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Abstract 

The aim of this study was to investigate effects of speed and plane of motion on stability during 

locomotion in skilled football players. Ten male national-level football players participated in this study 

to run forwards, backwards and in lateral directions on a treadmill at 80%, 100%, and 120% of their 

preferred running speeds. The coordinate data of passive reflective markers attached to body segments 

were recorded using motion capture systems. Time series data obtained from the ankle marker were used 

for further analyses. The largest finite-time Lyapunov exponent (LyE) and maximum Floquet multiplier 

(maxFM) were adopted to quantify local and orbital dynamic stabilities, respectively. Results showed that 

speed did not significantly change local and orbital dynamic stabilities in any of running patterns. 

However, both local and orbital dynamic stability were significantly higher in the secondary plane of 

progression. Data revealed that in running, unlike walking, stability in the direction perpendicular to the 

direction of running is significantly higher, implying that less active control is required in the secondary 

plane of progression. The results of this study could be useful in sports training and rehabilitation 

programs where development of fundamental exercise programs that challenge both speed and the ability 

to maintain stability might produce a tangible enhancement of athletic skill level.  

Keywords: Running; Sports performance; Motor skills; Nonlinear dynamics; Largest Lyapunov exponent; 

Maximum Floquet multiplier. 
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Introduction 

Maintaining locomotion stability under different task constraints of walking and running is an important 

factor to both prevent falling and enhancing agility performance in dynamic environments such as sport 

(Mehdizadeh, Arshi, & Davids, 2014). Maintaining stability is also important in developing athletic 

running speed, especially when different directions of locomotion are required (e.g., forward, backward 

and lateral locomotion in team games like Association Football). Developing this fundamental ability 

could thus assist an athlete in achieving higher on-field speeds. Speed as a task constraint, on the other 

hand, has been shown to be inversely proportional to stability during forward locomotion in both walking 

(Dingwell & Marin, 2006; Kang & Dingwell, 2006; England & Granata, 2007; Manor, Wolenski & Li, 

2008; Manor, Wolenski, Guevaro & Li, 2009; Jordan, Challis, Cusumano, & Newell, 2009; Roos & 

Dingwell, 2013) and running tasks (Look et al., 2013; Mehdizadeh et al., 2014).  

It has, however, been argued that mechanisms of maintaining stability are different between primary and 

secondary planes of progression (Donelan, Shipman, Kram, & Kuo, 2004; O'Connor & Kuo, 2009; 

McAndrew, Dingwell & Wilken, 2010; McAndrew, Dingwell & Wilken, 2011; Wurdeman & Stergiou, 

2013) reflecting different control strategies in different planes of progression. In particular, it has been 

shown that during forward walking, stability in the anterior-posterior (AP) direction (primary plane of 

progression) is controlled through increased passive mechanisms, whilst it is controlled through increased 

active control mechanisms in the medio-lateral (ML) direction (i.e. secondary plane of progression). This 

performance outcome was predicated on observations of greater levels of variability of foot placement in 

ML compared to AP directions (O'Connor & Kuo, 2009; McAndrew et al., 2010) as well as higher 

sensitivity of body movement to perturbations in ML direction (McAndrew et al., 2011). In a recent study 

on lateral walking, it was demonstrated that dynamic stability was greater in the ML direction (primary 

plane of progression) compared to AP (i.e. secondary plane of progression) which is an indication of 

increased active control in ML direction (Wurdeman & Stergiou, 2013). This study indicated that the 

stability of walking depends on direction of progression. Surprisingly, despite this work, there have been 
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no previous attempts to investigate the effect of planes of progression on dynamic stability under the task 

constraint of running. Since running is mechanically different to walking (i.e. walking is modeled as two 

inverted pendulums while running is modeled as a spring-mass system), and it is an inherent feature of 

performance in dynamic environments like team sports, the effect of planes of progression on dynamic 

stability is likely to differ from that during walking. 

From a dynamical system perspective, stability during human locomotion has been quantified, using 

methods of: (i) largest finite-time Lyapunov exponent (LyE), and (ii), maximum Floquet multiplier 

(maxFM). These two methods have been extensively implemented to study stability of human movement 

patterns in walking (Bruijn, van Dieen, Meijer, & Beek, 2009; Dingwell, Kang, & Marin, 2007; Dingwell 

& Marin, 2006; England & Granata, 2007; Stergiou, Moraiti, Giakas, Ristanis, & Georgoulis, 2004) and 

running (Jordan et al., 2009; Mehdizadeh et al., 2014), and have quantified different aspects of stability. 

The LyE measures the exponential rate of divergence of neighboring trajectories of the state space 

constructed by observations of kinematic data obtained from a movement system during performance 

(Dingwell & Marin, 2006; Rosenstein, Collins, & De Luca, 1993). That is, inherent infinitesimal 

perturbation during walking and/or running result in local divergence of state space trajectories. If a 

movement system is able to attenuate these perturbations more quickly, the associated trajectories of the 

state space will not grow rapidly and remain converged. Therefore, the rate of convergence/divergence of 

the state space trajectories could be considered as an indication of the ability of the movement system to 

respond to perturbation and thus to maintain stability. This type of system stability is considered as local 

dynamic stability since LyE quantifies the ability to respond to small local perturbations during 

movement performance (Dingwell & Marin, 2006). Since LyE measures the rate of divergence of the 

trajectories, a greater LyE value is indicative of a lower level of local dynamic stability. The maxFM on 

the other hand, quantifies the system’s response to local perturbations from one cycle to the next 

(Dingwell et al., 2007). In other words, maxFM quantifies the rate of convergence/divergence of state-

space trajectories toward a limit cycle (Hurmuzlu & Basdogan, 1994). To explain, the trajectories of the 
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state space constructed from kinematics of gait pattern form a closed loop or limit-cycle (Figure 1B). The 

maxFM evaluates the ability of the movement system (e.g. running) to return to the limit cycle after a 

perturbation. The system has lower stability if it takes more strides to return to the limit cycle (Hurmuzlu 

& Basdogan, 1994; Kurz, Arpin & Corr, 2012). This type of stability has been termed orbital stability. 

Research studies have shown that while an individual’s speed might affect local dynamic stability, it may 

not influence orbital stability (Dingwell et al., 2007). However, due to the lack of previous research on 

orbital dynamic stability in running, there is a clear need to examine how speed and plane of progression 

affect orbital dynamic stability under the specific task constraint of running.  

Based on the main findings of this body of work, it is important to investigate the effect of speed and 

plane of progression on dynamic stability in running pattern to show how it differs to walking pattern. 

The aims of this study were thus two-fold. First, the effect of speed as a constraint on system stability 

during running in forward, backward and lateral directions in skilled athletes needed to be determined. 

Second, a comparison of the degree of stability between the AP and ML directions of progression was 

also undertaken. The LyE and maxFM measures were adopted for quantification of local and orbital 

dynamic stabilities in each athlete, respectively. We predicted that the degree of system stability exhibited 

would be different between primary and secondary planes of progression. 

 

Methods 

Participants 

The 10 male participants in this study were national-level football players. These participants were 

selected for observation based on their extensive experience of running in forward, backward and lateral 

directions during performance, as well as their regular participation in running exercises during training. 

Participants had played football at national level for an average of 8.8±3.2 years. In addition, they 

undertook an average of 11.2±2.6 hours of training per week. Their average age was 23.3±2.9 years with 
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average mass and height of 71.6±4.8 kg and 1.79±0.04 m, respectively. None of the participants suffered 

from any musculoskeletal injuries at the time of the experiment. All participants provided written 

informed consent before participation in the study. The ethics committee of Amirkabir University of 

Technology approved the experimental procedure.  

Marker placement 

Seventeen passive reflective markers (14 mm diameter) were attached to the skin of each participant at 

the right and left bony landmark on the second metatarsal head (toe), calcaneus (heel), lateral malleolus 

(ankle), mid-tibia, lateral epicondyle of knee (knee), midthigh, anterior superior iliac spine and also on the 

sacrum, midway between posterior superior iliac spines, 10th thoracic vertebrae (T10) and 7th cervical 

vertebrae (C7).  

Task  

Before starting the experiment, participants had enough time to familiarize themselves with running in 

forward, backward and lateral directions on the treadmill. During the actual tests, all participants ran in 

the three directions on a motorized treadmill (Cosmed® T150, Rome, Italy) at 80%, 100%, and 120% of 

their preferred running speeds. Preferred running speeds (PRS) in each direction, were recorded following 

a top-down and bottom-up approach similar to protocols described in Dingwell & Marin (2006) and 

Jordan et al. (2009). Participants began by running on the treadmill at a slow speed (self-defined by each 

participant), followed by a gradual increases of 0.1 km/h increments until each participant declared that 

he was running at his PRS. This speed value was recorded and increments were introduced until each 

participant defined the speed as 'fast'. From this point on, the speed value was gradually decreased until 

once again the participant reported that he was running at his PRS. This speed was also recorded. The 

average value of these two recorded PRSs was consequently determined. This procedure was repeated 

three times and the mean value of three average PRSs was considered as each participant’s self-declared 

PRS. During acquisition of the PRS data, participants were not allowed to view the speed at which they 
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were running on the treadmill (Jordan, Challis, & Newell, 2007). The average PRS over all participants 

was 8.29±0.87, 4.53±0.58 and 4.59±0.72 km/h for forward, backward and lateral running tasks, 

respectively. Each participant was then asked to run for 2 minutes in every one of the 3 test trials in each 

direction. The trials were conducted at speeds of 80%, 100%, and 120% of self-declared PRS values for 

each participant in random order (Dingwell & Marin, 2006). In lateral running, all participants ran to their 

right side of the body while looking forward. They were not allowed to cross their feet in lateral running. 

In addition, participants were not allowed to use handrails in any of the running patterns. Sufficient rest 

periods were allocated between the tests to allow participants to recover. 

Data recording 

The three-dimensional coordinate data of the markers were recorded using five Vicon® VCAM motion 

capture calibrated cameras (Oxford Metrics, Oxford, UK) at the sampling frequency of 100 

samples/second. Reconstruction and labelling were performed using Vicon® Workstation software 

(Oxford Metrics, Oxford, UK). Data associated with x and y components of the ankle marker motion were 

analyzed. Applying the nonlinear time series analysis methods (e.g. LyE) requires stationary time series. 

However, time series of human gait data might contain non-stationary parts. One accepted solution to 

make the gait time series more stationary is to use velocity instead of position time series (first 

differentiation) (Dingwell & Marin, 2006; Kantz & Schreiber, 2004). In addition, due to possible loss of 

information at critical points, data were analyzed without filtering (Kantz & Schreiber, 2004).  

Data analysis 

To calculate the LyE and maxFM first, a state space with appropriate dimension and time delay was 

reconstructed based on Takens’ (1981) theory (Kantz & Schreiber, 2004; Takens, 1981; equation (1)): 

          , , 2 , 1
T

EX t x t x t x t x t d           (1) 
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where	  X t is the re-constructed state vector,  x t is the original velocity time vector, is the time 

delay and Ed is the dimension of the state space, i.e. the embedding dimension (Kantz & Schreiber, 2004; 

Takens, 1981). Time delay is determined as the first local minimum of Average Mutual information 

(AMI) function (Fraser, 1986). The AMI is a statistical measure from theory of information that shows 

how much information about a random variable can be obtained from the information of another random 

variable (Shelhamer, 2006). In this method, mutual information between a time series  x t and its time 

shift  x t   is calculated for different values of	߬	until the mutual information is minimized 

(Shelhamer, 2006). A time delay of 10 samples was found to be appropriate for data associated with the 

three AP and ML directions. In addition, a Global False Nearest Neighbors (GFNN) measure was used to 

determine embedding dimension, Ed  (Kennel, Brown, & Abarbanel, 1992). False Nearest Neighbors are 

points which are close together in dimension Ed but not in dimension 1Ed   (Shelhamer, 2006). Based 

on this method, the dimension is gradually increased until the number of false nearest neighbors is 

reduced to zero. For the purpose of this study, an embedding dimension of 5Ed  was calculated for data 

associated with AP and ML directions. 

For the purpose of calculating LyE, all time series were time-normalized to an equal length of 10000 

points. For each trial, a total number of 100 consecutive strides were analyzed. The LyE measures the 

exponential rate of divergence of neighboring trajectories in the state space (Rosenstein et al., 1993). 

Since LyE measures the rate of divergence of the trajectories, a greater LyE value indicates lower levels 

of local dynamic stability of a system. The approach implemented in this study was introduced by 

Rosenstein et al. (1993), which is most suitable for a finite time series. Here, the largest finite-time 

Lyapunov Exponent ( 1 ) could be determined using equation (2): 
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   1expd t C t  (2) 

where	  d t is the average distance between neighboring points at time t , and the initial separation of the 

neighboring points is represented by C. According to expression (2), for the jth pairs of neighboring points 

in state space we have: 

    1expj jd i C i t   (3) 

Taking the logarithm from both sides of (3) results in: 

   1ln lnj jd i C i t          (4) 

1  is determined using a linear fit to the following curve: 

     1/ jy i t d i   (5) 

where  jd i  denotes the average over all pairs of j. The LyE was determined from the slopes of a 

linear fit in the divergence diagrams in the range ( i t ) of 0 to 0.5 stride (approximately 0 to 50 samples) 

(Bruijn et al., 2009) (Figure 1). In the present study, all LyE values were presented as the rate of 

divergence/stride. 

To quantify orbital stability, maximum Floquet multiplier (maxFM) was calculated (Figure 1) (Dingwell 

et al., 2007; Hurmuzlu & Basdogan, 1994). The maxFM quantifies the system’s response to local 

perturbations from one cycle to the next (Dingwell et al., 2007). In other words, the maxFM quantifies the 

rate of convergence/divergence of the reconstructed state-space trajectories toward a limit cycle 
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(Hurmuzlu & Basdogan, 1994). Since Floquet theory assumes that a system is strictly periodic, each 

individual stride associated with AP and ML directions was time-normalized to 101 data points (0–100%) 

(Dingwell et al., 2007). Individual strides were identified by applying a peak-picking algorithm to the 

ankle marker’s AP time series. According to this theory, the state of the system after one cycle (i.e. one 

stride; Sk+1) is a function of its current state (i.e. current stride; Sk): 

Sk+1=F(Sk) (6) 

It should be noted that, the limit cycle of a system corresponds to a fixed point in the Poincaré section. 

The Poincaré section is a lower dimensional section perpendicular to the trajectories at a specific point in 

the state space (Figure 1B and E). Now, from equation (6), for the fixed point S* in the Poincaré section, 

we have: 

S*=F(S*) (7) 

The effect of small perturbations on the fixed point, S*, could be evaluated using a linearization to 

equation 7: 

[Sk+1-S*]=J(S*)[Sk - S*] (8) 

where J(S*) is the Jacobian matrix of the system at each Poincaré section. The Floquet multipliers are 

determined as the eigenvalues of J(S*) (Dingwell et al., 2007; Hurmuzlu & Basdogan, 1994). For a limit 

cycle to be orbitally stable, the magnitude of all Floquet multipliers must be less than 1. For this study, a 

Poincaré section was made at each percent of the stride cycle (i.e. 101 Poincaré sections). The fixed point, 

S* was calculated as the average of all points at that Poincaré section. The largest Floquet multiplier at 

that Poincaré section was then determined. The maxFM was determined as the greatest maximum Floquet 

multiplier over all Poincaré sections (i.e. at each percent of stride cycle). 
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Statistical analysis 

To evaluate the effects of plane of motion and speed on the local dynamic and orbital stability, a two-way 

analysis of variance (ANOVA) with repeated measures on the factor of speed was performed. In this test, 

the LyE and maxFM were set as dependent variables and plane of progression (AP or ML) and speed 

(80%, 100% and 120% of PRS) were set as factors. Mauchly’s test was performed to test the sphericity 

assumption of the speed factor. If the sphericity assumption was violated, appropriate Huyn-Feldt 

correction was performed. Statistical significance levels were set at P<0.05. 

 

Results 

The results of ANOVAs are presented in Table 1 and Figure 2. For LyE, results indicates that there was 

no significant interaction effect in any of the running patterns (P>0.05). In addition, speed did not affect 

the LyE value in any of the running patterns (P>0.05). The main effect of plane of progression however, 

was significant in all running patterns (P<0.05). Post hoc analyses (Figure 2) revealed that in all running 

patterns, the value of LyE was significantly lower (P<0.001) in the secondary plane of progression (i.e. 

ML in forward and backward, and AP in lateral running) indicating greater local dynamic stability. 

Furthermore, there were no significant effects of speed and interaction on the value of maxFM (P>0.05). 

Plane of progression affected the maxFM value significantly in all running patterns (P<0.05). Post hoc 

analyses (Figure 2) revealed that the value of maxFM was significantly lower (P<0.05) in the secondary 

plane of progression (i.e. ML in forward and backward and AP in lateral running) indicating greater 

orbital dynamic stability. 
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Discussion 

This study investigated the effects of speed and plane of progression on stability during forward, 

backward and lateral running in skilled footballers. The LyE and maxFM measures were adopted to 

record local and orbital dynamic stabilities of participants, respectively. Data revealed that speed did not 

significantly change local and orbital dynamic stabilities in any of running patterns. However, both local 

and orbital dynamic stability were affected by the plane of progression in all running patterns with the 

secondary plane of progression being more locally and orbitally stable. 

Effect of speed on local and orbital dynamic stability 

Results of this study showed that the effect of speed on local dynamic stability (i.e. LyE) was not 

significant in any of the three running patterns (Table 1 and Figure 2). The results of one study by Look et 

al. (2013) which demonstrated that local dynamic stability decreased as speed increased in forward 

running, contradicted by our data. This lack of congruence between the data sets might be due to 

methodological differences between the two studies. That is, in contrast to our study, Look et al. (2013) 

did not normalize the values of LyE to stride time which might have skewed their study outcomes. It has 

been indicated previously that stride time might influence the value of LyE (England & Granata, 2007). In 

particular, higher running speeds on treadmill are associated with shorter stride times which consequently 

result in the value of LyE being greater at higher speeds. This, in turn, implies that local dynamic stability 

decreased as speed increased. Normalizing the stride time to a fixed number of data points on the other 

hand, will eliminate the effect of stride time on the value of LyE. Therefore, the values of LyE in the 

study of Look et al. (2013) might have been affected by different stride times associated with different 

running speeds, which was not the case in our study. Additionally, in their study, Look et al. (2013) 

assigned a fixed range of treadmill speeds to all participants (3-9 km/h). However, in our study, the 

running speed was assigned based on each participant’s self-defined PRS (80% to 100% PRS with 20% 

increments). In another study on walking, where both of these issues (i.e. normalizing the value of LyE to 
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stride time and assigning speed based on participants’ PRS) were taken into consideration, no change in 

local dynamic stability with increasing speed was reported (Stergiou et al., 2004). 

The findings of this study also demonstrated that the value of maxFM was not affected by speed in any of 

the three running patterns (Table 1 and Figure 2), signifying that speed did not constrain orbital dynamic 

stability. This finding is in line with other studies where no significant changes in orbital dynamic 

stability were confirmed when the effect of speed on orbital stability during walking was considered 

(Dingwell et al., 2007). To our knowledge there have been no previous attempts to investigate orbital 

dynamic stability in running. Our findings suggest that, along with local dynamic stability, participants 

were also able to maintain their periodic limit-cycle stability under the influence of changing speeds 

during the task constraints of running. 

Effects of plane of motion on local and orbital dynamic stability 

The results of this study showed that in all running patterns, the degree of stability was significantly 

higher in the secondary, compared to primary plane of progression. The greater value of LyE in the AP 

direction in forward and backward running (Figure 2 left) implied that local dynamic stability was lower 

in the primary plane of progression. This was also true for lateral running during which local dynamic 

stability was lower in the ML direction (primary plane of progression; Figure 2 left). In two studies on 

forward walking, it was shown that dynamic stability is more sensitive to perturbations in ML compared 

to AP direction implying that dynamic stability is controlled through increased active mechanisms in ML 

direction (McAndrew et al., 2010; McAndrew et al., 2011). In a study by Wurdeman and Stergiou (2013) 

on forward and lateral walking, it was also shown that, in both forward and lateral walking, local dynamic 

stability was lower in the secondary plane of progression (i.e. ML in forward, and AP in lateral walking). 

They concluded that this outcome was due to higher active control of stability in secondary plane of 

progression. The results of our study, which showed that local dynamic stability was greater in the 

secondary plane of progression, contrasted with data reported in the mentioned studies on walking. This 
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contradiction could be explained by considering differences between the task constraints of walking and 

running. In particular, walking is usually modeled as an inverted pendulum. A pendulum will oscillate 

with more predictable dynamics and thus less active control might be needed in the AP during forward 

walking. Running, unlike walking, is modeled as a mass-spring system, which is more erratic and might 

require greater active control. Due to this difference, the control of the primary and secondary planes of 

progression might require different weightings with respect to active and passive mechanisms in these two 

tasks. 

The results (Figure 2 right), showed that orbital dynamic stability in the secondary plane of progression 

(ML in forward/backward and AP in lateral running) was also significantly higher in comparison to that 

of primary plane of progression (AP in forward and backward and ML in lateral running). This finding 

indicates that the athletes’ ability to maintain periodic limit-cycle stability is greater in the secondary 

plane of progression. Quantification of orbital and local dynamic stability values demonstrated that both 

were higher in the secondary plane of progression in all running patterns.  

 

Limitations of the study 

There are a number of limitations associated with methods adopted in this study. First, local and orbital 

dynamic stabilities were quantified under the specific task constraints of treadmill running to enhance 

experimental control of locomotion speed in participants. Research studies on stability of walking patterns 

have demonstrated that using a treadmill might affect the observed levels of stability (Dingwell, 

Cusumano, Cavanagh, & Sternad, 2001). It is important to note that no published results have so far been 

elicited in studies comparing stability of running in both treadmill and over-ground running, and future 

research should take this distinction into consideration. In addition, one reason for the difference between 

the results of the present study and the study of Wurdeman and Stergiou (2013) might be due to the fact 

that our study consisted of skilled athletes who were exposed to regular running training in different 
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directions. The control mechanisms of maintaining stability adopted by these participants might be 

different to the less skilled in the study of Wurdeman and Stergiou (2013). 

 

Conclusions 

The findings of this study demonstrated that local and orbital dynamic stabilities were not affected by 

speed in any of the three running patterns. In addition, this study showed that in running, unlike walking, 

stability in the direction perpendicular to the direction of running is significantly higher. This difference 

could be interpreted according to the different models of walking and running. In particular, walking is 

usually modeled as an inverted pendulum. A pendulum will oscillate with more predictable dynamics and 

thus less active control might be needed in the primary plane of progression. Running on the other hand, 

is modeled as a mass-spring system, which is more erratic and might require greater active control in the 

primary plane of progression. The results of this study could be manifested in sports training and 

rehabilitation programs where developments of integrated exercise protocols that challenge both speed 

and stability of individuals might produce a tangible enhancement of athletic skill level.  
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Table 1: results of two-way ANOVA test for largest finite-time Lyapunov exponent (LyE) and maximum 

Floquet multiplier (maxFM) of ankle marker. 

 

 
Speed Plane of progression Interaction 

 

 
F P-value η2 F P-value η2 F P-value η2 

LyE 

Forward 0.64 0.53 0.08 38.12 <0.001 0.84 0.28 0.75 0.03 

Backward 0.27 0.76 0.03 242.03 <0.001 0.97 0.11 0.88 0.01 

Lateral 0.23 0.79 0.04 49.33 0.001 0.90 1.95 0.19 0.28 

 Forward 0.49 0.67 0.07 69.11 <0.001 0.92 1.96 0.18 0.24 

maxFM Backward 2.00 0.17 0.25 91.36 <0.001 0.93 0.19 0.82 0.03 

 Lateral 0.65 0.54 0.11 8.32 0.03 0.62 3.39 0.07 0.40 

η2= effect size (partial eta-squared). 
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Figures captions: 

Figure 1: calculation of largest finite-time Lyapunov exponent (LyE), maximum Floquet multiplier 

(maxFM) and deviation phase (DP). (A) original time series x(t) obtained from experiment, (B) 3D 

representation of state space reconstructed from time series x(t) and its time copies x(t+τ), and x(t+2τ), 

where τis the time delay. To determined time delay and embedding dimension, average mutual 

information (AMI) and global false nearest neighbours (GFNN) theories were adopted, respectively 

(Fraser, 1986; Kennel et al., 1992). Note that the dimension of state space is greater than three but cannot 

be visually observed, (C) the expanded view of a region of the reconstructed state space in which it is 

schematically shown that initial separation of jth pairs of points, dj(0), diverge after i time steps shown by 

dj(i). (D) Average logarithmic divergence of all pairs of neighbouring points plotted over time (shown as 

stride number) to calculate LyE. (E) the large view of the Poincaré section which was shown in the state 

space. The big circle is the limit cycle calculated by averaging all points of the Poincaré section. The 

Jacobian maps the distance between the current state of the system from the limit cycle distance, [Sk-S*] to 

the distance between the next state of the system from the limit cycle distance [Sk+1-S*]. The maximum 

Floquet multiplier which is the maximum eigenvalue of the Jacobian matrix determines to what extent 

each cycle converges or diverges to/from the limit cycle.  

Figure 2: Results of largest finite-time Lyapunov exponent (LyE; left) and maximum Floquet multiplier 

(maxFM; right) for the ankle marker in anterior-posterior (AP) and medial-lateral (ML) planes. Speed is 

presented as the percent of preferred running speed (% PRS). Error bars are standard deviations of the 

mean.  


