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Abstract 

Signals induced by mechanical loading and C-type natriuretic peptide (CNP) 

represent chondroprotective routes that may potentially prevent osteoarthritis (OA).  

We examined whether CNP will reduce hyaluronan production and export via 

members of the multidrug resistance protein (MRP) and diminish pro-inflammatory 

effects in human chondrocytes. The presence of interleukin-1β (IL-1β) increased HA 

production and export via MRP5 that was reduced with CNP and/or loading. 

Treatment with IL-1β conditioned medium increased production of catabolic 

mediators and the response was reduced with the hyaluronan inhibitor, Pep-1. The 

induction of pro-inflammatory cytokines by the conditioned medium was reduced by 

CNP and/or Pep-1, αCD44 or αTLR4 in a cytokine-dependent manner, suggesting 

that the CNP pathway is protective and should be exploited further.  

  

Keywords: C-type natriuretic peptide, interleukin-1β, chondrocyte, mechanical 

loading, osteoarthritis.  

 

Introduction  

The importance of the C-type natriuretic peptide (CNP) pathway is evident in 

regulating joint homeostasis [1-3]. In chondrocytes, CNP binds to natriuretic peptide 

receptor (Npr) 2 leading to synthesis of cyclic guanosine-3’,5’-monophosphate 

(cGMP) and homeostasis. CNP also binds to Npr3 that degrades the peptide and 

reduces beneficial signalling via Npr2 [4]. CNP treatment of cell lines, monolayers or 

pellet culture increased chondrocyte differentiation, proliferation and matrix 

synthesis, mediated by Npr2/cGMP [5-9]. In the chondrocyte/agarose model, the 

protective effects of CNP were enhanced by mechanical loading [10-11]. Taken 



together, the evidence indicates that the effects of CNP are mediated via Npr2 and 

its antagonism inhibits the protective actions of CNP in cartilage.  

We previously reported that CNP or mechanical loading upregulates 

intracellular and extracellular levels of cGMP [11], but the way in which it is exported 

in chondrocytes is unclear. In fibroblasts, the multidrug resistance protein 5 (MRP5) 

was reported to export both HA and cGMP [12-13]. However, agents designed to 

inhibit HA export by increasing cGMP levels prevent proteoglycan and collagen loss 

in OA affected cartilage explants [14-15]. Since we reported that cGMP levels were 

also influenced by CNP, IL-1and mechanical loading [11], the action of cGMP on 

preventing HA export could potentially be chondroprotective and might reduce the 

downstream actions of HA signalling and its breakdown. However, HA fragmentation 

is influenced by mechanical loading or the presence of hyaluronidases or free 

radicals typically found in the OA joint [16-18]. It was reported that the HA binding 

receptors, CD44 or Toll-Like Receptor 4 (TLR4) promotes inflammatory effects 

induced by hyaluronidase treatment [19-24]. We hypothesised that induction of 

cGMP by CNP and mechanical loading will reduce HA production and export that 

prevents the catabolic effects induced by HA fragmentation. These impacts may alter 

both quantity and size distribution of HA, and play an important role in balancing the 

protective and inflammatory effects mediated by CNP and HA fragmentation. 

 

Materials and Methods  

Cell isolation and 3D agarose culture: Human cartilage was obtained from sixteen 

patients with ethical approval (East London and The City Research Ethics 

Committee) and informed patient consent, undergoing total knee arthroplasty at the 

Royal London Hospital, Barts Health NHS Trust, London, UK. Cartilage was 



removed from the femoral condyles and tibial plateaux with experiments repeated 

with cells from 3-4 donors. Chondrocytes were isolated from tissue explants and 

resuspended in DMEM + 20% FCS at a cell concentration of 8 × 106 cells/ml using 

well-established protocols [10-11]. The cell suspension was added to an equal 

volume of molten 6% (wt/vol) agarose type VII in Earle Balanced Salt Solutions 

(EBSS) to yield a final cell concentration of 4 × 106 cells/ml in 3% (wt/vol) agarose 

(Sigma-Aldrich, Poole, UK). The chondrocyte/agarose suspension was allowed to 

gel at 4C for 20 min in a sterile stainless steel mould, containing holes 5 mm in 

diameter and 5 mm in height. Constructs were equilibrated in culture in DMEM + 

10% FCS at 37C in 5% CO2 for 24 hours (Sigma-Aldrich, Poole, UK). 

 

Effect of agents that interfere with the MRP/Npr pathway: The effect of IL-1β and 

CNP on HA production was investigated in free-swelling culture. Equilibrated 

constructs were cultured with 0 or 10ng/mL IL-1 and/or 100nM CNP or 1M MK571 

(inhibits MRP5), 0.5µM cyclic gly-24-ser (P19, selective Npr2 antagonist, Gentaur 

Molecular Products, Whetsone, UK) or 1µM c-Atrial Natriuretic Factor (cANF4-23, 

selective Npr3 agonist, Bachem AG, Bubendorf, Switzerland) [11]. In separate 

experiments, constructs were subjected to 15% dynamic compression at 1Hz 

frequency (10min every 6 hours) using well-established protocols [10-11] for 48 

hours. Media was supplemented with 0 or 10ng/ml IL-1β and/or 100 nM CNP and/or 

0.5µM P19 and/or 1µM cANF4-23. Controls were unstrained in the bioreactor and 

cultured for the same time period.  

 

The effect of conditioned media and agents that influence the HA pathway: The 

role of HA and its fragments on promoting inflammatory effects was investigated with 



conditioned medium, and/or specific pharmacological agents that inhibit downstream 

effects on two HA receptors, CD44 and TLR4. Constructs were cultured with 0 or 10 

ng/ml IL-1 and/or 100nM CNP for 48 hours. 300µL of the supernatant was used as 

conditioned medium to treat patient-matched constructs for the following conditions: 

- Untreated conditioned media (UTCM) 

- CNP conditioned media (CNPCM)  

- IL-1β conditioned media (IL-1βCM) 

- IL-1β + CNP conditioned media (IL-1β + CNPCM) 

 

Conditioned medium was supplemented with HA binding peptide Pep-1 (30 µM, 

AnaSpec), which blocks binding of small HA fragments and prevents downstream 

signalling [25-26]. For analysis of the HA binding mechanism, conditioned media was 

treated with specific antibodies that blocked HA binding to CD44 (clone Bu52, 

AbDSerotec, Kidlington, UK) or TLR4 (anti-CD284 clone HTA125, AbDSerotec, 

Kidlington, UK). Both antibodies were used at 2µg/mL and were shows to block 

activity [26-27]. Constructs were cultured with conditioned media with P19 and cANF 

for a further 48 hours. 

 

Gene expression analysis: Total RNA was isolated with the QIAquick Spin gel 

extraction and RNeasy kits (Qiagen,West Sussex, UK), reverse transcribed (200 ng) 

with Enhanced Avian RT First Strand cDNA synthesis kit (Sigma Genosys, 

Cambridge, UK) and real-time PCR reactions performed on the Mx3000P 

quantitative PCR instrument (Stratagene, Amsterdam, The Netherlands) using well 

established protocols [28].  The following specific primer sequences were used: 

MRP2 sense: 5’CGTTGTTGCCATCTTAGG-3’, antisense: 5’-

CAAACATCATTGCTGGGTAA-3’; MRP4 sense: 5’-GCAGTTCTAATCATTCTC-3’, 



antisense: 5’-AAATCTCCTTCTTTCTCA-3’; MRP5 sense: 5’-

CTTGTCCTGGAAGATGTT-3’, antisense: 5’-GAAGATGTCATTCACTAGC-3’ (Sigma 

Genosys, Cambridge, UK).  The real-time PCR efficiencies (E) of amplification for 

each target were defined according to the relation, E = 10[-1/slope], and revealed 

efficiency values ranging from 1.94 to 2.03 for optimal primer pairs concentrations 

(0.3 M) derived from standard curves (n = 3). The Ct values for GAPDH remained 

stable, with no changes detected under all culture conditions, suggesting its 

suitability as a reference gene. Relative quantification of MRPs were normalized to 

the target ∆Ct and reference GAPDH ∆Ct, and to the calibrator sample by a 

comparative Ct approach, as described [28].  

 

Biochemical analysis: NO, PGE2 and HA production were determined in 

supernatant by Griess, EIA (GE Healthcare, Buckinghamshire, UK) or ELISA (R&D 

Systems, UK), using well established methods [10-11]. Total MMP activity was 

measured with fluorogenic MMP substrate  at excitation and emission values of 340 

and 440nm, respectively (Enzo Life Sciences, Exeter, UK). GAG synthesis was 

measured by DMMB assay and normalised to DNA values using Hoescht 33258.  

Cytokines were measured with Human Th1/Th2 10-plex tissue culture MSD plates 

according to manufacturer’s instructions (Meso Scale Discovery, Rockville, USA).  

 

Statistics: Statistical analysis was performed by a two-way analysis of variance 

(ANOVA) and the multiple post hoc Bonferroni-corrected t-tests to compare 

differences between the various treatment groups as indicated in the figure legend. 

For gene-expression data, ratio values were log transformed before analysis by a 



two-way ANOVA and a post hoc Bonferroni-corrected t test. In all cases, a level of 

5% was considered statistically significant (P < 0.05). 

 

Results 

 

MRP transporters are regulated by IL-1β and CNP: MRP5 gene expression was 

reduced with CNP when compared to untreated controls (p<0.05, Fig. 1A). IL-1β 

enhanced MRP5 (p<0.001) but was reduced with CNP (p<0.01).  In the absence of 

IL-1β, the pattern of MRPs2 and MRP4 gene expression was similar to MRP5, with a 

significant downregulation with CNP when compared to untreated controls (both 

p<0.001). In the presence of IL-1β, MRP2 and MRP4 expression was increased 

(both p<0.05) but reduced with CNP (Fig. 1B and C).  

 

IL-1β increased HA and the response was inhibited by CNP and/or dynamic 

compression: MRP5 mediates export of cGMP, but is also a HA exporter, an 

activity inhibited by cGMP. We therefore considered whether the production of cGMP 

in response to CNP could inhibit the export of HA (Fig. 2). In the presence of IL-1β, 

HA production was significantly increased when compared to untreated controls and 

the response was reduced with CNP or the MRP inhibitor MK571 (all p<0.001; Fig. 

2A). The ability of CNP to block the cytokine-induced production of HA was 

diminished in constructs cultured with the Npr2 antagonist P19, resulting in a two-

fold increase in HA when compared to constructs treated with IL-1β alone (p<0.001). 

In the absence of CNP, the Npr3 agonist cANF4-23 abolished HA production in 

cytokine treated constructs, (p<0.001). 



We examined whether dynamic compression could influence HA production in 

constructs treated with IL-1β. In the absence of the cytokine, dynamic compression 

did not influence HA production. In unstrained constructs, the cytokine enhanced HA 

production and the response was reduced with CNP or dynamic compression (both 

p<0.001; Fig. 2B). HA production was reduced further with CNP and/or compression 

(p<0.05), with the magnitude of inhibition similar to constructs treated with the Npr3 

agonist cANF4-23. In contrast, the Npr2 antagonist P19 blocked CNP-induced 

inhibition of HA production resulting in high levels of HA in constructs subjected to 

dynamic compression (p<0.001).  

 

Treatment of constructs with IL-1βCM produced catabolic factors mediated by 

HA: In order to assess whether HA production and its fragments in response to IL-1β 

are catabolic, we generated conditioned medium from constructs treated in the 

presence or absence of IL-1β and/or CNP, and used the conditioned medium to 

stimulate patient matched control constructs. By using this approach, we observed 

upregulation of NO and PGE2 release and MMP activity with constructs cultured with 

IL-1βCM when compared to UTCM (all p<0.001, Fig. 3A, B and C, respectively). The 

presence of CNPCM marginally downregulated IL-1-stimulated NO generation 

(p<0.01; Fig. 3A) and MMP activity (p<0.05; Fig. 3C) but did not significantly 

influence PGE2 production.  

We investigated whether the induction of catabolic mediators by IL-1βCM could 

be due to HA and its fragments by using Pep-1, which binds to HA fragments or by 

targeting CD44 and TLR4 receptor activation with blocking antibodies. The inclusion 

of the HA binding peptide to constructs cultured with IL-1βCM significantly inhibited 

NO and PGE2 release when compared to constructs treated with IL-1βCM alone (both 



p< 0.001), implicating that Pep-1 prevents the catabolic action of HA (Fig. 3A and B). 

The presence of monoclonal antibodies that blocked activation of CD44 or TLR4 

marginally reduced NO release (both p<0.05) but not PGE2 in IL-1βCM when 

compared to treatment with the IL-1βCM alone (Fig. 3A and B).  

 MMP activity was enhanced with IL-1βCM but reduced with CNPCM (p<0.05) or 

Pep-1 (p<0.01; Fig. 3C). Anti-CD44 or anti-TLR4 inhibited MMP activity similar to 

controls (both p<0.001; Fig. 3C). GAG synthesis was upregulated with CNPCM when 

compared to UTCM (p<0.001; Fig. 3D). IL-1βCM reduced GAG synthesis (p<0.05) and 

was marginally reversed with constructs treated with IL-1β + CNPCM (p<0.05) or Pep-

1 (p<0.01). Anti-CD44 and anti-TLR4 marginally reversed GAG synthesis when 

compared to constructs treated with IL-1βCM (both p<0.05; Fig. 3D).  

 

Pro-inflammatory cytokine production was reduced by HA inhibitor: Analysis of 

cytokine production by multiplex assay demonstrated up-regulation of TNFα, IL-1β, 

IL-8, IL-10, IL-13 and IFN in IL-1β-treated conditioned media when compared to 

untreated controls (Fig. 4 and Table 1). The presence of Pep-1 significantly reduced 

TNF and IL-1β production (both p<0.001) and the response to the IL-1βCM was 

influenced with blocking antibodies that prevented receptor activation of CD44 and 

TLR4 (Fig. 4). We observed increases for IL-10, IL-13 and IFN-γ levels in constructs 

stimulated with IL-1βCM (all p<0.001, Table 1) but not IL-1, IL-2, IL-5 and IL-12 p70 

(data not shown). In addition, the upregulation of IL-8, IL-10, and IFN-γ by the 

presence of the IL-1βCM was marginally influenced by the interventions tested, 

suggesting that this upregulation may be due to soluble factors related to multiple 

pathways involving HA and other intracellular signalling mechanisms (Table 1).    

 



Discussion  

It is well established that HA fragments will contribute to the pathological process by 

activating catabolic events involving cytokines, MMPs, aggrecanases leading to 

chondrolysis, apoptosis and tissue breakdown [19-20, 29]. However, high molecular 

weight HA was reported to be exported through MRP5 and exerts a protective effect 

via CD44 activation, thereby offering protection in response to the inflammatory 

environment [22, 30-33]. In contrast, HA oligosaccharides found in diseased 

cartilage or synovial joint tissues will promote catabolic signalling via CD44 or TLR4 

[22-24, 30, 32-35]. Since we reported homeostatic effects of the CNP/Npr2/cGMP 

pathway, we hypothesised that cGMP could inhibit HA export function of MRP, 

thereby preventing downstream inflammatory effects induced by HA fragmentation.  

The present study confirmed induction of MRP gene expression and HA 

production in response to IL-1β that was diminished with CNP. Our data is consistent 

with previous studies in chondrocytes and synoviocytes cultured in alginate beads or 

monolayer, which also showed an upregulation of HA production and fragmentation 

in response to IL-1α, IL-1β or TNFα [36-38]. HA oligosaccharides stimulate HA 

synthase 2 (HAS-2), CD44 and aggrecan gene expression leading to proteoglycan 

loss [15, 22]. In the present study, blockade of HA export with the MRP5 inhibitor 

MK571 diminished HA production in response to IL-1β and correlates with previous 

studies in human chondrocytes or bovine cartilage explants [14-15]. Interventions 

designed to mimic the actions of cGMP or interfere with MRP5 export or block HA 

breakdown with inhibitors that affect the action of hyaluronidases was shown to 

reduce proteoglycan and collagen degradation and MMPs in cartilage explants 

treated with IL-1 [16, 17-18]. HA export was inhibited with ODQ which increased 

intracellular levels of cGMP implying that specific HA export inhibitors could be used 



to attenuate matrix loss. Since a number of transport inhibitors are used clinically, 

the efficacy of the HA exporters should be explored to potentially treat matrix 

disorders. In addition, the production of HA in response to IL-1β was reduced with 

CNP and/or mechanical loading or the presence of agents that induce CNP 

signalling (cANF4-23). There is growing evidence that enhanced signalling via the 

CNP/Npr2/cGMP route will induce homeostatic effects in chondrocytes [5-11]. In 

contrast, the Npr2 antagonist P19 had the opposite effect and enhanced HA 

production, confirming that blockade of the CNP/Npr2 signalling system has an 

impact on HA export. The data also complements our previous observations 

demonstrating a protective role for physiological mechanical loading in maintaining 

cartilage homeostasis. In concert with the present findings, the application of cyclic 

tensile strain to synovial fibroblasts influenced the expression and activity of HA 

production and hyaluronidase enzymes [40], emphasising the critical role of 

mechanical loading in maintaining cartilage homeostasis.  

To test whether chemical agents that interfered with HA binding (Pep-1) or 

inhibit HA receptor activation (αCD44 or αTLR4), we generated IL-1βCM in 

anticipation the inflammatory environment promotes the generation of HA 

oligosaccharides that could be blocked by the interventions examined. Culturing 

constructs with IL-1βCM increased production of NO, PGE2 and MMPs that was 

associated with an inhibition of GAG synthesis. We also observed increased 

production of pro-inflammatory (TNF-α, IL-1β, IL-8), anti-inflammatory (IL-10) and 

immunoregulatory cytokines (IFN-γ) that was reduced with CNPCM, implying 

protective effects of CNP against cytokine induction. Few studies have examined the 

effects of CNP on cytokine and immunoregulatory function in chondrocytes.  



The HA binding peptide, Pep-1 diminished cytokine production in response to 

constructs treated with IL-1βCM and this reduction was greater in comparison to 

agents that prevent CD44 and TLR4 receptor activation. Since we did not examine 

the combined effect of the two blocking agents in our conditioned media model, it is 

possible that low molecular weight HA will induce signalling events through both 

receptors. For example, binding of small HA oligosaccharides to CD44 and TLR4 

results in NF-κβ activation, and cytokine production involving TNFα, IL-1β, IL-6 and 

IL-18 [22-23]. Further studies are needed to explore the interactions of the 

CNP/cGMP pathway on HA signalling in chondrocytes.  

The cytokine-treated conditioned media model provides an inflammatory 

environment that could be influenced with interventions that blocked HA binding or 

activation of the HA receptors. The present study suggest that CNP will module the 

pro-inflammatory actions of cytokines and protective effects of the Npr2/cGMP 

signalling pathway should be exploited further.  
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Figure Legends 

 

Fig. 1. Effect of IL-1β and/or CNP on MRP gene expression. Constructs were 

cultured with 0 or 10 ng/ml IL-1β and/or 100 nM CNP for 6 hours. Error bars 

represent the mean and SEM values of 6 replicates from two separate experiments. 

(*,** or ***) indicates significant comparisons for the multiple treatment conditions.  

 

Fig. 2. Effect of free-swelling culture and/or dynamic compression on HA 

production. Constructs were cultured  with 0 or 10 ng/ml IL-1β and/or 100 nM CNP 

or 0.5 µM MK571 or 0.5 µM P19 or 1 µM cANF4-23 for 48 hours (A). In separate 

experiments, constructs were subjected to dynamic compression (15%, 1Hz) for 48 

hours under similar treatments (B). Error bars represent the mean and SEM values 

of between 12 and 18 replicates from six separate experiments. (*,** or ***) indicates 

significant comparisons for the multiple treatment conditions.  

 

Fig. 3. Effect of conditioned media and HA pharmacological agents on 

catabolic activities. Constructs were cultured with conditioned media for IL-1β (IL-

1CM), CNP (CNPCM) or both (IL-1β + CNPCM) and treated with inhibitors for HA 

signalling (Pep-1, αCD44 or αTLR4 blocking antibodies) for a further 48 hours, on 

NO release (A), PGE2 release (B), Total MMP activity (C) and GAG synthesis (D). 

Error bars represent the mean and SEM values of between 8 and 10 replicates from 

3-4 separate experiments. (*,** or ***) indicates significant comparisons for the 

multiple treatment conditions.  

 



Fig. 4. Effect of conditioned media and HA pharmacological agents on pro-

inflammatory cytokine production. Constructs were cultured with conditioned 

media for IL-1β (IL-1CM), CNP (CNPCM) or both (IL-1β + CNPCM) and treated with 

inhibitors for HA signalling (Pep-1, αCD44 or αTLR4 blocking antibodies) for a further 

48 hours, on TNF (A) and IL-1 production (B) Error bars represent the mean and 

SEM values of 10 replicates from 4 separate experiments. (*,** or ***) indicates 

significant comparisons for the multiple treatment conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: The effect of HA inhibitors on cytokine production in constructs cultured 

with IL-1 and/or CNP conditioned media 

 UT vs 

CNPCM 

UT vs IL-

1CM 

IL-1CM vs  

IL-1 + 

CNPCM 

IL-1CM 

vs  

IL-1CM + 

Pep-1 

IL-1CM vs  

IL-1CM + 

CD44 

IL-1CM vs  

IL-1CM + 

TLR4 

TNF

 

5.9 

(9.5) 

187.1 

(23.9) 

-48.5 

(6.3) 

-63.8 

(6.1) 

-36.7 

(7.4) 

-35.4 

(7.0) 

IL-1

 

8.3 

(13.5) 

5362.9 

(508.2) 

-16.6 

(22.6) 

-59.4 

(28.5) 

-10.2 

(8.4) 

-11.0 

(8.2) 

IL-8 

 

12.4 

(10.6) 

95.9 

(6.0) 

-4.5 

(4.5) 

8.2 

(4.2) 

10.6 

(5.4) 

-10.8 

(3.9) 

IL-10 

 

32.6 

(16.0) 

737.8 

(79.0) 

-53.7 

(13.0) 

-25.1 

(23.6) 

-7.9 

(27.4) 

-9.9 

(25.4) 

IL-13 

 

-3.1 

(1.4) 

39.2 

(2.8) 

-14.5 

(4.9) 

-10.6 

(6.1) 

-17.2 

(2.6) 

3.7 

(6.2) 

IFN-γ 

 

17.3 

(2.6) 

237.3 

(24.3) 

-2.1 

 (8.5) 

-1.4 

(5.6) 

-4.3 

(6.1) 

7.5 

(4.8) 

 

Note: Constructs were cultured with conditioned media for IL-1β (IL-1CM), CNP (CNPCM) or 

both (IL-1β + CNPCM) and treated with agents that blocked HA binding (Pep-1) or HA 

receptor activation (αCD44 or αTLR4) for a further 48 hours. The production of pro-

inflammatory (TNFα, IL-1β and IL-8), anti-inflammatory (IL-10, IL-13) and immunoregulatory 

(IFN-) cytokines were examined. All values are expressed as a percentage difference (%) 

for the comparisons stated, where SEM was calculated for n=8-10 constructs from 3-4 

separate experiments.  
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