , y) = τ(A, x ⊕ {ax 7→ x (ax) − y(ax)}, y) ∨
∀ ax ∈ A · x (ax) = y(ax) ∧ τ(A, x , y) = (A, x , y)

The definition of τ therefore is a recursive form transformation, the poststate of
the transformation is given by τ(m,n) where m and n are the initial models.

The treatment of these constraints is similar to type 2 and 3 constraints,
with correctness, termination and confluence established by means of suitable Q

variant functions.

7.5 Summary

Table 6 summarises the different types of transformation constaint, based on the
internal data-dependencies of the constraint, and how different properties of the
constraints can be established.

The UML-RSDS tools perform the following analyses on transformation spec-
ifications:

– calculation of rd(Cn) and wr(Cn) for each constraint, and identification of
the constraint type (0, 1, 2 or 3 as defined above).

– checks for syntactic non-interference between constraints, and for their cor-
rect ordering in Cons. Groups of mutually data-dependent constraints are
automatically identified and marked for treatment as a unit for the purposes
of design synthesis.

– syntactic checks for termination, semantic correctness and confluence of type
1 constraints.

– automatic derivation of inverse constraints for invertible type 1 constraints.

– checks that constraints are complete (when an object of entity E is created,
all its features are set, and that the disjunction of SCond conditions for each
given source entity Si is true).

– checks that constraints are determinate and well-defined (no division by zero,
or reference to other undefined expressions, the succedents of constraints
cannot use indeterminate choice: any , or).

Constraint properties Termination Confluence Syntactic correctness

Type 0 No outer ∀ quantifier: Syntactic Always Rules for []
constraint single application. check def (Cn) true

Type 1 No interference between Syntactic Syntactic Rules for
constraint different applications of checks checks []

constraint, and no Internal
change to Si or rd(SCond): consistency
wr(Cn) ∩ rd(Cn) = {}. proof in B

Type 2 Interference between Q measure: Q measure: Internal
constraint different applications of variant uniqueness consistency

constraint, but no update function of proof
of Si or rd(SCond) Q = 0 in B
within constraint: Si 6∈ wr(Cn), state
wr(Cn) ∩ rd(SCond) = {}

Type 3 Update of Q measure: Q measure: Internal
constraint Si or rd(SCond) variant uniqueness consistency

within constraint. function of proof
Si ∈ wr(Cn), or Q = 0 in B
wr(Cn) ∩ rd(SCond) 6= {} state

Table 6. Types of transformation constraints and verification techniques

8 Verification using B AMN

B abstract machine notation is an established formal method, with a large num-
ber of users and with successful large-scale application to safety-critical systems.
Its mathematical foundation is first-order logic and set theory, which makes it
a natural formalism for the treatment of UML and OCL, which have the same
semantic basis [27, 49].

A B specification consists of a linked collection of modules, termed machines.
Each machine encapsulates data and operations on that data. Entities and meta-
models can naturally be represented in machines, using the set-theoretic seman-
tics of [27].

The general form of a B machine Mτ representing the transformational model
of a transformation τ with source language S and target language T is:

MACHINE Mt SEES SystemTypes

VARIABLES

/* variables for each entity and feature of S */

/* variables for each entity and feature of T */

INVARIANT

/* type definitions for each entity and feature of S and T */

Asm0 & Pres & Ens & Pres’

INITIALISATION

/* var := {} for each variable */

OPERATIONS

/* creation operations for entities of S, restricted by Asm, Pres */

/* update operations for features of S, restricted by Asm, Pres */

/* operations representing transformation steps */

END

where Pres ′ is χ(Pres), Asm0 is the sub-part of Asm which concerns only S . If
Pres and Asm0 are conjunctions of universally quantified formulae ∀ s : Si · ψ,
then the appropriate instantiated formulae ψ[sx/s, vx/v] are used as the pre-
conditions of operations creating sx : Si (or subclasses of Si) or modifying its
features. All these operations will include preconditions that the target model is
empty (for transformations which start with an empty target model).

Pres and Pres ′ are only included in Mτ when proof of correctness property
(II) of Section 3 is being carried out.

As an example, the entity E and its associations in the transitive closure
computation transformation can be defined by the following partial machine:

MACHINE E SEES SystemTypes

VARIABLES es, parent, ancestor

INVARIANT

es <: E_OBJ &

parent : es --> FIN(es) &

ancestor : es --> FIN(es)

INITIALISATION

es, parent, ancestor := {}, {}, {}

END

Using these machines we can verify syntactic correctness and semantic preser-
vation properties of a model transformation, by means of internal consistency

proof of a B machine representing the transformation and its metamodels. In-
ternal consistency of a B machine consists of the following logical conditions:

– That the state space of the machine is non-empty: ∃ v .Inv where v is the
tuple of variables of the machine, and Inv its invariant.

– That the initialisation establishes the invariant:

[Init]Inv

– That each operation maintains the invariant:

Pre ∧ Inv ⇒ [Code]Inv

where Pre is the precondition of the operation, and Code its effect.

Therefore, if the Ens and χ(Pres) constraints of a transformation τ are in-
cluded in the invariant of the machine Mτ which has data representations of
the source and target metamodels, operations to add elements to the source
model, and operations for each transformation step of τ , internal consistency
proof of Mτ proves that Ens and χ(Pres) are valid for any (partial or complete)
target model constructed by the UML-RSDS (phased and sequential) implemen-
tation of the transformation, relative to the source model. Occurrences E@pre

or f @pre in Ens are interpreted by additional variables es pre, f pre which have
the same typing as es and f . They are modified in parallel with es and f by
the source model creation and modification operations, and are unchanged by
transformation steps.

Mτ expresses the transformation model theory Γτ in B notation.
The correctness properties (I) and (II) of Section 3 are established for the

UML-RSDS implementations of transformations by internal consistency proof
in B, because Mτ expresses LS∪T in its data, and ΓS , Asm0 in its invariants.
The phased implementation of τ is expressed by the operation definitions of
transformation steps: each step is for a specific constraint Cj of Cons, and its
preconditions include the assumptions that all preceding constraints Ci , i < j

are true.
Internal consistency proof establishes that the Ens property holds for each

individual target instance of a particular target entity as it is created, so when
all applicable steps have been applied, Cons holds and so does Ens for all target
instances. Likewise for χ(Pres).

For the transitive closure computation, the resulting complete B machine is:

MACHINE E SEES SystemTypes

VARIABLES es, parent, ancestor

INVARIANT

es <: E_OBJ &

parent : es --> FIN(es) &

ancestor : es --> FIN(es) &

/* Ens: */ !ex.(ex : es => ancestor(ex) <: (closure1(rel(parent)))[{ex}])

INITIALISATION

es, parent, ancestor := {}, {}, {}

OPERATIONS

create_E() =

PRE es /= E_OBJ & !ex.(ex : es => ancestor(ex) = {})

THEN

ANY ex WHERE ex : E_OBJ - es

THEN

es := es \/ { ex } ||

parent(ex) := {} ||

ancestor(ex) := {}

END

END;

addparent(ex,parentx) =

PRE ex : es & parentx : es & !ex.(ex : es => ancestor(ex) = {})

THEN

parent(ex) := parent(ex) \/ { parentx }

END;

uc11(ex) =

PRE ex : es

THEN

ancestor(ex) := ancestor(ex) \/ parent(ex)

END;

uc12(ex) =

PRE ex : es & not(union(ancestor[parent(ex)]) <: ancestor(ex)) &

!ex.(ex : es => parent(ex) <: ancestor(ex))

THEN

ancestor(ex) := ancestor(ex) \/ union(ancestor[parent(ex)])

END

END

The final invariant expresses the Ens property of the transformation, rel(parent)
is the relation es ↔ es that corresponds to parent . uc11 defines the transfor-
mation step of the first constraint, uc12 defines the transformation step of the
second constraint (and assumes that the first constraint has been established).
The machine is generated automatically by the UML-RSDS tools from the UML
specification of the transformation.

Internal consistency proof then establishes that Ens is a provable invariant,
the key deduction is that

!ex.(ex : es => ancestor(ex) <: (closure1(rel(parent)))[{ex}]) &

e : es =>

union(ancestor[parent(e)]) <: (closure1(rel(parent)))[{e}]

Using Atelier B version 4.0, 17 proof obligations for internal consistency of the
above machine are generated, of which 11 are automatically proved, and the
remainder can be interactively proved using the provided proof assistant tool.

Similarly, if χ(Pres) has a universally quantified form, with these quantifica-
tions over target model entities, then internal consistency proof will include the
statement that χ(Pres) holds for each target element produced by applying the
transformation constraints.

For the UML to relational database example, the B machine has the form:

MACHINE UMLTORDB SEES SystemTypes, String_TYPE

VARIABLES entitys, namedelements, attributes,

name, ownedAttributes, parent,

rdbelements, tables, columns, rdbname, column

INVARIANT

namedelements <: NamedElement_OBJ &

attributes <: namedelements & entitys <: namedelements &

attributes /\ entitys = {} &

name : namedelements >-> STRING &

ownedAttributes : entitys --> FIN(attributes) &

parent : entitys --> FIN(entitys) &

!entityx.(entityx : entities => card(parent(entityx)) <= 1) &

rdbelements < RDBElement_OBJ &

tables <: rdbelements & columns <: rdbelements &

tables /\ columns = {} &

rdbname : rdbelements >-> STRING &

column : tables --> FIN(columns) &

/* Asm0: */ !a.(a : namedelements => "_" /: ran(name(a))) &

/* Ens: */ !t.(t : tables => card(column(t)) > 0) &

/* Pres: */ !a.(a : attributes => card(name(a)) > 0) &

/* Pres’: */ !a.(a : columns => card(rdbname(a)) > 0)

INITIALISATION

entitys := {} || ... || column := {}

OPERATIONS

create_Entity(namex) =

PRE namex : STRING & namedelements /= NamedElement_OBJ &

card(namex) > 0 & "_" /: ran(namex) & rdbelements = {}

THEN

ANY entityx WHERE entityx : NamedElement_OBJ - namedelements

THEN

entitys := entitys \/ { entityx } ||

namedelements := namedelements \/ { entityx } ||

name(entityx) := namex ||

ownedAttributes(entityx) := {} ||

parent(entityx) := {}

END

END;

addparent(entityx,parentx) =

PRE entityx : entitys & parentx : entitys &

card(parent(entityx) \/ { parentx }) <= 1 & rdbelements = {}

THEN

parent(entityx) := parent(entityx) \/ { parentx }

END;

/* Other creation and update operations for source model */

uc11(cx) =

PRE cx : entitys & parent(cx) = {}

THEN

ANY tt, kk WHERE tt : RDBElement_OBJ - rdbelements &

kk : RDBElement_OBJ - rdbelements & kk /= tt

THEN

tables := tables \/ { tt } ||

rdbname(tt) := name(cx) ||

columns := columns \/ { kk } ||

rdbelements := rdbelements \/ { tt, kk } ||

rdbname(kk) := name(cx) ^ "_Key" ||

column(tt) := column(tt) \/ { kk }

END

END;

uc12(cx,ax) =

PRE cx : entitys & ax : ownedAttribute(cx) &

!cc.(cc : entitys & parent(cc) = {} =>

#tt.(tt : tables & rdbname(tt) = name(cc) & ...))

THEN

ANY cl WHERE cl : RDBElement_OBJ - rdbelements

THEN

columns := columns \/ { cl } ||

rdbelements := rdbelements \/ { cl } ||

rdbname(cl) := name(ax) ||

column(rdbname~(name(rootClass(cx)))) :=

column(rdbname~(name(rootClass(cx)))) \/ { cl }

END

END

The preconditions of the step operation uc12 for the second constraint include
the logical assertion that the first constraint already holds. Ens follows from the
definition of uc11, whilst χ(Pres) follows from Pres and the definitions of uc11
and uc12.

In order to prove that a postulated Q measure is actually a variant function,
refinement proof in B can be carried out, with an abstraction of the transforma-
tion machine Mτ defined as M 0τ :

MACHINE M0t SEES SystemTypes

VARIABLES /* variables for source model entities */, q

INVARIANT

/* typing of entity sets */ &

q : NAT

INITIALISATION

es, q := {}, 0

OPERATIONS

/* creation and update operations for source

model: these may set q arbitrarily in NAT */

step() =

PRE q > 0

THEN

q :: 0..q-1

END

END

step represents a transformation step of the constraint for which q is the pos-
tulated variant. In the usual case of input-preserving transformations, this step
does not modify any of the source model entities. Each constraint Ci may have
a corresponding variant qi , the operation stepi for transformation steps of Ci

then has the form:

stepi() =

PRE qi > 0 & qk = 0 /* for k < i */

THEN

qi :: 0..qi-1 || qj :: NAT /* for j > i */

END

For the transitive closure computation, the machine is:

MACHINE E0 SEES SystemTypes

VARIABLES es, q1, q2

INVARIANT

es <: E_OBJ &

q1 : NAT & q2 : NAT

INITIALISATION

es, q1, q2 := {}, 0, 0

OPERATIONS

create_E() =

PRE es /= E_OBJ

THEN

ANY ex WHERE ex : E_OBJ - es

THEN

es := es \/ { ex }

END

END;

addparent(ex,parentx) =

PRE ex : es & parentx : es

THEN

q1 :: NAT || q2 :: NAT

END;

step1() =

PRE q1 > 0

THEN

q1 :: 0..q1-1 || q2 :: NAT

END;

step2() =

PRE q1 = 0 & q2 > 0

THEN

q2 :: 0..q2-1

END

END

The operations adding elements to the source model set q1 and q2 arbitrarily,
whilst the transformation step operations strictly reduce some q .

The original Mτ machine is then used to define a refinement of M 0τ , with
the refinement relation giving an explicit definition of the q variants:

REFINEMENT E0_REF

REFINES E0 SEES SystemTypes

VARIABLES es, parent, ancestor

INVARIANT

es <: E_OBJ &

parent : es --> FIN(es) &

ancestor : es --> FIN(es) &

!ex.(ex : es => ancestor(ex) <: (closure1(rel(parent)))[{ex}]) &

q1 = card({ exx | exx : es & not(parent(eex) <: ancestor(eex)) }) &

q2 = SIGMA(exx).(exx : es | card((closure1(rel(parent)))[{exx}] - ancestor(exx)))

INITIALISATION

es, parent, ancestor := {}, {}, {}

OPERATIONS

create_E() =

PRE es /= E_OBJ

THEN

ANY ex WHERE ex : E_OBJ - es

THEN

es := es \/ { ex } ||

parent(ex) := {} ||

ancestor(ex) := {}

END

END;

addparent(ex,parentx) =

PRE ex : es & parentx : es

THEN

parent(ex) := parent(ex) \/ { parentx }

END;

step1() =

PRE #ex.(ex : es & not(parent(ex) <: ancestor(ex)))

THEN

ANY ex WHERE ex : es & not(parent(ex) <: ancestor(ex))

THEN

ancestor(ex) := ancestor(ex) \/ parent(ex)

END

END;

step2() =

PRE !ex(ex : es => parent(ex) <: ancestor(ex)) &

#ex.(ex : es & not(union(ancestor[parent(ex)]) <: ancestor(ex)))

THEN

ANY ex WHERE ex : es & not(union(ancestor[parent(ex)]) <: ancestor(ex))

THEN

ancestor(ex) := ancestor(ex) \/ union(ancestor[parent(ex)])

END

END

END

step2 represents an arbitrary transformation step of the second constraint of the
transformation, the ANY statement chooses one element ex to which the second
constraint can be applied, and applies it.

The refinement proof then attempts to verify that the explicit definition of
q2 obeys the abstract specification, ie, that it is strictly decreased by every
execution of step2. The refinement proof also establishes that q1 and es are not
changed by step2.

The refinement obligations in B are [24]:

– The joint invariants InvA ∧ InvR of the abstract and refined machines are
satisfiable together.

– The refined initialisation establishes the invariants:

[InitR]¬ [InitA]¬ (InvA ∧ InvR)

– Each refined operation satisfies the pre-post relation of its abstract version:

InvA ∧ InvR ∧ PreA ⇒
PreR ∧ [DefR]¬ [DefA]¬ (InvA ∧ InvR)

In the transitive closure example, there is clearly a joint state which satisfies
the combined invariants (eg., the empty model with q1 = 0 and q2 = 0). For
step2, q2 > 0 means that some ex : es has

¬ (union(ancestor [parent(ex)]) ⊆ ancestor(ex))

because otherwise ancestor(ex) = (closure1(rel(parent)))[{ex}] for all ex . Also,
q1 = 0 implies that

parent(ex) ⊆ ancestor(ex)

for all ex : es.
Therefore the abstract precondition implies the refined precondition. In addi-

tion, each ex : es which satisfies the WHERE condition in the refined operation
has that

union(ancestor [parent(ex)]) ⊆ ancestor(ex)

after the operation, so the operation adds at least one new element of (closure1(rel(parent)))[{ex}]
to ancestor(ex). Therefore the term card((closure1(rel(parent)))[{ex}]−ancestor(ex))
in the sum defining q2 has been reduced, and no other term in the sum has been
modified, and so q2 has been strictly decreased, satisfying the abstract operation.

To verify confluence, we prove that there is essentially a unique state where
q2 = 0. This can be verified in the refinement by adding an ASSERTIONS

clause:

ASSERTIONS

q2 = 0 =>

!ex.(ex : es => ancestor(ex) = (closure1(rel(parent)))[{ex}])

This clause expresses that the predicate of the clause logically follows from the
invariant and other contextual information for the data of the component.

The B tools will produce proof obligations for this assertion, and will act as
a proof assistant in structuring the proof and carrying out routine proof steps
automatically. A further consequence of the proof of the assertion is semantic
correctness of the standard implementation for the transformation: that the de-
sired semantics of target model elements relative to source model elements also
holds at termination.

For recursive form specifications, the transformation steps can be expressed
as B operations in the same way as for conjunctive-implicative form specifica-
tions. Internal consistency proof can be used to prove some inductive assertions
about the intermediate and final transformation state (eg., x (ax) > 0 in the gcd
example). Refinement proof can be used to establish that a postulated Q func-
tion is a variant, proving termination, and that other expressions have invariant
values over transformation steps, and therefore are not modified by the transfor-
mation. Confluence and semantic correctness are formalised as properties which
should follow from Q = 0, as for the conjunctive-implicative case.

To verify that a transformation satisfies a postulated language-level inter-
pretation χ, invariants can be added to Mτ to express that χ holds between
corresponding source and target model elements. For example, if source entity
Si is interpreted by target entity Tj , and attribute satt of Si has interpretation
χ(satt) some function f (tatt) of Tj , we can verify this interpretation for τ by
adding the invariant

!(s,t).(s : sis & t : tjs & idS(s) = idT(t) => satt(s) = f(tatt(t)))

to Mτ , where s and t correspond if they have equal identity attribute values.
Similarly for validation of association interpretations.

The above procedures can be used as a general process for proving Ens

and Pres properties, for verifying interpretations, and for proving termination,
semantic correctness and confluence, by means of suitable postulated Q variant
functions. They can also be used to show that the values of particular expressions
are not changed by transformation steps.

The techniques can be generalised to any transformation implementation
whose transformation steps can be serialised, that is, each execution of the im-
plementation is equivalent to one in which the steps occur in a strict sequential
order. This assumption is made implicitly in the B model.

Representation and verification of other declarative model transformation
languages, such as TGG or QVT-R could be carried out by means of translations
of these languages to OCL constraints, following the approach of [5], and hence
to B.

Proof transcripts can be produced by the Atelier B proof assistant, these
could then be checked by an independent proof checker in order to achieve cer-
tification requirements of standards such as DO178C [12].

B is not suitable for establishing satisfiability properties asserting the exis-
tence of models of certain kinds, and tools such as UMLtoCSP [4] and USE [14]
are more appropriate for these.

9 Implementation of constraint-based specifications

At the design and implementation level we need to verify that:

– The design and implementation of the transformation satisfy its specifica-
tion.

– The design and implementation satisfy termination and confluence proper-
ties.

As far as possible, we minimise the amount of verification required by syn-
thesising designs and implementations according to a process which produces
correct-by-construction designs and code from specifications.

The procedural interpretation stat(Cn) of constraints Cn can be used as the
basis for designs and implementations of transformations.

stat(Cn) is expressed in a small procedural language including assignment,
conditionals, operation calls and loops (Figure 5). This language corresponds to
a subset of UML structured activities, and serves as an intermediate language,
from which transformation implementations in different executable languages
can be generated. It can also be mapped into the implementation level of the B
AMN statement language [24], to support detailed verification of designs.

For each statement construct in the language there is a definition of weakest
precondition []P , supporting the verification of implementations. This is defined
as for B generalised substitutions [24].

LoopStatement

Statement

Conditional
Statement

BasicStatement

Operation
CallStatement

test1

0..1

ifFalse
0..1
ifTrue
1

0..1 0..1

* actualParameters {ordered}

0..1

1

BoundedLoop UnboundedLoop
Statement

SkipStatement
Statement
Assignment

Statement

Behavior

body 1

0..1

Operation

*

calledOperation1

Constraint

0..1 invariant

1
1

0..10..1
Sequence

Statement
kind: StatKind

Statement

{ordered} *
statements

1

0..1

1 left
1 right

1 target

<<enumeration>>
StatKind

sequence
parallel
choice

initialiser

step

0..1 0..10..10..1

test

variant

0..1

0..10..1 Creation
Statement

OclExpression

Classifier

1creates
Instance
Of

left

0..1

*

Return

returns1

0..1

1

Fig. 5. Statement metamodel

stat(P) is defined so that it is the minimal statement in the activity language
which ensures that P holds:

[stat(P)]P

For individual constraints, therefore, correctness is ensured by the definition
of stat . In cases of fixpoint computations (type 2 and 3 constraints), termination
and confluence need to be proven separately, using a suitable Q measure for the
constraint.

Individual constraints Cn:

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

are examined to identify which implementation strategy can be used to derive
their design. This depends upon the features and objects read and written within
the constraint (Table 7).

Constraint properties Implementation choice

Type 0 Update of single stat(Cn)
constraint object

Type 1 No interference between Approach 1: single for loop
constraint different applications of

constraint, and no for s : Si do s.op()
change to Si or rd(SCond):
wr(Cn) ∩ rd(Cn) = {}.

Type 2 Interference between Approach 2: while
constraint different applications of iteration of for loop.

constraint, but no update
of Si or rd(SCond) Q measure needed
within constraint: Si 6∈ wr(Cn), for termination and
wr(Cn) ∩ rd(SCond) = {} correctness proof

Type 3 Update of Approach 3: while iteration of
constraint Si or rd(SCond) search-and-return for loop

within constraint. Q measure needed
Si ∈ wr(Cn), or for termination and
wr(Cn) ∩ rd(SCond) 6= {} correctness proof

Table 7. Design choices for constraints

In the simple case where a constraint Cn satisfies the type 1 condition:

wr(Cn) ∩ rd(Cn) = {}

the constraint can be implemented by a loop

for s : Si do s.opi()

where in Si we include an operation of the form:

opi()
post:

SCond [self /s] implies ∃ t : Tj · TCond and Post [self /s]

We refer to this strategy as constraint implementation approach 1. The proof of
correctness of this strategy uses the property that the inference rule: from

v : s ⇒ [acts(v)]P(v)

derive

[for v : s do acts(v)](∀ v : s@pre · P(v))

is valid for such iterations, provided that one execution of acts does not affect an-
other: the precondition of each acts(v) has the same value at the start of acts(v)
as at the start of the loop, and if acts(v) establishes P(v) at its termination,
P(v) remains true at the end of the loop [29].

Specifically,

s ∈ Si ⇒ [s.opi()](SCond ⇒ Succ)

by definition of opi(), where Succ is ∃ t : Tj ·TCond and Post , so by the above
inference, stat(Cn) defined as

for s : Si do s.opi()

establishes Cn. Confluence also follows if the updates of written data in different
executions of the loop body are independent of the order of the executions.

The time complexity of the implementation is linear in the size #Si of the
source domain. More precisely the worst case complexity is linear in

#Si ∗ (costeval(SCond) + costact(Succ))

where costeval(e) is the time required to evaluate e, and costact(e) the time
required to execute stat(e). If additional source domains need to be iterated
over, the cost is also multiplied by their size. This shows that multiple element
matching or complex expressions in the constraint should be avoided for effi-
ciency reasons.

A more complex implementation strategy is required for type 2 and type 3
constraints. Consider a constraint Cn:

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

In the case where

wr(Cn) ∩ (rd(Post) ∪ rd(TCond))

is non-empty but the other conditions of non-interference still hold (ie., a type
2 constraint), a fixpoint iteration of the form:

running := true;
while (running) do

(running := false;
for s : Si do

if SCond then

if Succ then skip

else (s.op(); running := true)

else skip)

can be used, where Succ is ∃ t : Tj · TCond and Post and op() is defined as:

op()
post:

Succ[self /s]

In the conditional test Succ is evaluated in a non side-effecting manner.
We refer to this strategy as constraint implementation approach number

2. The conditional test of Succ can be omitted if it is known that SCond ⇒
not(Succ). The UML-RSDS tools perform algebraic simplification to check if
SCond contradicts Succ.

If the updates to the written data are monotone and bounded (eg, as in the
case of the inclusion operator ⊆ for the transitive closure computation example),
then the iteration terminates and computes the least fixed point. A measure
Q : N over the source and target models can be used to prove termination, as in
Section 7.3.

A suitable measure in this case is the sum Σx :E#(x .parent+ − x .ancestor).
Q is decreased by each application of op and is never increased.

Termination holds, if Q is a variant for the while loop (2):

∀ ν : N · Q = ν ∧ running = true ∧ ν > 0 ⇒ [body](Q < ν)

where body is the body of the while loop.
If some s : Si has SCond and not(Succ) true, at the start of an iteration of

the while loop, then s.op() is executed for such an s, and this execution decreases
Q . Q is never increased, so condition (2) holds.

Q is also necessary to prove correctness: while there remain s : Si with SCond

true but Succ false, then Q > 0 and the iteration will apply op to such an s. At
termination, running = false, which can only occur if there are no s : Si with
SCond true but Succ false, so the constraint therefore holds true, and Q = 0.
Confluence also follows if Q = 0 is only possible in one unique state of the source
and target models which can be reached from the initial state by applying the
constraint: this will be the state at termination regardless of the order in which
elements were transformed.

For the transitive closure computation, the inner loop iterates:

if x .parent .ancestor ⊆ x .ancestor

then skip

else (t .op(); running := true)

The time complexity of the implementation depends on the value of Q on the
starting models, and on the size #Si of the domain. The worst case complexity
is of the order

Q(smodel , tmodel) ∗ #Si ∗ (costeval(SCond) + costeval(Succ) + costact(Succ))

since the inner loop may be performed Q times. Optimisation by omitting the
successor test reduces the complexity by removing the term costeval(Succ).

If the other conditions of non-interference fail (a type 3 constraint), then the
application of a constraint to one element may change the elements to which
the constraint may subsequently be applied to, so that a fixed for -loop iteration
over these elements cannot be used. Instead, a schematic iteration of the form:

while some source element s satisfies a constraint lhs do

select such an s and apply the constraint

can be used. This can be explicitly coded as:

running := true;
while running do

running := search()

where:

search() : Boolean

(for s : Si do

if SCond then

if Succ then skip

else (s.op(); return true));

return false

and where op has postcondition Succ[self /s]. We call this approach 3, iteration
of a search-and-return loop. The conditional test of Succ can be omitted if it is
known that SCond ⇒ not(Succ).

As in approach 2, a Q measure is needed to prove termination and correct-
ness. Termination follows if Q is a variant of the while loop: applying op() to
some s : Si with SCond and not(Succ) decreases Q , even if new elements of Si

are generated.
Correctness holds since search returns false exactly when Q = 0, ie, when no

s : Si falsifying the constraint remain. Again, confluence can be deduced from
uniqueness of the termination state.

The worst case complexity is of the order

Q(smodel , tmodel) ∗ maxS ∗ (costeval(SCond) + costeval(Succ) + costact(Succ))

where maxS is the maximum size of #Si reached during the computation. Again,
optimisation can remove the costeval(Succ) term.

A similar implementation strategy to approach 3 can be used for recursive
constraints.

To link the implementation of one constraint to the implementation of an-
other, the implementation of sequentially later constraints needs to identify
which target elements of specific target entity types have already been created,
and from which source elements.

The UML-RSDS tools efficiently implement searches for the set of elements
TSub[sexp.id1] of a target type TSub with primary key values in sexp.id1 by
maintaining a map from the primary keys of TSub objects to the objects – this
is termed the object indexing pattern.

To implement conjunctive-implicative specifications which satisfy semantic
non-interference, we construct target model elements in phases, ‘bottom-up’ from
individual objects to composite structures, based upon a structural dependency
ordering of the target language entities.

This approach enables the modular decomposition of the transformation,
usually as a sequential composition (chaining) of sub-transformations.

The transformation design is decomposed into phases, based upon the Cons

constraints. These constraints should be ordered so that data read in one con-
straint is not written by a subsequent constraint, in particular, phase p1 must
precede phase p2 if it creates instances of an entity T1 which is read in p2.

Figure 6 shows the schematic structure of this approach.

Si Tj

Phase 1

Phase 2

SSub1

SSub2

TSub

Fig. 6. Phased creation structure

The stepwise construction of the target model leads to a transformation im-
plementation as a sequence of phases: earlier phases construct elements that are
used in later phases. Some mechanism is required to look up target elements
from earlier phases, such as by key-based search or by trace lookup.

For a phased implementation, the form of the specification can be used to
define the individual transformation rules. If Cons is a conjunction of constraints
of the form

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

then each constraint may be mapped individually into a phase Pi which im-
plements it, provided that there are no circularities in the data dependency
relationship Ck < Cl between constraints. This relationship should imply that
k < l .

Each phase Pi is defined as stat(Ci), so will establish Ci at its termination,
under certain assumptions Asmi of syntactic correctness of the model being
operated on. By induction, we can prove that the sequence of phases P1; ...; Pn

establishes Cons, under the assumption that each Pk preserves Cl for l < k :

C1 ∧ ... ∧ Ci−1 ⇒ [stat(Ci)](C1 ∧ ... ∧ Ci−1)

for each i : 2 . . n (generalised semantic non-interference).
Let Asm0 be the assertion that the source model is syntactically correct.

Each phase must preserve this property. In addition, each phase Pi will establish
intermediate assertions Asmi which can be used by the following phases. These
may be assertions that parts of the target model are uninhabited (ie., that Tl =
{} for all concrete target model entities Tl which are not in wr(Ck) for k ≤ i).

Therefore we can assert that (1):

Asm0 ∧
∧

k<i Ck ⇒ [Pi](Ci ∧ Asmi)

The correctness of the composition P1; ...; Pn follows from this by induction.
For n = 1 we have

Asm0 ⇒ [P1](C1 ∧ Asm1)

and if

Asm0 ⇒ [P1; ...; Pi](C1 ∧ ... ∧ Ci)

for some i < n, then also

Asm0 ⇒ [P1; ...; Pi](C1 ∧ ... ∧ Ci ∧ [Pi+1](Ci+1 ∧ Asmi+1))

by (1), and

C1 ∧ ... ∧ Ci ⇒ [Pi+1](C1 ∧ ... ∧ Ci)

by the semantic non-interference property, so

Asm0 ⇒ [P1; ...; Pi+1](C1 ∧ ... ∧ Ci+1 ∧ Asmi+1)

as required.
If a group of constraints are mutually data dependent, then they must be

implemented by a single phase. In the case that there is a group of two mutually
dependent constraints (ie, Ck < Cl and Cl < Ck) with outer quantifier ∀ s : Si ,
approach 2 has the form

running := true;
while (running) do

(running := false;
for s : Si do loop1;
for s : Si do loop2)

where loop1 is the code:

if SCond1 then

if Succ1 then skip

else (s.op1(); running := true)

and loop2 is:

if SCond2 then

if Succ2 then skip

else (s.op2(); running := true)

op1 implements the succedent of the first constraint, and op2 that of the second.
The order of the constraints is assumed to indicate their relative priority, so that
the first is executed as many times as possible before the second is attempted,
and so forth.

Similar extensions can be made for approach 3, and for approach 2 and 3
with distinct source entities for the outer quantifier.

For approach 3, the search operation becomes:

search() : Boolean

(for s : Si do

if SCond1 then

if Succ1 then skip

else (s.op1(); return true));

(for s : Si do

if SCond2 then

if Succ2 then skip

else (s.op2(); return true));

return false

The same pattern is used for constraint groups of size 3 or more: all possible
applications of the first constraint are attempted first, followed by all possible
applications of the second constraint, and so forth.

By construction therefore, we can establish termination of the phased imple-
mentation of UML-RSDS transformations, and the completeness and correctness

of this implementation strategy in the sense of [46]: Cons can be established by
the strategy, and any computation that satisfies the strategy establishes Cons.
This also proves semantic correctness as defined in the third correctness obliga-
tion (III) of Section 3.

10 Verification of model transformation composition

In the preceeding sections we have considered basic transformations, transfor-
mations defined without reference or dependence upon other transformations.
In practice, transformations need to be combined together as parts of a software
system, and need to be adapted to work in modified environments, such as for
extended metamodels.

The following forms of internal and external compositions of transformations
are used in model transformation languages, and are supported by UML-RSDS:

– External composition of transformations using sequencing, conditional exe-
cution, iteration, including fixpoint iteration.

– Conjunction and parallel composition.
– Inheritance and superposition.

– Parameterisation, including higher-order parameterisation (parameterisation
of transformations by transformations).

– Instantiation of generic transformations.

The simplest and most widely-used composition of transformations is se-
quencing or chaining of two or more transformations. For example, a quality-
improvement transformation on class diagrams could consist of three successive
subtransformations (i) to remove redundant inheritances; (ii) to remove multiple
inheritance; (iii) to make concrete non-leaf classes abstract.

If transformations τ1 : S → T and τ2 : T → R satisfy the correctness
conditions of Section 3 for their individual specifications Asmi , Ensi , Presi ,
Consi , χi , i = 1, 2 and designs act1, act2, then τ1; τ2 satisfies the specification
Asm1, Ens2, Pres1, Cons1 and Cons2, with design act1; act2 and χ = χ1; χ2,
provided that:

1. τ1 establishes the preconditions of τ2:

⊢
LS∪T∪R

Cons1 ⇒ Asm2

2. τ2 does not invalidate Cons1:

⊢
LS∪T∪R

Cons1 ⇒ [act2]Cons1

3. Ens1 includes ΓT

4. χ1(Pres1) is a preserved property of τ2:

Asm02,Cons2, χ1(Pres1), ΓT ⊢
LT∪R

χ2(χ1(Pres1))

If τ1 is terminating and semantically correct under the assumption of Asm1, and
τ2 is terminating and semantically correct under the assumption of Asm2, and
τ1 establishes Asm2 under the assumption of Asm1, and τ2 is semantically non-
interfering with τ1, then τ1; τ2 is terminating and semantically correct under the
assumption of Asm1. Under these assumptions, if τ1 and τ2 are confluent and τ2 is
isomorphism-preserving, then τ1; τ2 is confluent. Thus a sequential combination
of basic transformations can be combined under the above conditions into a
single basic transformation, whose Cons sequence is Cons1 followed by Cons2.

Similar reasoning can be used to establish properties for the conditional ex-
ecution if E then τ and bounded iteration for x : s do τ of transformations.
For unbounded iteration while E do τ , a variant function Q : N is required to
ensure termination of the iteration: this must be decreased by each execution of
the design act of τ :

∀ ν : N · Q = ν ∧ E ∧ ν > 0 ⇒ [act](Q < ν)

In UML-RSDS such procedural composition of transformations is imple-
mented by means of the UML composition mechanisms for use cases. These
mechanisms also provide a form of parallel composition or conjunction of trans-
formations. UML use cases can be composed by means of extend and include

relations between use cases (Figure 7):

Use case e extends use case m means that e carries out some additional
functionality based upon m. e may apply at particular extension points

within m to extend specific parts of m’s functionality.
Use case m includes use case f means that f carries out some element of

the functionality of m, that is, some part of m’s functionality is delegated
to f .

Use cases can also be composed by inheritance.
We can use these composition relationships to structure and externally com-

pose transformations. In particular, extension can be logically interpreted as a
conjunction of the base and extended use cases (the component preconditions
are conjoined to form the composed precondition, and likewise for the postcon-
ditions), and used as a means for separating out different aspects of concern
into separate transformations. Procedurally, extension can be interpreted as the
weaving of the extension into the base by inserting constraints from the ex-
tension, in order, within the ordering of base constraints, so that the syntactic
non-interference properties between constraints are established for the merged
use case.

Logically, the composed semantics of a basic transformation b extended by a
basic transformation e is the transformation specified by Asm as Asmb ∧ Asme ,
Ens as Ensb ∧ Ense , and Cons as Consb ∧ Conse . Procedurally, the order of the
Cons constraints (ie, the extension points to insert the postcondition constraints
of e into those of b) is determined by the data dependency relations between
them.

uc1

uc2

uc3

uc4

uc5
<<include>>

<<include>>

<<include>>

<<extend>>

Fig. 7. Decomposition using extend and include

This decomposition can also be used in the case of transformations which
affect multiple connected models, such as UML class diagrams, OCL constraints
and state machines.

The include mechanism can be used to sequentially chain together a series
of use cases. The included transformations are relatively independent of each
other, although a preceding use case must ensure the assumptions of its succes-
sor. Included use cases can be shared by several different including use cases.
An including use case can have (via its associated classifierBehavior) an activ-
ity which invokes the included use cases according to a specific algorithm or
workflow.

The decomposition of a transformation τ into two concurrent sub-transformations
τ1 and τ2 composed into τ by extend is possible if: the write frame wr(τ) of
τ can be divided into two disjoint non-empty sets V1, V2, such that the set
slice(τ,V1) of constraints C of τ with wr(C) ⊆ V1 is non-empty and disjoint
from slice(τ,V2), which is also non-empty, and then for τ1 = slice(τ,V1) and
τ2 = slice(τ,V2), V1 is disjoint from rd(τ2) and V2 is disjoint from rd(τ1). If
only the last condition V2∩ rd(τ1) = {} holds then τ can instead be sequentially
decomposed into τ1; τ2 using include.

Inheritance of use cases can be used if there are two or more alternative
constraints for a particular step (eg., event slicing versus data slicing, for the state
machine slicing algorithms of [30]). If uc2 inherits uc1 and both represent basic
transformations from S to T with assumptions Asm1, Asm2 and postconditions
Cons1 and Cons2 respectively, then:

– Asm2 cannot be logically stronger than Asm1:

⊢S∪T Asm1 ⇒ Asm2

because uc2 should be applicable whenever uc1 is.
– Cons2 should be at least as logically strong as Cons1:

⊢S∪T Cons2 ⇒ Cons1

because uc2 should satisfy the postcondition of uc1. New postcondition con-
straints can be introduced in Cons2, and named constraints of Cons1 can
be replaced by logically stronger constraints in Cons2, but otherwise the
ordering of constraints in Cons1 cannot be changed.

This is a more formal version of the concept of superposition of transformations
[53]. Some of the verification work used for uc1 can be reused for uc2: proofs
that Q functions are variants for constraints that occur in both use cases can be
retained, for example.

Internal composition of transformations can be achieved by the use of param-

eterised transformations, as proposed in [54]. Parameters can be predicates, so
permitting the separation of some internal parts of constraints from other parts,
eg., LPost from GPost . In particular, updates that are common to several con-
straint succedents can be factored out into a single predicate which is supplied
as a parameter and can be changed independently of the main use case.

For example, consider the creation of tracing information by rules. Rules in
the primary use case can have the form

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post and GenTrace

where GenTrace is the predicate parameter, assumed to have variables s and t .
The usual actual predicate parameter supplied as the argument GenTrace

would be:

∃ tr : Trace · tr .source = s and tr .target = t

To switch off tracing, an actual parameter true can be supplied instead.
UML-RSDS supports general parameterisation of transformations, both by

basic values such as integers, booleans and strings, and by expressions and pred-
icates. Assumptions on parameters can be included in Asm. The instantiated
specification is formed by textual substitution of the actual parameters for the
formal parameters in the transformation constraints: transformation τ(v) with
formal parameters v1, ..., vn and assumptions Asm and postconditions Cons is
instantiated by actual parameters a1, ..., an to form a transformation τ(a) with
assumptions Asm[a/v] and postconditions Cons[a/v].

For parameters of simple types (booleans, strings, numerics), B analysis can
be carried out using the formal parameters, which become parameters of the
machine representing the transformation. This enables proofs of syntactic cor-
rectness, termination, semantic preservation and other properties to be carried
out independently of the parameters. For general parameters, analysis of the
transformation is performed after instantiation.

Parameterisation provides a means to reuse and instantiate generic transfor-
mations, such as the computation of transitive closures.

One way to specify a generic transformation is to define it as a transformation
τ : S0 → T0 between the minimal metamodel structures that it concerns, and
then to instantiate it to specific source and target languages S and T .

In UML-RSDS we implement generic transformations by parameterisation:
the formal parameters are the entities and features involved in the transforma-
tion, and these are instantiated by suitable set-valued expressions and expres-
sions denoting features or compositions of features, respectively.

To instantiate a generic transformation τ : S0 → T0 to languages S and T ,
the developer must define consistent embeddings

I : S0 → S

J : T0 → T

of the languages, such that I and J map entities to entities, and features to
expressions, they are injective, and satisfy:

I (x) = J (x) for x ∈ S0 ∩ T0
I (x) 6= J (y) for x 6= y

if f : E → Typ then I (f) : I (E) → Typ

if f : E1 → E2 then I (f) : I (E1) → I (E2)
if f : E1 → F(E2) then I (f) : I (E1) → F(I (E2))
if f : E1 → seq(E2) then I (f) : I (E1) → seq(I (E2))

and likewise for J . The instantiations must satisfy any assumptions in Asm.
If E ∈ wr(τ) is a concrete entity then it can only be instantiated by a single

concrete entity. If f ∈ wr(τ), then it must be instantiated by a single writable
feature.

The substitution τ [I (x)/x , J (y)/y] is then used as a transformation from
S to T . Its assumptions are the substituted forms Asm[I (x)/x , J (y)/y] of the
generic assumptions, likewise for its Cons constraints.

Proofs in B of correctness, termination and confluence properties for the
generic transformation will be preserved by the instantiation, since these proofs
make use only of the representation of entities as sets of instances, and as features
as maps of certain forms. However, type 1 constraints in the generic transfor-
mation may become type 2 or 3 constraints in the instantiated version, so that
verification needs to be carried out taking into account the most general instan-
tiation of the constraints.

11 Evaluation

We have carried out a wide variety of transformations using UML-RSDS:

– Refinement transformations, including the UML to relational database trans-
formation [32] and UML to J2EE and to Java (incorporated into the UML-
RSDS tools).

– Re-expression transformations, including a mapping from state machines to
activity diagrams [31] and other migration examples [33, 34].

– Abstraction transformations, including state machine slicing algorithms [29],
which have also been incorporated within the UML-RSDS toolset.

– Quality-improvement transformations, including the removal of multiple in-
heritance and removal of duplicated attributes [22].

The largest metamodels considered were those for the state machine to activ-
ity diagram mapping (31 source entities and features, 35 target entities and
features). This is an actual industrial problem, as is the GMF migration exam-
ple of [34], which involves a highly complex restructuring and a combination of
update-in-place and input-preserving transformation mechanisms. The class dia-
gram rationalisation problem [22] also involves complex restructuring of models.
A comparison of the UML-RSDS solution with Kermeta and QVT-R solutions
identified that our solution is simpler and more modular (Table 8) than these
solutions.

Solution Lines of specification Number of inter-rule invocations

UML-RSDS 25 0
Kermeta 202 8
QVT-R 189 16

Table 8. Class diagram rationalisation solutions

Together, these case studies have demonstrated that the constraint-based
approach is versatile and applicable to a wide range of transformation problems.

The increasing use of model-driven engineering for critical software systems
has prompted the formulation of standards and standards supplements for the
use of model-based development. In particular, the DO-178C avionics standard
[12] updates the earlier DO-178B standard by including an annex for model-
based development and verification.

Regarding transformations and transformation tools, the requirements of
DO-178C imply that:

– Transformations that derive one model from another, and code text from
models, should be able to provide detailed tracing information to identify
how elements of the target model are derived from elements of the source
model. This is necessary to ensure that all intended functionality and proper-
ties of the source model are correctly implemented/represented in the target,
and that no unintended functionalities or properties are implemented.

– When using tools to analyse transformations or models, any mapping to the
representation used by the tool must be conservative, ie., if a property can
be derived from the representation then it is true for the original system.

These requirements are satisfied by the UML-RSDS approach: tracing is pro-
vided by means of element primary keys (the target model elements derived from
a source model element will usually be assigned the same key value as that ele-
ment). Other tracing schemes can also be defined to achieve detailed correlation
between models. The mapping to B is conservative.

The UML-RSDS tools, together with examples of transformation specifica-
tion and implementation, are available at: http : //www .dcs.kcl .ac.uk/staff /kcl/
uml2web/.

12 Related Work

In summary, we have provided verification techniques for the following properties
of model transformations:

– Completeness of rules: syntactic checks on data written by the rule.
– Definedness of rules: syntactic checks on subexpressions within the rule.
– Syntactic correctness of rules and transformations: by internal consistency

proof in B.
– Termination of transformations: by syntactic checks for type 1 constraints,

by refinement proof in B for other constraints (proof that a specified Q

function is a variant).
– Confluence of transformations: syntactic checks for type 1 constraints, by

proof (manual or proof-tool assisted, such as B assertion proof) of uniqueness
of terminal Q = 0 states for other constraints.

– Semantic correctness of transformations: by standard inferences for type 1
constraints (correctness by construction for the designs and implementa-
tions), by proof tools for other constraints, as derived consequences of Q = 0.

– Semantic preservation properties: by internal consistency proof in B.

Validation is also supported, both by animation of the B machine derived
from the transformation, and by testing of the synthesised Java code.

Previous work in the verification of model transformations has been hin-
dered by the general lack of high-level transformation specifications, with most
transformation development focussing upon the implementation level [16].

In [5], specifications of the conjunctive-implicative form are derived from
model transformation implementations in triple graph grammars and QVT-
Relations, in order to analyse properties of the transformations, such as de-
finedness and determinacy. The derived constraints can be quite complex, and
we consider that it is preferable to write transformation specifications – as a
starting point for transformation development – in terms of constraints in order
to facilitate direct verification, without the need for constraint extraction.

In [47] the concept of the conjunctive-implicative form was introduced to
support the automated derivation of correct-by-construction transformation im-
plementations from specifications written in a constructive type theory. A single
undecomposed constraint of the ∀ ⇒ ∃ form defines the entire transformation,
and the constructive proof of this formula produces a function which implements
the transformation. In [48] the conjunctive-implicative form is used as the ba-
sis of model transformation specifications in constructive type theory, with the
∃ x .P quantifier interpreted as an obligation to construct a witness element x

satisfying P . A partial ordering of entities is used to successively construct such
witnesses. In this paper we show how this approach may be carried out in the
context of first order logic, with systematic strategies and patterns used to de-
rive transformation implementations from transformation specifications, based
on the detailed structure of the specifications. The correctness of the strategies
and patterns are already established and do not need to be re-proved for each
transformation, although side conditions (such as the data-dependency condi-
tions and existence of a suitable Q measure) need to be established.

With correct-by-construction approaches, the verification effort is focussed
upon syntactic correctness (proof of Ens) and semantic preservation (proof of
Pres). Specific work on syntactic correctness includes formalisation and proof
of target model constraints in MAUDE [11], and the graph-theory approach
of [2]. For semantic preservation, an approach based on graph morphisms has
been used for TGG [17]. Our approach using B has the advantage that syntactic
correctness corresponds directly to internal consistency in B, and that the set-
theoretic formalisation of metamodels, constraints and transformations in B can
be directly related to standard set-theoretic semantics for UML and OCL [27,
49].

In [46], a process for deriving graph transformation rules from TGG-style
graph pattern specifications is defined, and the resulting transformation is proved
to be sound and complete with respect to the specification. Instead of our vari-
ant functions to establish termination, [46] use additional negative application
conditions to prevent repeated application of rules. This approach is however
more restricted in the scope of its specifications: only input-preserving transfor-
mations are considered, and a restricted expression language is used, whereas

we consider specifications using the full OCL standard library. Confluence is not
established by the approach of [46], instead the graph transformation rules can
generate any result model that satisfies the specification patterns. Efficiency of
the graph transformation is not evaluated, and the potentially large number of
generated negative application conditions for rules may result in low efficiency.

In [16], a general method transML for model transformation development is
described, using multiple levels of description (requirements, specification, high-
level design and low-level design). Our specification predicates Asm, Cons, Ens

and Pres play the same role as the pattern-based specification language of [16].
In comparison to transML, our approach is more lightweight, utilising only UML
and OCL notations, and avoiding the explicit construction of designs. Instead,
designs and implementations are generated from specifications, which are made
the focus of transformation development activities.

We have adopted B for formal verification of transformation properties, as
it has strong tool support, and a relatively simple mathematical basis which is
appropriate for software verification. It can support verification of most forms
of transformation verification properties, however it lacks support for analysis of
satisfiability properties, such as the rule applicability and executability condi-
tions, or for the instantiation of metamodels with counter-examples to properties,
and other tools, such as the USE environment [14] or UMLtoCSP [4] could be
applied instead to carry out such analysis.

13 Conclusions

The approach described here provides a systematic specification, development
and verification approach for model transformations, based upon declarative
specifications of transformations using constraints. We have described techniques
for the structuring of such transformation specifications (conjunctive-implicative
form, recursive form), and described how executable implementations of these
specifications can be automatically derived, so that the implementations are
correct with respect to the specifications.

We have described verification techniques to check properties of termination,
syntactic and semantic correctness, semantic preservation, and confluence.

The novelty of this work consists of the higher level of abstraction provided
for transformations (with transformations considered as single operations or use
cases, defined by pre and post conditions) compared to other approaches, which
focus on individual rules within a transformation. Our constraint-based defini-
tions of transformations can be both logically interpreted as high-level specifica-
tions, and procedurally interpreted as templates for designs and implementations
that satisfy the specifications.

Acknowledgement

The work presented here was carried out in the EPSRC HoRTMoDA project at
King’s College London.

References

1. M. van Amstel, S. Bosems, I. Kurtev, L. F. Pires, Performance in Model Transfor-
mations: experiments with ATL and QVT, ICMT 2011, LNCS 6707, pp. 198–212,
2011.

2. T. Baar, S. Markovic, A graphical approach to prove the semantic preservation of
UML/OCL refactoring rules, Perspectives of Systems Informatics, LNCS vol. 4378,
pp. 70–83, Springer-Verlag, 2007.

3. J. Bezivin, F. Jouault, J. Palies, Towards Model Transformation Design Patterns,
ATLAS group, University of Nantes, 2003.

4. J. Cabot, R. Clariso, D. Riera, UMLtoCSP: a tool for the verification of UML/OCL
models using constraint programming, Automated Software Engineering ’07, pp.
547–548, ACM Press, 2007.

5. J. Cabot, R. Clariso, E. Guerra, J. De Lara, Verification and Validation of Declara-
tive Model-to-Model Transformations Through Invariants, Journal of Systems and
Software, 2010.

6. K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches, OOP-
SLA 03 workshop on Generative Techniques in the context of Model-Driven Ar-
chitecture, OOPSLA 2003.

7. K. Czarnecki, S. Helsen, Feature-based survey of model transformation approaches,
IBM Systems Journal, vol. 45, no. 3, 2006, pp. 621–645.

8. J. Cuadrado, J. Molina, Modularisation of model transformations through a phasing
mechanism, Software Systems Modelling, Vol. 8, No. 3, pp. 325–345, 2009.

9. Dresden OCL toolset, http://www.dresden-ocl.org, 2011.

10. Eclipse organisation, EMF Ecore specification, http://www.eclipse.org/emf, 2011.

11. M. Egea, V. Rusu, Formal executable semantics for conformance in the MDE
framework, Innovations in System Software Engineering, 6 (1-2), pp. 73–81, 2010.

12. FAA, DO-178C, Software considerations in airborne systems and equipment certi-
fication, January 2012.

13. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

14. M. Gogolla, J. Bohling, M. Richters, Validating UML and OCL models in USE by
automatic snapshot generation, Software and Systems Modeling, vol. 4, no. 4, pp.
386–398, 2005.

15. P. Van Gorp, S. Mazanek, A. Rensink, Live Challenge Problem, TTC 2010, Malaga,
July 2010.

16. E. Guerra, J. de Lara, D. Kolovos, R. Paige, O. Marchi dos Santos, transML: A
family of languages to model model transformations, MODELS 2010, LNCS vol.
6394, Springer-Verlag, 2010.

17. F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong, Correctness
of model synchronisation based on Triple Graph Grammars, MODELS 2011, LNCS
vol. 6981, pp. 748–752, Springer-Verlag, 2011.

18. F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, ATL: A model transformation tool,
Science of Computer Programming, 72, pp. 31–39, 2008.

19. F. Jouault, I. Kurtev, Transforming Models with ATL, in MoDELS 2005, LNCS
Vol. 3844, pp. 128–138, Springer-Verlag, 2006.

20. Kermeta, http://www.kermeta.org, 2010.

21. S. Kolahdouz-Rahimi, K. Lano, A Model-based Development Approach for Model
Transformations, FSEN 2011, Iran, 2011.

22. S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, Goal-oriented
measurement of model transformation methods, submitted to Science of Computer
Programming, 2012.

23. I. Kurtev, K. Van den Berg, F. Joualt, Rule-based modularisation in model trans-
formation languages illustrated with ATL, Proceedings 2006 ACM Symposium on
Applied Computing (SAC 06), ACM Press, pp. 1202–1209, 2006.

24. K. Lano, The B Language and Method, Springer-Verlag, 1996.
25. K. Lano, J. Bicarregui, Semantics and Transformations for UML Models, UML 98,

Mulhouse, France, June 1998, Springer-Verlag LNCS vol. 1618, 1998, pp. 107–119.
26. K. Lano, D. Clark, Model transformation specification and verification, QSIC ’08,

pp. 45–54, 2008.
27. K. Lano (ed.), UML 2 Semantics and Applications, Wiley, New York, 400 pages,

2009.
28. K. Lano, A Compositional Semantics of UML-RSDS, SoSyM, 8(1): 85–116, 2009.
29. K. Lano, S. Kolahdouz-Rahimi, Specification and Verification of Model Transfor-

mations using UML-RSDS, IFM 2010, LNCS vol. 6396, pp. 199–214, 2010.
30. K. Lano, S. Kolahdouz-Rahimi, Slicing of UML models using Model Transforma-

tions, MODELS 2010, LNCS vol. 6395, pp. 228–242, 2010.
31. K. Lano, S. Kolahdouz-Rahimi, Migration case study using UML-RSDS, TTC 2010,

Malaga, Spain, July 2010.
32. K. Lano, S. Kolahdouz-Rahimi, Model-driven development of model transforma-

tions, ICMT 2011, June 2011.
33. K. Lano, S. Kolahdouz-Rahimi, Specification of the “Hello World” case study, TTC

2011.
34. K. Lano, S. Kolahdouz-Rahimi, Specification of the GMF migration case study,

TTC 2011.
35. K. Lano, S. Kolahdouz-Rahimi, J. Terrell, I. Poernomo, S. Zschaler,

Patterns for Model-transformation specification and implementation, in-
ternal report, Dept. of Informatics, King’s College London, 2011.
http://www.dcs.kcl.ac.uk/staff/kcl/mtpat2.pdf.

36. S. Markovic, T. Baar, Semantics of OCL Specified with QVT, Software and Systems
Modelling, vol. 7, no. 4, October 2008.

37. S. Markovic, T. Baar, Refactoring OCL Annotated Class Diagrams, MoDELS 2005,
Springer-Verlag LNCS vol. 3713, Springer-Verlag, 2005.

38. T. Mens, K. Czarnecki, P. Van Gorp, A Taxonomy of Model Transformations,
Dagstuhl Seminar Proceedings 04101, 2005.

39. OMG, UML superstructure, version 2.3, OMG document formal/2010-05-05, 2009.
40. OMG, OCL 2.0 Specification, Formal 06-05-01, 2006.
41. OMG, Query/View/Transformation Specification, ptc/05-11-01, 2005.
42. OMG, Query/View/Transformation Specification, annex A, 2010.
43. OMG, Model-Driven Architecture, http://www.omg.org/mda/, 2004.
44. OMG, Meta Object Facility (MOF) Core Specification, OMG document formal/06-

01-01, 2006.
45. OptXware, The Viatra-I Model Transformation Framework Users Guide, 2010.
46. F. Orejas, E. Guerra, J de Lara, H. Ehrig, Correctness, completeness and termina-

tion of pattern-based model-to-model transformation, CALCO 2009, pp. 383–397,
2009.

47. I. Poernomo, Proofs as model transformations, ICMT 2008.
48. I. Poernomo, J. Terrell, Correct-by-construction Model Transformations from Span-

ning tree specifications in Coq, ICFEM 2010.

49. M. Richters, M. Gogolla, On formalising the UML object constraint language OCL,
Proc. 17th Int. Conf. Conceptual Modelling (ER ’98), Springer LNCS, 1998.

50. A. Schurr, Specification of graph translators with triple graph grammars, WG ’94,
LNCS vol. 903, Springer, 1994, pp. 151–163.

51. P. Stevens, Bidirectional model transformations in QVT, SoSyM vol. 9, no. 1, 2010.
52. D. Varro, A. Pataricza, Automated Formal Verification of Model Transformations,

CSDUML 2003 Workshop, 2003.
53. D. Wagelaar, Composition techniques for rule-based model transformation lan-

guages, ICMT 2008.
54. S. Zschaler, I. Poernomo, J. Terrell, Towards using constructive type theory for

verifiable modular transformations, proceedings of FREECO 2011.

A Semantic definitions

A.1 Definition of stat(P)

The design-level activity associated with a specification predicate P can be defined
systematically based on the structure of P . Table 9 shows some of the main cases of
this definition.

There are special cases for P1 implies P2 where P1 may contain variables which
denote implicit additional universal quantifiers or let expression definitions. There are
also special cases for ∃ and ∃

1
when the unique instantiation pattern applies. stat(∀ x :

E · P1) is defined for type 2 and 3 quantified formulae as for transformations (Section
9).

A.2 Construction of inverse transformations

If all the Cons constraints of an input-preserving transformation τ satisfy internal syn-
tactic non-interference and are of type 1, and Cons satisfies syntactic non-interference,
we can derive a reverse transformation τ∼ with constraints Cons∼ computed from
Cons, which expresses that elements of T can only be created as a result of the appli-
cation of one of the forward constraints. Given a forward constraint Cn of the form

∀ s1 : Si1; ...; sn : Sin · SCond implies ∃ t1 : Tj1; ...; tm : Tjm · TCond and Post

where SCond is a predicate in the si , and TCond is a predicate in the tj only, the
reverse constraint Cn∼ is:

∀ t1 : Tj1; ...; tm : Tjm · TCond implies ∃ s1 : Si1; ...; sn : Sin · SCond and Post∼

where Post∼ expresses the inverse of Post .
To form the inverse of Post predicates in the scope of quantifiers ∀ s : Si ... ∃ t : Tj

we consider several cases of such predicates:

– t .f = e where f is some feature of Tj and e is an expression s.g which is a direct
feature value of s. Post∼ is s.g = t .f .

– Evaluations t .f = e.func where func is a reversible function such as reverse, exp,
log , sqrt , pow(k). Post∼ is e = t .f .rfunc where rfunc is the reverse of func (Table
10).

P stat(P) Condition

x = e x := e x is assignable

objs.f = e for x : objs do x .f := e Writable feature f
collection objs

e : x x := x ∪ {e} x is assignable
x→includes(e)

e / : x x := x − {e} x is assignable
x→excludes(e)

e <: x x := x ∪ e x is assignable
x→includesAll(e)

e / <: x x := x − e x is assignable
x→excludesAll(e)

x→isDeleted() E := E − {x} Each entity E
containing x

obj .op(e) obj .op(e) Single object obj
objs.op(e) for x : objs do x .op(e) Collection objs

P1 and P2 stat(P1); stat(P2)

∃ x : E · x .id = v and P1 if v ∈ E .id
then x : E := E [v]; stat(P1) E is a concrete entity
else x : E := new(E); stat(x .id = v and P1)

∃ x : E · P1 x : E := new(E); stat(P1) E is a concrete entity
P1 not of form x .id = v and P2

∃ x : E · P1 if E→exists(x | P1) then skip E is a concrete entity
else stat(∃ x : E · P1)

∃ x : e · P1 if e→exists(x | P1) then skip Non-writable
else (x : E := e→any(); expression e with

stat(P1)) element type E

∀ x : E · P1 for x : E do stat(P1) P type 1

P1 implies P2 if P1 then stat(P2)
Table 9. Definition of stat(P)

– Equalities t .f = TSub[s.g .id1] which select a single element of TSub or a set
of elements, with primary key value(s) id2 equal to s.g .id1 (if this is a single
value), or in s.g .id1 (if it is a collection). The reversed form Post∼ in this case
is s.g = SSub[t .f .id2], if source model entity SSub is in 1-1 correspondence with
TSub via the identities.

– Additions of t to a set e independent of s or t : t : e. The reversed constraint
includes this as a condition on t in its SCond clause in the antecedent.

– Conjunctions of implications

(Cond1 implies P1) and ... and (Condr implies Pr)

where the Condl do not involve t . Each conjunct is re-written as a separate con-
straint

∀ s : Si · SCond and Condl implies ∃ t : Tj · TCond and Pl

which can then be reversed.
– For succedents of the form

(∃ t : Tj · TCond1 and P1) or (∃ t : Tk · TCond2 and P2)

for disjoint entities Tj , Tk , the reverse constraints have the form

∀ t : Tj · TCond1 implies ∃ s : Si · SCond and P1∼

∀ t : Tk · TCond2 implies ∃ s : Si · SCond and P2∼

Post Post∼

t .g = e.sqrt e = t .g .sqr
t .g = e.exp e = t .g .log
t .g = e.log e = t .g .exp
t .g = e.pow(r) e = t .g .pow(1.0/r)
t .g = e.reverse e = t .g .reverse

t .g = e + K e = t .g − K
Numeric constant K
t .g = e − K e = t .g + K
Numeric constant K
t .g = e ∗ K e = t .g/K
Numeric constant K 6= 0

t .g = e + SK e = t .g .subString(1, t .g .size − SK .size)
String constant SK

Table 10. Inverse of basic assignments

This definition of τ∼ satisfies the invertibility conditions of Section 2 provided that
τ is fully representative of S : all data features of all entities of S are used to compute
entities and data features of T , and the values of associations in T are set by τ using
lookup by primary keys: t .f = TSub[e.id].

In addition, SCond and Post∼ should have a procedural interpretation.

Then, if there are computations

(m, ∅) −→τ (m,n)

of τ and

(n, ∅) −→τ∼ (n,m ′)

of its inverse, then

m ≡ m ′

because:

– For each entity Si of S there is some constraint of Cons which maps it 1-1 to an
entity Tj of T , and this is mapped 1-1 back to Si by the inverse constraint of τ∼.

Thus, if Si is the extent of Si in m, there is a bijection hi : Si → Si
′

between this
and the corresponding extent of Si in m ′. The attribute values of s : Si and of
hi(s) are the same by the definition of Post∼ given above.

– The values of associations r of s and hi(s) have the same set of primary key values,
by definition of Post∼. But any isomorphism of the entity SSub that is the target
type of r must preserve identities also, and is characterised by equality of identities
(if ssub and ssub′ have the same SSub primary key value, they correspond under
the isomorphism), so the conditions of isomorphism hold also for associations.

The inverse of a sequential composition τ1; τ2 of transformations is the composition
τ∼

2 ; τ∼

1 of their inverses, provided that τ∼

2 is isomorphism-preserving.
The inverse of τ∼ is τ , provided that all constraints of Cons are determinate and

each Post∼ is invertible.

A.3 Construction of change-propagation transformations

A change-propagation version of a transformation τ is a transformation τ∆ which
maintains the postcondition Cons of τ between a pair (m,n) of models which already
satisfy it.

Cons must be maintained for changes to m of the following kinds:

1. Creation of a new element s of a source type Si and the setting of its feature values.
2. Modification of a feature value of an existing source element.
3. Deletion of a source element s : Si .

Only modifications which preserve Asm are considered.
For a constraint Cn:

∀ s : Si · SCond implies ∃ t : Tj · TCond and Post

Cn can itself be used to propagate creation and modification changes from m to n.
The dual version:

∀ t : Tj · TCond and not(∃ s : Si · SCond and Post) implies t→isDeleted()

is used to propagate modification and deletion changes from m to n.
The postcondition Cons∆ of τ∆ then consists of all the dual versions of constraints

of Cons, in reversed order, followed by the Cons constraints.

