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Abstract 

 

This work is aimed at studying defect level distributions in the bandgap of CdTe thin films, 

used for solar cell development. In particular, the effects of CdCl2 treatment on the defect 

levels are the main objectives of this research. Four different CdTe thin films were 

electroplated using three different Cd-precursors (CdSO4, Cd(NO3)2 and CdCl2), and bulk 

CdTe wafers purchased from industry (Eagle Pitcher and University Wafers in US) were 

studied using low temperature photoluminescence. The finger prints of defects, 0.55 eV 

below the conduction band down to the valence band edge were investigated. In all of the 

CdTe layers, four electron trap levels were observed with varying intensities but at very 

similar energy positions, indicating that the origin of these defects are mainly from native 

defects. CdCl2 treatment and annealing eliminates two defect levels and the mid-gap 

recombination centres are reduced drastically by this processing step. The optical bandgap of 

all four as-deposited CdTe layers is ~1.50 eV, and reduces to ~1.47 eV after CdCl2 treatment. 

The material grown using the CdCl2 precursor seems to produce CdTe material with the 

cleanest bandgap, most probably due to the built-in CdCl2 treatment while growing the 

material. 
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1.0 Introduction 

Thin film solar cells based on CdS/CdTe structures have achieved 21% efficiency to date, for 

small area, lab-scale solar cells [1]. The performance, reproducibility, yield, stability and 

lifetime of these solar cells depend on defect levels present in the materials and device 

structures. Therefore, a thorough knowledge of these defect levels is of paramount 

importance in the research, development and manufacturing of CdS/CdTe solar panels to 

achieve higher efficiencies. 

The heat treatment of CdTe thin films in the presence of CdCl2 is a key processing step for 

achieving high performance devices. Although this treatment has been used over the past 

three decades, full understanding has not been achieved yet and this processing step requires 

careful research in some key areas. The defects signature in thin film CdTe has been 

identified as one of these key areas for careful investigation, in a recent comprehensive 

review [2], and this is the main subject of this publication. 

This work presents photoluminescence (PL) studies carried out at 80 K on four different 

electroplated CdTe layers using three Cd-precursors. In this research programme, CdTe 

layers were electroplated using aqueous solutions of CdSO4 [3], Cd(NO3)2 [4] and CdCl2 [5] 

as the Cd-precursors, and TeO2 solution as the Te-precursor. PL of these materials was 

studied to investigate the defects “finger prints”; thereby enabling the best performing Cd 

precursor to be selected for the electro-deposition of CdTe for photovoltaic applications. In 

the three cases described above, the CdTe was electroplated using a graphite anode; while in 

the fourth case, CdTe was grown using a platinum anode. The PL was used to examine the 

defects structure in the bandgap of the four different CdTe thin films, and the results are 

compared with the PL spectra observed for two different bulk CdTe wafers purchased from 

industry. 

2.0 Experimental 

The CdTe layers used were electrodeposited on glass/FTO/CdS substrates using aqueous 

solutions containing Cd-precursor and TeO2 solution. Two of the four different CdTe layers 

used in this work were grown using CdSO4 precursor with two different anodes (Pt and 

graphite) [3]. The other two CdTe layers were grown using Cd(NO3)2 precursor [4] and 

CdCl2 precursor [5] both with graphite anode as reported in recent publications. The chloride 

precursor was used in a 3-electrode system, with saturated calomel as the reference electrode, 

while the other precursors were used in 2-electrode systems. All Cd-precursors used were 

purchased from Fisher Scientific and the purity was 99%. The solutions were electro-purified 

for ~100 hrs before deposition of CdTe layers. The concentration of the Cd-precursor in all 

cases was 1.0 M. pH value was at 2.00±0.02 at the start of the growth and temperature was 

raised to 85ºC for the 2-electrode system, and to 70ºC for 3-electrode system. A dilute TeO2 

solution was added to the electrolyte at regular intervals in order to maintain a low level of Te 

in the bath. The four electroplated CdTe layers were grown by four different researchers 

using different chemicals and various growth parameters. Hence, these layers can be 

considered as different CdTe materials. The main aim of this work is to examine the defect 
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structure present within the bandgaps of these materials, and to decide which Cd-precursor 

produces the best CdTe layers for fabricating CdS/CdTe thin film solar cells. The second aim 

was to explore the effects on defect levels when heat treated in the presence of CdCl2. The 

final aim was to explore the effects of electroplating CdTe using a CdCl2 solution, where the 

precursor will introduce a built-in CdCl2 treatment during the growth. 

In order to compare the finger prints of the defects existing in thin film CdTe layers, together 

with that of melt-grown bulk CdTe, PL studies were also carried out on CdTe wafers 

purchased from industry (University Wafers). Dimensions of these wafers were typically 

(10×10×1) mm
3
 and one surface was polished to a mirror finish with 0.5 microns size 

diamond paste. This paper also re-visits the PL results obtained in the past for CdTe wafers 

purchased from Eagle Pitcher, to compare with present results on thin film CdTe layers. 

Photoluminescence work was carried out using a Renishaw inVia Raman Microscope with a 

632 nm (~1.96 eV) He-Ne laser as the excitation source. The detector used in this system is a 

combination of a diffraction grating and a CCD camera. The system is capable of measuring 

a wide range of energies. The samples were cooled to approximately 80 K using a Linkam 

THMS600/720 temperature controlled stage with liquid nitrogen and maintained at this 

temperature over the length of the PL measurement. The PL peaks in the energy range, 0.55 

and 1.85 eV below the conduction band (CB) were explored in order to investigate any 

differences of defect levels and the band-to-band electron transitions.  

After measuring the PL spectra of the as-deposited layers, CdCl2 treatment was carried out in 

two steps. The first step was by treating the samples in ~1% CdCl2 aqueous solution and heat 

treating at 440ºC for 8 minutes. The second step was carried out by treating the surface again 

with ~1% CdCl2 aqueous solution and heat treating at 440ºC for 16 minutes. The aim here is 

to examine the trend in changes of defect levels existing in the forbidden gap of CdTe during 

this processing step.  

3.0 Results and Discussion 

The photoluminescence process can be understood by referring to the electron excitation and 

subsequent transitions taking place from the CB to defects and the valence band (VB), as 

shown in Figure 1. When the CdTe surface is excited by laser light of 632 nm (1.96 eV), 

electrons are continuously pumped from VB to the CB. These electrons are then captured by 

electron traps (Tn), as they make the transition from the CB towards the VB, therefore 

emitting photons with different energies in order to create various PL peaks. Band-to-band 

electron transitions create a peak providing the energy gap of the material. In order to 

produce PL peaks, traps should be electron traps with high concentrations and large cross-

sections, and the transitions must be radiative. In this PL set-up, only the electron trap levels, 

~0.55 eV below the CB can be observed down to the VB edge due to the limitations of the 

detector system used.  
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Figure 1.  Schematic diagram showing the excitation of electrons from the valence band to 

the conduction band and subsequent electron trapping due to defects in the bandgap as the 

electrons make transitions from the conduction band towards the valence band.  

3.1 Photoluminescence observations from thin films of CdTe 

Typical PL spectra recorded at 80 K for the thin film CdTe layers grown from different 

precursors are shown in Figure 2. Five main PL peaks labelled T1 - T4 and Eg can be observed 

in the energy range, 0.55 eV to 1.85 eV as summarised in Table 1. The energy values 

corresponding to the maxima of these peaks are given in Table 1 together with their 

approximate energy spread. The peak positions at 80 K can be converted into room 

temperature values when necessary, using the rate of change of energy bandgap, (dEg/dT) = -

4.2×10
-4

 eVK
-1

 as reported for CdTe [6]. The maxima of the peaks appear at 0.66, 0.79, 0.97, 

1.37 and 1.50 eV at 80 K, indicating at least four deep defect levels situated in the explored 

energy range, below the conduction band minimum. The peak at 1.50 eV corresponds to the 

energy bandgap of CdTe showing band-to-band electron transitions. The trap levels T1, T3 

and T4 are narrow, but the electron traps at 0.79 eV (T2) spread over ±0.15 eV wide energy 

range. It is noteworthy that T2 is a widely distributed defect and situated right in the middle of 

the bandgap. Therefore, these defects are very effective in recombination process, causing 

detrimental effects in PV performance. These defects kill photo-generated charge carriers 

through recombination and hence known as "killer centres" in II-VI semiconductors. A good 

solar energy material should be free of these mid-gap killer centres. 

It should be noted that the joining of two PL spectra in these measurements is taking place on 

the T3 level. Therefore, the observation of a clear peak at T3 is disturbed, but this feature can 

be observed in all PL spectra. However, the identification of a peak at 0.97 eV is not that 

difficult from these measurements on four different layers. 
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Figure 2. Typical photoluminescence spectra recorded at 80 K for four as-deposited CdTe 

layers using different Cd-precursors (sulphate, nitrate and chloride). The intensity of peaks 

are normalised to that of the band-gap emissions. 

Table 1.   Summary of electron trap levels (T1,…T4) and the energy bandgap (Eg) observed at 

80 K for the four as-deposited CdTe layers. 2E and 3E stands for 2-electrode and 

conventional 3-electrode systems respectively. Pt and C shows the material used for anode. 

 

Although the defect level, T4 also has a broader distribution, the probability of recombination 

through this level is very low due to its closeness to the valence band. The peak showing the 

band-to-band transition is also broad and extends beyond the bandgap of CdTe. The 

emissions greater than Eg may arise due to quantum effects and the presence of CdSxTe(1-x) 

alloy at CdS/CdTe interface. The electroplated CdTe material consisting of grains in nano-

scale could exhibit quantum effects in electron transitions creating photons greater than the 

bandgap. The emissions less than Eg can arise due to donor-to-acceptor type transitions, 

involving shallow energy levels, within the bandgap. 

Figure 3 shows the PL spectra recorded for the CdTe layer electroplated using CdSO4 

precursor and 2-electrode system with Pt anode. The three spectra correspond to the as-

deposited and CdCl2 treated CdTe in two steps. The observed peak details are summarised in 

Table 2, and a few major changes are clear from these results. The two defect levels at T1 and 

Energy (eV) T1±0.02 T2±0.15 T3±0.03 T4±0.08 Eg 

CdTe (SO4
2-

)/2E/Pt 0.66 0.77 0.97 1.36 1.51 
CdTe (SO4

2-
)/2E/C 0.66 0.79 0.97 1.37 1.50 

CdTe (NO3
-
)/2E/C 0.66 0.79 0.98 1.37 1.50 

CdTe (Cl
-
)/3E/C 0.66 0.79 0.98 1.37 1.50 
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T3 completely disappear during CdCl2 treatment. The broad distribution of T2 narrows     

down and T4 level reduces indicating drastic removal of defects from the bandgap. The value 

of bandgap reduces from 1.51 eV to 1.47 eV after CdCl2 treatment, indicating the 

coalescence of small crystallites into large CdTe grains. This removes the quantum effects 

and therefore reduces larger values for Eg transitions. 

 

Figure 3.  Photoluminescence spectra for as-deposited, first CdCl2 treated and second CdCl2-

treated CdTe layers, electroplated using CdSO4 precursor in 2-electrode system with Pt anode.  

Table 2.   Summary of electron traps at 80 K for CdTe layers electroplated from CdSO4 

precursor using 2-electrode system with Pt anode. 

Energy (eV) T1 T2 T3 T4 Eg 

As deposited 0.66 0.77 0.97 1.36 1.51 

CdCl2-Step 1 - 0.73 - 1.39 1.47 

CdCl2-Step 2 - 0.73 - 1.39 1.47 

 

Figure 4 and Table 3 show the PL spectra and details of defects for the CdTe layer grown 

from CdSO4 precursor using 2-electrode system with graphite (C) anode. The same four 

defect levels are observed, and the disappearance of T1 is clear after CdCl2 treatment. 

Reduction of T3 is evident but the defects are not completely removed. Although the 

intensities of T2 and T4 peaks have gone down, the distribution has not reduced. Clearly, the 

layers are full of defects even after CdCl2 treatment and these will have detrimental effects on 

device performance. It should be noted that each of the four layers under study was 

electroplated by a different researcher introducing various differences. At the same time, 

these layers are not yet fully optimised to achieve high efficiency devices. 
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Figure 4.  Photoluminescence spectra for as-deposited, first CdCl2 treated and second CdCl2-

treated CdTe layers electroplated using CdSO4 precursor in 2-electrode system with graphite 

anode.  

Table 3.  Summary of electron traps at 80 K for CdTe layers electroplated from CdSO4 

precursor using 2-electrode system with graphite anode. 

Energy (eV) T1 T2 T3 T4 Eg 

CdTe - As deposited 0.66 0.79 0.97 1.37 1.50 

CdTe - CdCl2-Step 1 - 0.76 0.97 1.37 1.50 

CdTe - CdCl2-Step 2 - 0.74 0.97 1.38 1.48 

 

Figure 5 and Table 4 present the PL spectra and the peak details for CdTe layers grown with 

Cd(NO3)2 precursor, using a 2-electrode system with graphite anode. The most striking 

observation is that the peak positions are in general very similar for all the CdTe layers. After 

CdCl2 treatment, T1 completely disappears and, T3 peak still remains in this case. Although 

the intensity of T2 has reduced considerably, the distribution remains the same. Intensity of T4 

first reduces and then increases with addition of more CdCl2 to the treatment. The band-to-

band emission peak sharpens by reducing the width of the peak. The bandgap of 1.50 eV for 

as-made layer reduces to 1.48 eV after CdCl2 treatment. 



 

8 

 

 

Figure 5.  Photoluminescence spectra for as-deposited, first CdCl2-treated and second CdCl2-

treated CdTe layers electroplated, using Cd(NO3)2 precursor in 2-electrode system with 

graphite anode.  

Table 4.   Details of PL peaks at 80 K for CdTe layers electroplated using Cd(NO3)2 

precursor and 2-electrode system with graphite anode. 

Energy (eV) T1 T2 T3 T4 Eg 

CdTe - As deposited 0.66 0.79 0.98 1.37 1.50 

CdTe - CdCl2-Step 1 0.66 0.86 0.99 1.38 1.48 

CdTe - CdCl2-Step 2 - 0.71 0.99 1.40 1.48 

 

Figure 6 and Table 5 show similar results for CdTe layers grown using CdCl2 precursor, in a 

3-electrode system with a graphite anode. A saturated calomel electrode was used as the 

reference electrode in this system since Hg is not detrimental to CdTe based solar cells [7]. 

These layers provide well-defined PL spectra with most accurate peak positions. All five 

peaks in the as-deposited layer are identical in energy position terms to those of CdTe grown 

from other precursors, but show drastic changes after CdCl2 treatment. The T1 and T3 defect 

levels are completely annealed-out during the CdCl2 treatment. Considerable reduction of the 

energy distribution of T2 from ~0.34 eV to ~0.09 eV is extremely important to note.  Drastic 

reduction of the intensity of T4 and sharpening of the bandgap peak are excellent results to 

observe. In particular, the drastic reduction of mid-gap "killer centres" at T2 is good news for 

photovoltaic devices. It should be noted that the main difference in this layer is the 

electroplating from CdCl2 precursor. Therefore the built-in CdCl2 treatment is already there, 

even during the materials growth by depositing molecule by molecule. Therefore the effect of 

CdCl2 treatment should be highest in this material. Changes at the band-to-band transitions 

are drastic and noteworthy. Formation of highly crystalline CdTe with low defects, in the 

presence of Cl
-1

 is clear from these results. It seems that Cl
-1

 are acting as a fluxing agent for 

growing CdTe with large crystals with low defects. 



 

9 

 

 

Figure 6.  Photoluminescence spectra for as-deposited, first CdCl2-treated and second CdCl2-

treated CdTe layers electroplated using CdCl2 precursor and 3-electrode system with carbon 

anode and saturated calomel reference electrode.  

Table 5.   Details of PL peaks at 80 K for CdTe layers electroplated using CdCl2 precursor 

and 3-electrode system with graphite anode and saturated calomel reference electrode. 

Energy (eV) T1 T2 T3 T4 Eg 

As deposited 0.66 0.79 0.98 1.37 1.50 

CdCl2-Step 1 - 0.76 - 1.39 1.51 

CdCl2-Step 2 - 0.76 - 1.39 1.51 

 

A summary of PL studies on all four CdTe layers are given in Table 6. Trap levels for both 

as-deposited and CdCl2 treated (after second stage) samples are shown for comparison. Four 

trap levels have been observed for all CdTe layers in the explored energy range. T2 situated at 

the mid-gap is a broad peak spreading over ~0.30 eV, and will be more effective in 

recombination of photo-generated charge carriers created during PV action under 

illumination.  

Table 6.  Summary of observed PL peaks at 80 K for four different CdTe layers electroplated 

from three different Cd-precursors (sulphate, nitrate and chloride). 

Growth details Material condition T1 (eV) T2 (eV) T3 (eV) T4 (eV) Eg (eV) 

CdTe-(SO4
2-

)/2E/Pt As-Deposited 0.66 0.77 0.97 1.36 1.51 

CdCl2 treated ---- 0.73 ---- 1.39 1.47 

CdTe-(SO4
2-

)/2E/C As-Deposited 0.66 0.79 0.97 1.37 1.50 

CdCl2 treated ---- 0.74 0.97 1.38 1.48 

CdTe-(NO3
-
)/2E/C As-Deposited 0.66 0.79 0.98 1.37 1.50 

CdCl2 treated ---- 0.71 0.99 1.40 1.48 

CdTe-(Cl
-
)/3E/C As-Deposited 0.66 0.79 0.98 1.37 1.50 

CdCl2 treated ---- 0.76 ---- 1.39 1.51 
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When heat treated in the presence of CdCl2, T1 and T3 completely reduce in some samples, 

but in others show a considerable reduction. T2 is the main defects band presence at right in 

the middle of the bandgap and distributed in a wide energy range of ~0.30 eV. These are the 

most detrimental defects for PV action, with the highest probability of recombination process.   

T4 appears at 1.39 eV, with varying intensity after CdCl2 treatment. Therefore, as graphically 

shown in Figure 7, CdCl2 treatment helps in removing defects and clearing the bandgap of 

CdTe. 

 

Figure 7.  A graphical summary of defects finger-print observed at 80 K for (a) as-deposited 

and (b) CdCl2 treated thin films of CdTe grown by electroplating. 

The bandgap of as-deposited layers is ~1.50 eV at 80 K. After CdCl2 treatment, this value 

reduces to ~1.47 eV, except for the sample grown in CdCl2 precursor, which remains at 1.50 

eV. The 1.50 eV bandgap at 80 K corresponds to 1.41 eV at room temperature, which agrees 

well with the bandgap of bulk CdTe. 

3.2 Photoluminescence observations from bulk CdTe material 

3.2.1 Bulk CdTe from University Wafers 

In order to compare the PL results of thin films of CdTe with bulk material, (10×10×1) mm
3 

wafers were purchased from University Wafers in the United States and the PL 

measurements were carried out under similar conditions, on polished surfaces. In order to 

observe any useful changes on the surface, these wafers were also treated with CdCl2 and 

heat treated at 440°C for 20 minutes. The surface was then rinsed well with de-ionised water 

and the PL spectrum was recorded at 80 K in the same measurement system. 

Figure 8 shows the PL spectra recorded for polished CdTe wafer before and after CdCl2 

treatment. As-received material shows two sharp peaks corresponding to 0.76 eV (T2) mid-

gap defects and 1.52 eV (Eg) energy gap of the material. These are identical to the two peaks, 

T2 and Eg observed for thin films of CdTe. After CdCl2 treatment, T2 level shows slight 

broadening and additional peak at 1.39 eV (T4) appears, showing that these changes are due 
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to CdCl2 inducement on the surface layer. A review [24] by Fernández on PL and CL results 

also summarize the increase of this particular level upon CdCl2 treatment. This information is 

extremely important in understanding what happens during this key processing step. The 

conclusion is that this additional defect level, T4 emerges due to Cd-richness or the 

incorporation of Cl in CdTe. This PL observation is also very similar to cathodoluminescence 

(CL) work reported by Mazzamuto et al [8]. These authors reported the development of this 

peak at 1.39 eV when Freon (CHFCl2) gas pressure in the heating chamber is gradually 

increased during the heat treatment of close space sublimation (CSS) grown CdTe thin films. 

Since there are no additional Cd involved in this treatment, Cd-richness can be eliminated 

with confidence. This provides us a firm conclusion of the origin of this defect at 1.39 eV 

(T4), below the CB edge. Cl interacts with CdTe lattice forming a defect level at 1.39 eV, 

very close to the VB. This level therefore, can act as a shallow acceptor in CdTe increasing 

the acceptor concentration (NA) within the material. This information is helpful in 

understanding Cl as an amphoteric dopant. At ppm level, when Cl displaces Te atoms in the 

lattice, it is a well-known donor in CdTe [9]. However, when Cl concentration is high as in 

the case of CdCl2 treatment, and interacts with CdTe layer, it produces an acceptor like defect 

at 1.39 eV (T4), acting as a p-type dopant in CdTe. Interaction of Cl within CdTe layer is not-

known at present, and need extra information to draw firm conclusions. The final electrical 

conductivity type depends on the resultant value of (ND - NA) in the material. This value can 

also depend on heat treatment temperature and the duration. 

 

Figure 8.  Photoluminescence spectra recorded before and after CdCl2 treatment, for bulk 

CdTe wafers purchased from University Wafers. These wafers were produced using a melt-

growth technique and the dimensions of the wafers used were (10×10×1) mm
3
. 

It is really striking to see the similarity of PL spectra of commercially available CdTe bulk 

materials with electroplated CdTe thin films using CdCl2 precursor, after CdCl2 treatment. 

These two spectra are plotted in Figure 9 for direct comparison. It is clear that the thin film 

CdTe layers of the order of 1.0 µm can be grown with comparable defect levels in the bulk 

CdTe bandgap. 
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Figure 9.  Photoluminescence spectra of bulk CdTe wafers and electroplated CdTe thin films 

from chlorides, after CdCl2 heat treatment. Note the cleaner bandgap in the CdCl2 treated thin 

film CdTe grown using CdCl2 precursor, with a built-in CdCl2 treatment. 

3.2.2 Bulk CdTe from Eagle Pitcher 

It is also worth re-visiting the PL measurements carried out on bulk CdTe wafers purchased 

from Eagle Pitcher, in the past by the main author [10]. Figure 10 shows the PL spectra 

obtained at 4 K, together with corresponding X-ray photo-electron spectra (XPS) of the 

surfaces investigated. The CdTe surfaces were mechanically polished and chemically etched 

to produce Te-rich or Cd-rich surface layers, and the PL spectra were recorded under same 

experimental conditions. The Te-richness and Cd-richness were confirmed using XPS 

experiments carried out on these surfaces [11]. 
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Figure 10.  The XPS spectra [11] of Te-rich and Cd-rich CdTe surfaces and their 

corresponding PL spectra obtained at 4 K [10]. The CdTe wafers were purchased from Eagle 

Pitcher in United States. The spectra (a, b & c) corresponds to PL from Te-rich surfaces and 

(d, e & f) corresponds to PL from Cd-rich surfaces. Note the observation of four peaks, T2, T3, 

T4 and Eg with very similar energies observed for thin films of CdTe. 

Figure 10 shows the defect levels observed by purposely modifying the CdTe surfaces by 

chemical etching. The energy values can be converted to 80 K for comparison using the rate 

of change of the bandgap given in section 3.1. The main defect levels observed at 80 K for 

bulk materials and the CdTe thin films grown using CdCl2 precursor are summarised in Table 

7. The results presented in this paper shows that defects present in CdTe are common for at 

least six different CdTe materials produced with different conditions. The heat treatment in 

the presence of CdCl2 turn the material into electronic grade layers with only two or three 

deep defect levels present in them. The most important results observed from Figure 10 are 

that, T2 is dominant for Te-rich layers and T3 and T4 are dominant for Cd-rich CdTe layers. 

This provides us a method to control deep levels in CdTe material. 

Table 7:  Summary of defect levels observed from PL, for bulk CdTe from University Wafers, 

and Eagle Pitcher, and for thin film CdTe layers grown using CdCl2 precursor and after 

CdCl2 treatment. 

Material T2 (eV) T3 (eV) T4 (eV) Eg (eV) 

Bulk CdTe (University Wafers) 0.76  1.39 1.52 

Bulk CdTe (Eagle Pitcher) 0.84 1.09 1.37 1.52 

Thin Films of CdTe grown by CdCl2 

precursor after CdCl2 treatment 

0.76  1.39 1.51 

 

4.0 Implications of deep defect levels on CdTe based solar cells 

4.1 Effects on Materials 

It is now worth looking at the summary of PL results observed for both thin films and bulk 

CdTe materials. It is evident that there are at least four main discrete defect levels existing in 

the bandgap of CdTe. It is a striking result to observe deep level defects at very similar 

energy values (see Tables 6 and 7) for four different thin films grown differently using 

various Cd-precursors and for two different bulk CdTe material grown at two commercial 

companies. This means that these defects must be arising from native defects in CdTe. 

The observations of Figure 10 for chemically etched bulk CdTe surfaces show that the 

intensities of defects related peaks are much higher than that of the bandgap peak. This means 

that the electron transitions from Ec to defects are much stronger than Ec to Ev. In opto-

electronic device applications, these types of transitions are not very useful. However, the 

peak intensities shown in Figure 6 and Table 8 for CdTe thin films grown using CdCl2 

precursor show that the Eg peak is much higher than the defect related peaks. This is the 

feature necessary for solar energy materials to fabricate efficient solar cells. A material with 

low intensity defect peaks will produce better devices. The counts of Eg peak for as-deposited 
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material has increased from 8143 to 514,331 after the second CdCl2 treatment. This clearly 

shows that defects in the bandgap have drastically annealed-out and the band-to-band 

transitions have increased. This is the main reason that the CdCl2 treatment is essential in 

order to fabricate efficient CdTe solar cells.  

Table 8. Intensity of band-to-band electron transitions (Eg peak) for CdTe thin films grown 

using CdCl2 precursor, and after CdCl2 treatment. 

 

 

 

 

Observations in Figure 10 also help in drawing another important conclusion. In Te-rich 

surfaces, defects (T2) in the mid-bandgap are dominant, and in Cd-rich surfaces, defects in 

lower half of the bandgap (T3 and T4) are dominant. This observation is also confirmed by the 

CdCl2 treatment of thin film CdTe layers presented in this paper. Results summarised in 

Table 6 and Figure 7 clearly show that CdCl2 treatment removes the trap levels at T1 and T3, 

and drastically reduce the wide distribution of T2 to a narrow distribution level. These are the 

defect levels situated towards the middle of the bandgap and related to the Te-richness of 

CdTe materials. Out of the two elements, Cd and Te in CdTe, Te is the easiest element to 

discharge first and deposit during electroplating (E
o
 for Te is +0.593 V, and E

o
 for Cd is -

0.403 V). Therefore Te can be precipitated [12-14] within the layer or form a thin layer of 

CdxTeOy on the surface [15]. Hence, most of the as-deposited CdTe layers have Te-rich 

nature and therefore T1, T2 and T3 trap levels are dominant. However, when these layers are 

heat treated in the presence of CdCl2 on the surface, excess Te converts into useful CdTe 

phase improving the stoichiometry of the CdTe layer.  

Excess Te  +  CdCl2               CdTe  +  Cl
- 

The presence of Cl
-
 in this process also helps in recrystallisation and doping of the CdTe. In 

fact, the CdCl2 treatment converts Te-richness of the initial CdTe layer into Cd-richness, 

reducing defects at T1 and T2. This produces a CdTe layer with fairly clean bandgap 

removing defects in the mid-gap (see Figure 7). The same process increases the band-to-band 

transitions of electrons, as a result of removal of mid-gap defect levels (see Table 8) 

producing a better solar energy material. 

4.2 Effects on Devices 

At this point, re-visiting the electrical contact work published in the past [11, 16-18], showing 

preparation of Cd-rich and Te-rich CdTe surfaces leading to form different Schottky barriers 

at metal/n-CdTe interfaces is highly relevant. Figure 11 shows I-V characteristics of Schottky 

diodes produced by metal/n-CdTe interfaces. The barrier heights are independent of the metal 

used, and the same metal (Sb, Au, etc.) produces low barriers (~0.72 eV) on Te-rich surfaces 

and high barriers (~0.96 eV) on Cd-rich surfaces. In these cases, the Fermi level pins at T2 for 

CdTe (Cl)
- 
3E/C Eg peak intensity (Photon counts) 

As-deposited 8,143 

CdCl2 treated – step 1 60,740 

CdCl2 treated – step 2 514,331 
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Te-rich surfaces and at T3 for Cd-rich CdTe surfaces. It is obvious that once the defects at T1, 

T2 and T3 are removed from the bandgap, extremely large Schottky barriers can be produced 

by pinning the FL at T4 (~1.26 eV at room temperature). This is indeed routinely observed in 

our CdTe devices made out of electrodeposited Cd-rich CdTe layers [15]. 

 

Figure 11. Typical Schottky diode characteristics produced on Te-rich and Cd-rich CdTe 

wafers (Eagle Pitcher) with Sb and Au electrical contacts. Barrier heights are independent of 

the metal used and create due to strong FL pinning positions at T2 level when Te-rich and at 

T3 levels when Cd-rich [11, 17-19]. 

 

The most striking effect is the observation of similar discrete barriers for thin film CdTe 

layers [17]. From the results presented in this paper, it is clear that the defect levels in CdTe 

are common at least for six different materials and play a very important role in Schottky 

barrier formation at metal/n-CdTe interface. This Fermi level pinning affects the performance 

of CdTe based solar cells as published before [11, 16-18]. Pinning the Fermi level at the 

defect level at T3 (~0.92 eV room temperature) or at T4 (~1.24 eV at room temperature) 

produces high potential barriers at metal/n-CdTe interfaces creating excellent rectification 

properties exceeding ~10
8
 rectification factors at 1.0 V. 

The most recent ultra-violet photoemission spectroscopy (UPS) work [19] on electroplated 

CdTe thin films confirmed that the Fermi level settles in the upper-half of the bandgap after 

CdCl2 treatment. This means that under CdCl2 treatment, ND remains greater than NA and 

hence the material remains n-type after CdCl2 treatment. It is also extremely important to 

note Schulmeyer et al's work on CSS-CdTe layers obtained from Antek [20]. These authors 

performed XPS studies on CdCl2 treated CSS-CdTe layers and determined the position of the 

FL in CdTe, and measured the efficiency of fully fabricated CdS/CdTe device structures. 
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They reported that the highest efficiencies are observed when the FL is ~0.85 eV above the 

VB. This means that the FL has settled ~0.60 eV below the conduction band minimum, and 

material remained n-type after CdCl2 treatment. Their work also confirms the production of 

highest efficiency values when devices are fabricated with CSS grown n-type CdTe layers. 

In order to make high performing solar cells, one needs to grow high quality n-type CdTe 

layers without defects at T1, T2 and T3. The material should have high concentrations of T4 

defects influenced by CdCl2 treatment, in order to pin the FL at the vicinity of T4 level (~1.26 

eV at room temperature). Combining all the results presented in this paper and the most 

useful and relevant information published in the literature, the energy band diagram of the 

most efficient CdS/CdTe solar cell is shown in Figure 12. As at present, the mid-gap T2 

defect related to Te-richness is still present in the CdTe bandgap. Complete removal of T1, T2 

and T3 and pinning the FL at the T4 defect level will produce high performing devices 

reducing recombination process. This FL pinning can be enhanced by adding p-dopants such 

as Cu, Sb, As, Bi, etc. to the electrical contact material. Also by adding p-type and wide 

bandgap semiconducting layers such as p-ZnTe and p-type organic polymers on CdTe, the FL 

can be forced to keep very close to the VB of CdTe.  Ф� at the back contact can be further 

improved using MIS-type electrical contacts forming barrier heights exceeding the energy 

gap of CdTe. This will lead to production of large Voc values for this solar cell. This device 

architecture as proposed in 2002 [17, 18], is a tandem device of an n-n hetero-junction in the 

front connected in parallel to a large Schottky barrier at the back. In this parallel connection, 

CB is connected to CB, instead of connecting the CB to the VB in series connection or  

tunnel-junction approach [21]. In this device structure with parallel connection of the two 

junctions, Voc remains constant and the current density (Jsc) adds up from two devices. MIS 

type electrical contacts could produce barrier heights greater than the bandgap of CdTe and 

hence produce high Voc values also.        

 

Figure 12. Energy band diagram of CdS/CdTe solar cell depicting four main deep levels 

observed using PL studies carried out in this work. The Fermi level is pinned at T4 level. 

Since CdTe can be easily produced either in p-type or n-type electrical conduction, there 

exists two types of device structures; genuine single p-n junctions, and combined two 

junctions as shown in Figure 12. Highest efficiencies are produced by the two-junction 

devices, but all interpretations in the past were given in terms of a simple p-n junction. This 
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has created a severe confusion in the CdS/CdTe development field and hence stagnated the 

conversion efficiency ~16% [22, 23] for over two decades. Proper understanding of the 

materials and device issues, designing and developing the appropriate device architectures, 

optimising the materials growth and device processing steps will lead to produce high 

performing CdS/CdTe solar cells with efficiencies well above the current values of 21% in 

the near future.  

 

5.0 Conclusions 

The photoluminescence results presented in this paper and other highly relevant information 

from the literature leads to draw following important conclusions. 

(a) All four CdTe layers electroplated using sulphate, nitrate and chloride of cadmium 

precursors exhibit four electron traps (T1, T2, T3 and T4) situated at similar energy positions. 

The bulk CdTe wafers purchased from Eagle Pitcher and etched surfaces also exhibit three 

defects at T2, T3 and T4. Materials from University Wafers show only one defect level at T2 in 

the mid-gap. 

(b) When compared with PL intensities of the electroplated materials with the chemically 

etched bulk material surface, band-to-band transitions are strong in thin film CdTe layers. 

This indicates the low-trap concentrations in electroplated materials after CdCl2 treatment. 

(c) After CdCl2 treatment, T1, T2 and T3 completely anneal-out or show considerable 

reduction in concentration. This reduction is a positive effect for device performance. 

(d) CdCl2 treatment drastically reduces the mid-gap killer centres situated at T2 level. Wide 

distribution (~0.30 eV) reduces to a narrow defect band (~0.09 eV) and the intensity also 

reduces by considerable amounts. This will have a drastic and positive effect on improvement 

of solar cell performance by reducing recombination of photo-generated charge carriers. 

(e) The two defect levels T1 & T2, situated in the mid-gap are closely related to Te- 

richness in CdTe layers. CdCl2 treatment converts the Te-richness towards Cd-richness, 

reducing precipitated Te, drastically removing mid-gap defects. 

(f) Out of all four CdTe layers studied in this work, the material grown using CdCl2 

precursor seems to produce a better material with a cleaner bandgap. This material is 

comparable to University Wafers - CdTe in terms of defect levels. The built-in CdCl2 

treatment during the growth of the layer may be the most possible reason. However, it should 

be noted that all these layers are grown by four different researchers and are not grown at 

optimised conditions. 

(g) All CdTe layers seem to have the defect level at T4, and CdCl2 treatment seems to 

enhance this defect. Fermi level pinning at T3 (~0.92 eV at RT) or at T4 (~1.26 eV at RT) 

produce large Schottky barrier at n-CdTe/metal interface and hence produce high performing 
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CdS/CdTe solar cells. The most desirable level to pin the FL is ~1.26 eV below the 

conduction band. 
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