
Middlesex University Research Repository

An open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Clark, Tony (1997) Metaclasses and reflection in smalltalk. Technical
Report. University of Bradford.

Available from Middlesex University’s Research Repository at
http://eprints.mdx.ac.uk/6181/

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or
other copyright owners. The work is supplied on the understanding that any use for
commercial gain is strictly forbidden. A copy may be downloaded for personal,
non-commercial, research or study without prior permission and without charge. Any use of
the thesis/research project for private study or research must be properly acknowledged with
reference to the work’s full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive
quotations taken from it, or its content changed in any way, without first obtaining permission
in writing from the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/42541684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.mdx.ac.uk/
mailto:eprints@mdx.ac.uk

Metaclasses and Reection in SmalltalkA. N. Clark, Department of Computing, University of BradfordBradford, West Yorkshire, BD7 1DP, UKe-mail: A.N.Clark@comp.brad.ac.uk, tel.: (0274) 385133September 18, 1997Keywords: object-oriented, metaobjects, reection, inheritance, message passing.1 AbstractMany Object-Oriented Programming Languages provide reective features which may be usedto control the interpretive mechanism of the language. Often, these features are de�ned withrespect to a golden braid consisting of objects, classes and metaclasses. This paper describesthe Smalltalk golden braid and generalize it for multiple inheritance. Multiple inheritanceleads to choices between many di�erent inheritance strategies. The reective features ofSmalltalk cannot a�ect the basic mechanisms of inheritance and so an arbitrary choice mustbe made for multiple inheritance. A language is described in which the reective features ofSmalltalk are extended so as to allow programmer de�ned inheritance strategies.2 IntroductionThe evaluation of a programming language expression e in a given context c may be describedby the evaluation of a program p which takes a representation of e and c as input. e is termedan object-level construct whilst p and the representations of e and c are termed meta-levelconstructs. For illustration we use an operator M which maps object-level constructs tometa-level constructs. If the languages which are used for both the object- and meta-levelsare the same and causally connected, then the language is reective [27].Object-Oriented Programming Languages (OOPLs) have interpretive mechanisms whichare based upon classes, object creation, message passing and inheritance. Classes typicallyde�ne the local state and operations for objects which are their instances. When a messageis passed to an object, the operation with the message name is invoked with respect tothe local state. A class inherits from another class by including all the inherited storageand operation de�nitions along with its own. The meta-level of an OOPL describes how toperform inheritance, message passing, instance creation etc. If the OOPL is reective thenthese mechanisms are described in terms of messages which are sent to objects at the meta-level. Consider the objects at some base level B, the objects and messages which describe howto perform creation of objects at B, message passing at B etc. are de�ned at levelM(B); theseobjects are called classes. A class at level M(B) is characterized by controlling the creationand subsequent behaviour of a collection of objects at level B. The objects (which are classes)at levelM(B) are created and controlled by objects at levelM2(B); these objects are calledmetaclasses. A metaclass at level M2(B) is characterized by controlling the creation andsubsequent behaviour of classes at level M(B).[4] coined the term golden braid to describe the relationship between objects, classes andmetaclasses. Of course since classes are objects then we can view the golden braid starting at1

M(B) and ending at M3(B) which reinterprets the metaclasses at level M2(B) as classes.A feature of an OOPL is builtin at all levels when its behaviour is the same forMn; n � 0.Such features cannot be extended and may be said to be intransigent. An OOPL can bereective whilst still having intransigent features; an OOPL which has no intransigent featuresmay be said to be fully reective.Reective OOPLs include Smalltalk [19], Loops [4], CLOS [3] [24], KRS [34], ObjVLisp [13][5] [6]. These languages di�er in terms of the ways in which the golden braid is implementedand the extent to which it may be used to a�ect the basic interpretive mechanisms of therespective languages.This paper describes the reective power of Smalltalk, identi�es an intransigent languagefeature (send) and proposes a language extension which increases the reective power byincluding the feature into the meta-level. x3 describes a simple functional language which willbe used to implement three reective object-oriented systems which di�er with respect to howexpressive their reective features are. x4 describes a system called Abstract Smalltalk (AS)which is an implementation of the relevant features of the language Smalltalk. AS exhibitssingle inheritance which is generalised to multiple inheritance in the system AS with MultipleInheritance (ASMI) described in x5. Both AS and ASMI have intransigent language featuresincluding object representation and message passing which means that it is di�cult to havemultiple types of inheritance mechanism co-existsing in the same system. This is particularlya drawback when the system exhibits multiple inheritance because there are many orthogonalmultiple inheritance schemes. ASMI with Reective Send (ASMIRS), described in x6, makesboth object representation and message passing a reective feature of the system. This isshown to support di�erent types of multiple inheritance strategy within the same system.3 Functional RepresentationThe systems AS, ASMI and ASMIRS, are constructed using a simple functional languagewhich, following [26], has been enriched with data values, operators and evaluation ruleswhich are characteristic of object-oriented programming languages. The language has a call-by-value semantics [32] and enriches the evaluation rules for the �-calculus with patternmatching, currying, �rst class environments and updateable locations. The syntax of thelanguage is divided into two: the kernel syntax which is given a semantics using a statetransition system based on the SECD machine [25], and the sugared syntax which is givena semantics by translating into the kernel. For more information about functional languagessee [16] and [2]. The sugared syntax is given below:T ::= let DD ::= I = E j FF ::= I P+ = E j meth I P+ = E j F jFP ::= I j j (P; : : : ; P) j KP j N j SE ::= I j N j S j �P+:E j EE j EOE j if E then E else E j (E; : : : ; E) j (E) j E;E[E; : : : ; E] j E where D+ j let D+ in E j case E of A end j open E in EA ::= P) E j AAA program is a sequence of top level recursive de�nitions t 2 T and expressions e 2 E. Dis the syntax of declarations which may be a simple value such as i = 10 or a functionaldeclaration f 2 F such as add(x; y) = x+ y. Functional declarations may be overloaded and2

may include methods, both of which are described in appendix A. Patterns p 2 P are usedin binding positions to limit the domain of a function and to decompose the value which issupplied as an argument to the function by extracting sub-components and binding them toidenti�ers. A pattern may be an identi�er i in which case the supplied value is bound to i;a wildcard in which case the supplied value is ignored; a tuple (p1; : : : ; pn) in which casethe supplied value must be a tuple of the same length and the corresponding sub-componentsmust match against the sub-patterns; a constructor k 2 K applied to a pattern p in whichcase the supplied value must be constructed using k, e.g. k(v), and v must match p; or aconstant number n 2 N or string s 2 S in which case the supplied value must be the constant.An expression e is an identi�er, number or string; a function �p1p2 : : : pn:e which maybe curried and have patterns in the binding positions; a pre�x application e1e2; an in�xapplication e1� e2 where O de�nes a collection of in�x operators; a conditional expression; atuple; a parenthesized expression; a sequenced expression e1; e2 which is used to control sidee�ects; a list expression [e1; : : : ; en] where [e] constructs singleton lists and [] is the emptylist; a where or let expression both of which may have a sequence of declarations whichare established in parallel; a case expression case e in p1) e1 : : : pn) en end where eis evaluated and tested against the patterns in turn, the �rst pattern which matches willdeconstruct the value of e, possibly bind some identi�ers, and evaluate the correspondingexpression; an open expression open e1 in e2 where e1 produces an environment bindingidenti�ers to values which is added to the current environment for the scope of the evaluationof expression e2.Environments are collections of associations (bindings) between keys and values. Theoperational semantics of programming languages often uses environments which bind namesto values in order to describe the identi�ers which may be legally referenced at any point inthe program execution and their respective values. Environments are a convenient represen-tation for objects and the functional language provides builtin operators for constructing andmanipulating environments as data values. The empty environment which binds no keys tovalues is the value fg, a singleton environment binding the key k to the value v is constructedusing an in�x operator k 7! v, a pair of environments are concatenated using an in�x op-erator e1 � e2. The value associated with a key in an environment is \looked up" using anin�x operator e � k, where the environment e binds k more than once, the rightmost value isreturned. When e does not bind k, the distinguished value � is returned.Functions are associated with environments which de�ne the values for the identi�erswhich are freely referenced in the function bodies. The environment which is associated with afunction (or closure) is returned using the rei�cation operator R. The environment associatedwith a function is updated (producing a new function) using the installation operator I, whichis applied to a pair (e; f). Using environment primitives R and I, the in�x operator ,! isde�ned which extends the environment of a function on the right:let e ,! f = I((R(f))� e; f)The systems AS, ASMI and ASMIRS, implement objects using side e�ects. The builtinoperator := evaluates its left hand operand to produce an updateable location (i.e. theaddress of the value in the state machine) which is shared with many other values in theprogram state. The contents of the location are updated to by the value of the right handoperand. All values in environments are updateable locations.Cyclic data values are constructed using the paradoxical operator Y which �nds the �xed3

point of a function: Y(f) = f(Y(f))Lists are built using the constructors [], :: and ++ , list homomorphisms are constructedusing the operators nl and nr which are de�ned as follows:nr(
)(f)(v)(v1 :: (v2 :: (: : : :: (vn :: [])))) = f(v1)
 (f(v2)
 : : :
 (f(vn)
 v))nl(
)(f)(v)(v1 :: (v2 :: (: : : :: (vn :: [])))) = (((v
 f(v1))
 f(v2))
 : : :)
 f(vn)Environments are built using the constructors fg, 7! and � , environment homomor-phisms are constructed using using the operator =, for example:=(
)(�)(v)((k1 7! v1)� fg � (k2 7! v2)) = (k1 � v1)
 v
 (k2 � v2)Sets are used to implement objects in both ASMI and ASMIRS. The empty set is �, f gconstructs singleton sets, [is the set union operator and � is the set di�erence operator.The functional language supports set comprehensions, it is beyond the scope of this paperto describe how such comprehensions are implemented in functional languages { see [35] formore details.The operator splitlistl will map a pair (v; l) to a pair (l1++[v]; l2) such that l = l1++[v] ++ l2and v occurs only once in l. The operator splitlistr is similiar except the result is (l1; [v] ++ l2).The operator �nd is applied to a predicate p, a value v and a list l and will return the �rstvalue in l which satis�es the predicate p or v otherwise.The semantics of the functional language is described by a translation to the kernel lan-guage in appendix A.4 Abstract SmalltalkSmalltalk implements a golden braid with both classes and metaclasses treated as properobjects. The metaclasses are used in a slightly restricted way such that a metaclass hasonly one instance. Smalltalk is not fully reective since the representation of objects and thesemantics of message passing are intransigent language features. This section describes theSmalltalk golden braid in terms of a system called Abstract Smalltalk (AS). x4.1 describesthe basic classes necessary to support the Smalltalk interpretive mechanism, x4.2 describeshow AS is represented using the language of x3, x4.3 describes the main AS operations ofobject creation and message passing and x4.4 gives a meta-circular de�nition of AS.4.1 Basic ClassesAn AS object is a data value which contains two environments: an instance variable environ-ment and a method environment. The method environment binds names to functions each ofwhich can be invoked by \sending the object a message" containing the name (referred to asthe message selector) and the actual parameter. The instance variable environment providesbindings for identi�ers which may be referenced in the body of the methods, but otherwisecannot be accessed.Each object is created by instantiating a class which de�nes the method environment andthe names which will be bound in the instance variable environment. The instantiation processsupplies values for each of the instance variable names. A class is created as a subclass of4

another class which is referred to as its superclass, the new class will contain all of the instancevariable names and method de�nitions from its superclass { this is termed inheritance.In AS, all classes are also objects. A class is distinuished from an ordinary object becauseits method environment contains a function which can create new objects and its instancevariable environment contains the methods and instance variable names which all instancesof the class will contain.Classes are instances of classes which are termed metaclasses. A metaclass is distinguishedfrom an ordinary class because its instance variable environment contains de�nitions of theinstance variables and methods which are necessary to be a class. As is shown in x4.4, itis not necessary to de�ne the term metametaclass because metaclasses can be convenientlyde�ned in terms of themselves.AS is de�ned as a collection of basic classes each of which has an instance variable envi-ronment and a method environment:ienv = (\ivars" 7! [\x"; \y"])� (\menv" 7! (\init" 7! pointinit))menv = (\new" 7! cdnew)� (\init" 7! cdinit)which is the instance variable and method environments for a class which creates two dimen-sional points. Each instance of this class will have two instance variables, namely x and y,which are initialised using the method named init, implemented as the function pointinit. Aninstance is created by sending the class a new message which is implemented by the functioncdnew. The class itself was initialised using the method named init which is implementedusing the function cdinit. An instance of this class is the following:ienv = (\x" 7! 10)� (\y" 7! 100)menv = (\init" 7! pointinit)The basic classes which are necessary to support the AS system are shown in �gure 1 theyare: object, which all other classes inherit from, described in x4.1.1; cd, which is a metaclassdescribing the minimum amount of information necessary to be a class, described in x4.1.2;mc, which is a metaclass describing the minimum amound of information necessary to bea metaclass, described in x4.1.3; �nally, class which is a metaclass describing the minimumamount of information necessary to be a non-metaclass class, described in x4.1.4.Figure 1 can be interpreted by \chasing links". In order to �nd out what instance variablesand methods an object has, �rst follow the instance link to the class which was used to createthe object. This class will de�ne a collection of instance variable names which are bound tovalues in the ienv component of the object and a collection of methods which form part ofthe menv component of the object. Next, follow the superclass link to a class which de�nesfurther variable names and methods which are found in the ienv and menv components ofthe object respectively. Continue this process until object is reached. All superclass linkseventually lead to object which is referred to as the root of the AS object inheritance tree.All classes form the root of an inheritance tree which identi�es a collection of objects whichcontain the variable names and methods de�ned by the class.
5

object

cd

mc

cdc

mcc

cc

class

oc

instance

superclass

Figure 1: Initial AS class con�guration4.1.1 Objectienv = (\super" 7! nullclass) �(\ivars" 7! [\class"]) �(\menv" 7! (\init" 7! objinit) �(\dnu" 7! objdnu)) �(\class" 7! oc) menv = (\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! classsub) �(\dnu" 7! objdnu)The class object is the root of the AS inheritance tree and as such de�nes the minimuminstance variable names and methods in order to be an object. The superclass of object isthe pseudo class nullclass which is necessary to allow all classes to uniformly inherit fromsomewhere. object de�nes a single instance variable named class which is inherited by all ASclasses and therefore will occur in the ienv component of all AS objects. The value of thisvariable in each object will be the class which was used to create the object. object de�nestwo methods which will be inherited by all AS classes and therefore will occur in the menvcomponent of all AS objects (unless shadowed by a subclass de�nition). The method namedinit is implemented using the function objinit and is used to initialise the object after it iscreated. The single purpose of obnjinit is to set the class variable. The method named dnuis implemented using the function objdnu and is invoked when a message is sent to an objectfor which there is no menv component.The menv component of object contains the methods which de�ne the behaviour of object.This is the standard class behaviour: new is used to create an instance of the class, init is usedto initialise the class after it is created, subclass is used to create a class which is a subclass ofobject and dnu is invoked if object is ever sent a message whose name is not bound in menv.
6

4.1.2 Class Descriptionienv = (\super" 7! object) �(\ivars" 7! [\super"; \ivars"; \menv"]) �(\menv" 7! (\new" 7! cdnew) �(\init" 7! cdinit)) �(\class" 7! cdc) menv = (\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! classsub) �(\dnu" 7! objdnu)The class cd is the root of the AS class inheritance tree and as such de�nes the minimuminstance variable names and methods in order to be a class. The superclass of cd is object,so cd inherits the instance variable names (i.e. class) and the methods (i.e. init and dnu)from object. The minimum instance variables which are necessary to be a class are: superwhose value must be a class whose instance variable names and methods are inherited; ivarswhose value must be a list of instance variable names; and menv whose value must be anenvironment binding method names to functions. Notice that all the classes described inthis section have ienv components which bind variables super, ivars, menv and class whichoriginate from cd (class being inherited from object).4.1.3 Metaclassienv = (\super" 7! cd) �(\ivars" 7! []) �(\menv" 7! (\subclass" 7! metasub))(\class" 7! mcc) menv = (\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! classsub) �(\dnu" 7! objdnu)The class mc is the root of the AS metaclass inheritance tree and as such it de�nesthe minimum instance variable names and methods in order to be a metaclass. Each timea class is constructed, an instance of mc is also constructed as its unique metaclass. Themetaclass will de�ne the methods for its sole instance which are extensions to the standardclass behaviour as de�ned by cd. Furthermore, when a class is sent a message telling it tocreate a subclass of itself, its metaclass is also sent a subclass message, so the metaclassinheritance tree corresponds exactly to the class inheritance tree. This is seen in �gure 1where the classes object, mc, cd and class are instances of the metaclasses oc, mcc, cdc and ccwhere the inheritance between the metaclasses follows exactly that between the correspondingclasses.The class mc de�nes a method subclass which is used to create a subclass of a givenmetaclass. The method is implemented using the function metasub which will create aninstance of mc and initialise this to have the receiver of the message as its superclass.4.1.4 Classienv = (\super" 7! cd) �(\ivars" 7! []) �(\menv" 7! (\subclass" 7! classsub)) �(\class" 7! cc) menv = (\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! classsub) �(\dnu" 7! objdnu)The class class is the root of the AS class (non-metaclass) inheritance tree and as suchde�ned the minimum instance variable names and methods in order to be a (non-metaclass)class. class de�nes a method subclass which is used to create a subclass of the receiver. Thismethod deals with constructing a new metaclass by sending a subclass message to the class7

of the receiver and then creating an instance of this metaclass. subclass is implemented bythe function classsub.A subclass message is sent to a receiver c1 as follows:send(c1; \subclass"; (e1; l; e2))where e1 is an environment of methods which are termed \class methods" and which willform part of the menv component of the result; l and e2 are a list of names and a methodenvironment which are the instance variables and methods de�ned by the new subclass.Assuming that c1 is a non-metaclass, then the send expression is equivalent to the following:send(send(c2; \subclass"; e1); \new"; [c1; l; e2])where c2 is the class of c1. Since c2 is a metaclass it will handle the subclass message di�erentlyfrom c1. Upon receiving a subclass message, c2 will create an instance of mc, supplying thevalue of the superclass, instance variable names and method environment as c2, [] and e1respectively: send(send(mc; \new"; [c2; []; e1]); \new"; [c1; l; e2])The result of this expression is a class:ienv = (\super" 7! c1) �(\ivars" 7! l) �(\menv" 7! e2) �(\class" 7! c3) menv = e1 �(\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! classsub) �(\dnu" 7! objdnu)where the class c3 is:ienv = (\super" 7! c2) �(\ivars" 7! []) �(\menv" 7! e1) �(\class" 7! mc) menv = (\new" 7! cdnew) �(\init" 7! cdinit) �(\subclass" 7! metasub) �(\dnu" 7! objdnu)4.2 RepresentationAn object is either null, which corresponds to an instance of the superclass of object, or abasic object which corresponds to an instance of anything else. Classes are layered like onionswhere the outermost layer corresponds to the most recent subclass, the next inner layer to itssuperclass, the next inner layer to its supersuperclass etc. The heart of the onion is the valuenullclass which is the pseudo superclass of object. An object mirrors the onion-like structureof its class with each layer containing the instance variables and methods declared by thecorresponding layer of the class. Each layer of an object has an additional value which isthe entire object and is referred to as self. The heart of an object-onion o is the null object,nullobj(o), which is a pseudo instance of nullclass.An object is represented as obj(e1; e2; o1; o2) where e1 is an environment associating in-stance variable names with locations containing their values (ienv), e2 is an environmentassociating method names with methods (menv), o1 is an object which is the next innermostlayer of the object-onion referred to as super and o2 is the whole object-onion referred to asself. 8

4.3 Basic OperationsThe AS system is de�ned as a collection of basic classes whose methods are implementedusing functions objdnu, cdnew, etc., and a message passing operator send. The functionswhich implement the class methods are de�ned in terms of a single operator whose job isto construct objects in a particular format. This operator, mkobj, is de�ned in x4.3.1. Theoperator send implements the message delivery service which searches an object for a namedmethod and then invokes it. send is de�ned in x4.3.2.Both object creation and message passing are de�ned in terms of the concatenation ofthe instance variable environments which are contained in an object. The operator getallenv,de�ned below, is used to construct this environment:let getallenv(nullobj()) = fg jgetallenv(obj(e; ; o;)) = e� (getallenv(o))4.3.1 Object CreationThe operator mkobj de�ned below:let mkobj(nullclass)(o) = nullobj(o) jmkobj(c)(o) = open getallenv(c) in obj(nr(�)(7!)(fg)(ivars);menv;mkobj(super)(o); o)This operator is the primitive AS object creation operator. The argument c is a class whichis to be instantiated and o is an object which will be the self component of the resultinginstance. A class will bind the variables super, ivars and menv in its ienv component. Anew instance is created layer by layer. Each layer has the format obj(e1; e2; o0; o) where e1binds the instance variable names from the corresponding layer of the class c to the null value, e2 is the method environment from the corresponding layer of c and o0 is the result ofinstantiating the superclass of c.4.3.2 Message PassingThe operator send de�ned below:let send(nullobj(o); n; v) = send(o; \dnu"; (n; v)) jsend(obj(e1; e2; o1; o2); n; v) =if n 2 dom(e2)then (e2 � n)(o2; o1; e1 � (getallenv(o1)))(v)else send(o1; n; v)performs AS message passing. The operator has three parameters which correspond to thereceiver of the message, the selector of the message and the actual parameter of the message.The operation of send can be described in terms of the object-onion model (described inx4.2). When a message is sent to an object, the methods de�ned by the outermost layer aresearched for a method whose selector matches. If such a method is found then it is activated,by applying it to objects o2 and o1, an environment e1� (getallenv(o1)) and value v. o2 is thewhole object-onion no matter which particular layer contains the matching method; o1 is theobject-onion constructed by stripping away the layer which contains the matching method { ifa message is sent to o1 it will continue the search where send left o�; e1�(getallenv(o1)) is theconcatenation of all instance variable environments in all layers from that which contained the9

matching method to the heart of the object-onion; v is the actual parameter of the message.If no method matches then the process continues with the next innermost onion-layer. If theprocess encounters the heart of the onion then no method was de�ned for the selector and\dnu" is sent to o2.4.4 De�nitionAS is de�ned as an initial collection of classes and a delivery service, send. The classes de�nemethods which are implemented using the functions which are given below:let meth objinit(c) = class := c; selflet meth objdnu(m) = error(\message"++ str(m)++\not understood")let meth cdinit([c; l; e] ++ v) = super := c; ivars := l;menv := e; send(next; \init"; v)let meth cdnew(v) = send(Y(mkobj(self)); \init"; v++[self])let meth metasub(e) = send(mc; \new"; (self; []; e))let meth classsub(e1; l; e2) = send(send(class; \subclass"; e1); \new"; [self; l; e2])Collections of methods and instance variable names are prede�ned for convenience1:let om = (\init" 7! objinit)� (\dnu" 7! objdnu)let cdm = (\new" 7! basicnew)� (\init" 7! classinit)let cdv = [\super"; \ivars"; \menv"]let mm = \subclass" 7! metasublet cm = \subclass" 7! classsubThe de�nitions of the AS classes are given below:let object = send(oc; \new"; [nullclass; [\class"]; om])oc = send(mc; \new"; [class; []; fg])cd = send(object; \subclass"; (fg; cdv; cdm))mc = send(cd; \subclass"; (fg; [];mm))class = send(cd; \subclass"; (fg; []; cm))These de�nitions are meta-circular, i.e. the classes are assumed to exist for the process oftheir own de�nition. It is necessary to \bootstrap" AS by providing initial values for theclasses which can be used to construct themselves. Using the description of chasing linksgiven in x4.1, it is possible to determine the outcome of the meta-circular de�nitions. Forexample, it is possible to replace all messages with the selector \subclass" with a selector\new" by observing that all the receivers in question will inherit the method from class whereit is implemented using classsub. The de�nitions have been partially expanded by chasing1We should be careful about sharing and side e�ects here since the locations which are created in theprede�ned environments will occur more than once in the �nal system. A complete discussion of the issuesof sharing is outside the scope of this paper and we de�ne that no location is ever implicitly copied i.e. alloccurrences of bindings will share and be a�ected by a single side e�ect.
10

links in the following de�nitions:let object = obj(fg; fg; o1 ; object)where o1 = obj(fg; \subclass" 7! classsub; o2; object)where o2 = obj(e; cdm; o3; object)where e = (\super" 7! nullclass)� (\ivars" 7! [\class"])� (\menv" 7! om)o3 = obj(\class" 7! oc; om;nullobj(object); object)oc = obj(fg;mcm; o1; oc)where o1 = obj(e; cdm; o2; oc)where e = (\super" 7! cdc)� (\ivars" 7! cdv)� (\menv" 7! cdm)o2 = obj(\class" 7! mc; om;nullobj(oc); oc)cd = send(object; \subclass"; (fg; cdv; cdm))mc = send(cd; \subclass"; (fg; [];mcm))class = send(cd; \subclass"; (fg; []; cm))5 AS with Multiple InheritanceThe AS system described in x4 provides single inheritance which means that each class isallowed only one superclass whose state variable declarations and method de�nitions areinherited. This leads to a tree structure of classes with object as the root of the tree andnew classes being added as leaves. This section will generalize AS to produce ASMI which isAbstract Smalltalk with Multiple Inheritance. Multiple inheritance allows each class to havemore than one superclass from which it will inherit state variable declarations and methodde�nitions. This leads to a graph structure of classes with the constraint that the graph mustnot contain cycles (i.e. a class cannot inherit from itself).When classes are tree structured, as in AS, inheritance of variable declarations and meth-ods is straightforward because there is no choice as to the order in which information fromsuperclasses will be inherited. When classes are graph structured, as in ASMI, inheritancebecomes more complex because there may be more than one route from one class to another.For example, since all classes inherit from object, any class which inherits from more than onesuperclass will construct at least two di�erent inheritance paths from itself, though respectivesuperclasses leading to object. Will the information from object be inherited twice? Whathappens when an object sends a message to next? Di�erent programming languages o�erdi�erent solutions to this problem, these include:� Information is inherited as many times as it is reachable from the inheritor. This willlead to multiple copies of instance variable locations but has the advantage of beingmodular [33].� Information is inherited only once. The graph is traversed from an inheritor, such thateach node is encountered exactly once. This will cause no problems provided that thenames of the methods are distinct. If they are not then a question arises with respect towhich method will shadow the other and therefore which method will be executed whenits selector is part of a message to super. One strategy is a left to right traversal of theinheritance graph, omitting a superclass if it has already been visited. Another strategyis a left to right traversal of the inheritance graph omitting a superclass if it will bevisited later. Both strategies have the disadvantage that the shape of the inheritancegraph is distorted with respect to inherited classes.11

� Language facilities are provided so that all ambiguities which should arise are eliminatedunder programmer control [28].It is not the purpose of this paper to discuss in depth the merits of various MI strategies(for more information see [7] [14] and [30]), for ASMI we will arbitrarily choose a left to rightgraph traversal which defers a superclass to its �nal occurence. ASMI and AS are comparedin x5.1, the ASMI basic classes are described in x5.2, the representation of ASMI objects isde�ned in x5.3, the ASMI basic operations are de�ned in x5.4 and �nally ASMI is de�ned inx5.5.5.1 Comparison with ASASMI is a version of AS with multiple inheritance. The inheritance strategy which is adoptedis that of a left to right graph traversal which defers shared superclasses to their �nal oc-currence. Where each AS class has a single class as the value of its state variable \super",each ASMI class has a corresponding state variable called \supers" whose value is a list ofclasses. The empty list is used for the superclass of object, which delivers us from the irksomenullclass.Each class forms the root of an acyclic directed graph where the nodes are classes andthe edges represent inheritance links. In AS when a class is instantiated, the onion structureof the classes is translated to an identical onion structure for the instance in which all theinstance variables are bound to initial values. In ASMI, when a class is instantiated, thegraph structure of the classes is translated to an identical graph structure for the instance inwhich all the instance variables have been allocated new storage locations.When an AS message is sent to an object, the search will progress through successiveobject layers until a method with the required selector is found. A subsequent message sentto next will continue the search until the heart of the onion structure is found. When anASMI message is sent to an object, the search will perform a left to right depth �rst graphtraversal until a method with the required selector is found. A subsequent message sent tonext will continue the search until the �nal node in the graph is encountered.In AS, a class is constructed by sending a subclass message to a class c which will becomethe superclass of the new class. The class is created by sending a subclass message to theclass of c, which creates a metaclass which is instantiated by sending it a new message. InASMI, classes have multiple superclasses, so it is not possible to send a single subclass messagewithout giving one of the superclasses an arti�cial status as the receiver of the message andall other superclasses lesser merit by supplying them as the argument. In ASMI, a class iscreated by sending a metaclass a message with the selector \new"; the superclasses of thenew class are supplied as a list in the message argument. If a new metaclass is required, forexample to de�ne the class methods, then it must be created explicitly.5.2 Basic ClassesFigure 2 shows the initial ASMI con�guration of classes. Following ObjVLisp [13] it is notnecessary for each class to have a single unique metaclass; the AS model whereby each classhas a single unique metaclass (used to de�ne the class methods) can be built from the generalmodel upon which ASMI is based. In ASMI there are only two initial classes: object andclass, all classes will have object as their ultimate superclass and all metaclasses will haveclass as their penultimate superclass. object describes the state variables and methods which12

object

class

instance

subclass

Figure 2: Initial ASMI class con�gurationare common to all classes and class describes the state variables and methods which arecommon to all metaclasses. class is an instance of itself and therefore represents the �xedpoint of theM operator discussed in x2. ASMI classes object and class are described in x5.2.1and x5.2.2 respectively.5.2.1 Objectienv = (\supers" 7! []) �(\ivars" 7! [\class"]) �(\menv" 7! (\init" 7! objinit) �(\gc" 7! objgc) �(\dnu" 7! objdnu)) �(\class" 7! class)
menv = (\new" 7! classnew) �(\init" 7! classinit) �(\dnu" 7! objdnu)object de�nes no superclasses, a single instance variable class, and three methods whichinitialise an object by setting the class instance variable, get the class of an object and handlethe case when an object does not understand a message.5.2.2 Classienv = (\supers" 7! [object]) �(\ivars" 7! [\supers"; \ivars"; \menv"]) �(\menv" 7! (\init" 7! classinit) �(\new" 7! classnew))(\class" 7! class) menv = (\new" 7! classnew) �(\init" 7! classinit) �(\dnu" 7! objdnu)class de�nes the instance variables supers, ivars and menv. These correspond to those of cdin AS except that for a given class, supers is a list of classes rather than a single class. classde�nes methods new and init which will instantiate and initialize the receiver repectively.5.3 RepresentationAn ASMI object is a graph whose nodes contain instance variable and method environmentsand whose links represent inheritance. The representation of a graph is as follows:g(e1; S1; e2; e3; S2)13

where e1 is an environment mapping node addresses to nodes, S1 is a set of edges, e2 is anenvironment mapping edges to their source node address, e3 is an environment mapping edgesto their target node address and S2 is a partial ordering on the nodes. A node is representedas n(e1; e2)where e1 is an instance variable environment and e2 is a method environment. The functionsgetenv and getmenv extract the instance variable and method environments from a node.5.4 Basic OperationsLike AS, ASMI is de�ned in terms of a collection of basic classes, the functions which im-plement their methods and a message delivery service. In addition, objects are implementedas graphs and operations are provided which can be used to traverse graphs in various ways.x5.4.1 describes the operations for graph traversal, x5.4.2 describes basic object creation andx5.4.3 describes the ASMI message delivery service.5.4.1 Graph TraversalThe basic operations which are used to traverse object graphs are de�ned as follows:let nullgraph = g(fg; �; fg; fg; �)let gm(f)(g(e1; S1; e2; e3; S2)) = g(=(�)(7! �(I� f))(fg)(e1); S1; e2; e3; S2)let gmerge(g(e1; S1; e2; e3; S2); g(e4; S3; e5; e6; S4)) = g(e1 � e4; S1 [S3; e2 � e5; e3 � e6; S2 [S4)let root(g(e1; S; e2; e3;)) = fe1 � (e2 � e) j e 2 S; fe0 j e0 � e3 = e � e2g = �glet targetnodes(n)(g(e1; S; e2; e3;)) = fe1 � (e3 � e) j e 2 S; e1 � (e2 � e) = nglet walk(n)(g) = n :: (nr(++)(walk)[](sort(targetnodes(n)(g))(ord(g))))let traverse(g) = walk(n)(g) where fng = root(g)The operator gm is used to construct graph morphisms where f is a function to be appliedto all the nodes in the graph. The operator gmerge will merge two object graphs to producea new object graph. targetnodes(n)(g) produces the set of all nodes which are reachable fromthe node n by traversing one edge in g. root(g) is the set of all nodes which have no edgesincident upon them (such sets will be singletons for properly formed objects). traverse(g)is the sequence of nodes which are visited stating with the root of g and visiting each nodereachable from the root in an order which is consistent with both the ordering imposed bythe edges of g and the partial ordering component of g. sort(S1)(S2) is the sequence of S1elements whose ordering is consistent with the partial ordering S2.The operator traverse will visit a node more than once if it is reachable using two ormore paths from the root of a graph. ASMI will visit each node once when searching for amethod in an object graph. The question arises as to which of the many paths to a nodewill be chosen. The two operators de�ned below, onr and onl, will order the nodes of anobject graph so that nodes which can be encountered more than once are visited last and �rst14

respectively in a manner which is consistent with the ordering imposed by the graph edgesand partial ordering. The operator removeifmarked will delete any nodes which have beenmarked in a special way and is explained in x5.4.3.let l
 n = if n 2 l then l else n :: l jn
 l = if n 2 l then l else l++[n]let onr = removeifmarked � (nr(
)(I)[]) � traverselet onl = removeifmarked � (nl(
)(I)[]) � traverseThe instance variable environment of an object is extracted using the operator getallenv:let getallenv(o) = nr(�)(getenv)(fg)(onr(o))5.4.2 Object CreationA class may be viewed as two di�erent graphs. The �rst is as an object graph since all classesare objects, where the nodes contain instance variable and method environments and the edgesrepresent the inheritance of variables and methods. The second is as a class graph where thenodes contain instance variable names and method de�nitions relating to the instances of theclass and edges represent inheritance of names and methods from the superclasses. Given aclass graph and some initialisation values for the instance variables, instantiation is a simplegraph morphism which retains the class graph structure and associates the values with thevariable names in each node. The function cg de�ned belowlet cg(g) =let e = getallenv(g) inlet n = n(e � \ivars"; e � \menv") inlet g = nr(gmerge)(cg)(nullgraph)(e � \supers") inin addnode(n; g)translates a class, represented as an object graph, to a class graph. addnode(n; g) will addthe node n to the graph g by allocating a new address for n and will link n to each node inroot(g) by allocating a new edge. The function addnode is not de�ned in this paper.5.4.3 Message PassingASMI message passing is similar to AS message passing since the object is traversed to �nd amethod with the given selector, but di�ers because the object representation is a graph andnot a tree. ASMI methods have the same representation as AS methods, i.e. they have threehidden parameters for self, next and the instance variable environment. The value of the �rstparameter is the entire object graph. The value of the second parameter is the entire objectgraph, but the nodes which were traversed in order to �nd the method have been marked sothat if a message is ever sent to next the marked nodes are ignored. Marking and unmarkingof object graphs is performed by the following two functions:let mark(g(n; e; s; t; o))(n0) = g((n� fn0g) [fmark(n0)g; e; s; t; o)let unmark = gm(f) where f(n(e1; e2) = n(e1; e2) j f(mark(n)) = n15

ASMI message delivery is performed by the function send which is de�ned below:let send(o; n; v) =let x = �nd(p)(�)(onr(o)) where p(node) = n 2 dom(getmeths(node))in if x = � then send(unmark(o); \dnu"; (n; v))else let o1 = nl(mark)(I)(o)(1st(splitlistl(x; onr(o))))o2 = unmark(o)e = nr(�)(getenv)(fg)(2nd(splitlistr(x; onr(o))))in ((getmeths(x)) � n)(o2; o1; e)(v)The behaviour of send is as follows: onr is used to order the nodes in the object graph oand x is a node with a method environment containing the selector n. If no such x is in othen the message dnu is sent to o after it is unmarked. Otherwise, o1 is an object which willcontinue searching from node x when it is sent a message. In order to continue from x, o1 isproduced by marking all of the nodes which have been traversed from the root node up toand including x. o2 is an object which start searching from the original root node of o, soall marks are removed. e is the environment constructed by concatenating all of the instancevariable environments in the nodes which are traversed starting with x and continuing onthrough the rest of o. Finally the method is applied to the hidden parameters o2, o1 and eand the actual parameter, v, of the message.5.5 De�nitionASMI is de�ned as an initial collection of classes and a delivery service send. The classesde�ne methods which are implemented using the functions given below:let meth objgc() = classlet instantiate(c) = gm(�(n(l; e)): n(nr(�)(7!)(fg)(l); e))(cg(c))let meth classnew(v) = send(instantiate(self); \init"; v++[self])The collections of object methods and class methods are prede�ned for convenience:let om = (\init" 7! objinit)� (\dnu" 7! objdnu)� (\gc" 7! objgc)let cm = (\init" 7! classinit)� (\new" 7! classnew)The meta-circular de�nition of the ASMI classes is given below:let object = send(class; \new"; [[]; [\class"]; om])class = send(class; \new"; [[object]; cdv; cm])The classes are \bootstrapped" using the same reasoning as is discussed in x4.4, except ASMIis signi�cantly simpler since it consists of two classes and not eight. Even though there arefewer classes, ASMI does not represent a reduction in expressive power, since AS can beimplemented by de�ning a method and a pair of classes:let asnew(e1; l1; l2; e2) = send(send(class; \new"; [nr(::)(f)([])(l1); []; e1]); \new"; [l1; l2; e2])where f(c) = send(c; \gc"; ())let asm = send(class; \new"; [[class]; []; \new" 7! asnew])let asc = send(asm; \new"; [[asm]; []; fg]) 16

6 ASMI with Reective Sendx5 de�nes an OOPL called ASMI with multiple inheritance; this is a generalisation of AS whichonly supports single inheritance. It is not possible to de�ne ASMI using the reective facilitiesof AS since the inheritance strategy of AS depends upon send which is an intransigent languagefeature. This section de�nes the language Abstract Smalltalk with Multiple Inheritance andReective Send (ASMIRS) which extends the reective power of ASMI by making send amethod which is implemented at the meta-level. Since send is a method, it may be extendedor rede�ned; this allows for programmer control of the inheritance strategy at the meta-level.In�nite regress is prevented because the language ASMIRS is meta-circular and the �xedpoint of M causes message passing to \bottom out".x6.1 compares ASMIRS with ASMI and AS, x6.2 describes the ASMIRS basic classes, x6.3extends the object representation from ASMI so that it becomes a reective language feature,x6.4 describes message passing and x6.5 gives the meta-circular de�nition of ASMIRS.6.1 Comparison with ASMIASMI represents objects as graphs where the nodes are instance variable and method envi-ronments and the multiple edges leading from a node arise due to multiple inheritance. Theobject creation and message delivery service require intimate knowledge of an object graphin order to construct them and extract methods with a given selector. There is no scope forrepresenting objects in any other way or for making the message delivery service dependentupon the type of an object. Object representation and message delivery are intransigent lan-guage features in ASMI which means that there is only one possible object-graph traversalscheme when delivering a message.ASMIRS allows the representation and message delivery service of an object to dependupon its type. Object creation is performed by sending a new message to a class. Messagedelivery is performed by sending a send message to the class of the receiver. Multiple objectrepresentations and message delivery services can co-exist within ASMIRS. ASMI is easilyimplemented in ASMIRS which will also allow di�erent variations of the ASMI object-graphtraversal scheme.6.2 Basic ClassesASMIRS is de�ned as a basic collection of classes whose initial con�guration is shown in �gure2. x6.2.1 describes object and x6.2.2 describes class.6.2.1 Objectienv = (\supers" 7! []) �(\ivars" 7! [\class"]) �(\menv" 7! (\init" 7! objinit) �(\dnu" 7! objdnu)) �(\class" 7! class) menv = (\new" 7! classnew) �(\init" 7! classinit) �(\on" 7! classon) �(\send" 7! classsend) �(\dnu" 7! objdnu)object de�nes a single instance variable class whose value in any object is the class whichwas instantiated to produce the object and two methods for initialisation and handling un-known messages. object is an instance of class.17

6.2.2 Classienv = (\supers" 7! [object]) �(\ivars" 7! [\supers"; \ivars"; \menv"]) �(\menv" 7! (\init" 7! classinit) �(\new" 7! classnew) �(\on" 7! classon) �(\send" 7! classsend)(\class" 7! class)
menv = (\new" 7! classnew) �(\init" 7! classinit) �(\on" 7! classon) �(\send" 7! classsend) �(\dnu" 7! objdnu)class de�nes three instance variables supers, ivars and menv. It de�nes four methods: newwhich is used to create objects and is implemented using classnew which represents objectsas ASMI graphs, init which is used to initialise classes and is implemented by classinit, onwhich is used to order the nodes in an object-graph and is implemented by classon, and sendwhich is the message delivery service for objects which are implemented as ASMI graphs andis implemented by classsend.6.3 RepresentationAn ASMIRS object is represented as a valueobj(c; v)where c is the class which was instantiated to produce the object and v is a value whichis the objects internal representation. The functions classof and repof extract the class andrepresentation from an object respectively.An object is usually created by sending a class c a new message. The class will respondto this message by constructing a representation for the object which is appropriate to theway that the class implements its message handling service, i.e. the method send. In thisway, all objects have a uniform representation containing a class and a value but the value ismanipulated at the meta-level by methods which are implemented by the class.6.4 Message PassingA message is sent to an object using the ASMIRS send primitive:send(o; n; v)The message is delivered to the object (and executed) by the delivery service which is imple-mented by the class of o. A delivery service is implemented by a method send and performedby sending the message: send(classof(o); \send"; (o; n; v))Since classof(o) is itself an object, the send message is performed by the delivery service whichis implemented by its class:send(classof(classof(o)); \send"; (classof(c); \send"; (o; n; v)))When does this regression terminate? ASMIRS has an initial class con�guration which is thesame as that for ASMI shown in �gure 2. Any (direct) instance of class will have a deliveryservice which is implemented by classsend. This knowledge is built into the basic message18

sending primitive. For any well-formed con�guration of ASMIRS objects, a chain of classofcalls will eventually lead to an instance of class, whose delivery service is known. The messagedelivery primitive is de�ned below:let send(o; n; v) =if classof(o) = classthen case n of\on") classon(�; �; �; v)\send") classsend(�; �; �; v)) send(classof(o); \send"; (o; n; v))endelse send(classof(o); \send"; (o; n; v))It \knows" about very little of the ASMIRS system other than the minimal knowledge of howclass is implemented. Other than this, all messages are delivered by the particular servicedepending upon the type of the receiver.6.5 De�nitionASMIRS is de�ned as an initial collection of classes and a delivery service send. The classesde�ne methods which are implemented using the functions given below:let meth classon(o) = onr(repof(o))let meth classnew(c; v) = send(obj(c; instantiate(repof(c))); \init"; (c; v))let meth classsend(o; n; v) =let x = �nd(p)(�)(send(classof(o); \on"; o)) where p(x) = n 2 dom(getmeths(x))in if x = �then send(obj(classof(o); unmark(repof(o))); \dnu"; (n; v))else let o1 = nl(mark)(I)(1st(splitlistl(x; send(classof(o); \on"; o))))o2 = obj(classof(o); unmark(repof(o)))e = nr(�)(getmeths)(fg)(2nd(splitlistr(x; send(classof(o); \on"; o))))in ((getmeths(x)) � n)(o2; o1; e)(v)The methods de�ned by class are de�ned to be cm:let cm = (\on" 7! classon)� (\new" 7! classnew) �(\send" 7! classsend)� (\init" 7! classinit)The meta-circular de�nition of ASMIRS classes is given below:let object = send(class; \new"; [[]; [\class"]; om])class = send(class; \new"; [[object]; [\supers"; \ivars"; \menv"]; cm])The following class, c is an example of the reective power of ASMIRS at work. c implementsobjects as ASMI graphs but uses onl to order the nodes rather than onr.let meth con(o) = onl(repof(o))let c = send(class; \new"; [[class]; []; \on" 7! con])19

7 Conclusion, Further and Related WorkThis paper has described three object-oriented systems of increasing reective power: AS,ASMI and ASMIRS. The initial system is based on the initial con�guration of Smalltalkclasses. AS implements single inheritance which is generalised to multiple inheritance inASMI. There are a wide variety of multiple inheritance implementation strategies which can-not co-exist within ASMI since the object representation and message delivery service areintransigent language features. These restrictions are lifted in ASMIRS which allows multipleobject implementations and message delivery services to co-exist within the same languageby lifting them to the meta-level. The semantics of AS, ASMI amd ASMIRS is made preciseby implementing them in a functional language which has been speci�cally designed withprimitive features for object-oriented languages.This work is closely related to the ideas of the ObjVLisp community [13] [5] [6] whichgreatly simpli�ed the representation of reective object-oriented programming features. See[20] [15] and [17] for more recent work on particlar aspects of metaclasses in object-orientedprogramming languages. The use of �rst class identi�er binding environments as a basis forobjects and related programming language features is described in [23] [1] [18] [11] [12] [22]and [29]. There is a collection of literature describing elegant record (environment) calculiused as the basis of object oriented programming language semantics including [8] [9] [10] and[21].The issues of reection in object-oriented programming languages has been developed froman abstract (although executable) point of view. ASMIRS is a simple but precise speci�cationof an object-oriented programming language which has a very expressive reective capability.ASMIRS can be used as the basis of experimentation for new reective mechanisms. Furtherwork is necessary to �nd e�cient implementation techniques for the features which havebeen described in this paper. The reective features which have been described are stronglyrelated to a particular type of programming language, namely class based object-orientedlanguages. A functional programming language whose semantics is described in terms of astate transition system (such as the SECD machine) is particularly amenable to the rei�cationof computational entities (such as environments) which are necessary to describe reectivefeatures and allow a program to control its own execution. It would be interesting to see otherreective mechanisms could be designed using simple extensions to the underlying language.References[1] Agha, G. The Structure and Semantics of Actor Languages. In Foundations of Object-Oriented Languages LNCS 489 (1990) 1 { 59.[2] Bird, R. & Wadler P. Introduction to Functional Programming. Prentice Hall Interna-tional Series in Computer Science. (1988)[3] Bobrow D. et al. Common Lisp Object System Speci�cation. Lisp and Symbolic Compu-tation 1, 3/4. (Jan. 1989)[4] Bobrow D. & Ste�k M. The Loops Manual. Intelligent Systems Laboratory, Xerox PARC.(1983) 20

[5] Briot J-P. & Cointe P. The ObjVLisp Model: De�nition of a Uniform, Reexive andExtensible object Oriented Language. ECAI (1986)[6] Briot J-P. & Cointe P. A Uniform Model for object Oriented Languages Using the classAbstraction. IJCAI (1987)[7] Cardelli L. The Semantics of Multiple Inheritance. Proceedings of the Conference on theSemantics of Data Types. Springer-Verlag LNCS (June 1984) 51 { 66.[8] Cardelli L. A Semantics of Multiple Inheritance. LNCS 173 The Semantics of Data Types.(1984)[9] Cardelli L. & Mitchell J. Operations in Records. Math. Struct. In Comp. Science 1 (1991)3 { 48[10] Cardelli L. & Wegner P. On Understanding Types, Data Abstraction and Polymorphism.Computing Surveys 17, 4 (1985)[11] Clark, A. N. Semantic primitives for OOPLS. Forthcoming PhD Thesis, QMW College,London University.[12] Clark, A. N. A Layered Object-Oriented Programming Language. To appear early 1995in The GEC Journal of Research. Also submitted (in a greatly extended form) to ACMTOPLAS, Oct. 1994.[13] Cointe P. Metaclasses are First Class: The ObjVLisp Model. OOPSLA (1987)[14] Ducournau R. et al. Monotonic Conict Resoloution Mechanisms for Inheritance. OOP-SLA (1992) 16 { 24[15] Ferber J. Computational Reection in Class based Object-Oriented Languages. OOPSLA(1989) 317 { 326[16] Field, A. J. & Harrison P. G. Functional Programming. Addison Wesley InternationalComputer Science Series. (1988)[17] Foote B. & Johnson R. E. Reective Facilities in Smalltalk-80. OOPSLA (1989) 327 {335[18] Gelernter D. Environments as First Class Objects. POPL 14.[19] Goldberg A. & Robson D. Smalltalk-80 The Language and its Implementation. Addison-Wesley. (1983)[20] Graube N. Metaclass Compatibility. OOPSLA (1989) 305 { 315[21] Harper R. et al. A Record Calculus Based on Symmetric Concatenation. POPL 18.[22] Jagannathan, S. Metalevel Building Blocks for Modular Systems. ACM TOPLAS 16 3.(1994)[23] Jagannathan S. & Agha G. A Reective Model of Inheritance. ECOOP (1992)[24] Kiczales G. et al. The Art of the Metaobject Protocol. MIT Press (1991)21

[25] Landin P. The Mechanical Evaluation of Expressions. Computer J. 6 (1964)[26] Landin P. The Next 700 Programming Languages. Comm. ACM 9, 3 (1966)[27] Maes P. Reection in an object Oriented Language. Vrije Universiteit Brussel. AI Memo86-8. (1986)[28] Meyer B. Ei�el The Language. Prentice Hall object Oriented Series. (1992)[29] Miller J. & Rozas G. Free Variables and First-Class Environments. Lisp and SymbolicComputation 4 (1991) 107 { 141[30] Ossher H. & Harrison W. Combination of Inheritance Hierarchies. OOPSLA (1992)[31] Peyton Jones S. The Implementation of Functional Programming Languages. PrenticeHall International (1987)[32] Plotkin G. Call-by-name, call-by-value and the �-calculus. Theoretical Computer Science1. (1975)[33] Snyder A. Encapsulation and Inheritance in Object-Oriented Programming. OOPSLA(1986)[34] Steels L. The KRS Concept System. Vrije Universiteit Brussel. AI Lab. Technical Report86-1 (1986)[35] Wadler, P. Comprehending Monads. In Proc. 19th Symp. on Lisp and Functional Pro-gramming. Nice. ACM. (1990)A Functional Language SemanticsThe kernel language syntax allows top level recursive de�nitions T0 and expressions E0:T0 ::= let I = E0E0 ::= I j N j S j �I:E0 j E0E0 j if E0 then E0 else E0 j (E0; : : : ; e0) j E0;E0The semantics of the kernel language is that of a simple call-by-value functional language.It is beyond the scope of this paper to fully describe the kenel semantics { see [11] fora complete description which is based upon Landin's SECD machine [25] extended withprimitive features for object-oriented programming. The semantics of the sugared languageis given as a translation to the kernel as follows: Let �! be a rewrite rule which removesthe outer layer of sugar from an expression. �! is de�ned by case analysis below and, byrepeated application to a sugared expression, will produce a kernel expression.A curried function is translated by making all of the functions explicit�p1p2 : : : pn:e �! �p1:�p2: : : : �pn:eA function with a pattern parameter is translated to a function with a new parameter i whichreturns a distinguished value � if the supplied value does not match the pattern. A tuple22

pattern uses isntuple to test whether the supplied vaue is a tuple of the correct length anduses " to extract the required components from the tuple�(p1; : : : ; pn):e �! �i: if isntuple(i) then let p1 = i " 1 : : : pn = i " n in e else �A constructor pattern uses isk and stripk to test whether the supplied value is constructedusing the constructor k and to strip the constructor to reveal the value underneath�kp:e �! �i: if isk(i) then let p = stripk(i) in e else �A constant pattern tests whether or not the supplied value is the required constant�c:e �! �i: if i = c then e else �An overloaded function de�nition is translated to a single function de�nition where the alter-natives are composed using the in�x operator which is de�ned as follows:(f1 f2)(v) = let x = f1(v) in if x = � then f2(x) else xFunction de�nitions are translated using the operators name and bodyf ! name(f) = body(f)The name of a collection of function de�nitions is only de�ned when the names of the functionsare all the same (note that ~p denotes a sequence of patterns)name(i~p = e) = iname(meth i~p = e) = iname(f1 j f2) = name(f1)?name(f2)where ? combines identi�ers, returning one of the identi�ers if they are both the same andis unde�ned otherwise. The operator body translates a named function or method to ananonymous function or methodbody(i~p = e) = �~p:ebody(meth i~p = e) =meth ~p:ebody(f1 j f2) = body(f1) body(f2)A method is a function which has some hidden parametersmeth ~p:e �! �(self;next; i) ~p: open i in eThe identi�ers named self and next are scoped over the body of the method e and are namedself and super in Smalltalk. The identi�er i is bound to an instance variable environmentwhich is opened for the scope of the method body. It is important that this identi�er doesnot capture any free references to identi�ers in e. In the presence of environment rei�cationand installation this is not achieved simply through a static analysis of the code.All in�x operators are curried e1oe2 ! (o(e1))(e2)Sequences of declarations are translated to a single declarationi1 = e1 i2 = e2 : : : in = en �! (i1; i2; : : : ; in) = (e1; e2; : : : ; en)23

Let and where expressions are translated to function applicationse1 where p = e2 �! (�p:e1)(e2)let p = e1 in e2 �! (�p:e2)(e1)A case expression is translated to a function applicationcase e of a end �! a(e)A case arm is translated to a partial functionp! e �! �p:ea1a2 �! a1 a2An open expression is translated to use the builtin primitives for environment manipulationopen e1 in e2 �! (e1 ,! �():e2)()

24

