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The design, mathematical analysis, and testing results of the architecture of a new

all-digital phase-locked loop system for synchronizing a voltage source DC-AC

single-phase inverter with the low voltage utility grid are presented. The system

which is based on the time-delay digital tanlock loop was simulated using MATLAB/

SIMULINK and was tested by subjecting the grid voltage to various perturbations

similar to those which can occur in a real power system, such as voltage sags and

nonlinear distortion of the grid voltage waveform. Results indicate that even in

the presence of such perturbations the system achieved and/or re-gained

synchronization within 100ms. The proposed system is all-digital and can be

readily implemented using a field programmable gate array and easily embedded

into a power inverter.VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737136]

I. INTRODUCTION

Due to their unsustainability and harmful effects on the environment, fossil fuels no longer

stand as attractive sources of energy. International agreements and commitments for reducing

carbon and other harmful emissions to the environment have recently been the driving force

behind renewed interests in renewable energy sources (RES) such as wind and solar.1–3 RES

are clean and sustainable; they never run out and present no threat to the environment. Many

power electronic systems have been described in the literature for harvesting renewable energy

and converting into a useable form.4,5 However, RES are intermittent because their output

energy depends on weather conditions and consequently cannot be relied upon for continuous

supply of electricity. To compact this problem, the harvested energy from a RES, such as a

photovoltaic (PV) generator, may be used to charge a bank of batteries which is then used to

feed a voltage source DC-AC inverter (VSI) to provide the AC voltage with the required ampli-

tude and frequency. Such a “standalone” system depicted in Figure 1(a) is commonly used for

lighting and water pumping in remote areas where a utility grid is not available. When a grid is

available, the utilization of the above PV system may be enhanced by integrating it with the

grid as depicted in Figure 1(b). In this grid-connected system, when the weather conditions are

not conducive for energy generation and if the batteries are not fully charged, the load can be

met by the grid. On the other hand, when the harvested renewable energy is in excess of the

load demands, the excess energy can be fed back “sold” to the grid. However, before the in-

verter can be connected to the grid, its output voltage waveform must be synchronized with the

grid voltage. Furthermore, because the grid voltage may occasionally be subjected to sudden

and unpredicted perturbations such as voltage sag and/or a phase change, which may lead to

loss of synchronization, the inverter must be able to re-establish synchronization.
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In addition, a grid-connected inverter must conform to some legal regulations set out by

national regulatory bodies in order to regulate the penetration of external power into the

grid.6–8 Many circuits have been described in the literature for synchronizing an inverter to the

grid.9–12 They all implement one form or another of the well-known phase-locked loop (PLL)

circuit which was invented in the early 1930s and has since then evolved into many different

forms and types.13–15

In this paper, a new all-digital circuit topology for synchronizing a VSI to the grid is

presented. The circuit not only can synchronize an inverter to the grid but also can re-gain syn-

chronization whenever it is lost such as after an unanticipated perturbation in the phase, ampli-

tude, or distortion of the grid voltage. The proposed circuit is based on the digital phase lock

loop (DPLL) which has been extensively used in communications and signal processing sys-

tems that require phase tracking and synchronization.15,16

There are many types and forms of DPLLs, however, because sampling is a major opera-

tion in any DPLL, DPLLs are normally classified according to the nature of the sampling pro-

cess they use as either uniform or non-uniform DPLLs. The non-uniform type of DPLLs offers

better acquisition time and less circuit complexity compared to the uniform type, and hence

attracted much of the research attention.16

There are two main types of non-uniform DPLLs; the zero crossing DPLL (ZCDPLL) and

the digital tanlock loop (DTL).16–18 Despite its simplicity and ease of implementation, the

ZCDPLL has a major drawback due to its sensitivity to variation in the input signal power,

which degrades its performance. This paved the way for the DTL to stand as an attractive alter-

native. Although, the DTL has many good attributes such as linearity and insensitivity to varia-

tion in the input signal power, its adoption has been hindered due to the fact that it uses a

Hilbert Transformer (HT) which made its implementation fairly complex. This problem was

later alleviated by replacing the HT with a fixed time-delay unit as proposed in the time-delay

digital tanlock loop (TDTL).16 In particular, the proposed system makes use of a variant of the

TDTL due to the aforementioned advantages.16–18 The system, depicted in Fig. 2, has been

FIG. 1. (a) Standalone single-phase PV system. (b) A grid-connected single-phase PV system.

043103-2 Anani et al. J. Renewable Sustainable Energy 4, 043103 (2012)



tested by simulation using MATLAB/SIMULINK software. A comprehensive set of testing results

under various simulated conditions of the grid voltage are also presented. These include testing

the system with phase step changes, voltage sags, and with harmonic distortion induced in the

grid voltage. In addition, the system has the ability to re-establish synchronization even in the

presence of nonlinear distortion which can considerably falsifies the zero-crossing points.

The design and mathematical modeling of the system are presented in Sec. II, whilst Sec.

III presents the results of testing the system using the MATLAB/SIMULINK software. Section IV

briefly highlights the implementation issues of the systems, whilst Sec. V presents the conclu-

sions of the work.

II. ANALYSIS OF THE SYSTEM

The architecture of the proposed TDTL-based second-order digital synchronization system

is depicted in the block diagram of Figure 2. The system consists of an arctan unit which is

used as a phase detector, two sample-and-hold blocks, a first-order digital filter “the loop filter”

and a fixed time delay module s which is used to provide the required 90� phase shift for the

50Hz grid voltage. In addition, the system has a controllable variable time delay module which

is used in conjunction with the PV source voltage to emulate the functionality of the digital

controlled oscillator (DCO) used in the conventional TDTL system.16–18

A continuous sinusoidal signal yðtÞ, representing the grid voltage, as defined by Eq. (1)

with a phase offset xðt� toÞ relative to the PV voltage waveform PðtÞ is received by the pro-

posed system, through an appropriate interface, as depicted in Figure 2. The times t and to are

the times measured from the instant the two signals yðtÞ and PðtÞ are received by the system,

respectively, and x ðrad=sÞ is the angular frequency. This is converted to a phase shift of the

grid voltage yðtÞ relative to the PV voltage PðtÞ as demonstrated below.

yðtÞ ¼ AsinðxtÞ; (1)

where A is the input signal amplitude. The incoming signal yðtÞ is passed through a fixed time

delay unit s which introduces a phase shift in yðtÞ. As a result, a phase shifted signal xðtÞ of

the input signal is generated and this is expressed as

FIG. 2. Block diagram of the proposed synchronization system.
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xðtÞ ¼ Asinðxt� wÞ: (2)

The input signals yðtÞ and its phase-shifted version xðtÞ pass through their own individual sam-

ple-and-hold blocks. Consequently, they are sampled by the digitized PV source voltage

pðkÞ ¼ Asin½xotðkÞ�, as illustrated in Figure 2, and sampled versions both signals (1) and (2)

can be written as

yðkÞ ¼ Asin½xtðkÞ� (3)

and

xðkÞ ¼ Asin½xtðkÞ � w�: (4)

The sampling interval between the sampling instants t(k) and t(k� 1) is given by

TðkÞ ¼ T� cðk� 1Þ; (5)

where T ¼ 2p=x is the period of the PV source and cðiÞ is the output of the digital filter at the

ith sampling instant that is used to drive the variable time delay unit in order to provide the

required phase shift which is simply emulating the DCO in the conventional TDTL. By assum-

ing tð0Þ ¼ 0, the elapsed time up to the kth sampling instant is given by

tðkÞ ¼
X

k

i¼1

TðiÞ ¼ kT�
X

k�1

i¼0

cðiÞ: (6)

As a result, both yðkÞ and xðkÞ are written as

yðkÞ ¼ Asin �x
X

k�1

i¼0

cðiÞ

" #

(7)

and

xðkÞ ¼ Asin �x
X

k�1

i¼0

cðiÞ � w

" #

: (8)

Therefore, the phase error between the input grid signal yðtÞ and the PV signal PðtÞ can be

defined as

/ðkÞ ¼ �x
X

k�1

i¼0

cðiÞ � w: (9)

Both Eqs. (7) and (8) can be expressed in term of phase error as

yðkÞ ¼ Asin½/ðkÞ þ w� (10)

and

xðkÞ ¼ Asin½/ðkÞ�: (11)

Therefore, the loop error signal e(k) produced by the phase detector can be expressed as
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eðkÞ ¼ f tan�1 sin½/ðkÞ�

sin½/ðkÞ þ w�

� �� �

; (12)

where fðcÞ ¼ �pþ ½ðcþ pÞmod ð2pÞ. This error signal eðkÞ represents the nonlinear phase error

whose effect on the nonlinearity of the system worsens as the value of the phase shift w departs

away from p=2 radians. The digital loop filter with a transfer function DðkÞ receives the error

signal eðkÞ and produces the signal cðkÞ that drives the variable time-delay through the control-

ler to the required phase shift for synchronizations purpose. Consequently and by assuming that

the grid has the same frequency as that of the PV source, the system difference equation can be

derived from Eqs. (6) and (9) as

/ðkþ 1Þ ¼ /ðkÞ � xcðkÞ: (13)

The second-order loop utilizes a proportional plus accumulation digital filter transfer function

DðkÞ which is given as

DðzÞ ¼ G1 þ G2=ð1� z�1Þ; (14)

where G1 and G2 are positive constants. From Eqs. (13) and (14), the system difference equa-

tion of the second-order TDTL can be achieved as

/ðkþ 2Þ ¼ 2/ðkþ 1Þ � /ðkÞ � rK1h½/ðkþ 1Þ� þ K1h½/ðkÞ�; (15)

where r ¼ 1þ G2=G1 and K1 ¼ G1x. Following the same procedure with a fixed-point analysis

as in Refs. 15–17, the second-order TDTL lock range is defined by the inequality

0 < K1 <
4

1þ r
sinðwoÞ; (16)

where wo is the nominal phase lag induced in the incoming signal by the time delay unit. If the

phase shift is wo¼p=2, then the lock range of the system depends only on the filter coefficients

0 < K1 <
4

1þ r
: (17)

For the system to be stable the value of K1 must be selected so that inequality (17) is satisfied.

III. RESULTS

The synchronization system presented in this paper has been thoroughly tested to evaluate

its suitability for locking. The test was carried out with an input signal voltage which has an

amplitude of 325V and frequency of 50 Hz. The TDTL parameters were as follows: K1¼ 1,

r¼ 1.2, G1¼ 0.00318, and G2¼ 0.000635. The tests involved synchronizing the PV source with

the grid voltage under normal and abnormal conditions. The system was subjected to abnormal

disturbances in the grid voltage which led to loss of synchronization in order to evaluate its

ability to re-gain lock after each disturbance. This section presents some of these tests which

all indicate that the synchronization system is capable of achieving the desired locking state

following adverse changes in the grid voltage waveform. Although, in practice the inverter has

to be isolated from the grid in such conditions,6–8 the ultimate objective of the tests was to

demonstrate the versatility of the system.

In one test, a positive phase step with additive white Gaussian noise (AWGN) as shown in

Figure 3(a) was induced in the grid voltage with a signal-to-noise ratio (SNR) of 20 dB. The

phase error, Figure 3(b), and the phase plane of Figure 3(c) indicate that synchronization was

successful even in the presence of this AWGN.
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Another test involved injecting the grid waveform with a positive step input with a very

high total-harmonic distortion (THD) of 80% as illustrated in Figure 4(a). The phase error of

Figure 4(b) indicates that the system achieved synchronization within 200ms. Such an adverse

condition is, however, unlikely to occur in practice. In a similar test but without the distortion

the system achieved synchronization within 100ms as shown in Figure 4(c).

The synchronization ability of the system to deal with consecutive input steps with a THD

of 35% is shown in Figure 5. The distorted grid voltage is shown in Figure 5(a) and the

injected train of input phase steps is shown in Figure 5(b). The transient response and associ-

ated phase plane plots, for the distorted grid signal, are shown in Figs. 5(c) and 5(d),

FIG. 3. (a) Input phase step. (b) Phase error for phase step input. (c) Phase plane for phase step.
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respectively. This is in comparison with consecutive input steps without grid distortion signal

which are shown in Figs. 5(e) and 5(f), respectively. The results show that the system achieves

locking when subjected to consecutive phase error steps even with a distorted grid voltage.

The response of the synchronization system to variations in the input signal phase in the

form of a ramp is shown in Figure 6. The results shown in Figs. 6(b) and 6(c) illustrate that the

system achieves locking. However, the locking in this case includes a very small residual con-

stant shift that is not enabling convergence to exactly zero as obviously desired. This is basi-

cally attributed to the selection of the filter parameters and value of the variable delay. Both of

FIG. 4. (a) Grid signal with 80% THD. (b) Phase error for input phase step with 80% THD. (c) Phase error for input phase

step without distortion.
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these can be refined depending on the actual implementation conditions. The fact that the con-

stant shift is very small indicates that successful locking has been achieved.

Finally, the synchronization system was tested after inducing a voltage sag in the grid volt-

age as depicted in Figure 7(a). The phase error plot and the phase plane error for this test

shown in Figures 7(b) and 7(c) indicate that the system was successful in achieving synchroni-

zation in less than 200ms.

IV. IMPLEMENTATION

The feasibility and practical circuit implementation of the system using a field program-

mable gate array (FPGA) was performed and assessed in an earlier work using a similar

FIG. 5. Grid signal with 35% THD. (b) Consecutive input phase step. (c) Phase error for consecutive input phase step with

35% THD. (d) Phase plane for consecutive phase steps with 35% THD. (e) Phase error for consecutive input phase step

without distortion. (f) Phase plane for consecutive phase steps.
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system.17,18 It is shown that the real-time performance of the TDTL compares favorably with

the simulation results obtained from the MATLAB/SIMULINK model. The synthesis process of the

prototype system used Xilinx System Generator to generate the necessary hardware description

language (HDL) for the device-optimized block-set from within SIMULINK.

V. CONCLUSION

The architecture of a new circuit topology of a digital phase-locked loop based on the

TDTL has been presented. The system does not require a DCO and is all-digital which simpli-

fies its implementation. The system was constructed and tested using MATLAB/SIMULINK. Synchro-

nization between the grid and PV source was achieved by the proposed system. The system

FIG. 5. (Continued).
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was tested by applying a single phase step and consecutive phase steps to the grid with and

without AGWN. The system achieved synchronization in less than 100ms. Tests were also per-

formed with simulated voltage sags and with noise injection into the grid voltage. Adequate

response was observed even when the grid voltage was distorted by noise, and/or the harmonic

distortion which consequently falsifies the zero-crossings of the grid voltage. This doubled the

time taken to achieve synchronization compared to the case without harmonic distortion. How-

ever, the severity of the simulated conditions, e.g., 80% harmonic distortion, is unlikely to

occur in practice due to various strict national regulations on the quality of the grid voltage

waveform.

FIG. 6. (a) Consecutive input ramp phase. (b) Phase error for the input consecutive ramp phase step. (c) Phase plane for

the input consecutive ramp phase step.
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