
EBG: A Lazy Functional Programming LanguageImplemented on the Java Virtual MachineTony ClarkFebruary 24, 1999AbstractThe Java programming language o�ers a number of features including:portability; graphics; networking. Java implements the object-orientedexecution model in terms of classes, objects with state, message pass-ing and inclusion polymorphism. This work aims to provide a mixedparadigm environment which o�ers the advantages of both object-orientedand functional programming. The functional paradigm is supported by anew language called EBG which compiles to the Java VM. The resultingenvironment can support applications which use both object-oriented andfunctional programming as appropriate.1 IntroductionThe programming language Java has become very popular by combining a num-ber of features including portability, object-oriented programming, WWW com-patibility, networking, graphics, and a growing collection of libraries. The lan-guage itself is reasonably small and o�ers a particular model of programminglanguage execution based on classes, objects, message passing, and inclusionpolymorphism (Cardelli & Wegner 1985).Although the bene�ts of using the language are large, most notably its porta-bility and ease of library construction, programmers are forced to use a particu-lar style of programming, even when it does not suit all parts of the application.For example, operations over polymorphic lists are not readily supported bythe object-oriented model since inclusion polymorphism is often incompatiblewith parametric polymorphism, Java uses type casts to recover the type of a listelement. Another example occurs when programming in terms of lists whoseelements are data items of loosely related data types, Java requires the use oftype tests to determine the actual type of a data item.Fortunately, the portability of Java arises from its use of a Virtual Machine(VM). This is a standard interface for executable code de�ned in terms of a col-lection of machine instructions. In principle, to take advantage of Java featuresit is not necessary to program in Java. So long as a program can be translatedinto Java VM instructions, it can o�er Java-like advantages.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/42541682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper describes research which aims to produce a mixed programmingenvironment o�ering Java-like advantages. The environment provides a newlanguage called EBG in addition to Java. EBG is a lazy, higher order functionalprogramming language with a Hindley-Milner type system, modules, separatecompilation, algebraic types, pattern matching, and an interface to Java basedon the object-oriented model of program execution.The resulting environment allows applications to be implemented as a mix-ture of functional and object-oriented programming with the aim being to allowcontrol and data to pass (semi-) freely between the languages.The essential feature of the implementation is to translate a functional pro-gram into an equivalent Java program using a one-to-one correspondence be-tween functions and classes. Each execution of a function de�nition producesa new closure; correspondingly, the Java program instantiates the appropriateclass producing an object. Since the Java VM does not directly support lexi-cal scoping and nested classes (class closures), a process termed class lifting isperformed on the Java program.A new binary format is used to contain the result of transforming and com-piling an EBG program. The default Java class loader is extended to recogniseboth the extended and basic formats allowing EBG and Java binary �les to beloaded into the same machine. Finally, the Java reective language features areexploited to allow EBG and Java programs to interact.This paper is structured as follows. Section 2 provides example EBG pro-gram code and shows how the interface to Java programs is used. Section 3describes how EBG code is translated to Java by de�ning interpreters for sub-sets of both languages and sketching a proof of consistency for the translation.The languages are called � and �Java respectively.Section 4 describes how class lifting is performed which transforms a Javaprogram containing nested classes into one in which classes occur only at thetop-level. Section 5 describes how the EBG code is translated to Java VM codevia an intermediate EBG VM language, the extensions to the class loader andthe inter-language communication mechanisms. Finally, section 6 analyses thework, compares it with related work and outlines future plans.A basic knowledge of Java, object-oriented programming and functional pro-gramming are assumed. The reader is directed to Garside & Mariani (1998),Venners (1998), Meyer (1988), Bird & Wadler (1988) and Field & Harrison(1988) for introductory material.2 Example EBG Programs2.1 Sieve of EratosthenesFigures 1 and 2 show a simple example of a mixed language application. Figure1 is an EBG package called Sieve which implements a lazily generated list ofprime numbers using a process called the Sieve of Eratosthenes, see Henderson(1980) for more details. The packages list and command provide de�nitions2

import list, command;integersFrom n = n:(integersFrom(n + 1));sieve(n:ns) = n:sieve(remIf(\x. divisible x n) ns);primes = sieve(integersFrom 2);main =(new "TestSieve") $produces \Obj o.send o "printPrimes" []Figure 1: Example EBG Code for Sieve of Eratosthenesfor list and Java interface operators respectively.The package contains a collection of de�nitions. integersFrom is a functionwhich generates an in�nite list of numbers in sequence starting with n. sieveis a function which is applied to a list of numbers and removes those numberswhich are multiples of numbers occurring earlier in the list. primes is a list ofall prime numbers starting from 2.The function main is an example of how imperative features are encoded inEBG. The command new takes a Java class name as an argument and instan-tiates the class. The in�x operator $produces evaluates its left hand operandand supplies the value to its right hand operand. The command send is appliedto an object, a method name and a list of arguments. The result is equivalentto the following Java statement:o.printPrimes();An EBG package roughly corresponds to a Java class where all of the top-levelde�nitions are declared static. Any of the top-level symbols in an EBG packagecan be referenced by a Java program using the EBG package name as thoughit were a Java class name, for example Sieve.primes.Figure 2 shows the source code for a Java class TestSieve which uses theEBG package Sieve. In addition, TestSieve uses a collection of static meth-ods provided by JavaInterface which allow EBG values to be manipulated:isList; isCons; head; and tail.Both EBG and Java source code compile, using the EBG compiler ebgcand the Java compiler javac respectively, to produce Java VM object code.Using a simple extension of the default Java class loader in addition to thepackage java.lang.reflect, both EBG and Java object code can be mixedinto a running Java machine.Execution of the system starts by loading the EBG Sieve package and start-ing to execute the commands in main. The �rst command creates an instanceof the class TestSieve by dynamically loading the appropriate class �le andinstantiating the resulting class. The Java reective interface is used to perform3

public class TestSieve extends JavaInterface {public void printPrimes(){ printNums(Sieve.primes);}public static void printNums(Value nums){ if(isList(nums))if(isCons(nums)) {System.out.println(head(nums));printNums(tail(nums));}}} Figure 2: Example Java Code Calling EBG Codemeta-level operations such as send which invokes a named method of an object.In this case when printPrimes is invoked control passes from EBG code to Javacode.The method printPrimes uses the EBG package as a class with a static at-tribute primes and calls printNums passing a lazily generated in�nite sequenceof prime numbers. The method printNums uses the methods isCons, head andtail to print out all of the elements of the list. The control ow of the programis shown in �gure 3.2.2 EnvironmentsThe evaluation of �- and �Java-expression use environments to associate keyswith values. In particular, free variables in an expression are bound in thecurrent environment and �Java uses an environment to model the heap. Figure4 shows the de�nition of an EBG package Env which implements environments.env is a parametric type with three data constructors. Type variables in EBGare sequences of $ characters. env is parameterised with respect to the type ofthe keys and the type of the values.An environment is either Empty, an association Bind k v between a key kand a value v, or the composition of two environments Pair e1 e2. Environ-ment lookup is performed by:lookup key env defaultwhich returns the rightmost value associated with key in env or default if theenvironment does not contain the key. Environments may contain more thanone entry for a key and shadowing occurs on the right. The function mapEnv isused to apply a function to all values in an environment.4

EBG Java(1) main is invoked(2) new "TestSieve" �! (3) instantiate TestSieve � (4) initialise instance(5) send o "printPrimes" [] �! (6) reference Sieve.primes(7) call printNums(8) print 2(10) remove if divisible by 2 � (9) tail(nums)�! (11) print 3(13) remove if divisible by 3 � (12) tail(nums)�! (14) print 4(16) remove if divisible by 4 � (15) tail(nums): : :Figure 3: The control ow in Sieve of Eratosthenes3 Compiling EBGEBG is implemented by a translation to Java. The key issues of the translationare function representation and function application. This section describesthese issues by de�ning two toy languages and analysing the translation betweenthem.The �rst language, called �, is a sub-language of EBG providing integers,single argument functions, variables and function application. Its operationalsemantics is de�ned by an interpreter ebgEval written in EBG. The secondlanguage, called �Java, is a sub-language of Java providing nested class de�ni-tions and simple methods. Its operational semantics is de�ned by an interpreterjavaEval written in EBG.Compilation of EBG is modelled using a translation trans1 from �-programsto �Java programs. The translation is shown to be consistent (i.e. preserve themeaning of �-programs) by de�ning a translation trans2 from �Java values to�-values such that the following diagram commutes (Sabry & Wadler 1997) :�
?trans1 ebgVal-ebgEval

�Java javaVal6trans2-javaEvalThis section is structured as follows. Section 3.1 de�nes � and its operationalsemantics. Section 3.2 de�ned �Java and its operational semantics. Section 3.3de�nes the translation trans1 and sketches the proof of consistency.5

type env $ $$ =Empty| Bind $ $$| Pair (env $ $$) (env $ $$);lookup :: $ (env $ $$) $$ -> $$;lookup key Empty default = default;lookup key (Bind key' value) default =case key = key' ofTrue -> value;False -> defaultend;lookup key (Pair e1 e2) default =let value = lookup key e2 defaultincase value = default ofTrue -> lookup key e1 default;False -> valueend;mapEnv :: ($ -> $$) (env $$$ $) -> env $$$ $$;mapEnv fun Empty = Empty;mapEnv fun (Bind key value) =Bind key (fun value);mapEnv fun (Pair e1 e2) =Pair (mapEnv fun e1) (mapEnv fun e2)Figure 4: Environment Structures3.1 A �-CalculusEBG is a lazy functional programming language, therefore the operational se-mantics of � is based on a normal order reduction scheme (Hankin 1994, Plotkin1975). The abstract syntax of � is de�ned as the type ebg in �gure 5. Theoperational semantics is de�ned as a function ebgEval which is applied to a�-expression and an environment associating variable names with thunks.Evaluation of a �-expression produces an integer, closure or an error. Notethat well typed �-expressions will not produce an error value. Figure 5 de�nesa type ebgVal for the results of program evaluation.EBG uses normal order reduction which means that expressions are onlyevaluated if it is necessary to produce the �nal program outcome. This strategyis implemented by passing unevaluated expressions as function arguments. If6

type ebg =EBGInt int| EBGVar string| Lambda string ebg| Apply ebg ebg;type ebgVal =EBGIntVal int| Closure string (env string ebgVal) ebg| Thunk (env string ebgVal) ebg| EBGError;ebgEval :: ebg (env string ebgVal) -> ebgVal;ebgEval (EBGInt n) env = (EBGIntVal n);ebgEval (Lambda arg body) env =Closure arg env body;ebgEval (Apply e1 e2) env =let Closure arg env' body = ebgEval e1 env inlet newEnv = Pair env' (Bind arg (Thunk env e2))in ebgEval body ;ebgEval (EBGVar s) env =let Thunk env' body = lookup s env EBGErrorin ebgEval body env';Figure 5: De�nition of ebgEvalthe value of the argument is ever required to construct the result of the functionthen the expression is forced.Delayed evaluation of function arguments is implemented by constructing athunk. A thunk associates a program expression with the current environmentso that it can be evaluated at some later date. The current environment containsvalues for all of the free variables in the delayed expression.As an example of normal order evaluation, consider the following �-expressions:W = Lambda "x" (Apply (EBGVar "x") (EBGVar "x"))M = Apply (Lambda "x" (EBGInt 1)) (Apply W W)An eager evaluation strategy fully evaluates the argument to a function beforeapplying it. If M is evaluated eagerly the application of W to itself will notterminate. However, a normal order strategy will only evaluate an argumentexpression if it is required in the body of the function. In this case:ebgEval M Empty = EBGIntVal 1 7

3.2 A �Java CalculusIn order to show how EBG is implemented in Java we show how �-expressionsare implemented in �Java which is a sub-language of Java containing just therequired language features. In particular, the required features include:� Anonymous and nested classes. Closures and thunks are implemented asobjects. Java allows classes to be nested and implements static scopingrules which correspond to nested functions and thunks in �-expressions.The syntax for instantiating anonymous Java classes (Flannagan 1997) is:new class-name () { class-body }which de�nes a sub-class of class-name and immediately instantiates it.� Class instantiation. Each execution of a �-function or application re-quires a new closure and thunk respectively. �Java represents closuresand thunks as instances of classes.� Message passing. Closure objects provide a method apply which is usedto apply the closure to an argument. Thunk objects provide a methodforce which forces the thunk when its value is required.� Object attributes. Lazy evaluation requires that �-expressions are evalu-ated at most once. A thunk has a �eld cache which is used to cache thevalue of its delayed expression when it is forced.� Self reference. To implement lazy evaluation a thunk checks whether ithas forced its delayed expression. If not, it sends itself a message to forceand then cache the result.3.2.1 �Java Syntax and ValuesFigure 6 de�nes the type java which is the abstract syntax of �Java. A�Java program is an environment of class de�nitions one of which must de�nea method called main with a single argument. Execution of a �Java programstarts by calling the method main and evaluating its body with respect to theenvironment of top-level class de�nitions. The values produced by evaluating�Java programs are de�ned by javaVal in �gure 7. The values are: classes;objects; integers; the null value; boolean values; and an error value.A class de�nition contains variable references and, since de�nitions may benested, a class captures the current context when it is created. The current con-text is an environment associating all variables freely referenced in the methodbodies of the class with their current values.Consider the class Thunk de�ned in �gure 11. This is a typical abstract classsince it de�nes a method force which calls a method value whose implemen-tation is left to a sub-class of Thunk. The de�nition of Thunk is represented asan abstract syntax data value in EBG as follows:8

type java =Seq java java ;;; sequenced commands.| JavaInt int ;;; integer expression.| JavaVar string ;;; variable reference.| NullClassDef ;;; the ultimate super-class.| ClassDef ;;; a class definition:java ;;; the super-class.(list string) ;;; the attributes.(env string methodDef) ;;; the methods.| New java ;;; instantiation expression.| Send java string java ;;; method invocation (1 arg).| Send0 java string ;;; method invocation (0 args).| This ;;; self reference.| If java java java ;;; conditional command.| Set string java ;;; variable update.| Eql java java; ;;; equality test.type methodDef =MethodDef string java ;;; method (1 arg).| MethodDef0 java; ;;; method (0 args).Figure 6: �Java SyntaxClassDefNullClassDef["cache"](Bind "force"(MethodDef0(If (Eql (JavaVar "cache") (JavaVar "null"))(Seq (Set "cache" (Send0 This "value"))(JavaVar "cache"))(JavaVar "cache"))))The same de�nition may be evaluated more than once causing di�erent con-texts to be associated with the same class. Consider the class Closure de�nedin �gure 11. Each sub-class of Closure must de�ne a method called applywith a single argument. Nested classes are possible, for example the followingcorresponds to the curried function M = �x:�y:xy:M = new Closure() {Value apply(Thunk x) {new Closure() {Value apply(Thunk y) {x.force().apply(y);}}}}M contains the de�nition of two anonymous sub-classes of Closure. The outer-most class is instantiated producing a Java object o which represents M. Theoutermost class contains no free variable references, however the innermost class9

type javaVal =NullClass| Class(env string int)javaVal(list string)(env string methodDef)| JavaObjVal(env string method)| JavaIntVal int| Null| JavaTrue| JavaFalse| JavaError string;type method =Methodstring(env string int)javaValjava| Method0 (env string int) javaVal java| NoMethod; Figure 7: �Java Valuescontains a free reference to the variable x which is an argument of apply in theoutermost class.Each time o is sent an apply message, a new class is de�ned. In each casethe class is associated with a di�erent value for x. The following shows the classwhich is created as a result of o.apply(t):C = Class (Bind "x" t) Closure [](Bind "apply"(MethodDef "y"(Send(Send0 (JavaVar "x") "force")"apply"(JavaVar "y"))))Notice that all �Java classes are associated with an environment, in this caseBind "x" t, which contains the values of variables which are freely referenced inthe body of the class. For this reason we say that �Java supports class closures.3.2.2 �Java InstantiationObjects are environments associating method names with methods. A methodhas four components: an argument name; a captured context; an object; and abody. The context is an environment containing associations for all the freely10

referenced variables in the body of the method. The context is constructed whena class is instantiated by extending the class context with associations betweenthe attribute names and their storage locations.Each method contains an object which is used as the value of the pseudo-variable this. All methods in an object have the same object which is a cyclicreference to the object itself. Consider an object which is created when M fromsection 3.2.1 is evaluated. The object produced is referred to as o1 in thefollowing �Java value:o1 = JavaObj(Bind "apply"(Method "x" Empty o1(New (ClassDef Closure [](Bind "apply"(MethodDef "y"(Send(Send0 (JavaVar "x") "force")"apply"(JavaVar "y"))))))))If the object o1 is sent an apply message with an argument t then the result isthe class C in section 3.2.1. If C is instantiated the result is the following objecto2 which captures the current context containing the value for x:o2 = JavaObj (Bind "apply"(Method "y" (Bind "x" t) o2(Send(Send0 (JavaVar "x") "force")"apply"(JavaVar "y"))))Class instantiation is performed by an EBG function instantiate expectingthree arguments: the class to instantiate; a memory location used as the start ofattribute storage; and an object to be used as the value of this. Instantiationproduces three values: the new instance; an environment associating attributenames with storage locations; and the memory block used by the attributes.The value of this is found by a �xed point (Cook 1989, Clark 1994, 1996). Ifthe value of instantiating the class c with respect to memory location l is o, aand h then instantiate satis�es the following equation:(o,a,h) = instantiate c l oFigure 8 shows the de�nition of the function instantiate. The process instan-tiates the super-class �rst and then merges the instance of the super-class withthe extension attributes and methods to produce an instance of the sub-class.3.2.3 Message PassingObject-oriented program execution is performed using message passing whichinvolves the lookup and invocation of an object's method. Message passing isperformed using the function sendMessage expecting four arguments:11

instantiate :: javaVal int javaVal -> (env string method,env string int,env int javaVal);instantiate NullClass memoryLocation this = (Empty,Empty,Empty);instantiate (Class env super atts meths) memoryLocation this =let (o1,a1,h1) = instantiate super memoryLocation this inlet (a2,h2) = allocateAtts atts (memoryLocation + (usedMemory h1)) inlet o2 = mapEnv (methodDefToMethod (Pair env (Pair a1 a2)) this) methsin (Pair o1 o2,Pair a1 a2,Pair h1 h2);Figure 8: De�nition of instantiate
sendMessage ::string(env string method)javaVal(env int javaVal) -> (javaVal,env int javaVal);sendMessage message object value heap =case lookup message object NoMethod ofMethod name env this body ->let address = nextFreeMemoryLocation heap inlet heap' = Pair heap (Bind address value);env' = Pair env (Bind name address)in javaEval body env' heap' this;NoMethod -> (JavaError message,heap)end; Figure 9: Message passing in �Java

12

sendMessage message object value heapwhere message is the name of the message, object is the target of the message,value is the value to be sent and heap is the current memory structure.Messages are synchronous and the result of sending a message is a pair(value,heap') containing a data value and an updated memory.Figure 9 shows the de�nition of message passing in �Java. The target isan environment and should associate the message name with a method. Themethod contains an argument name, an environment, an object and a programexpression. The environment associates freely referenced variables in the bodyof the method with values. The environment is extended with the methodargument and is used as the context for evaluating the method body.3.2.4 �Java EvaluationEvaluation of a �Java program prog is performed by:javaEval prog env heap thiswhere env associates free variables in prog with memory addresses, heap asso-ciates memory addresses with java values, and this is an object whose method iscurrently being performed. Memory addresses are modelled as integers startingfrom 1. The �Java interpreter is shown in �gure 10. It is de�ned by case analy-sis on the structure of the program. The interpreter `threads' the heap throughthe program execution and produces a pair (value,heap') where value is ajava value and, since the evaluation of prog can produce side e�ects, heap' isan updated heap.3.3 Translation of �-Terms to �JavaEBG is implemented by translating it to �Java. EBG closures are translatedto instances of Closure, EBG thunks are translated to instances of Thunk andEBG integers are translated to �Java integers. This section de�nes the syntaxtranslation from EBG programs to �Java programs and provides an overview ofhow values can be translated from one language to the other. These translationsare then used to sketch the proof of consistency for the syntactic translation.EBG values are integers or closures. The environments in closures associatevariable names with thunks. EBG values are represented in �Java as instancesof the classes de�ned in �gure 11. The class Value is the super-class of all EBGvalues. The classes IntVal, Closure and Thunk de�ne �Java representations ofEBG integers, closures and thunks respectively.The classes Closure and Thunk are abstract. EBG closures and thunks arede�ned as instances of sub-classes of these classes. Sub-classes of Closure mustde�ne a method called apply which is activated when the closure is applied.Sub-classes of Thunk must de�ne a method called value which is activatedwhen the thunk is forced for the �rst time. Once it is forced, an instance ofThunk uses the variable cache to retain the value.13

javaEval ::java(env string int)(env int javaVal)javaVal -> (javaVal,env int javaVal)javaEval (Seq j1 j2) env heap this =javaEval j2 env (2nd (javaEval j1 env heap this)) this;javaEval (JavaInt n) env heap this = (JavaIntVal n,heap);javaEval (JavaVar s) env heap this =(lookup (lookup s env 0) heap (JavaError "heap",heap);javaEval NullClassDef env heap this = (NullClass,heap);javaEval (ClassDef super atts meths) env heap this =let (class,heap') = javaEval super env heap thisin (Class env class atts meths,heap');javaEval (New j) env heap this =let (class,heap') = javaEval j env heap this inletrec (o,a,heap'') = instantiate class (loc heap') (JavaObjVal o)in (JavaObjVal o,Pair heap' heap'');javaEval (Send exp message arg) env heap this =let (JavaObjVal o,heap') = javaEval exp env heap this inlet (v,heap'') = javaEval arg env heap' thisin sendMessage message o heap'';javaEval (If exp1 exp2 exp3) env heap this =case javaEval exp1 env heap this of(JavaTrue,heap') -> javaEval exp2 env heap' this;(JavaFalse,heap') -> javaEval exp3 env heap' this;end;javaEval (Set varName exp) env heap this =let (value,heap') = javaEval exp env heap thisin (value,Pair heap' (Bind (lookup varName 0) value));javaEval (Eql exp1 exp2) env heap this =let (value1,heap') = javaEval exp1 env heap this inlet (value2,heap'') = javaEval exp2 env heap' thisin case value1 = value2 ofTrue -> (JavaTrue,heap'');False -> (JavaFalse,heap'')end;javaEval This env heap this = (this,heap);Figure 10: De�nition of javaEval14

abstract class Value {}class IntVal extends Value {}abstract class Closure extends Value {abstract Value apply(Thunk argument);}abstract class Thunk {private Value cache = null;public Value force() {if(cache == null)cache = value();return cache;}public abstract Value value();} Figure 11: EBG value classes
trans1 :: ebg -> java;trans1(EBGInt n) = JavaInt n;trans1(EBGVar s) = Send0 (JavaVar s) "force";trans1(Lambda arg body) =New (ClassDef(JavaVar "Closure")[](Bind "apply" (MethodDef arg (trans1 body))));trans1(Apply e1 e2) =Send (translate e1) "apply"(New (ClassDef(JavaVar "Thunk")[](Bind "value" (MethodDef0 (trans1 e2)))))Figure 12: De�nition of trans115

Translation of EBG programs to �Java programs is de�ned in �gure 12. Thetranslation of �-functions and function application instantiate anonymous sub-classes of Closure and Thunk respectively. Function application is implementedusing the method apply and thunks are forced using the method force.Consider an EBG program m evaluated by eval with respect to an environ-ment of thunks e producing an EBG value v. Given a translation trans1 fromenvironments of EBG thunks to environments of �Java objects, m and e can betranslated and evaluated using javaEval to produce a �Java value w and a heaph. Given a translation trans2 from �Java values and heaps to EBG values wemust show that:ebgEval(m)(e)=trans2 o javaEval o trans1(m)(e)The proof is sketched as follows. EBG thunks are translated to produce in-stances of the appropriate sub-class of Thunk. Instances of Thunk and Closureare translated (relative to a heap) to EBG thunks and classes respectively. Theproof of consistency proceeds by induction on the structure of the EBG programm and the environment e:� If m is an integer then the proof follows by the de�nition of the interpretersand translations.� If m is a variable then the proof follows by assuming that it holds for thebody of the thunk bound to the variable in e and its environment.� If m is a �-function then the proof follows by assuming by induction thatit holds for the body of the function and the environment e.� If m is an application Apply n1 n2 then we assume that the theorem holdsfor n1, n2 with respect to e and also holds for the body of the resultingclosure with respect to the extended closure environment.4 Scope and Nested ClassesEBG is implemented in �Java using nested anonymous classes for both closuresand thunks. Both �Java and EBG use lexical scoping rules for variable reference.Nested classes and lexical scoping rules are supported in �Java by class closures.Although Java provides nested anonymous classes it does not implementclass closures. In order to support lexical scoping it performs class lifting whichis a process similar to lambda lifting (Field & Harrison 1988) in order to translateall class de�nitions to the top-level of the program. This section describes howEBG value classes are modi�ed to take class lifting into account.Class lifting is a Java program transformation whereby all classes are movedto the top-level. Lexical scoping is implemented by allocating space for variablesin heap allocated activation frames. Consider the following �-function:M1 = �x:(�y:yx)(�z:xz)16

class M1 extends Closure {Value apply(Thunk x) {frame = new Frame(x,frame);return new M2(frame).apply(new M3(frame));}}class M2 extends Closure {Value apply(Thunk y) {return y.force().apply(frame.local(0));}}class M3 extends Closure {Value apply(Thunk z) {return frame.local(0).force().apply(z);}} Figure 13: An example of class liftingThe result of �-lifting M is as follows:M1 = �x:(M2x)(M3x)M2 = �x:�y:yxM3 = �x:�z:xzThe process of �-lifting produces an equivalent program in which all nestedfunctions have been moved to the top-level and extra parameters are added fortheir freely referenced variables.Class lifting has the same e�ect as �-lifting except that nested classes aremoved to the top-level and variables are referenced via heap allocated frames.Figure 13 shows the result of translating M1 to �Java and then performingclass lifting. Note that the code in �gure 13 has been simpli�ed by omitting thecreation of thunks. Section 5.2 describes the complete translation.Class lifting is performed using the following algorithm. Let P be a �Java programresulting from trans1. P is a collection of class de�nitions indexed by theirnames. If P contains no nested classes then stop. Otherwise a de�nition dcontains a nested class de�nition c. Depending on whether c is a sub-class ofClosure or Thunk, it may reference a single bound variable v of d. Let d0 be dwith c replaced by:new k(new Frame(v,frame))where k is a new class name. Let c0 be c with all references to v replaced by:17

abstract class Closure extends Value {private Frame frame;public Closure(Frame frame) {this.frame = frame;}public abstract Value apply(Thunk t);}abstract class Thunk {private Frame frame;private Value cache = null;public Thunk(Frame frame) {this.frame = frame;}public Value force() {if(cache == null)cache = value();return cache;}public abstract Value value();} Figure 14: Value class using framesframe.local(0)If c references v then all other expressions of the form frame.local(n) replacedwith frame.local(n+1) The class d is replaced with d0 in P and c0 is added.This process is repeated until it terminates with no nested class de�nitions.EBG value classes (initially de�ned in �gure 11) are extended to supportclass lifting. Both Closure and Thunk are extended with an attribute framewhose value is supplied when an instance is created. The extended classes areshown in �gure 14. Frame implements a linked list of values. The method localis used to index the list elements. The initial element in a frame is at position0. New frames extend existing frames by adding a new element at the start ofthe list.5 Implementation IssuesThe semantics of EBG programs and their implementation in Java is de�ned by aconsistent translation trans1 in section 3.3. EBG is implemented by translatingprograms directly to Java VM code without generating any intermediate Javasource code. The machine loader can freely mix Java and EBG object codeand the reective features of the Java machine permit Java and EBG code tointeract. This section describes the implementation issues relating to the EBGenvironment. 18

EBG Java

java class

ebgc javac

ebg

file format

package source class source

ebg package
file format

machine
JavaFigure 15: Mixing EBG and Java progrm code5.1 The Class LoaderJava programs are executed by starting a Java machine and loading Java object�les using a class loader. A class loader, running on the machine, is an object oftype ClassLoader which is responsible for reading object �les and linking JavaVM code into the current running Java machine.EBG de�nes a sub-class of ClassLoader called ebg which understands theformat of both Java and EBG object �les. The process of loading both EBGand Java into a running machine is shown in �gure 15.Compilation of a Java source �le using javac produces an object �le con-taining a binary representation in a class �le format. There are entries in thebinary �le for all class components including �elds, methods and static entries.Compilation of an EBG source �le using ebgc produces a �le containinga binary representation in a package �le format. The package �le containsclass �le format entries for all the Java classes resulting from class lifting. Inaddition there is a distinguished class in each package which contains static�elds for each top-level package de�nition. The value of each �eld is of typeThunk and both EBG and Java programs may reference any top-level EBGpackage de�nitions as static class �elds. An EBG object package is an instanceof the class Package:public class Package implements Serializable{ public Vector importNames;public Hashtable classes;// Package methods ... 19

}where importNames is a vector of imported package names and classes is acollection of associations between class names and arrays of bytes in Java class�le format.public class ebg extends ClassLoader{ private Hashtable classBytes = new Hashtable();private Hashtable loadedClasses = new Hashtable();private Vector importedPackages = new Vector();private void getClassBytes(String fName){ Package p = objStream(fName).readObject();Enumeration classNames = p.classNames();while(classNames.hasMoreElements()) {String cName = classNames.nextElement();classBytes.put(cName,p.classes.get(cName));}addElements(p.importNames,importedPackages);}private Class loadClass(String cName){ Class c;if(!loadedClasses.containsKey(cName))if(classBytes.containsKey(cName))c = defineClass(cName,classBytes.get(cName))else if(importedPackages.containsKey(cName)) {getClassBytes(cName);importedPackages.removeElement(cName);c = loadClass(cName);} else c = loadJavaClass(cName);else c = loadedClasses.get(cName);loadedClasses.put(cName,true);return c;}} Figure 16: The ebg Class LoaderA Java class is de�ned by a class loader by supplying the method defineClasswith the name of the class and an array of bytes in class �le format. Figure 16shows the implementation of the EBG package loader ebg.The EBG package loader uses three tables. The table loadedClasses isused to record when a class is loaded and de�ned. Once loaded and de�neda class must not be re-de�ned. The table classBytes is used to hold theclass �le format byte codes of classes when EBG packages are loaded. The20

classes contained in an EBG package are de�ned on demand. Finally, the tableimportedPackages holds the names of packages which are imported but not yetloaded.Once compiled, an EBG package is loaded using the extended class loaderebg. A package is loaded using the method loadClass which returns the Javaclass containing the EBG top-level de�nitions as static �elds. The methodloadClass uses the package loader tables to cache classes. Once a package isloaded, subsequent calls to loadClass will not need to re-load the package fordi�erent component classes.5.2 Producing Java VM CodeEBG programs are compiled to Java VM code via an intermediate EBG VMlanguage. The intermediate language allows the low level implementation to bechanged without a�ecting the upper levels of the compilation process.This section gives an overview of the EBG VM and the compilation process.In order to show the key features of the compilation three toy languages areused. EBG is modelled using the language � whose semantics is de�ned insection 3.1. EBG is compiled using an EBG function compile to produce EBGVM instructions implemented as an EBG data type ebgInstr. Translation toJava VM and class lifting is performed using an EBG function trans3. Giventhe semantics of Java VM, javaVMEval, the following diagram commutes:�?compile ebgVal-ebgEvalebgInstr javaInstr6trans2ojavaVMEval-trans3The EBG VM is a stack machine where the stack contains function activationframes. Each frame contains a code pointer to the current VM instruction, apointer to the previous stack frame and the address of the current local variableframe. The machine instructions are de�ned as the type ebgInstr in �gure 17.Compilation of an EBG program produces a sequence of EBG VM instructions.The compiler is de�ned in �gure 17. A program is compiled as follows:compile prog vars globalswhere prog is an EBG program, vars is a list of variable names which occurfreely in prog, and globals is an environment associating top-level variablenames with the name of their de�ning package.The Java VM is stack based. Each stack frame contains an object which iscurrently handling a message, a collection of locals, a pointer to the current VMinstruction and a pointer to the previous stack frame. The object is always thevalue of local 0 and provides a collection of �eld values. In addition, the machinealso contains a collection of classes which may be instantiated and whose static�elds can be referenced. 21

type ebgInstr =PushInt int| Local int| Global string string| PushLambda (list ebgInstr)| App| Force| Delay (list ebgInstr);compile ::ebg(list string)(env string string) -> (list ebgInstr);compile(EBGInt n) vars globals =[PushInt n];compile(EBGVar s) vars globals =case lookup s globals "" of"" -> [Local (pos s vars), Force];package -> [Global package name, Force]end;compile(Lambda arg body) vars globals =[PushLambda (compile body (arg:vars) globals)];compile(Apply exp1 exp2) vars globals =letinstrs1 = compile exp1 vars;instrs2 = [Delay (compile exp2 vars globals)];instrs3 = [App]in instrs1 ++ instrs2 ++ instrs3Figure 17: EBG CompilationWhen � executes on the Java VM, the value of local 0 is always an instanceof a sub-class of Closure or Thunk. The value of local 1 is always the currentlocal frame.Figure 18 shows an EBG type javaInstr whose values represent the Javamachine instructions used to implement �. The instructions are briey ex-plained as follows:
22

type javaInstr =VMNew int| Aload0| Aload1| Astore1| Bipush int| GetStatic string string string| Return| InvokeVirtual string| GetField string| Dup| InvokeSpecial string;type VMClass =VMClosure int (list javaInstr)| VMThunk int (list javaInstr);Figure 18: Java VM InstructionsVMNew n instantiate the class named nAload0 push the current object onto thestackAload1 push the current local frame ontothe stackAstore1 set the current local frame fromthe head of the stackBipush n push the integer n into the stackReturn return the value at the top of thestack from the current methodcallInvokeVirtual m call the method m where the tar-get is on the stack below the ar-gumentsGetField f push the value of �eld fDup duplicate the head of the stackInvokeSpecial m initialise the object at the head ofthe stack
Translation of EBGVM

instructions and class lifting is performed by the EBG function trans3 de�nedin �gure 19. A translation is:trans3 instr classeswhere instr is an EBG VM instruction and classes is a list of sub-classesof both Closure and Thunk. The elements of classes are produced by classlifting and are represented as values of type VMClass de�ned in �gure 18. Thenames of these classes are modelled as integers in the translation. Translationproduces a pair: 23

trans3 ::ebgInstr(list VMClass) -> (javaInstr,list VMClass);trans3(PushInt n) classes = ([Bipush n],classes);trans3(Local n) classes =([Aload1,Bipush n,InvokeVirtual "local(I)LValue;"],classes);trans3(Global package name) classes =([GetStatic package name "LThunk;")],classes);trans3(PushLambda instrs) classes =letrecname = length classes;c = VMClosure name (is ++ [Return]);(is,classes') = maptrans3 instrs (c:classes)in ([VMNew name,Dup,Aload1,InvokeSpecial "<init>(LFrame;)V"],classes');trans3 App classes =([InvokeVirtual "apply(LThunk;)LValue;"],classes);trans3 Force classes =([InvokeVirtual "force()LValue;"],classes);trans3(Delay instrs) classes =letrecname = length classes;g = [GetField "frame", Astore1];t = VMThunk name (g ++ is ++ [Return]);(is,classes') = maptrans3 instrs (t:classes)in ([VMNew name,Dup,Aload1,InvokeSpecial "<init>(LFrame;)V"],classes');Figure 19: Translation of EBG VM to Java VM24

[PushLambda[PushLambda[Local(1),Force,Delay[Local(2),Force],App],Delay[PushLambda[Local(2),Force,Delay[Local(1),Force],App]],App]] Figure 20: EBG VM instructions for M1(instrs,classes')where instrs is a list of Java VM instructions and classes' is an extendedlist of sub-classes. Figure 19 shows that the translation process macro-expandsthe EBG VM instructions and lifts classes each time a PushLambda or a Delayinstruction is encountered.Consider the �-expression M1 which is de�ned in section 4. Figure 20 showsthe result of representing M1 as a value of type ebg and then using compile toproduce EBG VM instructions.Figure 21 shows the classes produced by translating the EBG VM instruc-tions to Java classes using trans3. The sub-classes of Closure labelled 0, 1 and4 correspond to the functions M1, M2 and M3 respectively. The sub-classes ofThunk labelled 2, 3 and 5 are used to delay the evaluation of function arguments.5.3 Inter-language CommunicationThe EBG environment allows communication between EBG and Java codewithin the same Java machine. Communication occurs through the Java libraryjava.lang.reflect which allows Java programs to manipulate and changethemselves during program execution.EBG packages are implemented as Java classes where the top-level de�nitionsare encoded as static �elds of type Thunk. When ebg loads the �rst EBG packageit searches for the value of the �eld main and forces its value:Field mainField = mainClass.getField("main");Thunk mainThunk = (Thunk)mainField.get(null);Class thunkClass = (Class)loadedClasses.get("Thunk");Method force = thunkClass.getMethod("force");25

[VMNew(0),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V)]VMThunk 5[GetField(frame),Astore1,Aload1,Bipush(1),InvokeVirtual(local(I)LValue;),InvokeVirtual(force()LValue;),Return]VMClosure 4[Aload1,Bipush(2),InvokeVirtual(local(I)LValue;),InvokeVirtual(force()LValue;),VMNew(5),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V),InvokeVirtual(apply(LThunk;)LValue;),Return]VMThunk 3[GetField(frame),Astore1,VMNew(4),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V),Return]VMThunk 2[GetField(frame),Astore1,Aload1,Bipush(2),InvokeVirtual(local(I)LValue;),InvokeVirtual(force()LValue;),Return]VMClosure 1[Aload1,Bipush(1),InvokeVirtual(local(I)LValue;),InvokeVirtual(force()LValue;),VMNew(2),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V),InvokeVirtual(apply(LThunk;)LValue;),Return]VMClosure 0[VMNew(1),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V),VMNew(3),Dup,Aload1,InvokeSpecial(<init>(LFrame;)V),InvokeVirtual(apply(LThunk;)LValue;),Return] Figure 21: Java VM instructions for M126

EBGsystem(force.invoke(mainThunk));where mainClass is the class produced by loadClass, mainThunk is the valueof main in mainClass, force is the method which forces thunk objects. TheJava method EBGsystem is supplied with the result of forcing mainThunk.EBGsystem is responsible for supplying the value of main with a sequence ofJava VM responses to the sequence of requests which are generated. The modelof EBG execution is shown below:
list response list command

EBG
programThe commands produced by the de�nition of main in the package Sieve de�nedin �gure 1 are new and send. The new command is handled by creating a newinstance of the class name and adding it to the list of responses:Class namedClass = Class.forName(name);addResponse(namedClass.newInstance());The send command is handled by �nding the appropriate method called name,invoking the method with respect to the supplied object and argVals and thenadding the return value to the list of responses:Class objClass = object.getClass();Method m = objClass.getMethod(name,argTypes);Object[] args = new Object[]{argVals};addResponse(m.invoke(object,args));6 ConclusionThis work aims to provide a mixed paradigm programming environment whicho�ers the advantages of functional programming (de�nition by cases, paramet-ric polymorphism, lazy evaluation, higher-order functions, algebraic types) andthe advantages of Java programming (object-oriented execution, inclusion poly-morphism, portability, graphics, networking, multi-processing).To achieve this aim, a new programming language called EBG has beendesigned and constructed. EBG o�ers many of the features of a modern func-tional programming language, compiles to the Java VM language and providesprimitive features which allow the two languages to interact.This paper has described the implementation of EBG in terms toy languages:�; �Java; ebgInstr; and, javaInstr. These are sub-languages of the corre-sponding components of the real implementation whose features express theessential implementation characteristics.In addition to those described in this paper EBG has a collection of stan-dard functional programming features including: pattern matching in de�nitionsand case expressions (Peyton Jones 1987) ; type checking and type inference27

(Cardelli 1984) ; and, named modules consisting of collection of type and valuede�nitions which can be exported by the de�ning module and imported by othermodules.EBG functions have any number of arguments. The mechanism for main-taining local variables via instances of Frame is generalised to linked lists of heapallocated local frames where each frame has a number of entries correspondingto the function arguments.EBG provides local variable binding using case, let and letrec expressions.In each case the compiler generates code which extends the current local framewith the appropriate number of values.Compilation of EBG is very simple minded. This has the bene�t that theinterface between the two languages is clean; for example, closures and thunkscan be passed freely between EBG and Java because they are implemented asJava objects.In principle, closure-like and thunk-like objects can be created by Java asinstances of sub-classes of Closure and Thunk then passed to EBG programs.This interface provides scope for experimenting with new types of `function'; forexample, functions can be created which connect to other Java machines over anetwork and which produce a stream of results.The disadvantage of simple minded compilation is slow execution speeds forEBG programs. In addition, the Java VM code which is produced does not makee�cient use of the Java VM stack, for example by passing function argumentsvia a stack frame rather than as part of instances of Frame.EBG currently exists as a prototype implementation written in Java. Thecompiler uses the java compiler compiler javacc. The source code is currentlyabout 20000 lines of Java code (around 3000 of which is automatically generatedby javacc). EBG has been used to write a number of EBG libraries, sometutorial examples and the code in this paper.The next phase of EBG work will address its compilation and the expan-sion of EBG VM instructions to Java VM instructions. In addition, functionalprogramming research has produced a number of techniques for analysing andtransforming programs in order to increase their speed and decrease their spaceusage. These techniques include: strictness analysis (Peyton Jones 1987) ; theSTG machine (Peyton Jones 1992) ; and, deforestation (Wadler 1990) .EBG is novel since it is a lazy functional programming language which com-piles to the Java VM. Haskell evaluates lazily but does not compile to the JavaVM. MLJ, developed by Persimmon IT, is a compiler for Standard ML whichproduces Java bytecodes. Standard ML is a higher order functional program-ming language with an eager evaluation strategy.Kawa (Bothner 1998a 1998b) is an implementation of the lisp-derivativeScheme which compiles to the Java VM. Although Scheme employs an eagerevaluation strategy, the translation of Kawa directly to the Java VM uses sim-ilar mechanisms to EBG. For example, Kawa implements Scheme proceduresas instances of sub-classes of a Java abstract class Procedure which de�nes acollection of apply methods.Pizza (Odersky & Wadler 1997) and more recently GJ (Brache et al. 1998)28

are extensions of the Java language which aim to address the problem of para-metric types. In the case of Pizza, Java is extended with parametric types (suchas list of anything) which are incompatible with existing Java types (such aslist of Object). GJ aims to extend Pizza so that both of these types have thesame representation. Our approach di�ers in that we have provided parametrictypes in EBG which is a di�erent language from Java but can be executed onthe same machine. The lazy evaluation mechanism of EBG is not addressed byeither Pizza or GJ.Future plans for EBG include increasing the sophistication of its compila-tion and making the Java graphics, networking and multi-processing facilitiesavailable within a functional programming language.References[1] Bird R. & Wadler P. (1988) Introduction to Functional Programming. Pren-tice Hall Series in Computer Science.[2] Bothner P. (1998a) Kawa - Compiling Dynamic Languages to the Java VM.Presented at the 1998 Usenix Conference in New Orleans.[3] Bothner P. (1998b) Kawa: Compiling Scheme to Java. Presented at the1998 Lisp Users Conference in Berkeley, CA.[4] Brache G., Odersky M., Stoutamire D. & Wadler P. (1998) Making thefuture safe for the past: Adding Genericity to the Java ProgrammingLanguage. in proceedings of the 13th Annual ACM SIGPLAN Conferenceon Object-Oriented Programming Systems, Languages and Applications,(OOPSLA 98).[5] Cardelli L. (1984) Basic Polymorphic Type Checking. Science of ComputerProgramming, 8(2), 147 { 72.[6] Cardelli L. & Wegner P. (1985) On understanding types, data abstractionand polymorphism. ACM Computing Surveys. 17(4).[7] Clark A. N. (1994) A Layered Object-Oriented Programming Language.GEC Journal of Research. 11(3), 173 { 180.[8] Clark A. N. (1996) Semantic Primitives for Object-Oriented ProgrammingLanguages. PhD Thesis, Queen Mary and West�eld College, University ofLondon.[9] Cook W. (1989) A Denotational Semantics of Inheritance. PhD Thesis,Brown University.[10] Field A. J. & Harrison P. G. (1988) Functional Programming. Addison-Wesley Publishing Company.[11] Flannagan D. (1997) Java in a Nutshell. Second Edition. O'Reilly.29

[12] Garside R. & Mariani J. (1998) Java: First Contact. Course Technology.[13] Hankin C. (1994) Lambda Calculi a Guide for Computer Scientists. Claren-don Press, Oxford University Press.[14] Henderson P. (1980) Functional Programming Application and Implemen-tation. Prentice/Hall International, 237 { 238.[15] Meyer B. (1988) Object-Oriented Software Construction. Prentice Hall In-ternational Series in Computer Science.[16] Odersky M. & Wadler P. (1997) Pizza into Java: Translating theory intopractice. Symposium on Principles of Programming Languages, pp 146 {159.[17] Peyton Jones, S. L. (1987) The Implementation of Functional ProgrammingLanguages. Prentice-Hall International Series in Computer Science.[18] Peyton Jones S. L. (1992) Implementing lazy functional languages on stockhardware: the Spineless Tagless G-machine. Journal of Functional Pro-gramming, 2(2) 127 { 202.[19] Plotkin G. (1975) Call-by-name, call-by-value, and the �-calculus. Theo-retical Computer Science. 1, pp 125 { 159.[20] Sabry A. & Wadler P. (1997) A Reection on Call-by-Value. ACM Trans-actions on Programming Languages and Systems. 19(5), pp 111 { 136.[21] Venners B. (1998) Inside the Java Virtual Machine. McGraw-Hill.[22] Wadler P. (1990) Deforestation: Transforming programs to eliminate trees.Theoretical Computer Science. 73, pp 231 { 248.

30

