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Abstract 

This study compared low strain rate material properties and impact force attenuation of 

auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our 

knowledge with regards to how best to apply these highly conformable and breathable 

auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 x 150 x 

150 mm
 

were fabricated using a thermo-mechanical conversion process.  Quasi-static 

compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm 

thick cuboid samples for further testing. Density, Poisson’s ratio and the stress-strain curve 

were all found to be dependent on the position of each cuboid from within the cube. Impact 

tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams 

covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced 

peak force by ~10 times in comparison to the conventional foam. This work has shown 

further potential for auxetic foam to be applied to protective equipment, while identifying that 

improved fabrication methods are required.  

Key Words 

Negative Poisson’s ratio, sport, protection, material, stiffness, force, auxetic 

Introduction 

Protective equipment for sport and recreation is designed to reduce injuries and discomfort, 

caused by impacts and collisions [1]. Due to space and weight constraints the complex 

designs seen in other shock absorbing appliances - such as mechanical suspension systems - 

cannot be utilised. Protective equipment relies almost entirely on the properties of monolithic 

materials, which are often foams, covered with a stiff shell to help distribute concentrated 

loads [2-4]. Any developments in materials which aid energy absorption, peak force 
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attenuation and indentation resilience are beneficial.  

 

Auxetic (negative Poisson's ratio) foams have the potential to absorb more energy than 

conventional foams [5-6]. For a comprehensive review of auxetic materials from the late 

1980s to 2014 the reader is referred to [7]. A common fabrication method for auxetic foams 

is the thermo-mechanical process which begins with compression of open-cell foam into a 

mould, followed by heating close to or beyond the softening temperature so the cell ribs 

buckle and form a re-entrant structure [5, 8-9]. Volumetric compression ratio (VCR) (initial 

to final volume) typically falls between 2 to 5 [8]. A final stage of conversion involves 

annealing below the softening temperature to lock in the re-entrant structure. Irregularities in 

re-entrant foam structure have been reported with this method [10,11], and chemical-

mechanical [12] or mechanical-chemical-thermal [13] processes offer alternatives. 

 

Early studies fabricated and characterised small sized samples of auxetic foam [e.g. 14] 

(smallest dimension < 25 mm), while more recent work has produced larger samples [e.g. 15-

19] (50 mm < smallest dimension < 100 mm) as the research has moved towards 

applications. Poisson’s ratios are typically calculated from true strain measurements, obtained 

by filming and tracking the location of marks applied to a sample subject to quasi-static 

tension or compression. Auxetic foams typically have a lower Young’s modulus under 

compression, in comparison to their conventional open-cell counterparts, [14-16, 20], 

although an increase in stiffness has also been reported in some cases [13, 18 and 19]. The 

stress-strain curve for auxetic foams under compression typically has an extended region of 

linear elasticity providing higher resilience [5, 15-17]. Camera or microscope images are 

often used alongside mechanical tests to identify re-entrant cell structures in converted foams. 

Previous work has shown inhomogeneity in the structure of converted foam [19]. Cellular 
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structure (geometry and orientation) contributes significantly to the mechanical properties of 

a cellular solid [7, 21, 22]. 

 

In comparison to their conventional counterparts, auxetic foams exhibit higher indentation 

resilience during quasi-static tests [15, 23] and lower peak acceleration under impact [16-18]. 

High-speed video has been used to confirm that lower peak acceleration is due to greater 

resistance to compression under impact, preventing “bottoming out” as observed with 

conventional foam [17]. Comparative low-kinetic energy impact testing with a concentrated 

load has shown peak accelerations around six times lower for auxetic foam, when samples 

were covered with a thin semi-rigid sheet characteristic of protective equipment [16]. 

Measurements of Poisson’s ratio of auxetic foams during quasi-static compression and drop 

tower impact testing have provided comparable results [16]. Increasing compressive strain 

rates have also been shown to increase stiffness and reduce the magnitude of Poisson’s ratio 

of auxetic foams [24].  

 

This paper aims to further investigate the suitability of auxetic foam for use in protective 

sports equipment, through investigating the effect of scaling the fabrication process to 

produce larger sized monolithic cubes from which thinner samples can be cut (to reduce 

fabrication costs compared to producing individual converted thin samples) and investigating 

the effect of covering sheet thickness on force attenuation for higher energy impacts with a 

concentrated load.  

Methods 

The methods were adapted from similar work also using reticulated open-cell polyester-based 

polyurethane foam [15-17]. Auxetic foam cubes measuring 150 x 150 x 150 mm were 
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fabricated using a multi-stage thermo-mechanical process employing a compression of each 

linear dimension to 70% of its unconverted value. No recovery of dimensions was observed 

in the converted samples over a period of 3 weeks, confirming that the processing conditions 

employed in the foam conversion process produced stable samples over the timescales of this 

investigation. Following removal of 25 mm from each face, to eliminate any surface creasing 

and folding, the resulting 100 x 100 x 100 mm cubes were subject to quasi-static compression 

to obtain Poisson’s ratio, stress-strain curves and Young’s moduli. Each cube was then cut 

into five 100 x 100 x 20 mm cuboidal samples for quasi-static compression and impact 

testing against unconverted foam samples of the same dimensions. The 100 x 100 x 20 mm 

sliced samples of converted foam were visibly less dense towards the centre than the edges of 

foam trimmed from the converted 150 x 150 x 150 mm monolithic cube. Impact tests were 

performed using an instrumented hemispherical drop hammer with a 1, 1.5 or 2 mm thick 

polypropylene (PP) sheet (Direct Plastics, PPH/PP-DWST-Homopolymer) placed on top of 

the foam without any bonding.  

 

The foam was R30FR reticulated open-cell polyester-based polyurethane foam with flame 

retardant additive, having 30 pores inch
-1

 and a density of 26 to 30 Kg m
-3

, supplied by 

Custom Foams in two 215 x 215 x 215 mm cubes. A metal mould, comprising 2 ‘U’-shaped 

pieces with enclosed internal dimensions of 150 x 150 x 150 mm, containing the compressed 

foam was heated at the designated conversion temperature for two 35 minute periods in a 

conventional oven before annealing at 100°C for 35 minutes. Between each stage the foam 

was removed from the mould and gently stretched in all three orthogonal planes. One cube 

was converted at 180°C and the other at 200°C, corresponding to temperatures used 

previously with smaller sized samples [16-17]. An extended heating time was adopted over 

the previous work, rather than an increase in temperature, to assist heating of the centre of the 
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foam and prevention of adhesion of cell ribs caused by over-heating [10].  

 

The quasi-static uniaxial compression tests were performed on specimens in the absence of a 

PP shell with a universal testing machine (Instron 3369, fitted with a 50 kN load cell and flat 

compression plates) up to 50% compression at 0.008 s
-1

. Young's Moduli were obtained from 

linear regression of stress-strain data up to 10% compression. Four pin heads arranged in a 60 

x 60 mm square centred on the cube face (figure 1a) were filmed with a camera (JVC Everio 

Full HD resolution 1920 x 1080 pixels) and then tracked using a bespoke MATLAB 

(MathWorks) algorithm to obtain true strains in both directions. Poisson’s ratios were 

obtained from linear regression of the true strain-strain data up to compressive strains of 0.1. 

Each cube was tested five times with the loading direction aligned with the foam rise 

direction.  

 

The cubes were then cut into five equal cuboids - with the rise direction through the thickness 

using a band saw (Bauer Maschinenbau) – and compression tested three times each to obtain 

stress-strain curves and Poisson’s ratio. Due to the reduced thickness of the samples, three 

pins heads horizontally aligned ~30 mm apart were used to obtain lateral true strain 

measurements (figure 1b). Compressive axial true strain measurements were obtained from 

the position data recorded by the test machine. Four unconverted samples of the same sample 

size were cut from a monolith and compression tested once each to obtain stress-strain curves 

and Young’s modulus. The Poisson’s ratio of reticulated open-cell polyester foam has been 

reported previously in the range 0.29 to 0.43 [13-15]. Given the evident visible variation in 

foam density throughout the converted monolithic foam cubes, the density of the converted 

foam was obtained from measurements taken using callipers and scales, and used to obtain 

the final VCR (of the trimmed cubes and also the sliced samples) by normalising to the value 
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(28 ± 1 kg m
-3

) measured for the unconverted foam. Through thickness images at a 

magnification of 4.3 were taken using a LEICA S6D stereoscope to further inspect variations 

in material structure. 

 

Figure 1 Pin locations for quasi-static compressive tests of: a) 100 x 100 x 100 mm cubes b) 20 x 100 x 100 mm cuboids. 

Impact tests were performed for kinetic energies of 4 and 6 J, using a bespoke drop rig [16-

17]. The tests were inspired by the British Standard for protective equipment for cricketers 
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(BS 6183-3:2000), with similar impact energies to the lowest performance level and the same 

shape hammer, but the sample rested on a flat surface rather than a curved anvil [25]. The 

drop hammer (2.09 kg and 73 mm diameter hemisphere) was fitted with wireless 

accelerometers (Analog Devices, ADXL001-5000g & 500g) recording at 10 kHz providing 

acceleration-time data (DTS SLICEWare Version 1.08.0475). A high-speed video camera 

(Vision Research, Phantom V4.3) - operating at 10 kHz, with an exposure time of 30 μs and a 

resolution of 832 x 64 pixels - filmed a marker placed on the drop hammer to enable 

measurement of displacement and determine the time corresponding to the end of impact. 

Video footage and accelerometer traces were processed with a bespoke MATLAB algorithm 

to combine and align the peaks in the displacement and acceleration data strings, with the 

start of contact identified when acceleration first exceeded 1 g. Visual comparison using the 

video footage indicated the start of contact could be identified to within 1 ms with this 

method. The end of the impact was defined as when the drop hammer returned to the height 

identified as the start of contact. A moving average (up to 11 points) was applied to the 

displacement data and a low pass Butterworth filter reduced the mostly high frequency noise 

of motion throughout the accelerometer data.  

Results 

Figure 2a shows stress-strain curves for the 100 x 100 x 100 mm cubes converted at 180 and 

200°C. The cubes exhibited similar stress-strain relationships, although the sample converted 

at 200°C was slightly stiffer at higher strains (>0.2). Young’s modulus was 30 ± 5 kPa (mean 

± standard deviation) for the sample converted at 180°C, with a marginally higher value of 33 

± 4 kPa for the 200°C cube. Figure 2b shows similar lateral strain vs axial strain data for the 

two cubes, with a relatively linear relationship up to full compression. Poisson’s ratio was 

similar for both cubes, -0.019 ± 0.021 at 180°C and -0.026 ± 0.006 at 200°C. The VCR was 
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calculated from the density as 1.7 for the trimmed 180°C cube and 1.9 for the trimmed 200°C 

cube, which are both lower than the value of 2.9 applied to the untrimmed 150 x 150 x 150 

mm sample during conversion. This reduction in internal volumetric compression ratio 

(resulting in greater compliance towards the centre of each cube) caused the increased values 

for axial compressive true strain in the tracked marker positions (Figure 2b), and is consistent 

with the observation that the trimmed edges from the full converted cubes were visibly higher 

density than the trimmed cubes.
 

 

   

Figure 2 Quasi-static compression data for 100 x 100 x 100 mm trimmed cubes cut from 150 x 150 x 150 mm converted 

cubes. a) Mean stress-strain data b) true strain-strain data for a test with the loading axis aligned with the rise direction. 

Poisson’s ratio was -0.019 for the test on the 180°C sample and -0.021 for the 200°C sample.  

Figure 3a shows stress-strain curves for the 100 x 100 x 20 mm converted and unconverted 

samples. The unconverted foam exhibited the classic relationship [21], with a high stiffness 

linear elastic region (E = 43 ± 9 kPa) followed by a plateau beginning at ~10% compression. 

This is reflected in the tangent modulus curve in Figure 3b (derived from the slope of the 

stress-strain data in Figure 3a), which shows the unconverted foam to have almost zero 
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stiffness in the region corresponding to 10 to 50 % compression. Samples taken from the top 

of the cubes exhibited an extended region of near-linear elasticity until ~40% compression, 

followed by progressively increasing stiffness (Figures 3a and 3b). Samples from the centre 

exhibited intermediate behaviour, with similar stress-strain curves to those presented for the 

cubes in Figure 2a. The converted foam samples are one to two orders of magnitude stiffer 

than the unconverted parent foam for compressive strains ranging from 10 to 50%. The 

indentation response of a material is dependent on both the Poisson’s ratio and Young’s 

modulus of the material [26]. Hence we expect the increased Young’s modulus response of 

converted foams at intermediate and higher strains will also be a significant factor, in 

addition to the negative Poisson’s ratio effect, in the indentation response of the converted 

foams. 

   

Figure 3 Quasi-static compression data for the 100 x 100 x 20 mm cuboids cut from the converted cubes. a) Mean stress-

strain data, b) tangent modulus of UC and example auxetic samples. 

Figure 4a shows a re-entrant cellular foam structure, characteristic of an auxetic foam, for the 

sample taken from the top of the cube converted at 180°C. In contrast, Figure 4c shows a 

regular cell structure for the unconverted foam. The sample taken from the centre of the cube 
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converted at 180°C had a fairly regular cell structure (Figure 4b), much more reminiscent of 

the unconverted foam structure. 

 

Figure 4 Microscopic images of: a) Top sample of auxetic cube converted at 180°C, showing face corresponding to the 

outside of the trimmed cube, b) middle sample of auxetic cube converted at 180°C, c) unconverted open cell R30FR. 

 

Figure 5a shows the VCR also changed through the cube, with lower levels of compression 

towards the centre. The VCR of all samples was lower than the applied value of 2.9, with the 

180°C conversion showing the lowest levels of compression. Figure 5b shows Poisson's ratio 

also changed through the cube, further highlighting the inhomogeneous nature of the 

converted foams. The cube converted at 180°C had a lower Poisson’s ratio for the top 

sample, which was more compressed and stiffer.  
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Figure 5 a) VCR and b) Poisson’s ratio, with respect to position of the cuboid from the top of the cube. The horizontal lines 

correspond to the 100 x 100 x 100 mm cubes, error bars correspond to +/- 1 standard deviation. 

Figure 6a show force-time plots for a 4 J impact on samples taken from the cube converted at 

180°C, when covered with a 2 mm shell. The sample from the centre of the cube exhibited a 

sharp increase in force, and appears to have bottomed out. The sample taken from the top of 

the cube had a much more gradual loading profile and lower peak force. Figure 6b shows 

peak impact force for a 4 J impact on each 180°C sample with a 2 mm shell, normalised to 

the mean value obtained for unconverted foam samples with a 2 mm shell 

(Fnormalised=Fsample/Fuc mean). Peak force for the auxetic sample taken from the top of the cube 

was ~10 times lower than the unconverted sample. In contrast, peak force was ~1.7-2.5 times 

lower for the other samples. Based on the results presented, only the top and bottom sample 

from the 200°C cube were used for further impact testing investigating the effect of covering 

sheet thickness.  
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Figure 6 Results for 4J impacts on foam with 2 mm shell, a) Force-time curves for the top and central cuboidal slices from 

the 180°C cube  b) Peak force normalised to the unconverted foam with respect to position of the cuboid from the 180°C 

cube. Unconverted peak force with 2 mm shell was 8850 ± 324 N for 4 J impacts.   

Figure 7a shows force-time plots for a 4 J impact on the top cuboid from the 200°C cube and 

an unconverted sample, both with a 2 mm shell. The unconverted sample exhibited a sharp 

increase in force and appears to have bottomed out. The auxetic sample had a much more 

gradual loading profile and a peak force ~8 times lower, consistent with the results presented 

in Figure 6 for the 180°C top sample. Figure 7b shows force-time plots for auxetic samples 

with 1, 1.5 or 2 mm shells. The sample with the 1 mm shell appears to have bottomed out, 

with a peak force ~6 times higher than the test with the 2 mm shell. Based on these results 

neither unconverted samples nor auxetic samples with a 1 mm shell were tested above 4 J. 
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Figure 7 Force-time data for 4 J impacts; a) unconverted and auxetic with a 2 mm shell, b) auxetic with 1 mm, 1.5 mm and 2 

mm shell. Auxetic corresponds to the top cuboid from the 200°C cube.  

Figure 8 summarises peak force results for impacts on samples with different shell 

thicknesses at 4 and 6 J, normalised to the unconverted foam with a 1 mm shell at 4 J. Peak 

force was lower for auxetic samples than unconverted foam in all scenarios. Increasing shell 

thickness marginally reduced peak force for unconverted foam, while significantly reducing 

peak force for auxetic foam. For a 4 J impact, a 1 mm shell reduced peak force by <50% for 

auxetic foam in comparison to unconverted foam with the same thickness shell. Increasing 

shell thickness to 2 mm reduced peak force by >80% in comparison to unconverted foam in 

the same scenario. Peak forces for auxetic samples with a 2 mm shell impacted at 6 J were 

less than half those for the unconverted foam tested at 4 J. Once again, large variability in 

response is evident for auxetic samples taken from different locations of the same converted 

cube under identical test conditions. 
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Figure 8 Peak force results normalised to the unconverted foam with a 1 mm shell at 4 J (10,082 ± 83 N). Error bars for the 

unconverted foam correspond to one standard deviation either side.  

Discussion 

A composite pad consisting of a 2 mm polypropylene sheet covering a 20 mm thick auxetic 

foam reduced peak force by ~10 times - for a 4 J impact from a rigid hemisphere - in 

comparison to the conventional counterpart. In contrast, placing a 1 mm sheet on each sample 

only resulted in the auxetic foam reducing peak force by <50%. Covering sheet properties 

clearly influence load distribution, deformation behaviour and impact performance of the 

underlying auxetic foam. Further work will investigate the effect of the mechanical properties 

of the sheet – thickness and material stiffness - on impact performance for a wider range of 

loading scenarios. Utilising a thin, stiff and high energy absorbing sheet - such as an auxetic 

carbon fibre-reinforced epoxy laminate [27] - will help keep pad thickness low. 

 

Issues were observed when applying the thermo-mechanical conversion process to relatively 

large cubes of foam, resulting in an inhomogeneous material. Heterogeneous strain 

distributions have previously been observed in a coupled X-ray tomography and Digital 

Volume Correlation investigation into auxetic foams produced using the thermo-mechanical 
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conversion process [11], consistent with the inhomogeneous structure and properties reported 

in this work. The inhomogeneity arises due to issues of achieving uniform compression and 

temperature fields throughout the sample during conversion, and these are especially apparent 

as the sample size increases [8, 9, 18]. The inner regions of the cubes reported in this work 

were less compressed (lower VCR – Figure 5a) and had lower initial stiffness (Figure 3b), in 

agreement with previous work utilising a mechanical-chemical-thermal process [19]. The 

stress-strain curve for samples taken from the centre of a cube had a slight plateau region 

(Figure 3a), characteristic of a low level of compression during conversion [16] and 

consistent with less modification of the foam structure after conversion (Figure 4b). Samples 

taken from the top of a converted cube, on the other hand, had a higher level of volumetric 

compression (Figure 5a) and a stress-strain curve with an extended region of linear elasticity 

(Figure 3a) based on a re-entrant cell structure (Figure 4a), characteristic of auxetic foam [5, 

15-17]. Impact tests confirmed superior force attenuation for the stiffer more compressed 

samples away from the centre of the cube (Figures 6 and 8), corresponding to the findings of 

previous work investigating different levels of compression during conversion [16].  

 

The Poisson's ratio was measured in one plane only for each sample, with the foam rise 

direction aligned along the loading direction during testing. The directional dependency of 

Poisson’s ratio in unconverted and converted foams has been considered in detail previously 

[28, 29]. Given the symmetry of the unconverted foam structure, the Poisson’s ratio in the 

other orthogonal plane also having the foam rise direction in the loading direction is similar 

to that for the measuring plane reported here. The Poisson’s ratio for loading of unconverted 

open cell thermoplastic foam in the foam rise direction differs to that for loading in one of the 

lateral directions (in the same plane as the foam rise direction) due to the elongated nature of 

the foam structure along the foam rise direction [28]. The Poisson’s ratios in the transverse 
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plane (i.e. both loading and lateral directions perpendicular to the foam rise direction) may 

also be different to either of the on-axis Poisson’s ratios in the planes containing the rise 

direction, again due to the anisotropy of the unconverted foam structure. 

 

In the case of the converted foams, the effect of compression on the foam structure and, 

therefore, directional Poisson’s ratio responses, depends on the nature of the compression 

applied during the conversion process. Highly anisotropic auxetic foams can be produced, for 

example, when the foam is biaxially compressed (transverse to the foam rise direction) [29]. 

Gradient foam structure and Poisson’s ratio response can be produced by employing non-

uniform compression along one or more axes during conversion [30]. Triaxial compression 

corresponding to the same level of compression along all three axes, as used in this work, 

generally leads to quasi-isotropic foam structure and Poisson’s ratio response [5, 28, 29]. 

Hence the measurement of Poisson’s ratio in one plane, with the loading direction 

corresponding to both the foam rise direction and the impact direction during the subsequent 

impact studies, is justified in the first instance. However, the previous studies have largely 

been confined to small converted cuboidal samples and so the effects of increased 

inhomogeneity reported above for the larger converted cubes merits further investigation in 

the future into the spatial variation of Poisson’s ratio throughout the converted cubes, 

including in all three mutually orthogonal planes. 

 

Further work will look to improve the conversion process to produce more homogeneous and 

better performing auxetic foam, simultaneously investigating the effect of applying different 

levels of compression, heating time and temperature and sample shape. Fabricating samples 

closer to the thickness required – rather than converting and slicing larger cubes – should 

achieve more uniform levels of compression and temperature during conversion. An 
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alternative solution to the temperature gradient may involve chemical conversion, or a mixed 

chemical and thermo-mechanical approach [12-13]. Despite outperforming conventional 

foam, auxetic samples showed an increase in peak force with impact energy from 4 to 6 J. 

Further work will, therefore, also investigate converting stiffer foams, and foams displaying 

larger magnitude of the negative Poisson’s ratio, with the aim of producing improved auxetic 

foam at higher impact energies.    

 

Through testing higher energy impacts on larger samples, the work presented here has shown 

further potential for auxetic foam to be applied to protective sports equipment. Auxetic foam 

considerably outperformed its conventional counterpart, in agreement with previous work 

[16-17]. Future work needs to focus on comparing auxetic foam with current materials and 

products, utilising an improved conversion process and a range of candidate materials. A 

consistent process for producing homogeneous samples of sufficient size for developing 

prototypes is needed, so these can be benchmarked against current products and relevant 

standards. Testing of auxetic foam should also extend to include tissues surrogates [e.g. 31] 

to provide impact scenarios which are more representative of those experienced by the human 

body. Finite element analysis has been applied to protective sports equipment [2-3]. Material 

models of auxetic foam under compression have been created [32], and future work will 

apply and implement this technique to further our understanding of how best to utilise auxetic 

foam. The Poisson’s ratio and Young’s modulus responses as a function of strain specific to 

the test specimen materials and dimensions employed in the impact tests reported here (e.g. 

Figure 3b for tangent modulus) will be utilised in these modelling investigations. 

Conclusion 

Open-cell auxetic foam covered with a thin shell exhibited higher force attenuation than the 
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conventional counterpart, when impacted with a rigid hemisphere. Increasing shell thickness 

had little effect on the conventional foam but resulted in considerably improved performance 

for the auxetic foam. Future work should investigate shell properties in more detail for a 

range of impact scenarios. Large variations within converted samples warrant further work to 

improve the conversion process. Larger sized samples now need to be produced so prototypes 

can be developed and tested against current products.   
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