
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive
A Feasibility Study in Rearchitecting
UML as a Family of Languages using a
Precise OO Meta-Modeling Approach

Version 1.0. September 2000

Tony Clark, Andy Evans, Stuart Kent
(for pUML group)

Steve Brodsky, Steve Cook
(for IBM)

© September 2000 Tony Clark, Andy Evans, Stuart Kent & IBM

All rights reserved.

available from www.puml.org

https://core.ac.uk/display/42541660?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents
Executive Summary 7

Version 1.0, 11th September 2000: .. 8
Version 0.1, 22nd May 2000: ... 8

Chapter 1: Rearchitecting UML 9
1.1. Definition of UML 1.x ...9

1.2. Why is the definition of UML 1.x inadequate? ..9
How can conformance to the definition be checked?......................... 10
How can we be sure that the definition is self-consistent and is
comprehensive yet lean?... 10
The specialization and extension of UML continues all the time. How does
the existing definition allow this to be managed and controlled? 10

1.3. Requirements for a rearchitected definition of UML11

Chapter 2: Precise OO Meta-Modeling 13
2.1. Motivation ..13

2.1.1 Why OO meta-modeling? .. 13
2.1.2 Why precise? What about tools? ... 13

2.2. Design Principles for MML..14

2.3. An idealised Meta-Modeling Facility (MMF)..16
2.3.1 Meta-Modeling Language (MML) requirements 16
2.3.2 Tool requirements .. 17

Satisfaction checker .. 17
Instance generator ... 17
Graphical editor generation/configuration.. 18
Model interchange and XMI... 18

2.4. Relationship of MMF to MOF ...19

2.5. Summary...20

Chapter 3: An Architecture for UML 23
3.1. Introduction ..23

3.2. Subject areas ...25

3.3. Language aspects..27

3.4. Extending a language component...30

3.5. Summary...31

Chapter 4: The Meta-Modeling Language, MML 33
4.1. Introduction ..33

4.2. staticCore ... 34
4.2.1 core.model.concepts ...35

Well-formedness rules ..36
Methods...37

4.2.2 core.instance.concepts ..38
Well-formedness rules ..39

4.2.3 core.semantics ..39
Well-formedness rules ..40
Methods...40

4.3. datatypes .. 41
4.3.1 datatypes.model.concepts...42

Well-formedness rules ..42
4.3.2 datatypes.instance.concepts..42

Well-formedness rules ..43
Well-formedness Rules ...44

4.4. constraints .. 45
4.4.1 constraints.model.concepts...45

Well-formedness Rules ...46
Methods...47

4.4.2 constraints.instance.concepts ...47
Well-formedness Rules ...48

4.4.3 constraints.semantics..49
4.4.4 .Iterate..50

Well-formedness Rules ...51
4.4.5 Object satisfaction ..52

4.5. methods.. 52
4.5.1 methods.model.concepts ..52

Well-formedness rules ..53
Methods...53

4.5.2 methods.instance.concepts ...54
Well-formedness Rules ...54

4.5.3 methods.semantics..54

4.6. modelManagement... 54
4.6.1 modelManagement.model.concepts ...55

Well-formedness Rules ...55
4.6.2 modelManagement.instance.concepts ..55

Well-formedness Rules ...56
4.6.3 modelManagement.semantics ..56

4.7. reflection .. 56
4.7.1 reflection.model.concepts...56
4.7.2 reflection.instance.concepts ...56
4.7.3 reflection.semantics..57

Well-formedness Rules ...57
Example...59

4.7.4 Type semantics ...60
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 4

Methods .. 60

4.8. associations...60
4.8.1 binaryAssociation .. 60

associations.model.concepts ... 61
Well-formedness Rules... 61

4.8.2 association Class .. 61

4.9. Conclusions ..62

Chapter 5: Syntax Definitions 63
5.1. Introduction ..63

5.2. Syntax Packages ...63
5.2.1 Strings .. 65
5.2.2 Box and Line diagrams .. 66
5.2.3 XML... 72

5.3. Graphical Syntax Mappings ...73
5.3.1 Mapping of staticCore.model.concepts to box and line diagrams........... 73
5.3.2 Mapping of modelManagement.model.concepts to box and line diagrams77

5.4. XMI ..78
5.4.1 Mapping of staticCore.model.concepts to XML 78
5.4.2 Mapping of modelManagement.model.concepts to XML....................... 80
5.4.3 XML Issues.. 81

5.5. Conclusions ..82

Chapter 6: Dynamic aspects 85
6.1. Overview ..85

6.2. dynamicCore.model.concepts...85
Well-formedness Rules... 86

6.3. dynamicCore.instance.concepts ...86
Well-formedness Rules... 87

6.4. dynamicCore.semantics..88

6.5. Real-time extensions ..88

6.6. Conclusion ..89

Chapter 7: Conclusions 91
7.1. Summary...91

7.2. Tool...91

7.3. Further Work...92
7.3.1 Tool .. 92
7.3.2 Areas of UML.. 92
7.3.3 Backwards compatibility ... 93
7.3.4 Standardization Process ... 93
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 5

Standardizing new family members..93
Refactoring the family...94
Conformance ...94

References 97
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 6

Executive Summary
This report describes a feasibility study in rearchitecting UML. It develops a theory of
precise OO meta-modeling in order to fulfil this task, and checks the feasibility of that
theory by developing the meta-model of various aspects of UML.

The report is organized as follows.

Chapter 1 rehearses the arguments for rearchitecting UML. It concludes with some
requirements for a rearchitected definition.

Chapter 2 introduces an approach to precise OO meta-modeling. Some effort is made
to relate this to the OMG’s Meta-Object Facility - MOF, though this stops short of pro-
viding an exhaustive comparison. Based on the requirements for rearchitecting UML,
some requirements of a precise OO meta-modeling facility are identified, and an
approach to meeting these requirements, with regard to notations and tools, is outlined.

Chapters 3-6 support the theory with the details. Chapter 3 describes the structure of
the UML as a family of languages, notated with the package constructs that are part of
the OO meta-modeling language, MML. MML is itself a member of the UML family.
We note that circularity in the definition of MML is avoided by providing an external
characterization of the MML package, for example by implementing it as a tool. Cer-
tain essential patterns of packages and their relationships for language design are iden-
tified. Specifically, patterns are identified for separating models from instances, where
semantics is the mapping between the two, and syntax from concepts (similar to
abstract syntax for textual languages).

Chapter 4 defines those key packages in the UML family that contribute to the defini-
tion of MML, maintaining the focus on model concepts, instance concepts and seman-
tics.

Chapter 5 gives examples of various syntax to concepts mappings, and shows how the
same syntactic components may be mapped to different concepts, how syntax map-
pings may be extended as the set of concepts is extended, and how XMI may be
thought of as just another syntax mapping.

Chapter 6 outlines how dynamics aspects of the UML, including semantics, may be
defined using this approach.

Chapter 7 reflects on this feasibility study and concludes by identifying what next steps
need to be taken to complete the work begun here. In particular, there is some discus-
sion on how precise OO meta-modeling could be incorporated into the standardisation
process, considering issues such as checking conformance to a standard, and the
acceptance checks for a meta-model must include before it can be considered for stand-
ardisation.

Executive Summary
Version 1.0, 11th September 2000:

Chapter 2 (previously Chapter 1) has been rewritten and considerably reduced in size.
In particular, the detailed descriptions of the various tools were deemed too implemen-
tation-specific and have been replaced by much higher-level descriptions.

The remaining chapters have been reorganized. A new chapter 3, describes a proposed
new architecture for UML 2.0, based around the notion that UML is a family of lan-
guages.

Chapter 4 (previously chapter 2) has been reworked to take into account that MML, the
meta-modeling language previously referred to as mofk2, is part of the UML family.

Chapters 5 & 6 replace chapter 3 in a previous version, demonstrating the feasibility of
using MML to define syntax and dynamic aspects, respectively. These chapters report
work that is less developed than the work on MML.

The previous chapter 4, on tools, has been deleted. A prototype tool is being developed
and this will be described and delivered separately. The tool (and this report) should be
available in the near future from www.puml.org.

Chapter 7 has been added to reflect on the feasibility study, to outline how the work
should proceed, including known issues and problems, and to indicate how precise OO
meta-modeling may be usefully employed in the standardisation process.

A tool, MMT, has been constructed which implements the features of MML. MMT
will be/is available from www.puml.org, and has some associated documentation. A
future evolution of this report will include a write-up of the tool.

Version 0.1, 22nd May 2000:

Drafts of Chapters 1 & 2. No work done yet on Chapters 3 & 4. The alignment of
Chapters 1 & 2 needs to be completed. We fully expect that the model described in
Chapter 2, and outlined as part of the theory in Chapter 1, will need to be refactored as
tools are developed.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 8

Definition of UML 1.x
Chapter 1

Rearchitecting UML
This brief chapter overviews the current definition of UML and
rehearses the arguments, which have been set out elsewhere
[Clark et al. 1999], for rearchitecting that definition, using a
more precise, systematic and flexible approach.

1.1. Definition of UML 1.x
The UML 1.x family of definitions (e.g. [OMG 1999])each comprise the following
main components:

• A description of the concrete syntax (i.e. diagrams), in terms of prototypical exam-
ples and natural language explanation.

• A description of the semantics, comprising a meta-model description of the abstract
syntax and an English description of the semantics. The meta-model description of
the abstract syntax is given in terms of UML class diagrams with associated OCL
expressions, where class diagrams and OCL have themselves been defined in a sim-
ilar manner, the meta-model being replaced by a BNF syntax for OCL.

• The beginnings of descriptions of key profiles of UML, comprising a list of the lan-
guage constructs used in the profile and the stereotypes that may be applied to those
constructs. In the 1.3. standard the profiles included are for general-purpose soft-
ware development and for business modeling.

The introduction of profiles recognizes that, as the popularity of the UML increases, so
does the pressure to include new features that are particular to specific application
domains or styles of modeling activity. Uncontrolled evolution of the UML can lead to
a bloated notation that is difficult to learn and apply in practice. Profiles are intended to
allow one to develop variants of the UML suited for particular purposes. There are
essentially two kinds of profile. Horizontal profiles focus on particular styles of mode-
ling such as requirements, architecture design, software specification, business mode-
ling, implementation design and so on. Vertical profiles focus on specific domains,
ranging from quite general purpose (e.g. real time) to far more specific (e.g. the auto-
motive industry). Vertical profiles will select and specialize fragments from horizontal
profiles. Some profiles will be the cross-product of the two, for example requirements
modeling for real time.

Our thesis in this report is that the current approach to defining UML, especially in the
context of profiles, is inadequate. The next section provides evidence to support this
thesis.

1.2. Why is the definition of UML 1.x inadequate?
We consider three key questions, for which, we believe, the current definition has no
response.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 9

Chapter 1: Rearchitecting UML
How can conformance to the definition be checked?

Currently, the only way of checking that a tool or method conforms to UML definition,
is by inspection: compare the source code/test results of the tool with the syntax and
semantics definition on paper. This is certainly infeasible without having a method for
systematically transforming the source code/test results to something that can be com-
pared directly with those definitions, and probably infeasible without automating this
mapping and the checks in some way. In order to systemize or automate conformance
checking the definition needs to be far more precise than it currently is. In particular:

• The mapping of concrete syntax to abstract syntax (the meta-model) needs a more
systematic and unambiguous definition, which in turn probably requires the defini-
tion of the concrete syntax itself to be more precise and generic (i.e. not just proto-
typical examples).

• The semantics must be more than an English definition, conformance to which is
totally reliant on inspection and human interpretation.

How can we be sure that the definition is self-consistent and is
comprehensive yet lean?

Obviously it is important that the definition of UML is self-consistent, that one part of
the definition does not contradict another. It should be comprehensive, fully covering
the definition of concrete and abstract syntax as well as semantics. On the other hand, it
should be lean in the sense that redundancy of concepts is kept to the minimum. [Clark
et. al 1999] cites evidence where the current definition is weak with respect to these
aspects. Specifically:

• The informal description of concrete syntax, especially the use of prototypical
examples, is not comprehensive, and the lack of a fully-documented systematic
mapping from concrete syntax to abstract syntax (meta-model) makes this prone to
error and ambiguity. It has also allowed aspects of concrete syntax to creep into the
abstract syntax, as there is no clear separation between the two.

• The informally described semantics is also not comprehensive, and leaves room for
error and inconsistency, as well as failure to properly relate and sometimes integrate
concepts, leading to redundancy.

The specialization and extension of UML continues all the time. How does
the existing definition allow this to be managed and controlled?

The proliferation of profiles suggests that UML is not a single language, but a continu-
ally evolving family of languages. The challenge is to develop an approach to defini-
tion that supports an architecture which facilitates the graceful evolution of the UML
family.

The danger with the current definition of UML is that it will develop into an unmain-
tainable monolith. The danger is increased with its approach to profiles of subsetting
and specialization. Subsetting implies that the definition must include all concepts that
are ever likely to be required in any profile, suggesting that as profiles continue to be
developed the monolith will grow and it will be even harder to manage, including
maintaining backwards compatibility with previous versions. The current approach to
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 10

Requirements for a rearchitected definition of UML
specialization using stereotypes is quite shallow, unless supported by specializations in
the abstract syntax and semantics. But how this is done is not sufficiently defined.

Instead, an additive and evolvable architecture is required. To achieve this, it must be
possible to break the monolith into focused, clearly separated fragments which can be
specialized/extended independently, and assembled in different configurations to form
profiles. The relationships between profiles and language fragments should be explicit
and unambiguous so that the impact of proposed refactorings and extensions can be
identified simply and minimized where feasible.

1.3. Requirements for a rearchitected definition of UML
Three key requirements for a rearchitected definition of UML can be deduced from the
preceding discussion:

1. It should be precise to the degree that conformance can be checked systematically,
without argument and, preferably automatically, and that self-consistency of the def-
inition can be established.

2. It should be comprehensive, covering syntax, both concrete and abstract, and
semantics. On the other hand, redundant and overlapping concepts should be kept to
a minimum.

3. It should accept that UML is a family of languages, providing mechanisms that
allow profiles and language extensions to be defined in a controlled and managed
way, and which makes the relationships of profiles and extensions to existing lan-
guage fragments explicit and unambiguous.

A fourth requirement, which is met by the 1.x definitions to a large degree is that:

4. The definition should be accessible to tool builders and those involved in the stand-
ardization of the language.

In other words, the definition will be of little use if it is phrased in a language (for
example, a complex piece of mathematics) that those who need access to it can not
understand. That does not mean that it might not be supported by equivalent definitions
in such a language, if there is a good reason for doing this, such as provision of sophis-
ticated tools such as model checkers and theorem provers.

The next chapter argues that these requirements can be met by a precise object-oriented
meta-modeling approach to language definition. Subsequent chapters then test the fea-
sibility of that approach.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 11

Chapter 1: Rearchitecting UML
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 12

Motivation
Chapter 2

Precise OO Meta-Modeling
This chapter outlines a framework for precise OO meta-mode-
ling. This framework is motivated by a discussion of the benefits
to be gained from a precise, OO approach, specifically with
regard to the rearchitecting of UML.

2.1. Motivation

2.1.1 Why OO meta-modeling?

The OMG has adopted an OO meta-modeling approach to the definition of UML.
Essentially this means using a subset of UML to define UML. This has proved itself to
be an intuitive way of defining the conceptual basis (or abstract syntax) of UML.

We have started investigating the use of an OO meta-modeling approach to define the
(concrete) syntax and semantics of languages, and have found that, for a certain class
of languages, including UML, it is both feasible and intuitive, provided some important
features, such as a constraint language, are included.

In this study, our focus is on the precise definition of languages, with particular refer-
ence to the definition of UML. In this chapter we isolate the requirements of a OO
meta-modeling language (MML), as dictated by this focus. The remaining chapters
give a definition of MML in terms of itself, and show how MML can be used to charac-
terize significant fragments of UML, using an architecture that explicitly recognizes
that UML is not a single language, but a family of languages.

2.1.2 Why precise? What about tools?

By a precise MML, we mean the following:

• There is a single, precise reference definition of MML to which all other definitions
must conform.

• MML syntax, concepts and semantics are included in this definition.

• There should be tools which faithfully implement or embed the precise definition.

Precise does not mean that there need be an external mathematical definition of the lan-
guage. The part most frequently missing from definitions of a language, and which is
missing from UML 1.3, is a precise semantics. We see it as fundamental that this is
defined. In one approach the definition of MML is embodied in a tool which checks
conformance of models to meta-models defined in the language. For MML, this essen-
tially encodes a model-theoretic semantics, which states what models are valid
instances of any particular meta-model expressed in MML. Then MML (syntax, con-
cepts and semantics) is defined in itself, and put through the tool. There is then a cycle
where the model and tool are improved in tandem as one’s confidence in the definition
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 13

Chapter 2: Precise OO Meta-Modeling
of MML increases. The definition of MML in itself can become the reference defini-
tion, and tools implementing the translation of syntax to concepts, for example, would
be based on this definition. Indeed, it may even be possible to (partially) automate the
construction of the latter.

If we have a precise MML, that is expressive enough to define syntax, concepts and
semantics, then meta-models defined in MML will also be precisely defined, in the
same fashion as MML itself. In particular, we expect that the checking tool embodying
the semantics of MML can be used to realise the semantics part of any meta-model
defined in MML, in the sense that it can be used to check that instances of a model con-
forming to that meta-model (e.g. instances of some UML model) satisfy the definition
of that model. This will work provided the meta-model (e.g. of UML) includes a
semantics component that can be defined fully in MML.

An idealised meta-modeling facility (MMF = MML + tools) is outlined at the end of
this chapter.

2.2. Design Principles for MML
MML is for defining languages. Experience of language definition in general, and the
UML in particular, suggests the following design principles, which, if followed, dis-
charge at least the requirements for an approach to the definition of UML set out at the
end of the previous chapter.

1. MML should be able to describe syntax (both textual and visual, as in the UML),
concepts and semantics, including well-formedness rules and mappings.
A language definition comprises two key orthogonal distinctions.
The first is the distinction between model and instance. The model part comprises a
definition of the valid expressions in the language. The instance part comprises a
definition of the possible situations that expressions in the language may denote at
any point in time. For example, the model part of the definition of the language of
class diagrams defines what are valid class diagrams and what are not. The instance
part defines the valid object configurations (visualized as object diagrams) which
can be denoted by a class diagram at a point in time.
The second key distinction is between syntax and concepts, and this distinction
applies to both models and instances. Concepts are the essential concepts of the
model or instance part of a language. So the concepts underpinning class diagrams
are class, attribute, association, cardinality etc., and those underlying object config-
urations are objects, slots and links. A syntax for a set of concepts is a model of a
particular rendering of those concepts so that they may be written down, displayed,
read etc. A syntax for class diagrams could include boxes, lines, strings and so on.
Instances also have syntax: an object diagram is a syntax for the object configura-
tions.
Syntaxes may be more or less concrete than other syntaxes. So a syntax involving
only pixels on a page or screen is more concrete that one involving boxes, lines and
strings.
There may be many syntaxes for each set of concepts, and a syntax may be shared
between two different sets of concepts. For example, sequence diagrams in UML
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 14

Design Principles for MML
may be regarded as a syntax for specifying the allowed action sequences in a model,
or as a syntax for visualizing a single execution trace (i.e. an instance).
A language definition is not complete unless its various aspects are properly related.
The relationship between the model part and the instance part represents the seman-
tics of the language. In the tradition of denotational semantics in the programming
language field, and model-theoretic semantics for logics, it gives the rules for when
an instance is a valid instance of, satisfies a model and when it does not. It is suffi-
cient to define semantics as a mapping between the model concepts and instance
concepts.
It is also necessary to stipulate how the syntax(es) map into the concepts. An imple-
mentation of this mapping in the direction of syntax to concepts is essentially a
parser. An implementation of the mapping in the other direction is usually harder, as
one has to supply layout information – notoriously difficult for graphical languages.
To summarise, MML must include constructs to define the model and instance parts
of a language, to define syntax(es) and concepts for each of these parts, and to
define the mappings between all these components.

2. MML should be accessible to stakeholders in the activity of language design. For
UML this means those actively engaged in defining UML, and those involved in
providing tool support. Users of the UML notation and tools may be presented the
definition in a form that facilitates learning of the notation, for example a catalogue
of positive and negative examples.

3. MML should provide explicit support for the definition and evolution of language
families. There is strong evidence that UML is not a single language, but a family of
languages. Every organization seems to use its own UML ‘profile’ – a subset of the
language, extended with organization-specific stereotypes. Some
‘standard’ profiles are already on the drawing board. There is no evidence to sug-
gest that UML will not continue to evolve in this way.

4. MML should be precise and unambiguous, so that definitions in MML are precise
and unambiguous. The reasons for this have already been explained in Section
2.1.2.

5. MML is itself a language. Thus the definition of MML should distinguish between
syntax, concepts and semantics, and these should be defined in a precise and unam-
biguous way. Or, to put it another way, it should be possible to define MML in itself.
At the very least this will be a good test of the capabilities of MML.

6. MML should be a declarative language. Issues related solely to the implementation
of a repository to store language definitions (e.g. UML) and expressions of those
languages (e.g. a UML model) need not be part of MML. The language designer
does not need to know how tools to support that language are implemented, or be
unnecessarily exposed to features in the language which have no purpose other than
to support the implementation of tools such as a repository. On the other hand, we
recognize the importance of implementation, and hope and expect that MML would
provide the kernel of a model specifying one or more tools implementing aspects of
MML.

7. MML should support reflection. That is, it should support the treatment of a defini-
tion, a model elements, as data, an instance of a model element. It is expected that
considerable gains are to be made from building reflection into MML. For example,
if one develops a tool that checks instances against model elements, reflection can
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 15

Chapter 2: Precise OO Meta-Modeling
be used with this tool to check UML instances against UML models, UML models
against the UML meta-model, and the UML meta-model against MML itself
(remembering that we should be able to describe MML in itself, i.e. as a model).

In addition, there are some general principles that should apply to any language,
including MML:

8. A language should be coherent and consistent.

9. A language should keep the number of concepts used to a minimum. Preferably,
there should be a small set of orthogonal core concepts, on top of which other con-
cepts can be defined.

10.A language should not include unmotivated or unnecessary restrictions, that is
restrictions which seem to be there on whim.

2.3. An idealised Meta-Modeling Facility (MMF)
It is possible to distil from the preceding discussions some requirements for a meta-
modeling facility, which is a meta-modeling language plus its support tools.

2.3.1 Meta-Modeling Language (MML) requirements

In order to define the various components of a language (syntax, concepts, model,
instance) and the mappings between them the following two requirements are essen-
tial:

Constructs for specifying object structures. Class diagrams are essential to define
the vocabulary used to define object structures.

Constructs for expressing well-formedness constraints on object structures. Cen-
tral to writing out the full definition of syntax, concepts, semantics and the mappings
between them is to have a language that is up to the job of writing subtle constraints on
object structures. The Object Constraint Language that is part of UML is just such a
language; it is essentially a variant of FOPL tuned for writing constraints on object
structures.

To support (a) the separation of concerns (syntax, concepts, semantics) in a language
definition and (b) definitions of language families, such as UML, MML must include:

Constructs for packaging and composing fragments of language definition. Spe-
cifically, packages, package generalization, and realization/translation relationships
between packages.

So that generic tools can be built, MML requires:

Constructs to support reflection. Something can be viewed as both model and
instance. The class Association in the UML meta-model is both an instantiable thing
- it can have instances - and an instance - it is an instance of the MML Class construct.
Similarly the UML class Library is both instantiable and an instance, in this case of
the class Class in the UML meta-model.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 16

An idealised Meta-Modeling Facility (MMF)
2.3.2 Tool requirements

Little has been said, so far, about the tools required to support MML. It is our firm
belief that a meta-modeling language is little use without the tools to support it. Fur-
ther, as our approach is to define MML using itself, it is important to provide a method
that increases our confidence that the definition of MML is correct.

One approach to this would be to provide a definition of MML in a language which
already has a venerable past and in which we (and many others) have confidence, such
as the language of mathematics.

Another approach is to define a working model of that language which can be tried and
tested with examples. The more examples for which it works as expected, the greater
our confidence will be that the definition is correct. Even better, if that working model
is generated automatically from the description of MML in itself. And of course, a
working model can be used to perform useful tasks like help define new languages
using MML. This working model is the set of tools we propose to build. Following is a
list of tools we expect such a toolset to include. Of these, we see the first two as most
important.

Satisfaction checker

Check that a given instance satisfies a model. A key component of this is to provide a
checker that is able to take account of OCL-style constraints: does instance x satisfy
constraint c from model m?

Combined with reflective ability, such a tool can be used to perform a number of
checking tasks. Using the 4-layer architecture as a reference point, a model can be
viewed as an instance of a meta-model, so we can check that a model satisfies its meta-
model definition. We can also check that a meta-model satisfies the rules of the MML
itself. MML is itself a meta-model, and so meta-models are instances (models) of this
meta-model. Finally, MML is an instance of itself, so its well-formedness can be
checked against MML. Thus a satisfaction checker is an essential tool in helping us
become more confident that MML is correctly defined.

Initially one would implement the checker for MML or some appropriate subset, and
this would then work with any language whose concepts could be mapped back to
MML concepts. However, eventually it would be desirable to have a satisfaction
checker for any language that defined a model part and an instance part. Preferably, this
should be generated from the definition of that language in MML, or, alternatively,
there should be a generic tool that is able to adapt itself according to the language defi-
nition in use (see next tool).

Instance generator

Given a model, generate an instance that satisfies it. Again, the ability to take account
of OCL-like constraints is essential.

Such a tool could be used, for example, to generate an instance of a mapping between
one language component and another. For example, if one has a model describing the
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 17

Chapter 2: Precise OO Meta-Modeling
mapping between the syntax and concepts of, say, class diagrams, one could use this
tool to generate an expression of the concepts part (specific classes, attributes and asso-
ciations) from a collection of boxes, lines and strings (the syntax part), by generating a
valid mapping.

If this tool has been implemented for some MML, this tool could be used to implement
a satisfaction checker for any language whose semantics can defined in MML (the lat-
ter condition means that the MML in question must include an OCL-like constraint
language). By providing a description of the semantics using MML, and the constraint
language in particular, the proposed tool could be used to generate anything that is
missing to complete the mapping of a given instance and model. If the mapping can’t
be completed, then checking fails.

In general, it is expected that an instance generator will never be fully automatic. For
example, consider the mapping from concepts to a graphical syntax. That mapping is
unlikely to specify the exact layout of diagrams at the syntax end, so will be underde-
termined in the sense that many diagrams (with the same boxes and lines, but different
layout) would map to the same concepts. To cater for such cases, a mechanism must be
provided whereby the additional information can be supplied as required, either from
the user of the tool or by virtue of another program (e.g. a layout algorithm).

Graphical editor generation/configuration

The main purpose of MML is to provide a more complete definition of UML organised
as a family of languages. Many of the key notations in UML are graphical. It would be
desirable to have a means of generating graphical editors for a graphical syntax defined
in MML, or, alternatively, of configuring a generic editor for a particular MML-defined
language. Research is continuing elsewhere to establish the feasibility of this and how
it might be done. An important aspect to keep in mind is the useability of the resulting
editor – the editor controls must match the concepts that the diagrams are intended to
represent, not the diagrammatic symbols themselves.

Model interchange and XMI

In both the UML and MOF 1.x standards, XMI is used for model interchange. In this
section we introduce XMI and argue that it should be treated as “just another syntax”.

What is XMI? There are two kinds of XML documents: datatype definitions, files
with extension .dtd and XML documents, with extension .xml. XML documents con-
form (or not) to data type definitions. A data type definition essentially defines the tags
and attribute values of tagged elements that can be used in a conforming XML docu-
ment. XMI is a standard for representing MOF and UML models in XML, and includes
various tools for manipulating XMI documents.

There are two key .dtd’s included in XMI: mof.dtd and uml.dtd. There is a tool that will
generate X.dtd from a document X.xml conforming to mof.dtd. We understand that
uml.dtd was generated in this way. There is a document mof.xml conforming to
mof.dtd, and changes to mof.dtd could be made by generating it from a new version of
mof.xml. Documents conforming to mof.dtd represent MOF-compliant meta-models;
documents conforming to uml.dtd represent UML models.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 18

Relationship of MMF to MOF
We understand that there is a tool that will take X.xml conforming to uml.dtd, but
which only uses a subset of UML – essentially class diagrams – and generate
Xasmof.xml conforming to mof.dtd. No doubt this makes use of the close
correspondence between (a subset of UML) and MOF.

Currently XMI does not include a .dtd governing xml documents representing
instances of UML models. This is not a failing of XMI, but rather a consequence of the
fact that the UML meta-model does not encode the concept of model instance. Encod-
ing a concept of model instance is a major step to encoding semantics, i.e. the relation-
ship between instances.

Similarly, there is also nothing in XMI to represent concrete syntax (e.g. boxes, com-
partments and lines on a class diagram), including layout information. Again, this can
be remedied by including a definition of syntax(es) in the meta-model, and its (their)
relationship to the concepts (and to each other). The .dtd defining the tags to carry this
information could then be generated using existing tools, allowing XML documents to
be written encoding this information.

XMI and MML. The first point to recognize is that XML is just another syntax. When
defining MML in itself, we should be able to provide a model of the XML syntax and a
mapping of that model into the model concepts part of the definition of MML in itself.
The effect of this would be to provide a definition of the XML representation of any
meta-model defined using MML. That XML representation could take the form of an
.xml or a .dtd document – a model of and mapping to each could both be defined.

As MML is itself a meta-model, this would also serve to define the XML representa-
tions for MML.

Thus by treating XML as another syntax we get all the existing features of XMI in the
current standards. Combine these with the tools suggested above, we get a more pow-
erful feature set. The satisfaction checker is a much stronger checking tool than the
rather weak checking provided by XML, in the guise of checking an .xml document
against its corresponding .dtd. Even when XMI is revised to replace .dtd’s with XML
schemas, the checking will still be weak in comparison. The proposed generation tools
will provide all the generation facilities included in XMI, and more.

In addition, as language definitions in MML will include an instance part, as required
to define semantics, an XML syntax can br provided for that also. Thus, again be treat-
ing XML as just another syntax, it will be possible to produce XML representations of
instances of models.

Finally, it is also possible to give a syntax a syntax. So, for example, one can define a
mapping between a model of XML and a model of box and line diagrams. In this way
the representation of concrete, graphical syntax in XML can also be defined and gener-
ated using the tools proposed above.

2.4. Relationship of MMF to MOF
The Meta-Object Facility (MOF) is a language and a set of tools for defining meta-
models and meta-data repositories. Currently, UML is defined indirectly using MOF:
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 19

Chapter 2: Precise OO Meta-Modeling
there is an encoding of the abstract syntax of UML in MOF which is used to generate
IDL and XMI. The OMG has a goal to define UML directly in MOF (i.e. for there only
to be one meta-model, not two) and for MOF to be (isomorphic to) a subset of UML.

A key goal of the work described in this report is for UML to be defined in MML and
for MML to be a subset of UML, in other words a member of the UML family of lan-
guages.

We have not conducted a detailed comparision of MOF and MMF. However, it is worth
making the following observations:

• MOF 1.3. does not clearly separate those features targeted on language design and
those features targeted on repository generation.

• If the features targeted on language design could be extracted, it seems that there are
some problems with the package extension, nesting and reference mechanisms,
there is a need to integrate OCL properly, and the reflective aspects could probably
be improved.

• If one accepts the argument that UML should be a family of languages, then rearchi-
tecting the definition of MOF so that it is a member of the UML family would be
desirable.

• There has been no attempt to separate out the different aspects of a language defini-
tion (syntax, concepts, semantics) both in the use of MOF to define languages and in
the definition of MOF itself.

Given these observations, it seems that the two goals of

• defining UML directly in MOF and making MOF a subset of UML, and

• incorporating the expressive power of MML in distinguishing between syntax, con-
cepts and semantics,

could only be achieved with major revisions to MOF. An alternative approach would
be to define, in MML, a (two way) mapping from MML to MOF and thereby retain
MOF in more or less its current form. This is very important given the many existing
implementations of MOF. Further work is needed to construct such a mapping.

2.5. Summary
Driven by the needs of language design in general, and the rearchitecting of UML in
particular, we have proposed a meta-modeling facility (MMF), which combines a
meta-modeling language (MML) with the tools to support that language. The goal is
for language designers to define languages as expressions in MML, assisted by tools
for editing and managing language definitions, and for users of those languages to be
provided, preferably automatically, with language-specific tools based on those defini-
tions. The latter can be via one of two routes: generic tools that work with any language
definition, or generation of tool(s) from the language definition.

In the remainder of this report we focus on defining MML itself, as one of the UML
family, and then show how MML can be used to define other members and other
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 20

Summary
aspects of that family. A prototype tool, which implements some of the facilities out-
lined above, is being developed to support MML and should be available shortly.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 21

Chapter 2: Precise OO Meta-Modeling
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 22

Introduction
Chapter 3

An Architecture for UML
This chapter proposes a new architecture for UML, based on the
central tenet that UML represents a family of languages. Pack-
ages, package generalization and containment are used to pro-
vide layering of languages units, and to separate concerns, for
example distinguish between model and instance and between
syntax and concepts. Some patterns of packages and their rela-
tionships, which seem to recur in the language design, are identi-
fied.

3.1. Introduction
The architecture proposed in this chapter takes the idea that UML is a family of lan-
guages as a central tenet. Packages are used to separate out components of UML in two
ways.

• By subject area, for example those aspects at the core of static and dynamic mode-
ling, respectively, a constraint language, those aspects dealing with model manage-
ment, and many more. Language components build on top of more basic
components. For example, constraints are built on top of a static core. Package spe-
cialization is used to achieve this kind of layering. At some point a language compo-
nent becomes a language that is recognized as having a particular use, such as
MML.

• By language aspect, maintaining a separation between syntax and concepts, and
between model and instance, as discussed in Chapter 2. Language aspects require
mappings between them. Thus syntax needs to be mapped to concepts and models
mapped to instances (semantics). Mappings are expressed as packages which spe-
cialize the packages representing the two sides being mapped.

The aim is to define the UML family, including MML itself, in MML. At this stage in
the report, and when we started out on this work, a definition of MML does/did not
exist. In Chapter 2, we suggested an approach where the definition of MML is embod-
ied in a tool which checks conformance of models to meta-models defined in the lan-
guage. For MML, this essentially encodes a model-theoretic semantics, which states
what models are valid instances of any particular meta-model expressed in MML. Then
MML (syntax, concepts and semantics) is defined in itself, and put through the tool.
There is then a cycle where the model and tool are improved in tandem as one’s confi-
dence in the definition of MML increases.

Essentially this is the approach we have taken, though it still remains to detail how we
get to the first embodiment of MML in a tool. As indicated in Chapter 2, MML incor-
porates existing notions in modeling, specifically class diagrams, OCL constraints and
packages. The way packages are handled is slightly different to their treament in UML,
bearing a much closer resemblance to the ideas presented in Catalysis [D’Souza and
Wills 1998, D’Souza et al. 1999]. No precise definition exists which integrates all these
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 23

Chapter 3: An Architecture for UML
notions, or combines them with a rich model of reflection. That is one of our tasks.
However, the notions are understood enough to allow a first cut model to be produced
using existing notations.

Thus our approach has been to begin by developing a series of class and package dia-
grams (using Rational Rose) and accompany these with a set of OCL constraints. Then
to construct a tool based on our understanding of these paper artefacts. As the tool has
taken longer to develop than expected, and because it does not (yet) generate diagrams
from the models, it has been convenient to continue to maintain the Rose model,
although, inevitably, this has led to some synchronisation issues. Our eventual goal is
for there only to be one model (the one in and implemented by the tool), which will be
aided by the ability to generate diagrams from the models, according to the syntax
mappings that have been defined for the components of MML (see Chapter 5).
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 24

Subject areas
3.2. Subject areas
To illustrate how UML can be broken down into subject areas consider Figure 1 and
Figure 2.

Figure 1 shows the various language components from which MML is constructed.
Each of these is described in detail in Chapter 4. The arrows are intended to represent
generalisation between packages. StaticCore generalises associations,
reflection etc. Our preference would have been to use the normal UML inheritance
arrow, but we have been constrained by what is possible in Rational Rose. Generalisa-
tion between packages is similar to generalisation between classes. If one thinks of a
class as a container, in the sense that it contains attributes, methods and so on, then in a
class generalisation relationship, the child must contain everything that the parent con-
tains, but is allowed to specialise any of its components in a behaviourally conformant
manner, and include new components. Similarly for package generalisation, except that
packages contain classes and associations, instead of attributes and methods. We also

Figure 1. The components of MML

UML

(f rom Lo gical V iew)

staticCore
constraints

associations

da tatypes

reflection

methods

mml

modelManagement
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 25

Chapter 3: An Architecture for UML
allow renaming on generalisation (for packages and classes). Every model element has
a name, and a model element can be specialised by changing its name. An example of
renaming in use is given in Chapter 5.

All the language components are contained in the package UML. So, as well as con-
taining classes and associations, packages can contain other packages.

Figure 2 shows how another family member for UML could be constructed, this time a
language for software design. One can see how new components to handle the dynamic
aspects are introduced, which specialise and extend components used for MML. In

Figure 2. A language for software design

UML

(from Logical View)

sof twa reDesign

contracts

mml

interactions

d ynamicCo re

constrai nts

staticCore

statemachines
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 26

Language aspects
addition, the language for software design must include all the features of MML itself,
as these provide all the facilities for static modeling.

Of course there are likely to be many other family members: languages for modeling
business processes, for modeling software design processes, which may be a speciali-
sation of the language for modeling business processes, for modeling real-time sys-
tems; then languages for modeling in specific domains such as telecoms, health,
automotive industry, and so on. We expect that all of these can be defined in a similar
manner.

3.3. Language aspects
Each language component is further broken down into components according to the
model/instance and syntax/concepts divides. For example, the package diagrams defin-
ing staticCore are given by Figure 3, Figure 4 and Figure 5.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 27

Chapter 3: An Architecture for UML
Figure 3 illustrates how a language component is broken down into a model and
instance aspect, where semantics is a mapping between the conceptual aspect of each.

Semantics mappings are examined more closely in Chapter 4.

Figure 3. the components of staticCore

staticCore

(f rom UML)

staticCore .mod el

sta ticCo re.i nstance

staticCore.semantics

staticCore.model.concepts

(from staticCore. mo del)

staticCore.instance.concepts

(from staticCore.instance)
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 28

Language aspects
Figure 4 and Figure 5 shows that both model and instance aspects can be broken down
into syntax and concepts aspects. This may seem odd for instances, until one considers
that an object diagram is just a syntax for the concepts of object, link, etc.

Figure 4. Components of staticCore.model

staticCore.model

(from staticCore)

staticCore.model.concepts

syntaxLibrary.BaLDiagrams

(from syntaxLibrary)

staticCore.model.graphicalsyntax

staticCore.model.graphicalTooTconcepts
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 29

Chapter 3: An Architecture for UML
The mapping between syntax and concepts is given by a syntaxTooTconcepts package.
Where syntax my be a graphical syntax, xml etc. Syntax mappings are examined more
closely in Chapter 5.

We haven’t shown the full contents of either staticCore.instance or staticCore.model, as
there are likely to be other syntaxes that will be defined. Thus in Chapter 5, both graph-
ical and xml syntaxes are defined for staticCore.model.

3.4. Extending a language component
So what happens to the sub-components when a language component is extended? The
definition of generalisation tells us that by Figure 1, for example, modelManagement
must contain the components of staticCore, that is it must also have model, instance
and semantics packages, and, further, that these are still broken down into syntax (pos-
sibly more than one), concepts and the mappings between them. In the
modelManagement package we are at liberty to further specialise the components
inherited from staticCore. Numerous examples of language extension can be found
in subsequent chapters.

Figure 5. Components of staticCore.instance

staticCore.instance

(from staticCore)

staticCore.instance.concepts staticCore.instance.graphicalsyntax

syntaxLibrary.BaLDiagrams

(from syntaxLibrary)

staticCore.instance.graphicalToo
Tconcepts
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 30

Summary
3.5. Summary
This chapter has overviewed a collection of packages representing part of the UML
family of languages. It has shown how UML can be constructed incrementally using
package generalisation (specialisation) and how a clear separation between the differ-
ent aspects of a language definition can be maintained. Subsequent chapters add detail
to some of the packages presented here.

Further work in the are of language architecture would include identifying useful pat-
terns of package structures (for example the model/instance, syntax/concepts divides)
and embody these patterns, including the definition of intuitive syntaxes, in a revision
of MML – the UML family member for language definition.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 31

Chapter 3: An Architecture for UML
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 32

Introduction
Chapter 4

The Meta-Modeling Language, MML
This chapter presents a precise meta-model description of the
meta-modeling language, MML.

4.1. Introduction
The purpose of this chapter is to present a precise description of the semantics of the
Meta-Modelling Language (MML). As outlined in the previous chapter, the description
consists of a meta-model of the semantics of MML written using the MML itself.

The components of the MML are shown in Figure 6. In order to make the definition of
the MML manageable and understandable, a layered, pluggable architecture has been
adopted. Packages are used to separate out different concepts of the language. Package
extension is then used to combine and extend upon these concepts in a logically con-
sistent way, resulting in the complete MML definition.

Figure 6. Components of the MML

A brief description of the purpose of each package is described below.

staticCore: fundamental object-oriented constructs for describing the static compo-
nents of MML. It includes classifiers, classes, attributes, instances, objects and slots.

staticCore

datatypes reflectionmodel
Management

uml

constraints associations

methods

mml
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 33

Chapter 4: The Meta-Modeling Language, MML
This package provides the basic semantic structures and concepts from which all other
parts of the MML are extended.

datatypes: a package of UML data types, including basic data types such as integers
and strings. It also includes collection types, such as sets, sequences and bags.

constraints: constructs relating to the expression of constraints. It defines a constraint
language for MML that is similar to OCL, but which has a precise meta-model seman-
tics.

methods: a definition of static methods. A static method has parameters and a return
type, but no side effects.

model management: general mechanisms for managing collections of MML con-
structs. The primary mechanism provided is package extension (package specialisa-
tion).

reflection: a definition of meta-levels and meta-instances. It provides a precise defini-
tion of what it means for a model to be a meta-instance of another model, a pre-requi-
site for allowing reflection in the MML.

associations: contains a definition of MML associations.

mml: merges all the components of MML into a single package.

As described in the previous chapter, each component of the MML is further divided
into a strict pattern of syntax, concepts, instance and semantics packages. The concepts
package describes the modelling concepts of the component, and the instance package
describes the semantic domain of the modelling concepts. A mapping from each con-
cept to its semantic domain is given in the semantics package, which extends both
packages. Finally, the syntax package maps syntactical constructs (boxes, lines, etc.) to
concepts.

The remainder of this chapter gives a detailed description of the contents of these pack-
ages, thus providing a definition of the semantics of MML. Details of the syntax pack-
ages are left until a later chapter.

4.2. staticCore
The static core package describes the fundamental static modelling constructs required
to build MML models. It provides a general framework for extending MML with new
model elements, including plug in-points for extension and useful meta-modelling pat-
terns.

As shown in Figure 7, the staticCore package is decomposed into three sub-packages:
model, instance and semantics. These describe the abstract syntax and well formedness
rules of the core modelling concepts, the semantic domain and the relationship between
abstract syntax and semantic domain concepts.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 34

staticCore
Figure 7. core package

4.2.1 core.model.concepts

The model concepts package of the core is shown in detail in Figure 8. The purpose of
this package is to provide an abstract classification hierarchy within which the model-
ling elements of MML can be ‘plugged’. Briefly, it consists of the following classes:

ModelElement: All components of a model are model elements. Every modelling
element has a name.
Container: Many modelling elements contain other modelling elements.This pat-
tern is defined by the class container.
Generalisable: The generalisable class captures the notion of an extension rela-
tionship between model elements. A generalisation is a named link between a gener-
alisable element and its parents/children.
Classifier: a generalisable, container of model elements, which captures the notion
of a collection of instances. A classifier represents a fundamental pattern of features
and properties which are shared by any model element in MML whose purpose is to
classify properties of a model.

In addition, two important concrete (i.e. non-abstract) elements of the MML are
defined in the staticCore. Classes are denoted as classifiers (they are named and are
generalisable and instantiable). Classes also contain attributes. An attribute has a name,
and a type, which is a classifier. Attributes are also classifiers, and are viewed as con-
taining their types.

Note, that in the MML, attributes do not have multiplicities. Instead, their type indi-
cates whether they are multi-valued or not (see section 4.3.1). This aims to provide a
less restrictive and more coherent way of expressing attribute values, which is more
appropriate for OCL.

semantics

core

instance

concepts syntax

syntax2concepts

syntax concepts

syntax2concepts

model
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 35

Chapter 4: The Meta-Modeling Language, MML

Figure 8: core.model.concepts Package

Well-formedness rules

The following well-formedness rules apply to the static abstract syntax package:

[1] No two elements belonging to a container can have the same name:
context uml.staticCore.model.concepts.Container inv:

elements -> forall (e1 |
elements -> forall (e2 |
e1.name <> e2.name implies e1 <> e2))

[2] Circular inheritance is not allowed.
context uml.staticCore.model.concepts.Generalisable inv:

not(self.allParents()->includes(self))

[3] The parents of a generalisable element must be of the same type.
context uml.staticCore.model.concepts.Generalisable inv:

parents() -> forall(p | p.type() = self.type())

Note, the definition of the method type() is given in Section 4.7.4.

[4] A generalisable element must conform to its parents.
context uml.staticCore.model.concepts.Generalisable inv:

parents() -> forall(g | self.conformsTo(g))

Generalisable must set up an extensible constraint that must hold between a parent and
child. This is done via an abstract method 'conformsTo' that all generalisable elements
must provide. This allows specific sub-classes of Generalisable to define their own
conformance rules.

ModelElement

name : String

Container

*+elements *

Class

Generalisation

Attribute

*

+attributes

*

Generalisable
conformsTo()

1 *
+parent

1

+generalisations

*

1 *
+child

1
+specialisations

*

Classifier
isAbstract : Boolean

1

+type

1

*
+elements
*

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 36

staticCore
[5] The elements of a class contain its attributes.
context uml.staticCore.model.concepts.Class inv

elements->exists(g |
g.name = "attributes" and
g.elements = allAttributes())

Note that because a class is a container, it is necessary to state an invariant which links
each of its contained elements (in this case attributes) with those of the inherited asso-
ciation ‘elements’. Furthermore, if it is desirable to add further contained elements, a
classifier must be used as a intermediate container for elements of each type. Other-
wise, it will not be possible to distinguish between different contained elements which
share the same type. For example, a class will be further extended by a variety of fea-
tures such as methods and constraints. Thus, we distinguish between these by associat-
ing a class’s elements with named containers, each of which contains the appropriate
elements.

[6] The elements of an attribute contain its type.
context uml.staticCore.model.concepts.Attribute inv:

elements->size = 1 and
elements->exists(g | g.name = "type" and g.elements = Set{type})

Methods

The method parents() returns a set containing all the direct parents of a generalisable
element.

context uml.staticCore.model.concepts.Generalisable
parents() : Set(Generalisable)
self.generalisations -> iterate(g set = Set{} | g.parent)

The method allParents() returns a set containing all parents of a Classifier, excluding
the Classifier itself.

context uml.staticCore.model.concepts.Generalisable
allParents() : Set(Generalisable)
self.parents()->union(parents()->iterate(parent set = Set{} |

set->union(parent.allParents())))

The method allContents() is an abstract method that is inherited by all classifiers. It
returns the set of all elements of the classifier, including those of its parents.

context uml.staticCore.model.concepts.Classifier
allContents() : Set(Classifier)
elements->union(parents()->iterate(parent contents = Set{} |

contents->union(parents().allContents())))

The method allAttributes() returns the set of all attributes of Class, including those of
its parents:

uml.staticCore.model.concepts.Class
allAttributes() : Set(Attribute)
parents->iterate(p s = attributes |

s->union(p.allAttributes()->reject(c |
attributes->exists(c' | c'.name = c.name)))
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 37

Chapter 4: The Meta-Modeling Language, MML
Duplicate attributes from multiply inherited classes are removed non-deterministically.

The methods conformsTo(c) defines what it means for a Classifier to conform to its
parents:

uml.staticCore.model.concepts.Classifier
conformsTo(g:Generalizable):Boolean
if self = g then true
else

if g.isKindOf(Classifier)
then

if self.allParents()->includes(g)
then g.elements->forAll(e1 |

elements->exists(e2 |
e1.name = e2.name and
e2.conformsTo(e1)))

else false
endif

else false
endif

endif

A classifier defines the essential conformance constraint via a definition of the inher-
ited method 'conformsTo'. Two classifiers conform when the sub-classifier defines
model elements with the same name as the super-classifier and when the corresponding
elements conform. Note that it does not matter whether the elements under test are con-
tainers or atomic model elements, as it can be relied upon that the elements of a classi-
fier are generalisable and therefore comparable.

4.2.2 core.instance.concepts

The instance.concepts package (see Figure 9) describes the semantic domain of the
concepts in the core.model.concepts package. By semantic domain, it meant the mini-
mal set of concepts that can be used to describe the meaning of the concepts in the
model.concepts package.

Figure 9: core.instance.concepts Package

InstanceElement
name : String

Object Slot
*

+slots

*

Instance
satisfies() 1

+value

1

*
+elements

*

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 38

staticCore
An instance is a named instance element. An instance represents a fundamental pattern
of features and properties which are shared by any instance in MML whose purpose is
to classify properties of a model instances.In particular, it describes the fact that many
instances contain other instances, and that instances satisfy the property of their classi-
fiers.

Object and slot are fundamental concrete instances. An object contains slots, which
have values.

Well-formedness rules

[1] The elements of an instance have unique names.
context uml.staticCore.instance.concepts.Object inv:

elements -> forall(e1 |
elements -> forall(e2 |

e1 <> e2 implies e1.name <> e2.name))

[2] An object contains its slots.
context uml.staticCore.instance.concepts.Object inv:

elements->exists(g |
g.name = "attributes" and
g.elements = slots)

[3] A slot contains is its value.
context uml.staticCore.model.concepts.Slot inv:

elements->size = 1 and
elements->exists(g | g.name = "type" and g.elements = Set{value})

4.2.3 core.semantics

The core.semantics package (Figure 10) imports all the constructs of Figure 8 and Fig-
ure 9. It associates classifiers with the valid set of instances that they may classify.
Here, the association is further subclassed to restrict slots to being instances of
attributes, and objects as instances of classes.

Figure 10: core.semantics Package

InstanceClassifier
*1

+instances

*

+of

1

ObjectClass +instances+of

SlotAttribute +instances+of
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 39

Chapter 4: The Meta-Modeling Language, MML
Well-formedness rules

The following OCL expressions precisely describe the constraints that relate model to
instance concepts.

[1] An instance must satisfy the properties of its classifier.
context uml.staticCore.semantics.Instance inv:

self.satisfies(self.of)

[2] Abstract classifiers cannot be instantiated.
context uml.staticCore.semantics.Classifier inv:

isAbstract implies self.instances -> isEmpty

Methods

The method satisfies(c) defines what it means for an instance to satisfy the structural
properties of a classifier.

context uml.staticCore.semantics.Instance inv:
satisfies(c : Classifier) : Boolean
if self.of = c then

of.allContents() -> forall(e1 |
self.elements -> exists(e2 |

e1.name = e2.name and
e2.satisfies(e1)))

else false
endif

An instance defines the essential satisfaction constraint via a definition of the inherited
method 'satisfies'. An instance satisfies the properties of a classifier if, it is an instance
of the classifier, and, for every element of the classifier, there exists an element of the
instance such that the name of the instance element equals the name of the classifier
element, and the instance element satisfies the classifier element.

The staticCore package is designed to ease the definition of new types of modelling
element and their instances. In general, new types of element will be generalisable and
will act as containers. Modelling elements may be defined as extensions of the existing
classes, for example adding class features by extending Class with a new generalisable
container. Alternatively, new types of modelling element may be defined, for example
state transition machines or collaboration diagrams. Each new type of modelling ele-
ment may take advantage of the standard patterns by extending Generalisable and/or
Container. New sub-types of Generalisable should specialise the 'conformsTo' method
so that it defines how to compare two instances of the new type. New sub-types of
Container should define an invariant describing how 'elements' is structured. Finally,
new sub-types of Instance should specialise the ‘satisfies’ method so that it defines
how to compare instances against the model elements that they are an instance of.

It is possible to identify a number of steps that can be followed when adding new
model elements to the MML. Briefly, these are as follows:

1. determine whether the model element is a subclass of classifier, i.e. exhibits the
property of a generalisable, container;
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 40

datatypes
2. if so, subclass the model element as a classifier in the model.concepts package;

3. constrain the model element’s contents to be those of the attribute ‘elements’;

4. in the instance.concepts package, identify or add a new instance subclass which is
an instance of the classifier;

5. in the semantics package, link them by subclassing the ‘of/instances’ association;

6. for each element of the new model element repeat steps 4-5;

7. determine any dependencies between instances and their elements, and specify
these using appropriate constraints.

Note, in future versions of the MML it is intended to generalise the staticCore package
further still. This will involve constructing packages of appropriate meta-modelling
patterns (container/containable, instantiable/instance, and so on) and then defining con-
crete MML classes to be ‘mix-ins’ of the various patterns. As more experience is
gained in extending MML with new model elements, an appropriate set of patterns will
no doubt become identifiable.

4.3. datatypes
In this section, we extend the core model with data types. The extension is described by
the datatypes package (see Figure 11). It extends the model, instance and semantics
packages of the core. We follow the guidelines in the previous section to ensure that the
extension satisfies the minimal semantic properties of model and instance concepts.

Figure 11: datatypes Package

core

instance

semantics

model

semantics

instancemodel

datatypes
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 41

Chapter 4: The Meta-Modeling Language, MML
4.3.1 datatypes.model.concepts

The contents of the datatypes.model.concepts package is shown in Figure 12. It intro-
duces a new classifier, the data type. Datatypes include primitive built-in types (such as
integer and string). In addition, a collection datatype is introduced to represent the
basic built-in collection types of the MML (sets, sequences and bags).

Figure 12: datatypes.model.concepts Package

There can only be one classifier representing a boolean, string, real or integer data type,
and this is denoted by defining each data type as being an ‘instance’ of datatype (a def-
inition of what it means for a class to be an instance of another class is given in section
4.7.4). Collections are parameterised by the type of classifier that they can contain.
Finally, integers are subclasses of real datatypes, as integer values are also real values.

Well-formedness rules

[1] A collection contains its elementtype
context uml.datatypes.model.concepts.Collection inv:

elements->size = 1 and
elements->exists(g | g.name = "elementtype" and

g.elements = Set{elementtype})

4.3.2 datatypes.instance.concepts

The Datatypes.instance.concepts package is shown in Figure 13. For each type in the
datatype.model.concepts package, a corresponding datatype value is included in the
package. For example, a boolean is represented by a boolean value, which may be true
or false. Collection values contain elements, i.e. objects or datavalues. In the case of

DataType

Set BagSequence

Boolean String Real Integer

Classifier

Collection

1

+elementtype

1

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 42

datatypes
sequence values, an index is associated with each element in the sequence, while a
count is associated with each element in a bag value.

Figure 13: datatypes.instance.concepts Package

Well-formedness rules

[1] A sequence value with n elements, will have 1..n index values.
context uml.datatypes.model.instance.SequenceValue inv:

index -> forall(i1,i2 |
i1 <> i2 implies i1.value <> i2.value) and
index -> iterate(x set = Set{} |

set -> union(x.value)) = 1..(index -> size())))

[2] A set value contains are its instances.
context uml.datatypes.instance.concepts.SetValue inv:

elements->exists(g | g.name = "elementtype" and
g.elements = elements)

[3] A sequence value contains its instances.
context uml.datatypes.instance.concepts.SetValue inv:

elements->exists(g | g.name = "elementtype" and
g.elements = index -> iterate(e set = Set{} |

set->union(e.elements)))

DataValue

BooleanValue
value : boolean

StringValue
value : String

RealValue
value : Real

IntegerValue
value : Integer

CollectionValue

BagValueSetValue

Count
value : Integer

*
+count

*

SequenceValue

Instance
(f ro m sta ti cCo re.i nstance.concepts)

*
+elements

*

1

+elements

1

Index
value : Integer

*+index *

1
+elements

1

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 43

Chapter 4: The Meta-Modeling Language, MML
A similar definition is required for a bag value.

The datatypes.semantics package extends the datatypes.model.concepts and
datatypes.instance.concepts packages. It associates datavalues with datatypes by sub-
classing the instances association (see Figure 14).

Figure 14. datatypes.semantics Package

Well-formedness Rules

[1] Collection values contain elements that satisfy their collection’s element type.
Inherited from Instance

Because the elements of both datatypes and data values have been defined above, the
satisfies method will ensure that every element of a collection value will be an instance
of the type of its collection.

DataValueDataType
(from datatypes.model .concepts)

*1

+instances

*

+of

1

BooleanValue
value : Boolean

Boolean

*1

+instances

*

+o f

1

StringValue
value : String

Str ing

*1

+instances

*

+of

1

RealValue
value : Real

Real

*1

+instances

*

+of

1

IntegerValue
value : Int eger

Integer

*1

+instances

*

+of

1

SetValue
(fro m da tatypes.instan ce.con cepts)

Set
(from datatypes.m odel .concepts)

*1

+instances

*

+of

1

SequenceValue
(from datatypes.instance.concepts)

Sequence
(from datatypes.m odel.concepts)

*1

+instances

*

+of

1

BagValue
(from datatypes.instance.concepts)

Bag
(from datatypes.m odel.concepts)

*1

+instances

*

+of

1

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 44

constraints
4.4. constraints
In this section, the syntax and semantics of the constraint language provided by the
MML are presented. The language is based on the Object Constraint Language (OCL)
with the exception of one or two semantic changes that have been added in response to
agreed changes at the Kent OCL workshop [uok 2000].

The constraints package extends the data types package in the normal way - each con-
straints.model.concepts, constraints.instance.concepts and constraints.semantics pack-
age extends the corresponding data types package.

4.4.1 constraints.model.concepts

The MML constraints.model.concepts package provides all the basic language expres-
sions of OCL. These include logical expressions (and, not, equals, includes), slot refer-
ences, variables and iterations. Note that all other constructs of the language, for
example or, collect, set union, can be easily defined in terms of the basic expressions
defined here. These will be added at a later date.

The abstract syntax of the language is described the constraints.model.concepts pack-
age shown in Figure 15.

Figure 15: constraints.model.concepts Package

Associated with every classifier is an invariant. An invariant is a set of named con-
straints. Each constraint is expressed as an expression. An expression has a resulttype
and is associated with a set of local variables - its environment.

Iterate
variable : Variable
initial : Exp
collection : Exp
body : Exp

And

SlotRef
slotname : String
obj : Exp

Not

BinaryLogicalExp
x, y : Exp

Includes Equals

UnaryLogicalExp
x : Exp

Classifier

Variable

Exp

*+env *

Classifier

1

+resulttype

1

Constraint
name : String1

+expr

1 *

+invariants

*
1+context 1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 45

Chapter 4: The Meta-Modeling Language, MML
Well-formedness Rules

[1] A classifier contains its constraints.
context uml.constraints.model.concepts.Classifier inv:
elements -> exists(g |
g.name = "invariant" and
g.elements = allConstraints())

The following constraints set up the contained elements of expressions to include vari-
ables, sub-expressions, and expression type.

[2] An expression contains its variables and resulttype.
context uml.constraints.model.concepts.OCLExp inv:
elements ->
(exists(g | g.name = "variables" and
g.elements = vars) and

exists(g | g.name = "resulttype" and
g.elements = resulttype))

[3] A binary expression contains the expressions, x and y.
context uml.constraints.model.concepts.BinaryExp inv:
elements ->

(exists(g | g.name = "x" and
g.elements = x) and

exists(g | g.name = "y" and
g.elements = y))

[4] A unary expression contains the expression, x.
context uml.constraints.model.concepts.UnaryExp inv:
elements ->

exists(g | g.name = "x" and
g.elements = x)

Similarly for SlotRef, Variable and Iterate expressions, etc.

The following constraints ensure that variables are propagated to sub-expressions.

[1] And propagation.
context uml.constraints.model.concepts.And inv:

self.x.env = self.env and self.y.env = self.x

[2] Not propagation.
context uml.constraints.model.concepts.Not inv:

self.x.env = self.env

[3] Includes propagation.
context uml.constraints.model.concepts.Includes inv:

self.x.env = self.env and self.y.env = env

[4] Equals propagation.
context uml.constraints.model.concepts.Equals inv:

self.x.env = self.env and self.y.env = env
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 46

constraints
[5] Slot reference propagation.
context uml.constraints.model.concepts.SlotRef inv:

self.obj.env = self.env

Finally, constraints are required to ensure that each expression is associated with an
appropriate resulttype.

[1] Binary and Unary expressions return a Boolean Value.
context uml.constraints.model.concepts.BinaryExp inv:

self.resulttype -> isKindOf(Boolean)

context uml.constraints.model.concepts.UnaryExp inv:
self.resulttype -> isKindOf(Boolean)

Similarly, for other expressions.

Methods

The method allConstraints() returns the set of Constraints belonging to a Classifier
including those of its parents:

Classifier::allConstraints() : Set(Constraint)
invariant->union(parents->iterate(parent set = Set{} |

set->union(parent.allConstraints())))

4.4.2 constraints.instance.concepts

The semantic domain of the constraint language is described by the notion of a calcula-
tion. A calculation is an instance, which associates an expression and an environment
(a set of variable bindings) with a value. The value is the result of evaluating the
expression in the context of the bound variables. Figure 16 describes how the notion of
a calculation is described in the constraints.instance.concepts package.

Figure 16: constraints.instance.concepts Package

Calculations exist for all expressions in the constraint language, as shown in Figure 17
(with the exception of iterate, which is described in section 4.4.4).

Instance

Binding

Calc

1

+value

1

*+env *

Instance
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 47

Chapter 4: The Meta-Modeling Language, MML
Figure 17: Calculations

Well-formedness Rules

The following constraints set up the contained elements of calculations to include vari-
ables, sub-expressions, and expression type.

[2] A calculation contains its variable bindings and result.
context uml.constraints.instance.concepts.Calc inv:
elements ->
(exists(g | g.name = "variables" and
g.elements = env) and

exists(g | g.name = "resulttype" and
g.elements = Set{value}))

[3] A binary calculation contains the expressions, x and y.
context uml.constraints.instance.concepts.BinaryCalc inv:
elements ->

(exists(g | g.name = "x" and
g.elements = x) and

exists(g | g.name = "y" and
g.elements = y))

[4] A unary calculation contains the expression, x.
context uml.constraints.instance.concepts.UnaryCalc inv:
elements ->

exists(g | g.name = "x" and
g.elements = x)

AndCalc
x, y : Calc

NotCalc
x : Calc

SlotRefCalc
obj : Calc

VariableCalcBinaryLogicalCalc

IncludesCalc
x, y : Calc

EqualsCalc
x,y : Calc

UnaryCalc

Calc

Instance
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 48

constraints
Similarly for SlotRef, Variable and Iterate calculations, etc.

4.4.3 constraints.semantics

The constraints.semantics package associates each expression with appropriate calcu-
lations (see Figure 18)

Figure 18. constraints.semantics Package

For each calculation, a constraint is required to describe its evaluation:

[1] The result of an and expression is the conjunction of the value of its x and y expres-
sions.

context AndCalc inv:
self.value = self.x.value and self.y.value

[2] The result of a not expression is the negation of the value of its x expression.
context NotCalc inv:

self.value = not self.x.value

[3] The result of an includes expression is true if the value of its y expression is a mem-
ber of its x expression.

context Includes inv:
self.value = self.x.value ->includes(self.y.value)

Exp Calc

* 1

+instances

* 1

And AndCalc

* 1

+instances

* 1

Includes IncludesCalc

* 1

+instances

* +ins1

EqualsCalcEquals

*1

+instances

*

+of

1

NotCalcNot

*1

+instances

*

+of

1

SlotRefCalcSlotRef

*1

+instances

*

+of

1

VariableCalcVariable

*1

+instances

*

+of

1

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 49

Chapter 4: The Meta-Modeling Language, MML
[4] The result of an equals expression is true if the value of its y expression is equal to
its x expression.

context Equals inv:
self.value = self.x.value = self.y.value

[5] The result of a slot reference calculation is the value of the slot belonging to obj
whose slotname is equal to the referenced slot name.

context SlotRefCalc inv:
self.obj.value.slots -> exists(b |

b.value = self.value and b.name = self.exp.slotname)

[6] The result of evaluating a variable expression is the variable’s binding.
context VariableCalc inv:

self.env -> exists(e |
e.value = self.value and e.variable.name = self.exp.name)

[7] Calculations contain sub-calculations that satisfy their expression’s sub-expres-
sions.

Inherited from Instance.

This follows from the definition of instance satisfaction on contained elements.

4.4.4 .Iterate

The semantics of iterate are described here due to their relative complexity1. An iterate
expression takes a collection, an initial accumulator value, and a body expression. It
iterates through each element of the collection, evaluating the body expression, placing
the result in the accumulator, and then iterating again. The iterate terminates when the
collection is empty. The value of the accumulator is returned as the result of the iterate.

In order to express the semantics of iterate, a sub-iteration calculation is introduced in
order to represent each iteration in the complete calculation. This extension to the con-
straints.semantics package is shown in Figure 19.

1. Note, this is a preliminary attempt, and has not been plugged into the container/generalisable pattern.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 50

constraints
Figure 19. Iterate semantics

Well-formedness Rules

[1] The result of an iterate calculation is the value of the first iterate sub calculation.
context uml.constraints.instance.concepts.IterateCalc inv:

value = self.first.value

[2] The first iterate sub calculation has the same body expression as the iterate calcula-
tion. Its collection is the value of the iterate calculations collection expression. Its accu-
mulator value is the value of the iterate calculation’s init expression. The name of its
variable is the same as the expression’s variable’s name. The name of its accumulator is
the same as its expression accumulator’s name.

context uml.constraints.instance.concepts.IterateCalc inv:
first.body = top and
first.collection.value = self.collection.value and
first.acc.value = init.value and
first.var.name = exp.variable.name and
first.acc.name = exp.acc.name

[3] An iterate sub calc’s bindings contain its collection and acc bindings.
context uml.constraints.instance.concepts.IterateSubCalc inv:

env -> includes(self.collection) and
env -> includes(self.acc) and
env -> includes(self.var)

[4] Provided that the collection is non-empty, the result of the sub calculation is the
value of the next calculation, otherwise, its value is the current accumulator value.

context uml.constraints.instance.concepts.IterateSubCalc inv:
not collection -> isEmpty implies value = next.value and
collection -> isEmpty implies value = acc.value

[5] If the collection is non-empty, there exists a next calculation with the same body,
which is applied to an element selected from the current collection and which results in

BinaryLogicalCalc

IterateCalc
collection : Calc
init : Calc
body : Calc

Binding

IterateSubCalc
body : Calc

0+next 0

1

+first

1

1+collection 1 1 +acc11 +var1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 51

Chapter 4: The Meta-Modeling Language, MML
a new accumulator value calculated by substituting the current value of the accumula-
tor and local variable into the body expression.

context uml.constraints.instance.concepts.IterateSubCalc inv:
not collection -> isEmpty implies

next.body = self.body and
next.acc.value = self.body.value and
collection -> exists(c |
next.collection.value = self.collection.value - Set(c) and
next.variable.value = c)

4.4.5 Object satisfaction

The following constraint describes the requirements of an object satisfying its con-
straints:

context uml.constraints.instance.concepts.Object inv:
of.allConstraints() -> forall(i |

i.expr.calcs -> exists(c |
c.env -> exists(b |

b.name = “self” and b.value = self) and
c.value = true))

An object satisfies its class’s constraints, if for every constraint expression, there exists
a calculation, whose value when the object is bound to the variable “self”, is true.

4.5. methods
The methods package provides a definition of the syntax and semantics of static meth-
ods. It extends the constraints package in the normal way (not shown here) - each
model.concepts, instance.concepts and semantics package extends the corresponding
constraints package.

A method takes an object, and a set of parameter values, and evaluates them against an
OCL expression to obtain a result. Methods are a simplified version of OCL/UML 1.3
operations. Because MML is a static language, MML methods explicitly do not permit
side-effects.

4.5.1 methods.model.concepts

The methods.model.concepts package (see Figure 20) associates a set of methods with
a class. Methods are named, have a set of named and typed parameters and a body
expression. Methods return a value, whose type is given by the method’s returntype.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 52

methods
Figure 20. methods.model.concepts Package

Well-formedness rules

The following constraints set up the contained elements of a method expression to
include parameter variables and a body sub-expressions.

[1]A method contains its returntype and parameters.
context uml.methods.model.concepts.Method inv:
(elements -> exists(g |

g.name = "returntype" and
g.elements = Set{returntype})) and

(elements -> exists(g |
g.name = "parameters" and
g.elements = parameters))

[2] A class contains all its methods, including those of its parents.
context uml.methods.model.concepts.Class inv:
elements -> exists(g |

g.name = "invariant" and
g.elements = allMethods())

Methods

The method allMethods() returns the set of all methods of a class, including those of its
parents:

uml.staticCore.model.concepts.Classifier
allMethods() : Set(Methods)
parents->iterate(p s = methods |

s->union(p.allMethods()->reject(m |
methods->exists(m' | m'.name = m.name)))

Variable
(from constraints.model.concepts)

Classifier
Exp

(f rom constrai nts.mode l.concep ts)

Method

*

+parameters

*

1

+returntype

1

+body

Class

* +methods*
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 53

Chapter 4: The Meta-Modeling Language, MML
4.5.2 methods.instance.concepts

The meaning of a method is given by a method calculation (see Figure 21).

Figure 21. methods.instance.concepts Package

Well-formedness Rules

The following constraints set up the contained elements of a method calculation to
include parameter bindings and a body sub-calculation.

context uml.methods.instance.concepts.Method inv:
(elements -> exists(g |
g.name = "returntype" and
g.elements = Set{value})) and

(elements -> exists(g |
g.name = "parameters" and
g.elements = env))

(elements -> exists(g |
g.name = "body" and
g.elements = body))

4.5.3 methods.semantics

The methods.semantics package (shown in Figure 22) associated method calculations
with methods.

Figure 22. constraints.semantics Package

4.6. modelManagement
The model management package provides a definition of the syntax and semantics of
packages. The model management package extends the staticCore package in the nor-
mal way (not shown here) - each model.concepts, instance.concepts and semantics
package extends the corresponding staticCore package.

Calc

MethodCalc
body : Calc

Object

*

+methodcalcs

*

MethodCalcMethod
1 *

+of

1

+instances

*

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 54

modelManagement
In the MML, packages provide a convenient means of grouping together, extending
and sharing classifiers. Packages may extend other packages in that one package can be
a specialisation of another package. In this case, classifiers in the generalised package
are also available in the specialised package, and may be extended. Ownership of clas-
sifiers may also be shared through the use of imports. A package may import and clas-
sifiers from another package, in which case the classifiers are deemed to be owned by
both packages.

The semantics of a package are described by its snapshots (collections of instances
conforming to the classifiers owned by the package).

4.6.1 modelManagement.model.concepts

Figure 23 describes the abstract syntax of packages. A package is a classifier, and as
such can be generalised and specialised by other packages. A package also contains
classifiers.

Figure 23: modelManagement.model.concepts Package

Well-formedness Rules

[1] The contents of a package must have unique names.
Inherited from Container.

[2] A child package extends all the contents of its parent packages in that each classi-
fier in the child package conforms to a classifier with the same name in the parent
package.

Inherited from Classifier.

4.6.2 modelManagement.instance.concepts

Just as classes and data values are denoted by their instances, the semantics domain of
a package is the snapshot. A snapshot is a specialisation of an instance, as shown in
Figure 24. A snapshot inherits the elements association from instance. The elements of
a snapshot denote the instances that are contained in the snapshot.

Package

Classifier
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 55

Chapter 4: The Meta-Modeling Language, MML
Figure 24. modelManagement.instance.concepts Package

Well-formedness Rules

There are no well-formedness rules.

4.6.3 modelManagement.semantics

The modelManagement semantics package adds the constraint that each instance
belonging to a snapshot must be drawn from the contents of its package.

[2] All snapshot’s contents are drawn from the contents of its package.
Inherited from Instance.

4.7. reflection
The reflection package provides a definition of reflection in the MML. In the MML,
reflection denotes the ability to view MML model elements as instances. Thus it is pos-
sible to describe meta-level architectures in MML. For example, an MML model can
be viewed as an instance of the MML meta-model, or as an instance of itself. This abil-
ity is also confered upon any extensions to the MML, thereby enabling a family of
reflective languages to be developed.

Reflection is also a useful mechanism for representing types in MML, as, in general,
the type of a model element will be defined by its meta-classifier.

The reflection package extends the staticCore package in the normal way (not shown
here) - each model.concepts, instance.concepts and semantics reflection package
extends the corresponding staticCore package.

4.7.1 reflection.model.concepts

No additional concepts.

4.7.2 reflection.instance.concepts

No additional concepts.

Instance

Snapshot
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 56

reflection
4.7.3 reflection.semantics

The reflection.semantics package describes the relationship between instances and
model elements.

In the MML, all model elements are objects (see Figure 25). This has two important
advantages:

• It provides a universal abstraction of all elements in the MML.
• It provides a simple mechanism for describing and making precise the reflective rela-

tionship between model elements and their meta-classifiers. By meta-classifier, it is
meant the MML classifier which classifies the type of a model element. For example, a
class Person can be viewed as an instance (or meta-instance) of the MML class Class.
Class is therefore the meta-classifier of Person.

In general, all model elements are instances of the class Class. Constraints are required
to ensure that their slots conform to those of Class, and also capture the essential fea-
tures of the model element they represent. For example, a class object will contain slots
for its name, attributes, etc.

Figure 25. reflection.semantics Package

Well-formedness Rules

[1] A class is an instance of the class Class.
context uml.reflection.semantics.Class

(slots -> exists(s |
s.name = “name” and s.value = self.name)) and

(slots -> exists(s |
s.name = “attributes” and

s.value -> isKindOf(SetValue) and
allAttributes() -> forAll(a |

s.value.elements -> exists(e : Object |
e.slots -> exists(es |

es.name = “name” and
es.value = a.name) and

e.slots -> exists(es |
es.name = “type” and
es.value = a.type)))) and

Object
(from staticCore.instance.concepts)

ModelElement
(from staticCore.model.concepts)
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 57

Chapter 4: The Meta-Modeling Language, MML
(slots -> exists(s |
s.name = “parents” and
s.value -> isKindOf(SetValue) and
self.parents -> forAll(p |

s.value.elements -> exists(e : Object |
e = p)))) and

(slots -> exists(s |
s.name = “constraint” and
s.value = self.constraint)) and

(slots -> exists(s |
s.name = “of” and
s.value = self.of and
s.of.name = “Class”)))

When viewed as an instance, each element of the class (name, attributes, parents and
constraint) is represented as a slot of the object according to the following rules:

• name is represented by a slot “name” whose value is the class name.

• attributes are represented by a slot “attributes” whose value is a setvalue. Each
element of the setvalue is an object with a slot “name” and slot “type” corre-
sponding to each attributes’s name and type.

• parents are represented by a slot “parents” whose value is a setvalue. Each ele-
ment of the setvalue is an object representation of each parent class.

• constraint is represented by a slot “constraint”, whose value is the object repre-
sentation of its constraint.

[2] A package is an instance of the class Class.
context uml.reflection.semantics.Package

(slots -> exists(s |
s.name = “packagename” and s.value = self.name)) and

(slots -> exists(s |
s.name = “contents” and
s.value.elements = self.contents)) and

(slots -> exists(s |
s.name = “of” and
s.value = self.of and
s.of.name = “Class”)))

A package object contains a slot called “packagename” whose value is the name of the
package, and a slot called “contents” whose values is a set containing all the contents
of the package.

[3] A datatype is an instance of the class Class.
context uml.reflection.semantics.Boolean

slots -> exists(s |
s.name = “name” and s.value = “Boolean”) and

slots -> exists(s |
s.name = “of” and
s.value = self.of and
s.of.name = “Class”))

Similarly for Integer, String, Real, etc.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 58

reflection
[4] A set is an instance of the class Class.
context uml.reflection.semantics.Set
(slots -> exists(s |

s.name = “name” and s.value = “Set”)) and
(slots -> exists(s |

s.name = “elementtype” and s.value = elementtype)) and
slots -> exists(s |

s.name = “of” and
s.value = self.of and
s.of.name = “Class”))

and similarly for Sequence and Bag.

Example

Figure 26 gives a small example of an object diagram that satisfies the above con-
straints for the example of a Dog class instantiating a (MML) class.

Figure 26. Meta-levels example

 : Class

 : Class

 : Attribute

nam e = "name"

name = "attributes"

nam e = "Class"

metainstance

name = " dog"

 :
Att ribute

nam e = "breed"

type

 : Slot
name = "name"

 : String
Value

value = "dog"

va lue

slots

 : Slot
name = " attribut es"

 : Set
Value

value

 : Slot
name = "name"

value

slots

 : Object

elements

 : String

 : Set
type

 : String

name = "Attribute"

type

of

 : Class

 :
Attribute

elem enttype

 : String
Value

value = "breed"

 : String
Value

value = "String"

of

attributes

 : Slot
name : "type"

value

slots

slots
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 59

Chapter 4: The Meta-Modeling Language, MML
4.7.4 Type semantics

By enabling access to meta-classifiers, reflection provides a useful mechanism for
determining the type of model elements. The type of a model element is its meta-clas-
sifier (for example, a class Person, will have the class Class as its meta-classifier). This
property is encapsulated in the following method definitions:

Methods

The method isKindOf(c) returns true if a classifier is an instance of the meta-classifier,
c.

reflection.semantics.Classifier
isKindOf(c : Classifier) : Boolean
self.of = c or
self.allParents.of -> includes(c)ˆ

The method type() returns the meta-classifier that the Classifier is an instance of.
reflection.semantics.Classifier

type(): Instance
self.of

4.8. associations
The associations package provides definitions of binary associations, association
classes, etc. These may either extend the concepts or syntax packages of MML,
depending on whether they are to be viewed as fundamental concepts of MML, or con-
venient sugar.

4.8.1 binaryAssociation

Binary associations model bi-directional links between objects. In the MML, binary
associations are modelled by pairs of attributes, with appropriate constraints to ensure
that the slot values (i.e. links) between objects are of an appropriate multiplicity and
are bi-directional. Thus, binary associations do not extend the semantic domain of the
MML. Instead they represent a useful modelling constraint on MML models.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 60

associations
associations.model.concepts

Figure 27 shows the necessary extensions to the staticCore.model.concepts package
required to model binary associations. A binary association has two association ends.
An association end is just a attribute, extended with a multiplicity.

Figure 27. associations.model.concepts Package

Well-formedness Rules

[1] Attribute slots belonging to association ends always have a reverse slot.
context uml.association.model.concepts inv:

end -> forall(e1, e2 | e1.name <> e2.name implies
e1.instances -> forall(a1 | e2.instances ->

exists(a2 | a2.value.slots -> includes(a1))))

[2] Slots conform to the multiplicity of association ends.

To be added.

4.8.2 association Class

To be defined.

MultiplicityRange

BinaryAssociation

Multiplicity

0. +ranges0.

AssociationEnd2

+ends

2

1+multiplicity 1

Attribute
(f rom sta ti cCore.mode l.concep ts)

Classifier
(from staticCore.model.concepts)
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 61

Chapter 4: The Meta-Modeling Language, MML
4.9. Conclusions
This chapter has presented a definition of the semantics of the MML language written
in itself. A denotational approach was used to assign each construct in the language a
precise meaning. This was achieved by describing the relationships that must hold true
between elements of the MML, and its instances.

In order to make the semantics more understandable and manageable, packages were
used to structure the semantics into separate layers of language constructs. These were
effectively combined using package extension to result in the complete definition. Var-
ious patterns of constraints have been used to ensure that a consistent approach is taken
when defined common properties of subclass conformance and instance satisfaction.

As this is a feasibility study, further work will be required to develop a complete defi-
nition of the MML. In particular, the following areas will require further investigation:

• the semantics of the constraints package require further extension and checking
to ensure that all the core elements of the constraint language have been defined.
The definition of iterate needs checking.

• issues regarding monotonicity need to be investigated further. This relates to the
notion of substitutability of classes and their instances. The issue of behavioural
substitutability in particular will need further investigation.

• the semantics of MML and those of the tool supporting the language require fur-
ther merging. Issues regarding the benefits of an operational semantics (cur-
rently supported by the tool) versus a declarative semantics (described in this
chapter) need to be investigated further.

• a better mechanism is required for plugging classifiers into their containers. Cur-
rently, it is quite tedious to write an invariant linking the contents of a classifier
with its contained elements. In addition, there is some duplication of the rela-
tionship between a classifier’s contents and its slots (when viewed as an object).

• an investigation of the relationship between the MML’s model.concepts package
and that of the abstract syntax of MOF1.3. Harmonisation of these two may
prove a fruitful route to integrating MML with future versions of MOF (i.e.
MOF 2.0). Presently, the main difference between the MOF abstract syntax and
MML is our representation of packages and attributes as classifiers. Given the
growing acceptance that snapshots denote the instances of a package, and the
natural classifier-instance relationship between attributes and slots, this seems a
natural conclusion to make.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 62

Introduction
Chapter 5

Syntax Definitions
This chapter illustrates how MML can be used to define syntax,
and the mapping of syntax to concepts. Two kinds of mapping
are considered – to/from graphical syntax and to/from XML. We
also show how a syntax mapping can be extended as new con-
cepts are introduced. The chapter concludes with some reflec-
tion on how to progress this aspect of meta-modeling for UML.

5.1. Introduction
The UML 1.x standard defines the syntax of the various notations employed through
examples and English explanation. No where does it provide an complete and unam-
biguous specification of the syntax, and, perhaps more importantly, of the mapping of
that syntax to the underlying concepts, which, in the standard, are represented by the
meta-model.

This chapter demonstrates how meta-modeling can be used to define syntax and the
mapping of syntax to concepts. In particular it demonstrates:

• the importance of a constraint language, especially when it comes to writing down
the mapping to concepts

• the importance of packages and package generalization, in providing a clean separa-
tion between syntax, concepts and the mapping between them

• the importance of packages and package generalization, in allowing language units
to be constructed by specializing and extending other units

The chapter is divided into three main sections,

5.2. Syntax Packages
The package syntaxLibrary represents a set of packages that can be reused and spe-
cialised throughout UML for syntax mappings. We have developed three such pack-
ages for the purpose of this feasibility study, which are related according to Figure 28.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 63

Chapter 5: Syntax Definitions
The arrows (which are the only arrows one can place between packages in Rational
Rose), represent package generalization.

Figure 28. Syntax library packages

syntaxLibrary.BaLDiagrams

syntax
Library.Strings

syntaxLibrary.XML
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 64

Syntax Packages
5.2.1 Strings

The contents of the strings package is represented by Figure 29. A piece of text is

basically a linked list of slots containing strings. This package is built up by inheriting
from the package representing the linked list pattern. The arrows down the diagram

Figure 29. syntaxLibrary.Strings package

syntaxLibrary.Strings

dataStructureLibrary.LinkedList
(from dataStructureLibrary)

List
(from dataStructureL ibrary.L inkedList)

ListSlot

allNext : Set(ListSlot)
allPrevious : Set(ListSlot)

(f rom dataSt ruct ureLi bra ry .L inkedList)

Text
(from syntaxLibrary.Strings)

StringSlot

value : String
(from syntaxLibrary.Strings)
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 65

Chapter 5: Syntax Definitions
represent renamings, the arrow up the generalization relationship. The class diagram
for dataStructureLibrary.LinkedList is given in Figure 30.

allNext and allPrevious have been shown as attributes just to avoid line clutter on
the diagram. This also needs to be supported by invariants ensuring that a linked list is
a proper linked list, as follows:

Then a series of invariants ensuring that compartments essentially form a linked list:
context ListSlot inv:

"define_allNext"
self.allNext=self.next->union(self.next.allNext)

context ListSlot inv:
"define_allPrevious"

self.allPrevious=
self.previous->union(self.previous.allPrevious)

context List inv:
// last can be reached from first
"last_reachable"

self.first.allNext->includes(self.last)

context List inv:
// first has no previous
"first_is_first"

self.first.previous->isEmpty

context List inv:
// last has no next
"last_is_last"

self.last.next->isEmpty

5.2.2 Box and Line diagrams

In the UML architecture presented in chapter 2, the model of box and line diagrams is
given by the package syntaxLibrary.BaLDiagrams. This model was constructed to
support the demonstration of how mappings from concepts to diagrams may be speci-
fied in MML. There are many ways in which box and line diagrams could be modelled,
and it is likely that a neater approach, where these kinds of diagrams were incorporated

Figure 30. Package defining Linked Lists

List
ListSlot

allNext : Set(ListSlot)
allPrevious : Set(ListSlot)

0.

+first

0.

0..1

+last

0..1

0..*
1..1

+slots

0..*+list
1..1

0..1

0..1

+next

0..1

+previous

0..1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 66

Syntax Packages
into a a much richer structure of packages supporting many different kinds of dia-
grams, could be adopted.

Figure 31 is a class diagram for the top level classes in the model. Vectors are intended
to be more general than mere coordinates, containing an ability to be added to and pro-
ducted with other vectors. Vectors have their own notion of equals, which circumvents
the standard object identity notion – a vector equals another vector if their x and y val-
ues are the same, and methods (in the MML sense) for composing vectors. Finally, an
association has been defined, allowing access to some standard directional vectors,
which are stored in an object of a separate class, VectorDirections. In our model of
diagrams, we have chosen a diagram element to have a position and a size, both of
which can be represented by a vector (for size, think of the vertical and horizontal dis-
tances from the centre of a “bounding box”).

A whole series of invariants are required to define the meaning of plus, times, equals,
opposite and the directions. First the invariants defining directions:

context VectorDirections inv:
// directions have correct x and y values
"define_directions"
self.swne.x=-1 and self.swne.y=1 and
self.nesw.opposite=self.swne and
self.senw.x=1 and self.senw.y=1 and
self.nwse.opposite=self.senw

context Vector inv:
// stop infinite recursion in directions
self.directions.nwse.directions=self.directions and
self.directions.swne.directions=self.directions and
self.directions.senw.directions=self.directions and
self.directions.nesw.directions=self.directions

The second invariant avoids recursion through the direction vectors. It is being consid-
ered whether to have something like static/singleton classes/attributes in a future ver-

Figure 31. Top level classes for box and line diagrams

BoxAndLineDiagram

DiagramElement

0..

1..

+elements0..

+diagram 1..

VectorDirections
swne : Vector
nesw : Vector
senw : Vector
nwse : Vector

Vector

x : Integer
y : Integer
opposite : Vector

equals(other : Vector) : Boolean
plus(other : Vector) : Vector
times(other : Vector) : Vector

1..

+position

1..

1..1

+si ze

1..1

1.. 1 +directions1.. 1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 67

Chapter 5: Syntax Definitions
sion of MML. This could be used to improve the model here - for example, the
VectorDirections class could be a singleton.

Now the invariants defining the methods:
context Vector inv:

"define_opposite"
self.opposite.equals(self.times(self.directions.nwse))

context Vector inv:
"define_times"
self.times(v).x=self.x*v.x and self.times(v).y=self.y*v.y

context Vector inv:
"define_plus"
self.plus(v).x=self.x+v.x and self.plus(v).y=self.y+v.y

For box and line diagrams there are then two kinds of diagram element, which are,
unsurprisingly, boxes and lines. These are defined by the class diagrams in Figure 32
and Figure 34, respectively.

Boxes have compartments, and a compartment contains some text. A box with a tab
has, unsurprisingly, a tab associated with it (which is also a box). There is also a linked

Figure 32. Boxes

DiagramElement

BoxWi th Tab Text
(from syntaxLibrary.Strings)

Co mp artment

1..+tab 1..

1..1+text 1..1

Box
ne : Vector
nw : Vector
sw : Vector
se : Vector

onBorder(v : Vector) : Boolean

1..

+boundary

1..1..1

+boundary

1..1

+compartments
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 68

Syntax Packages
list relationship between Box (the linked list) and Compartment (the list slot). This is
obtained simply by specializing the linked list package as in Figure 33.

Various invariants are required to support this diagram. First the invariants defining the
positioning and size of the tab for a box with a tab.

context BoxWithTab inv:
// the boundary of the tab must be at the ne corner of the box
"tab_location"

self.tab.boundary.se.equals(self.ne)

context BoxWithTab inv:
// the tab must not be wider than the box
"tab_width"

self.tab.boundary.sw.x<=self.nw.x

Now the invariant ensuring that a compartment fully contains the text contained within
it:

context Compartment inv:
// a paragraph must appear within the boundary of
// the compartment
"text_box_within"

Figure 33. Box/Compartment is List/Slot

syntaxLibrary.BaLDiagrams

dataStructureLibra ry.LinkedList
(from dataStructureLibrary)

List Slot

allNext : Set(ListSlot)
allPrevious : Set (ListSlot)

(from dataStructureL ibrary.L inkedList)List
(f rom d ata Struc tu reL ib rary. Li nkedLi st)

0..*
1..1

+slot s
0..*+list

1..1

Compartment
(from sy ntaxLibrary.BaLDiag ram s)

Box

ne : Vector
nw : Vector
sw : Vector
se : Vector

onBorder(v : Vector) : Boolean

(f rom synt ax Libra ry .Ba LDiagram s)

+compartments
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 69

Chapter 5: Syntax Definitions
self.boundary.contains(self.text.boundary)

Then an invariant ensuring compartments in a box are lined up correctly
context Box inv:

// the compartments of a box must be lined up correctly
"compartments_placed_correctly"
self.compartments->notEmpty implies (

// first_compartment_touches_top
self.firstCompartment.boundary.ne=self.ne and
self.firstCompartment.boundary.nw=self.nw and

// last_compartment_touches_bottom
self.lastCompartment.boundary.se=self.se and
self.lastCompartment.boundary.sw=self.sw and

// compartments_touch
self.compartments->forAll(c | c.next->isEmpty or
(c.next.boundary.ne=c.boundary.se and
c.next.boundary.nw=c.boundary.sw))

)

And then an invariant defining the position of the corners on the box
context Box inv:

// corners are calculated appropriately from position & size
"define_corners"
self.ne=self.position.plus(
self.size.times(self.size.directions.swne)) and
self.nw=self.position.plus(
self.size.times(self.size.directions.senw)) and
self.se=self.position.plus(
self.size.times(self.size.directions.nwse)) and
self.sw=self.position.plus(
self.size.times(self.size.directions.nesw))
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 70

Syntax Packages
Figure 34 deals with lines. A line end may have up to two labels and/or an arrow head,

which will be closed or open. The position of the point of an arrow head is recorded as
a vector. The position of the line ends is also recorded. A line has a direction which is
also a vector. The direction, size and position of the (centre of the) line can be used to
calculate the position of the end points. The diagram is supported by some self-explan-
atory invariants.

context Line inv:
// direction of a line is one of the pre-determined
// directions for Vector class
"direction is a direction"
self.direction.equals(self.direction.directions.swne) or
self.direction.equals(self.direction.directions.nesw) or
self.direction.equals(self.direction.directions.senw) or
self.direction.equals(self.direction.directions.nwse)

context Line inv:
// ends of the line are calculated appropriately from size
// and direction
"define_ends"
self.endA.position=self.size.times(self.direction) and

Figure 34. Lines

ArrowHead
point : Vector
open : Boolean
closed : Boolean

DiagramElement

Line

LineEnd
lab el1 : [St ring]
lab el2 : [St ring]

1..+e ndA 1..

1..1

+endB

1..1

0..1+arrowHead 0..1

Vector
x : Integer
y : Integer
opposite : Vector

equals()
plus()
times()

1..

+position

1..

1..1

+size

1..1

1..1

+direction

1..11.. 1+position 1.. 1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 71

Chapter 5: Syntax Definitions
self.endB.position=self.size.times(self.direction.opposite)

context LineEnd inv:
// the point of the arrow head, if any, is at the position of
// the line end
self.arrowHead->isEmpty or
self.arrowHead.point=self.position

context ArrowHead inv:
"open_is_not_closed"
self.open = not self.closed

5.2.3 XML

The package characterising XML is quite simple, involving the single class diagram in
Figure 35. This is a simplification of the domain object model for XML, as defined by

the W3 consortium. It is sufficient to demonstrate the feasibility of specifying the map-
ping to XML. A string representation of XML could be easily generated from this
model (and, indeed, the rules for generating it could also be specified in MML).

Under this model and XML document is an element, which has a tag and has child
nodes, which may be other elements or text. The nodes form a tree structure, provided
the following invariants are in place:

context Element inv:
“no_child_sharing_between_nodes”
self.allChildren->select(c|oclIsKindOf(Element))

->forAll(e1,e2|e1<>e2 implies
e1.children->intersection(e2.children))->isEmpty)

context Element inv:
“not_circular”
self.allChildren->excludes(self)

context Element inv:
“define_allChildren”
self.allChildren=self.children

->union(self.children.allChildren)

Figure 35. XML

Text
(f rom syntaxLibra ry .St rin gs)

XMLNode

XMLElement
tag : String
al lChildren : Set(Node)

0..

0..

+chi ldre n

0..

+parent 0..
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 72

Graphical Syntax Mappings
For example an html document would be represented as an Element object whose tag
is “html”. This might have child elements which are either text or other elements. So it
is likely to have a child element with tag “body”, which may in turn have a child ele-
ment with tag “h1”, which may in turn have a child node that is a text object with a sin-
gle string slot whose value is “Introduction”, and so on.

5.3. Graphical Syntax Mappings

5.3.1 Mapping of staticCore.model.concepts to box and line diagrams

The mapping of staticCore.model.concepts to box and line diagrams is in the package
staticCore.model.graphicalTooTconcepts. TooT is intended to indicate a mapping that
goes both ways. This package needs both sides of the mapping, giving rise to the pack-
age diagram in Figure 36.

Figure 36. Graphical syntax for staticCore.model

staticCore.model

(from staticCore)

staticCore.model.concepts

syntaxLibrary.BaLDiagrams

(from syntaxLibrary)

staticCore.model.graphicalsyntax

staticCore.model.graphicalTooTconcepts
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 73

Chapter 5: Syntax Definitions
The details of the mapping (i.e. staticCore.model.graphicalTooTconcepts) are
given by Figure 37, Figure 38, Figure 39 and accompanying invariants.

The basic idea is that each concept element has a mapping class (a TooT class) associ-
ated with it, that indicates the diagram element or text that is mapped to that element.
TooTs may involve sub-mappings: for example, mapping a class also requires its
attributes to be mapped.

The first set of invariants relate to Figure 37 and deal with the general mapping of dia-
gram elements to containers. They ensure that behaviour with respect to submappings
(subTooTs) is as expected.

The first invariant ensures that the diagram associated with subTooTs is the same as
that associated with the TooT.

context DiagramElementTooTContainer inv:
"pass_diagram_to_element_TooTs"
self.subTooTs->notEmpty implies
self.subTooTs.diagram=self.diagram

The second invariant ensures that the diagram element being mapped to/from is on the
diagram associated with the TooT.

context DiagramElementTooTContainer inv:
"diagram_element_on_diagram"
self.diagram.elements->includes(self.de)

The third and fourth invariants are self-explanatory.
context DiagramElementTooTContainer inv:

"contained_model_elements_not_mapped_twice"
self.subTooTs->size=self.subTooTs.me->size
// relies on bags

context DiagramElementTooTContainer inv:
"only_contained_model_elements_may_be_mapped"
self.me.oclIsKindOf(Container) implies
self.me.elements->includesAll(self.subTooTs.me)

Figure 37. Graphical syntax for staticCore.model.concepts

Diag ramElement

BoxA ndLineDi ag ram

ModelElement
name : String

DiagramElementTooTContainer
complete : Boolean

01

+subTooTs

0
+parent

1

0..1

+de

0..1

1..1

+diagram

1..1

1..1

+me

1..1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 74

Graphical Syntax Mappings
Whereas, the fourth invariant only ensures that if there are submappings, then these
only map elements that are contained in the model element being mapped, the final
invariant introduces the concept of a complete mapping, where the submappings are
exactly mappings to/from elements contained in the model element being mapped. For
example, a complete mapping for a class must map all attributes in the class, whereas
an incomplete one may leave some attributes hidden on the resulting diagram.

context DiagramElementTooTContainer inv:
"all_contained_model_elements_mapped_if_complete"
self.complete =
(self.me.oclIsKindOf(Container) implies

self.me.elements=self.toots.me)

The second set of invariants relate to Figure 38, and deal with the drawing of generali-
sation arrows. The first invariant ensures that these arrows are drawn between anything

that maps to a box, otherwise they are omitted. The other invariants are written taking
this into account, but make sure when there is a generalisation arrow that it is source/
targeted correctly and has the correct arrow head.

context LineTooTGeneralisation inv:
"generalisations_visible_only_between_boxes"
(self.child.de->oclIsKindOf(Box) and

self.parent.de->oclIsKindOf(Box))
= not self.child.de->isEmpty

context LineTooTGeneralisation inv:
"parent-child_TooTs_configured_ok"
self.parent.me=self.generalisation.parent and
self.child.me=self.generalisation.child

context LineTooTGeneralisation inv:
// line ends positioned on boundary of parent and child boxes
"positions_of_line_ends"

Figure 38. Graphical syntax for generalisations

General isatio nLine

Dia gra mEleme ntTo oTCon tai ne r
com pl ete : B ool ean

LineTooTGenera lisa tion

+me+d e

1 .. 1

+parent

1 .. 1
1..1+child 1..1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 75

Chapter 5: Syntax Definitions
(self.parent.de.onBorder(self.de.endA.position) and
self.child.de.onBorder(self.de.endB.position))

or self.de->isEmpty

context LineTooTGeneralisation inv:
"arrow_head_appropriate"
self.de.endA.arrowHead.closed or self.de->isEmpty

The last set of invariants relate to Figure 39. They ensure that a class gets the correct

number of compartments, including a compartment to hold the name, that attributes get
mapped to text appropriately, and that the text is placed appropriately inside the second
compartment.

context BoxTooTClass inv:
"correct_compartments_count"
self.subTooTs->notEmpty implies
self.box.allCompartments->size=2 else

self.box.allCompartments->size=1)

context BoxTooTClass inv:
"name_compartment"
self.box.first.text.slots.value=self.class.name

context BoxTooTClass inv:
"attributes"
self.box.first.next.text.slots->size=self.subTooTs->size and
self.box.first.next.text.slots.value=self.subTooTs.string

context StringTooTAttribute inv:
"define_string"
self.string=self.attribute.name+":"+self.attribute.type.name

Figure 39. Graphical syntax for classes

Attribute

Class

Box
ne : Vector
nw : Vector
sw : Ve ctor
se : V ector

onBo rder(v : Vector) : Boolean

StringTooTAttribute
string : String

1

+me

1

BoxTooTClass
+me

+d e

+subTooTs

DiagramElementToo TContai ner
complete : Boolean
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 76

Graphical Syntax Mappings
5.3.2 Mapping of modelManagement.model.concepts to box and line
diagrams

The graphical syntax for packages is an extension of the graphical syntax for the ele-
ments in the static core. By stating that modelManagement is an extension of static-
Core, modelManagement obtains the expected model/instance and syntax/concepts
components. The additional part, which is contained in the package
modelManagement.model.graphicalTooTconcepts (which must be a specialisation
of staticCore.model.graphicalTooTconcepts) is given by the class diagram in
Figure 40 and accompanying invariants. A package is mapped to a box with a tab. The

first invariant ensures that the name on the tab is correct:
context BoxWithTabTooTPackage inv:

"name_on_tab"
self.box.tab.text.slots.value=self.package.name

Recall that a mapping (a TooT) may contain submappings (subTooTs). The second
invariant ensures that these are of the right kind.

context BoxWithTabTooTPackage inv:
// subTooTs for a package TooT are TooTs of classes to boxes
// and lines to generalisations
"define_toots"
self.subTooTs->forAll(t|t.isKindOf(BoxTooTClass) or
t.isKindOf(BoxTooTPackage) or
t.isKindOf(LineTooTGeneralization))

The final invariant ensures that any boxes representing classes in the package which
have been mapped (that is, are being shown on the diagram) are contained in the box
representing the package.

context BoxWithTabTooTPackage inv:
"contains_class_boxes"
self.subTooTs->select(t|t.isKindOf(BoxTooTClass).box

Figure 40. Syntax for packages

PackageBoxWithTab

BoxTooTP ackage

+me
+d e

Diag ramElemen tToo TContai ner
complete : Boolean
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 77

Chapter 5: Syntax Definitions
->forAll(b|self.box.contains(b))

5.4. XMI

5.4.1 Mapping of staticCore.model.concepts to XML

The mapping to XML is defined in a similar way the graphical syntax, but this time
replacing box and line diagrams with XML. The mapping package is made up of the
class diagram in Figure 41, with some accompanying invariants.

The first set of invariants define the constraints on the mapping between any model
element and XML elements. It is the case that all model elements map to XML
elements. Text nodes come about from textual information accessible from a model
element.

context XMLElementTooTContainer inv:
"put_in_header"
self.parentTooT->isEmpty implies

(self.xmlElement.parent.tag="xmi" and
self.xmlElement.parent.children->size=2 and
(self.xmlElement.parent-self.xmlElement).tag=
"xmi-header")

Figure 41. XML mapping for staticCore.model.concepts

Class

ElementTooTClass

+me

Attribute

ElementTooTAttribute

+me

ModelElement
name : Str ing

XMLElement
tag : Str ing
allChildren : Set(Node)

Generalisation

XMLElementTooTContainer
allSubTooTs : Set(XMLElementTooTContainer) 1

+me

1

1..1

+xmlElement

1..1

0..*

+subTooTs

0..*

1..1

+idElement

1..1

1..1

+nameElement

1..1

Elem entTooTGenera lization

+me

1.. 1+child 1.. 1

1..1

+parent

1..1
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 78

XMI
This invariants just illustrates how the tags wrapping a document, and the header of the
document would get set up, which is done only when a mapping (a TooT) is no a sub-
TooT of any other TooT. There could be many more constraints to put in other header
information (e.g. versioning) if so desired.

The next invariant is the same as in the graphical syntax case.
context XMLElementTooTContainer inv:

"all_subelements_of_model_element_catered_for"
self.me.oclIsKindOf(Container) implies

self.subTooTs.me=self.me.elements

The name element is the XML element which holds the name of a model element.
context XMLElementTooTContainer inv:

"name_element"
self.nameElement.tag="name" and
self.nameElement.children.isKindOf(Text) and
self.nameElement.children.asType(Text).slots.value=
self.me.name

Every model element must be associated with an id in the XML document so that it can
be cross-referenced elsewhere in the XML document (see e.g. generalisation).

context XMLElementTooTContainer inv:
"id"
self.idElement.tag="id" and self.idElement.isKindOf(Text) and

self.idElement.children.asType(Text).slots.value=self.id

To ensure that cross-referencing of id’s works as expected, the id’s must be unique
between all children (direct and indirect) of the any XML element that represents a
model element. This is achieved by checking the id associated with all subTooTs of a
TooT.

context XMLElementTooTContainer inv:
"all_id's_unique"
self.id->union(self.allsubTooTs.id)->forAll(x,y | not x=y)

Define allsubTooTs.
context XMLElementTooTContainer inv:

"allsubTooTs"
self.allsubTooTs=self.subTooTs->
union(self.subTooTs.allsubTooTs)

Define the children of the xml element associated with a TooT.
context XMLElementTooTContainer inv:

"children"
self.xmlElement.children=(self.subTooTs.xmlElement
->union(self.idElement)->union(self.nameElement))

Ensure that a model element is not represented twice an XML document.
context XMLElementTooTContainer inv:

"no_repeats"
self.allChildren.me->asSet=self.allChildren.me
// relies on bags
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 79

Chapter 5: Syntax Definitions
The details for each of the different kinds of TooT now amount to stating what the tag
of an xml element representing each kind of model element should be.

context XMLElementTooTClass inv:
"tag name"
self.xmlElement.tag="class"

context XMLElementTooTAttribute inv:
"tag name"
self.xmlElement.tag="attribute"

context XMLElementTooTGeneralization inv:
"tag name"
self.xmlElement.tag="generalization"

Attributes and generalisation need to cross reference other parts of the xml document:
the id’s identified with the parent and child model elements for a generalisation, and
the id of the model element that is the type of an attribute.

context XMLElementTooTGeneralization inv:
"parent/child"
self.xmlElement.children->size=4
// i.e. name and id tags plus parent and child tags
and self.xmlElement.children->exists(el |

el.tag="parent" and el.children.isKindOf(Text) and
el.children.asType(Text).slots.value=self.parent.id)

and self.xmlElement.children->exists(el |
el.tag="child" and el.children.isKindOf(Text) and
el.children.asType(Text).slots.value=self.child.id)

and self.child.me=child
and self.parent.me=parent

context XMLElementTooTAttribute inv:
"type"
self.xmlElement.children->size=3
// i.e. name and id tags plus this extra type tag
and self.xmlElement.children->exists(el |

el.tag="type" and el.children.isKindOf(Text) and
el.children.asType(Text).slots.value=self.type.id)

and self.me.type=self.type.me

5.4.2 Mapping of modelManagement.model.concepts to XML

As was the case with the graphical syntax mapping (section 5.3.2), this is just a simple
extension for the mapping for staticCore.model. Specifically, the additional compo-
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 80

XMI
nent which is part of the package modelManagement.model.XMLTooTconcepts, is
given by the class diagram in Figure 42, with one accompanying invariant.

class XMLElementTooTPackage inv:
"tag name"
self.xmlElement.tag="package"

5.4.3 XML Issues

We have presented an example of mapping to XML just to demonstrate that, in princi-
ple, it can be specified using MML. However, we are aware of a number of issues that
need to be pursued beyond this feasibility study.

Generalization. On the concepts side, generalisation is currently defined so that all
elements inherited from parents are repeated in the child. This makes it easier to allow
renaming and the like on specialisation. However, it has inherent redundancy built in,
and if this approach is repeated in the XML, then the resulting files will also contain
redundant information and therefore be larger than they need to be. The approach to
generalization taken in the class diagram mapping, shows that we can identify and
ignore redundant information as necessary.

Dual representation of classifiers. If one maps both instance.concepts and
model.concepts to XML, and takes into account that, in reflection.concepts
Classifier, inherits from Object, we see that a Classifier could be mapped two
ways into XML, via the mapping specified separately for each subclass of
Classifier, or as the XML representation of an Object. This suggests that one could
dispense with the XML mapping to classifiers completely and instead only deal with
the mapping to Object. Our opinion is that dispensing with something just because it
can be dispensed with is probably not a good idea. It is certainly true that, for tool
builders, processing the XML generated from classifiers is likely to more obvious,
hence easier, than dealing with the XML generated from viewing classifiers as objects.

Mapping semantics. It is clear that we can map model.concepts to XML, and the map-
ping of instance.concepts follows in a similar way. The question is whether there is any
need or desire to map semantics. By mapping semantics to XML, one can use XML to

Figure 42. XML mapping for modelManagement.model.concepts

XMLElementTooTCont ainer

allSubTooTs : Set(XMLElementTooTContainer)
(from staticCore.m odel .xm lT ooT concepts)

Elem entTooTPackage

Package
(from m odelM anagem ent.m odel .concepts)

+me
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 81

Chapter 5: Syntax Definitions
preserve and/or exchange the tying together of a particular instance (or instances) to a
particular model. For example, one would record in the XML exactly which classifier
the element was of. If one just mapped the instance, then one would only record the
name of that classifier.

Alternative representation of instances. One way to map instances would be to
mimic the approach taken for classifiers, with tags for the subclasses of Instance, i.e.
Object, Slot etc. This is the approach assumed so far. A more sophisticated approach
would be to leverage the classification mapping in the semantics (the ‘of’ association)
to provide the name tags to be used and to provide the element containment structures
to be used in the XML.

If this mapping could be specified, then the mapping of classifiers in the way per-
formed in this section would not have to be separately specified. It comes automati-
cally from this mapping of instances, as, through reflection, all classifiers can be
viewed as instances that are classified by Class.

Mapping of other syntaxes, such as diagrams, to XML. The motivation for doing
this is to preserve and exchange purely syntactic information, such as diagram layout,
which would be lost if only the conceptual layer was mapped to XML. We do not per-
ceive any difficulty in doing this: it is just a case of modeling, for example, a mapping
between box and line diagrams and XML.

5.5. Conclusions
This chapter has described how to map diagrams and XML to concepts which have
already been elaborated in the description of MML, thereby demonstrating that it is
possible to provide a complete and unambiguous description of syntax using MML. A
certain style of mapping was developed, which is recursive in nature, and which
reflects the containment structures of each side.

By carefully choosing the diagrams to be considered, we have also demonstrated how a
syntax mapping may be extended using package generalization. Although not done, it
should also be reasonably obvious to the reader that the box and line diagrams could be
reused for other syntax mappings, e.g. from staticCore.instance.concepts to object dia-
grams. We have only mapped one set of concepts to XML, just to demonstrate the fea-
sibility.

To progress the work begun here, we just have to do more modeling and check with
those involved in the standardization of UML that the syntaxes we are defining are true
to the standard and that the mappings are as expected. There is still room for refactor-
ing and improving the models presented. In particular, bring out the TooT pattern,
including subTooTs into a package, as demonstrated in Section 5.2.1 for Lists. We just
ran out of time.

One area of possible contention is the degree to which the diagrammatic syntax should
be standardized. For example, should it be part of the syntax definition, that compart-
ments in boxes should always be large enough to fully contain the required strings. We
have made the decision that position of boxes on the page is not part of the standard,
nor are other layout considerations such as colour, thickness of lines, font etc.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 82

Conclusions
With regard to the XML mapping, we have essentially followed an approach similar to
the XMI 1.x. Indeed the model is not dissimilar to the specification of the mapping of
UML to XML in the XMI standard, except that instead of mapping directly to strings
we map to an abstract syntax of XML (assuming that there are already tools that per-
form the laborious task of parsing/generating strings into this abstract structure). No
doubt our model of XML is a little simplistic and the mapping a little naive; we hope to
work with those who have worked on XMI 1.x to help specify a more complete and
improved version. A number of issues were raised with concern to the XML mapping.
In particular, it seems that it may be possible to leverage reflection and the “instance of
classifier” relationship to develop a “self-generating” XML mappings.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 83

Chapter 5: Syntax Definitions
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 84

Overview
Chapter 6

Dynamic aspects
This chapter presents some initial work on extending MML with
dynamic aspects.

6.1. Overview
In this section, it is shown how a simple dynamic model can be added to the MML as
an extension of the staticCore. Its purpose is to provide a core collection of dynamic
model and instance concepts that can be imported and reused across all behavioural
modelling extensions of MML. For example, interaction diagrams, state machines, and
use-cases could all be viewed as extensions of the dynamicCore.

The main focus of the dynamicCore package is on the notion of an Action. An action
represents a computational procedure that changes the state of the system. Actions are
associated with objects, but can have a global or local effect, i.e. they may change the
values of their slots or the slots of other objects. In addition, they may send messages to
other objects by creating messages.

6.2. dynamicCore.model.concepts
An action is named element, which has parameters, returns a result of type resulttype,
and has a pre- and post-condition expression associated with it.

Figure 43. dynamic.core Package

ActionExpClass

Attribute
(from staticCore.model.concepts)

Classifier
(from staticCore.model.concepts)

Action

+pre

+post

*

+actions

*

0..* +parameters0..*

+resulttype

Exp
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 85

Chapter 6: Dynamic aspects
Well-formedness Rules

 [1] The elements of a class contain its actions.
context uml.dynamicCore.model.concepts.Class inv

elements->exists(g |
g.name = "actions" and
g.elements = allActions())

[2] The method allActions() returns the set of all actions of Class, including those of its
parents:

uml.dynamicCore.model.concepts.Class
allActions() : Set(Action)
parents->iterate(p s = actions |

s->union(p.allActions()->reject(c |
actions->exists(c' | c'.name = c.name)))

[3] The elements of an action contain its parameters, pre- and post- conditions and
returntype.

context uml.dynamicCore.model.concepts.Class inv
(elements->exists(g |

g.name = "parameters" and
g.elements = parameters)) and

(elements->exists(g |
g.name = "pre" and
g.elements = pre)) and

(elements->exists(g |
g.name = "post" and
g.elements = post))and

(elements->exists(g |
g.name = "returntype" and
g.elements = returntype))

Note, as described in the MML chapter, the purpose of these constraints is to set up a
general container mechanism for action. Without this mechanism, it would be neces-
sary to re-specify the effect inheritance has on the conformance of an action with those
of its parents. Because the rules regarding inheritance of contained elements have
already been defined in the MML, these will be automatically applied to actions.

6.3. dynamicCore.instance.concepts
The dynamicCore.instance.concepts package extends the core with the notion of a his-
tory (see Figure 44). A history is a sequential record of action invocations and snap-
shots. As described in the MML specification, a snapshot represents the current
objects in the system (instances) and the current links that exist between instances. In
addition, the dynamicCore.instance.concepts package extends a snapshot with the cur-
rent messages being sent between objects. A message is an instance, which has a
sender and receiver, a set of argument values and a result.

Changes in state are caused by an action calculation. An action calculation is a special
extension of a calculation (described in the MML specification). Given a snapshot that
satisfies its pre-condition, an action calculation results in a snapshot that satisfies its
post-condition. Thus, the behaviour of any system is viewed in terms of a series of
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 86

dynamicCore.instance.concepts
action invocations, in which instances may be created and deleted, messages sent and
received, and objects slots are modified.

Figure 44. dynamicCore.instance.concept Package

Well-formedness Rules

[1] Messages can only be sent and received between Instances that exist in the current
snapshot

context dynamicCore.instance.concepts.Snapshot
message -> forall(m |

elements -> includesAll(Set{m.sender, m.receiver))

[2] A history must start in one of the initial states of the system.
context dynamicCore.instance.concepts.History

start -> includes(steps[1].before)

[3] Each step in a history is related to the previous one as a result of an action calcula-
tion. Note that it may be the case that there are a number of action calculations that
could lead from one state to another. However, it is undetermined (i.e. non-determinis-
tic) which will be chosen.

context dynamicCore.instance.concepts.History
steps -> forall(s1, s2 | s1.next = s2 implies

s1.after = s2.before)

Whilst the above model uses a sequential model of behaviour, it is powerful enough to
express both interleaved and non-interleaved models of concurrent execution. This is
because independent actions may be thought of as being able to execute in any order

Calc

Ob ject

Instance

History ActionCalc

*

+steps

* 1

+next

1

Snapshot

*

+elements

*

*

+start

*

1
+before

1 1
+after
1

Message

+sender

+receiver

+result
* +args*

*
+messages
*

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 87

Chapter 6: Dynamic aspects
thus simulating partial orderings. Partial ordered models of concurrency are a widely
and successfully used approach to the description and verification of concurrent sys-
tems, (as described by the work of Lamport, Hoare and Milner for example). Further-
more, they may be easily extended to describe both soft and hard real-time systems.

[4] The elements of a History are its steps and starting state; the elements of an action
calculation are its pre- and post- snapshots; the elements of a package now includes
messages; the elements of a message are it sender and receiver objects.

6.4. dynamicCore.semantics
The dynamicCore.semantics package associates concepts in the instance.concepts
package with their classifiers in the model.concepts package. A history is associated
with a package. Action calculations are associated with action expressions, while mes-
sages are associated with message expressions (see Figure 45). A message expression
is a subclass of action expression, and defines the syntax of a method call.

Figure 45. dynamicCore.semantics Package

Note that a definition of action and message expressions is not given here. Essentially,
these expressions will form a part of a much larger action language, which will include
all the necessary constructs required to describe action specifications1. However, what-
ever language is used, the architecture described above aims to make it easier to add to
the dynamicCore, simply by extension of the appropriate action expression and calcu-
lation classes.

6.5. Real-time extensions
Once the dynamicCore is defined, extensions to deal with real-time, state charts and
other behavioural modelling tools are made simpler. As an example, consider the addi-

1. For example, as described by the UML action semantics submission (www.umlac-
tionsemantics.org).

HistoryPackage

*1

+instances

*

+of

1

ActionCalcActionExp

*1

+instances

*

+of

1

MessageMessageExp
*1

+instances

*

+of

1

© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 88

Conclusion
tion of time. The dynamicCore can be easily extended to deal with timing properties by
the extension of snapshot by a timed snapshot. If we assume that the timedCore pack-
age extends the dynamicCore package, the contents of the timedCore.instance.concepts
package will be as shown in Figure 46.

Figure 46. timedCore.instance.concepts Package

A timed snapshot simply records the time at which the snapshot was created.

The following constraint is required to ensure that time keeps increasing during a his-
tory:

context timedSnapshot.instance.concepts.History
steps -> forall(s | s.after.time > s.before.time)

Again, as in the case of the history model described in section 6.3, timed histories have
a sound theoretical foundation, and have been successfully used to model a variety of
real-time systems (including soft, hard and distributed real-time properties therein).

6.6. Conclusion
This chapter has shown how the extension mechanisms of MML can be used to extend
the language with a dynamicCore. The purpose of the dynamicCore is to provide a
pluggable and extensible definition of dynamic behaviour, which can be used as a
foundation for specifying further dynamic languages, including real-time, state-based,
and interaction based modelling language.

It is envisaged that by providing a single definition of behaviour in this way, greater
unification and consistency will be achieved when developing future dynamic compo-
nents of the UML.

TimedSnapshot
t ime : Integer

Snapshot
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 89

Chapter 6: Dynamic aspects
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 90

Summary
Chapter 7

Conclusions
This chapter brings together summarises the earlier chapters. It
then considers how to progress from this feasibility study, pay-
ing particular attention to issues of legacy and standardization
process, once one has accepted that UML is a family of lan-
guages.

7.1. Summary
This report has been a feasibility study in rearchitecting UML as a family of languages,
and, at the same time, providing a precise definition of all its aspects, including syntax
(both concrete and abstract) and semantics. The study recognizes the audience at which
this definition is aimed, and the importance of using an accessible language in which to
phrase the definition. In that vein, the study has pinned down the abstract syntax and
semantics of a meta-modeling language that is one of the members of the UML family,
using familar constructs such as classes, attributes and packages. This language has
been defined in terms of itself (Chapter 4) and slotted into the UML family whose
architecture has also been defined in MML (Chapter 3).

In addition to abstract syntax and semantics, the study (Chapter 5) has developed map-
pings between graphical syntax and XML, respectively, and the underlying concepts
(abstract syntax) of various language fragments. In addition to those language frag-
ments required to define MML, the study has sketched (Chapter 6) how other areas of
UML, in particular notations for dynamic modeling, can be built on top of parts already
defined.

During the study, a tool has been prototyped, implementing many aspects of MML. A
brief overview of the tool is given in the next section.

7.2. Tool
The importance of implementing a tool to support the work described here was stressed
in Chapter 1 of this report. At the time of writing a prototype tool implementing MML
has been built, but there has not been the time to write up that work. The approach
taken has been to implement a very small subset of MML (essentially objects, slots,
classification and constraints), and then bootstrap the rest of MML on top of this. This
provides considerable flexibility, as it allows MML to be refactored (within limits)
without having to change the program source code. It is believed that, because of the
reflective nature of MML, it will be possible to use this tool to provide powerful
semantic checking and model execution facilities for meta-models, and their models,
built using MML. However, this remains to be fully tested.

For this approach to work, the style in which one writes OCL invariants has to be such
that they can be executed in some sense. Thus, at the current time, some conversion of
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 91

Chapter 7: Conclusions
the models specified in this document has had to be undertaken to put them in a form
suitable for input into the tool.

The tool will be available from www.puml.org in the near future.

7.3. Further Work

7.3.1 Tool
• Write up the tool work more fully.

• Move away from developing the models using a mixture of Rose diagrams and text,
to maintaining the models only in the prototype tool. We hope and expect to be able
to using the tool to generate diagrams using by writing a mapping, in MML, to an
appropriate XML picture format.

7.3.2 Areas of UML
• Much effort in this feasibility study has focused on trying to tease out patterns to

assist the meta-modeler during language design. This has not been completed to our
satisfaction. In particular, we feel there is room for moving patterns such as general-
ization, container/contained, instance/of, which are currently encoded in class hiear-
chies, into packages that can then be specialized, much in the same way that a
LinkedList package was used in the definition of Text/StringSlot and Box/Com-
partment in Chapter 5. Patterns of packages, e.g. model/instance/semantics, syntax/
concepts/TooTs, could be treated in a similar way, noting a package can contain
other packages.

• One are that did not receive as much attention as we had hopd is the modeling of
dynamic aspects. We have hinted at how we would proceed with this, and expect to
be able to deal with a large chunk of the dynamic part of UML using our techniques.
The separation of syntax from concepts should help here considerably, for example
teasing out the specification and execution trace representation uses of sequence
diagrams. The biggest issue is how to deal with complex aspects of dynamic behav-
iour concerned with concurrency and real-time, which have not been fully resolved
in UML. We note the recent appearance of the work on Action Semantics, recently
submitted for consideration by the OMG, and would hope to align our work in this
area with that.

• We are keen to investigate new opportunities for the development of modeling lan-
guages that MML and our approach to architecting the definition of UML affords.
In particular:

• languages for expressing constraints visually and prototypically

• techniques for modeling by example (by prototype), using well defined and inte-
grated syntaxes for viewing traces of behaviour (e.g. filmstrips combined with
sequence diagrams to visualise a trace)

• visual syntax for regularly occurring patterns, such as patterns that occur in lan-
guage definition when using MML
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 92

Further Work
7.3.3 Backwards compatibility

This feasibility study demonstrates that as soon one adopts a rigorous approach such as
that we have proposed, there is trong likelihood that the existing meta-model for UML
and, therefore the existing XMI standard, will change in non-trivial ways. This raises a
question of backwards compatibility with the 1.x standard.

We believe the approach can accomodate backwards compatibility issues quite cleanly.
Much play has been made throughout the report of the representation of mappings as
models, for example the semantics mappings between models and instances and the
mappings between syntax and concepts. The same technique could be used to solve the
bacwards compatibility issue. Thus, for example, one could write a mapping from a
model of XMI 1.x (which would be a specialization of the model of XML introduced in
Chapter 5) the conceptual layer for all the parts of UML that have been redefined, not-
ing that there may be some (but not much) misalignment, as adopting a rigorous
approach, such as ours, will always identify areas of UML 1.x that require refactoring
or are simply unwanted. The intention would be to at least ensure that the graphical
syntax associated with UML 1.x barely changed, if at all, with the qualification, again,
that problems may be discovered when a complete and precise definition of the graphi-
cal syntax is attempted.

Once UML has been redefined using the proposed approach, questions of backwards
compatibility will be less of an issue, as the whole purpose of this approach is to sup-
port the evolution of UML as a family of languages. The next section explores this a
little further, as part of considering the standardization process.

7.3.4 Standardization Process

We have said little about the standardization process itself. The theory expounded in
the report, and the tool implementing this theory, supports a much more rigorous stand-
ardization and signing off procedure. The idea that UML is a family of languages
changes our perception of what a standard UML is. In this section we consider, in
order:

• the standardization of family members

• acceptance of refactorings of the existing family

• conformance to the standard

Standardizing new family members

We should not think of a single standard language, but rather a set of family members
and language components that have, in some sense, been standardized. This suggests
that mechanisms need to be in place to standardize family members, that is UML pro-
files.

When standardizing a family member the following factors need to be taken into
account:
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 93

Chapter 7: Conclusions
• Does the new family member conform to the established pattern for developing
UML family members? Is syntax separated from concepts, model from instance,
and so on?

• Has the new member introduced concepts that are already included in existing
members or language components? It would better if the introduction of new con-
cepts was kept to the minimum.

• Which of the following does the new family member change/specialize:

• syntax

• model concepts

• instance concepts

• semantics
The mechanisms for standardization may be tougher depending on nature of the
changes/specializations. Specializations are preferred over extensions/changes.
Intereference at only the syntax level is preferred over intereference with model
concepts which is preferred over intereference with instance concepts and seman-
tics. For example, additional concrete syntaxes for existing concepts might just be
accepted with little discussion, perhaps with some syntaxes recommended over oth-
ers. A new family member introducing a whole host of new concepts and semantics
is likely to require much more careful consideration before it is endorsed.

• Is the definition complete? Is it too complete (for example, does it overspecify the
syntax part? Has the definition been tested? Does the definition come with a com-
prehensive set of examples, illustrating the various aspects of the definition? We
believe that these questions can only be answered if MML is properly supported by
tools.

Refactoring the family

In addition to standardizing new family members, one must also consider proposed
refactorings to the existing family. For example, when developing a new family meme-
ber it may be the case that some concepts in an existing member can be reused. These
need to be pulled out to a reusable language component. There is a class of refactorings
that will preserve existing members (just the way those members are constructed might
be different) and a class of refactorings that don’t. Should only refactorings in the first
class be allowed? If not, what is the procedure for accepting the second refactorings in
the second class?

Conformance

It is hard to check whether or not a tool or method conforms to the UML 1.x standard.
Because of the way in which the standard is written down, conformance can only be
checked by human inspection. The only concrete artefact that can be automatically
checked is conformance to the XML interchange format for models, because only this
has been specified to the detail required to check that a tool implementing this standard
conforms to it. This does not include the mapping from XML to the meta-model, as
conformance to the meta-model can only be established through inspection.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 94

Further Work
Checking conformance to UML, when viewing UML as a family of languages, is more
sophisticated. The problem can be split into two:

• Exactly which part of the definition does the tool implment? Is conformance being
checked against syntax, concepts, model, instance and/or semantics? A tool might
conform to the definition of a graphical syntax say, but might not conform to the
mapping of that syntax to concepts. A tool might implement model.concepts, but
not instance.concepts and not the mapping between them. A tool might implement
the semantics part (e.g. checking instance against model), but not implement any of
the syntax.

• Once one has identified the part of the definition being implemented, how does one
check conformance? One approach would be to supply a standard set of examples
(models, instances of models) that the tool must deal with correctly. This is equiva-
lent to a set of conformance test cases. A published set of examples would not be
enough, as one could tune a tool just to work with those examples. Some examples
would have to remain hidden, perhaps even be randomly generated. It is unlikely
that such an approach will be feasible without significant tool support.
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 95

Chapter 7: Conclusions
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 96

References
Clark A., Evans A., Kent S., France R., Rumpe B. (1999) pUML Response to UML2.0
RFI, available from www.puml.org.

D'Souza D., Sane A. and Birchenough A. (1999) First-Class Extensibility for UML -
Packaging of Profiles, Stereotypes and Patterns, in France & Rumpe (1999).

D'Souza D. and Wills A. (1998) Objects, components and frameworks with UML,
Object Technology Series, Addison-Wesley.

France R. and Rumpe B. (eds.) (1999) Proceedings of UML'99 - The Unified Modeling
Language, Beyond the Standard: Second International Conference, Fort Collins, CO,
USA. LNCS 1723, Springer Verlag.

Object Management Group (1999) OMG Unified Modeling Language Specification,
version 1.3., found at: http://www.rational.org/uml.

UoK (2000), Workshop on OCL, University of Kent, details available from http://
www.cs.ukc.ac.uk/research/sse/oclws2k/index.html.

References
© 2000 Tony Clark, Andy Evans, Stuart Kent & IBM 98

	Contents
	Executive Summary
	Version 1.0, 11th September 2000:
	Version 0.1, 22nd May 2000:

	Rearchitecting UML
	1.1. Definition of UML 1.x
	1.2. Why is the definition of UML 1.x inadequate?
	How can conformance to the definition be checked?
	How can we be sure that the definition is self-consistent and is comprehensive yet lean?
	The specialization and extension of UML continues all the time. How does the existing definition ...

	1.3. Requirements for a rearchitected definition of UML

	Precise OO Meta-Modeling
	2.1. Motivation
	2.1.1 Why OO meta-modeling?
	2.1.2 Why precise? What about tools?

	2.2. Design Principles for MML
	2.3. An idealised Meta-Modeling Facility (MMF)
	2.3.1 Meta-Modeling Language (MML) requirements
	Constructs for specifying object structures.
	Constructs for expressing well-formedness constraints on object structures.
	Constructs for packaging and composing fragments of language definition

	2.3.2 Tool requirements
	Satisfaction checker
	Instance generator
	Graphical editor generation/configuration
	Model interchange and XMI
	What is XMI?
	XMI and MML

	2.4. Relationship of MMF to MOF
	2.5. Summary

	An Architecture for UML
	3.1. Introduction
	3.2. Subject areas
	Figure 1. The components of MML
	Figure 2. A language for software design

	3.3. Language aspects
	Figure 3. the components of staticCore
	Figure 4. Components of staticCore.model
	Figure 5. Components of staticCore.instance

	3.4. Extending a language component
	3.5. Summary

	The Meta-Modeling Language, MML
	4.1. Introduction
	Figure 6. Components of the MML

	4.2. staticCore
	Figure 7. core package
	4.2.1 core.model.concepts
	Figure 8: core.model.concepts Package
	Well-formedness rules
	Methods

	4.2.2 core.instance.concepts
	Figure 9: core.instance.concepts Package
	Well-formedness rules

	4.2.3 core.semantics
	Figure 10: core.semantics Package
	Well-formedness rules
	Methods

	4.3. datatypes
	Figure 11: datatypes Package
	4.3.1 datatypes.model.concepts
	Figure 12: datatypes.model.concepts Package
	Well-formedness rules

	4.3.2 datatypes.instance.concepts
	Figure 13: datatypes.instance.concepts Package
	Well-formedness rules
	Figure 14. datatypes.semantics Package

	Well-formedness Rules

	4.4. constraints
	4.4.1 constraints.model.concepts
	Figure 15: constraints.model.concepts Package
	Well-formedness Rules
	Methods

	4.4.2 constraints.instance.concepts
	Figure 16: constraints.instance.concepts Package
	Figure 17: Calculations
	Well-formedness Rules

	4.4.3 constraints.semantics
	Figure 18. constraints.semantics Package

	4.4.4 .Iterate
	Figure 19. Iterate semantics
	Well-formedness Rules

	4.4.5 Object satisfaction

	4.5. methods
	4.5.1 methods.model.concepts
	Figure 20. methods.model.concepts Package
	Well-formedness rules
	Methods

	4.5.2 methods.instance.concepts
	Figure 21. methods.instance.concepts Package
	Well-formedness Rules

	4.5.3 methods.semantics
	Figure 22. constraints.semantics Package

	4.6. modelManagement
	4.6.1 modelManagement.model.concepts
	Figure 23: modelManagement.model.concepts Package
	Well-formedness Rules

	4.6.2 modelManagement.instance.concepts
	Figure 24. modelManagement.instance.concepts Package
	Well-formedness Rules

	4.6.3 modelManagement.semantics

	4.7. reflection
	4.7.1 reflection.model.concepts
	4.7.2 reflection.instance.concepts
	4.7.3 reflection.semantics
	Figure 25. reflection.semantics Package
	Well-formedness Rules
	Example
	Figure 26. Meta-levels example

	4.7.4 Type semantics
	Methods

	4.8. associations
	4.8.1 binaryAssociation
	associations.model.concepts
	Figure 27. associations.model.concepts Package

	Well-formedness Rules

	4.8.2 association Class

	4.9. Conclusions

	Syntax Definitions
	5.1. Introduction
	5.2. Syntax Packages
	Figure 28. Syntax library packages
	5.2.1 Strings
	Figure 29. syntaxLibrary.Strings package
	Figure 30. Package defining Linked Lists

	5.2.2 Box and Line diagrams
	Figure 31. Top level classes for box and line diagrams
	Figure 32. Boxes
	Figure 33. Box/Compartment is List/Slot
	Figure 34. Lines

	5.2.3 XML
	Figure 35. XML

	5.3. Graphical Syntax Mappings
	5.3.1 Mapping of staticCore.model.concepts to box and line diagrams
	Figure 36. Graphical syntax for staticCore.model
	Figure 37. Graphical syntax for staticCore.model.concepts
	Figure 38. Graphical syntax for generalisations
	Figure 39. Graphical syntax for classes

	5.3.2 Mapping of modelManagement.model.concepts to box and line diagrams
	Figure 40. Syntax for packages

	5.4. XMI
	5.4.1 Mapping of staticCore.model.concepts to XML
	Figure 41. XML mapping for staticCore.model.concepts

	5.4.2 Mapping of modelManagement.model.concepts to XML
	Figure 42. XML mapping for modelManagement.model.concepts

	5.4.3 XML Issues
	Generalization.
	Dual representation of classifiers.
	Mapping semantics.
	Alternative representation of instances.
	Mapping of other syntaxes, such as diagrams, to XML.

	5.5. Conclusions

	Dynamic aspects
	6.1. Overview
	6.2. dynamicCore.model.concepts
	Figure 43. dynamic.core Package
	Well-formedness Rules

	6.3. dynamicCore.instance.concepts
	Figure 44. dynamicCore.instance.concept Package
	Well-formedness Rules

	6.4. dynamicCore.semantics
	Figure 45. dynamicCore.semantics Package

	6.5. Real-time extensions
	Figure 46. timedCore.instance.concepts Package

	6.6. Conclusion

	Conclusions
	7.1. Summary
	7.2. Tool
	7.3. Further Work
	7.3.1 Tool
	7.3.2 Areas of UML
	7.3.3 Backwards compatibility
	7.3.4 Standardization Process
	Standardizing new family members
	Refactoring the family
	Conformance

	References

