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ABSTRACT

Detecting naturally arising structures in data is central to knowledge extragiiondfata. In most applications, the
main challenge lies in the choice of the appropriate model for explorindathefeatures. Quite often, the choice is
generally poorly understood and any tentative choice may be too restrictiven@nmlumes of data, disparate data
sources and modelling techniques entail the need for model optimizatiadapsability rather than comparability. We
propose a novel two-stage algorithm to modelling continuous data cog&istm unsupervised stage whereby the a
gorithm searches through the data for optimal parameter values andreiseg stage that adapts the parameters for
predictive modelling. The method is implemented on the sunspots datakeéttemntly Gaussian distributional prope
ties and assumed bi-modality. Optimal values separating high from imles @re obtained via multiple simulations.
Early patterns for each recorded cycle reveal that the first 3 yearsi@m\sufficient basis for predicting the peak.
Multiple Support Vector Machine runs using repeatedly improved data pararsieter that the approach yields greater
accuracy and reliability than conventional approaches and provides a goofbbawisiel selection. Model reliability
is established via multiple simulations of this type.

Keywords: Clustering; Data Mining; Density Estimation; EM Algorithm; SunspotqaeBused Modelling; Support
Vector Machines; Unsupervised Modelling

1. Introduction been indicated in solar studies dating back many years
[13, 18 and20]. Climatic variations in Lapland via oo

plex variations in the atmosphere, lunar gravitation and
solar activity have also been explained [11].

Many real-life problems are tackled via knowledge e
traction from data- a process typically associated with
detecting naturally arising structures in the data. A-typ

cal example is the sunspots dataset [11dn average This paper will be subjecting sunspots data teea s

oscillating sequence of the beginning and ending IOerIOdﬁuential analysis involving unsupervised and supervised

of solar cycles with an approximate periodicity of 11 5qeling. The two concepts represent the typical data
years [7]. Recorded sunspots span across the first cyClgining problems- data clustering and classification. The

(March 1755 to June 1766) to the first few months of thepimary goal of the former is to partition a given dataset
current (24th) cycle. Clustered in non-random positionSyjith a known or unknown distribution into subgroups in
above and below the equator, the spots are generated Ry,ch a way that data points in each group are a®hom
interactions between the sun's surface plasma and it§eneous as possible while those in different groups are as
magnetic field [19 and 22]. Solar magnetic activity ¢ heterogeneous as possible. The method is typically a
cles have attracted the attention of scientists for manylied in problems in which there is no clear mathematical
years. Solar flares, for instance, affect our planetfn di formulation for describing the underlying structures.
ferent ways - including ejecting plasma and energeticvarious approaches to data clustering have been studied
particles and potentially causing geomagnetic storms andnd are well-documented in the literature [21, 17 and 6].
damaging satellites [16]. The paper is motivated by the However, determining the number of naturally arising
documented effects of sunspots on terrestrial conditionsstructures in data remains a daunting challenge among
Correlations between space and terrestrial weather have
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the data science community. Many clustering tools in thepractical solutions to the classical problem of choosing
literature are based on the conventional mechanics athe level of smoothing (bandwidth), can be efficiently
minimization of the distances between data points used. For example, given the data points
feature which inherently constitutes the same challenge{x,,,...,X, 1,X,} € R, the KDE approach to clustering
the methods are designed to addreskat is, deternm- defines clusters as regions of high density separated by
ing the optimal number of clusters. The primary goal ofregions of no or low density. Its main idea is to first
the latter is to allocate new cases in known classes andompute a kernel density estimatét,(x), say, from the
one of its main challenges is balancing model accuracylata, with a Gaussian kernel and isotropic bandwidth
and reliability. t >0 controlling the amount of smoothing. In itsrsi

Let a dataset of independently identically distributed plest form, KDE can be thought of as an alternative to
random vectors {x,X,,...,X, ;,X,} € R’ represent fa-  the histogram as it typically provides a smoother eepr
tures an underlying density function. The main featuressentation of the data, and unlike the histogram, pts a
of interest may include modes (local maxima)- a pearance does not depend on a choice of starting point.
ti-modes (local minima) andumps- regions where the The scenario represents a problem amenable to the mu
second derivative is negative. In an exploratory settingtivariate kernel function in Equation 1 where T is a
the number and locations of these features are not knowpymmetric positived by d bandwidth matrix defined as
a priori.Many real-life data take this form and with large the diagonal T =diag[t,,t,,...,t, ;,t,] with a direct
volumes of data generated from different sources andfféct on model complexity.
in.putted into different mode'ls, we_are con.stantly faped fT (x)=n’1zn:Kt(x—xi) o)
with the challenge to determine optimal stationery points. )
The challenge is to address model complexity via adap ~ Without loss of generality, consider a phenomenon
ability rather than comparability. In other words, we seekwith a binary structure of, say, “highs” and “lows”. De-
to minimise inherent randomness in training and test datpending on the context, a number of models canphe a
via novel adaptive methods of data analysis [10 and 1]. plied. For instance, if we assume a Gaussian kernel, we

This paper proposes a novel approach to detectingan define a parametric pattern of “lows” and “highs” in
naturally arising structures in data that searches for ge the form of a normal mixture model and use the param
eralising parameter levels and adapts them to superviseigr estimates®={u,2} to track the dynamics of the
modeling. Its main research problem is to develop arcycles. Further, if we assume that the probability of a
algorithm for predicting future cycles given historical “high” followed by another “high” structure is Py, and
solar activity data. We try to address this problem via thethat of a “low” followed by a “low” structure is Py;, we
following objectives. can define a Hidden Markov Model asTiable 1. In this

1) To determine naturally arising structures in the datacase, an HMM provides a formal foundation for linear
For simplicity, we shall be seeking to identify andaep sequence labeling of data. Balancing accuracy ang reli
rate high from low solar activity cycles. This objective bility amounts to defining an appropriate way of labeling

constitutes the unsupervised stage of the algorithm. data using the probabilities and interpreting the results
2) To predict future cycles based on information in probabilistically. We could also define associations, the
previous cycles. This is the supervised stage. corresponding scores and the underlying confidence.

3) To search for an optimal solution based on repeated
simulations at the unsupervised and supervised stages. 2.1. Data Description, Resear ch Problem and
The paper is organised as follows. Section 1 provides  Objectives

the introduction followed by methods in Section 2. DatgWe adopt the sunspots data [113n average oscillating

nsgequence of the beginning and ending periods of solar

remarks and potential new directions in Section 4. cycles forming the densities Figure 1.

2. Methods Table 1. A statetransition matrix for abinary structure.
Choosing a parametric form of the density to explore HIGH LOW
features is generally poorly understood and any tentative HIGH Pon 1- P

choice may be too restrictive. Often under such aircu LOW 1-Py Py

stances non-parametric density estimation, e.g. Kernel
Density Estimation (KDE) technique [21] allows for
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Figure 1.Density representation of the cyclesin Figure 1.

The densities irFigure 1 exhibit different umber of those skewed to the right imply few increases aed fr
modes— a feature typically determined by the adoptedquent decreases in solar activity and vice versa. Our
level of smoothing. By controlling the level of smoothing strategy involves two main levels unsupervised and
via a kernel function of the form in Equation 1 or othe supervised. At the former level, we examine the initial
wise we are able to identify different structures in data.and subsequent patterns of the cycles in order to separate
Figure 2 presents a 2-D plot of the sunspots means andhe “lows” from the “highs”. The maximum likelihood
standard deviations. The numbers in the plot represengstimates (MLEs) of the random finite mixture densities
the indices for each of the last 23 cycles and the currerdire estimated and passed on to a predictive model at the
cycle (24". Using a rule of thumb, we can identify the supervised level as outlined below.

high, moderate and low solar activity cycles, sagl- Begin areiial

. ef,
IOWlng [10 and 1] we can treat each CyC|e as a Separate Cluster §;-4, .y into finite groups, say,S;) and §;;;: 1 are lows and h are highs
density and then use their distributional behaviorxe e Define 8y, = {j, and 2y}

plore the underlying structures of the cycles. s mg Ay = (V8] Iy g apradeftiod cunstant
Define 83, = {“Su.mn; and Esu‘h[m}: n = {nyny } are cases in each cluster

Set @ = {01,8,;,}

2.2. M Odel I | ng Str at%y Tnitialisez, = {0,1)? = (z,75) s0 thtzi“:{;if(sinu;%fhk) >.0)
. . . erwise

Conventional approaches to modeling sunspots include Obtain MLE of fe1, (5;/015, 81)

data assimilation [8] and rotational solar dynamo-based Formisl to M (Large positve integer)

P P a Dk o Ty d5. = TN k(S
predictive models for short-term predictions [2 and 14]. = S, = R andgy = SRS
The densities ifFigure 1 exhibit typically bivariate pa ma:ee:e[m[] ]

ate z;, = Z; (M
terns and so we shall assume that the cycles form-a pa cpdateifﬁffi'%m(sila): e (5:10)[m]
ametric pattern of “lows” and “highs” and define End For

ARRS N et mndl o et new e

Se the mode. pre New Cyciesd;

Hznkfk (S. [N ) < Hfs ek (S. |H3 ok 125 ek ) (2) =

i=1k=1 i=1 Output best model parameters .
where $denotes the sunspots numbers, K is the number Determinewhetlnrsi“meslors:>NeShbasedon,say,quz’:‘l(nSs"N)O(ﬁk
of components,f..(.) is a normal distribution,r, is End

the prior probability of class membership aBle k

are class allocations. Statistically, the high-peaked (more
than normal) and low-peaked (less than normal) cycles
imply high and low solar activities respectively while
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e “ F(S)=iai¢)(8,$)+ e (4)

in which o, represents the Lagrange multiplier summed
= over the values for whichy, >0.The upper index V

3 denotes the number of support vectors as described

" above. SVM solution relies on the Lagrangian foraaul

tion of the problem- an optimisation method requiring

o' VeN positive multipliers ¢, ) for each of the

inequalities on the RHS of Equation 3. The general fo

10 mulation of the Lagrangian is

L:%Z—iaiyi (Sw+a-1> C)+i(x, (5)

SVM solution is obtained by minimising Equation 5
with respect to w and and simultaneously requiring that
Figure2. Sunspot means and standard deviations. dao — 0V, or equivalently maximising L and require that

0,
dBoth w anda disappear. The latter implies that

w=>oayS§and)wy =0 transforming Equation 5
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The above algorithm adapts the EM converging fe
tures described in [5 and 9]. Its form suits any supervise
modelling technique. In this paper it is implemented in

Support Vector Machines (SVM). 1
into its dual equivalentLd:Zai—EZaiajm/js@.

2.3. Supervised Modeling of Labeled Data ,

_ The SVM model weights are calculated as the product of
We adopt Support Vector Machines (SVM) - ar-ke the support vector coefficients and their values and used
nel-based discriminant function the mechanics of whichin forming the allocation rule. Other than the support
rely on supervised Iearn_in_g of the underlying_disd:-rim vectors ( >0) the remaining data points hawg =0
nating rules from the training data [5]. To put it imeo _ these are those lying on the two hyper-planes
text, let the “high” and “low” cycles in our modified set {Hl, H2} N y|($ W+ &= E Q or beyond them if
{S.y:i=1..,N, y,e{-13 and ScR* be sep- vy (Sw+a-1>Q
rable by the hyper-plane H. Then the points lying on H

satisfy the equation wS+a=GC 3. Analyses and Discussions

wherew is normal to the hyper-plan \Zl” is the per-  We now present the two-level analyses described above
in order to establish whether sunspots follow identifiable

pendicular distance from H to the origin atfjd/| is the  patterns which can be used as inputs in a predictivé mo

Euclidean norm of w. The points on the hyper-planesg|.

above and belowH {H1,H2} will satisfy the equations

wS+a=+1 (both with normal w and distance to the 3.1, Unsupervised: Initial Patternsand

original |ﬂ_a{) which means that the gapH1, H2}

[wi

2
u We need to find hyper-planes maximising the

vl

gap (minimizind|w||2) subject toy, (Sw+a— 1> Q. The
numbers in{Hl,HZ} are the support vectors (suppor
ers) of the optimal location of the decision surface andt
the hardest to classify. Intuitively, the allocation rule is
{SW+ a>+1fory=+1

>
Sw+a- K fory=-1
The SVM kernel [4] is generally defined as

Copyright © 2@.3SciRes.

Y, (Sw+a-1= 0V, (3)

M aximisation

Figure 3 exhibits the low and high cycles separation
based on the cut-off points above alongside theireeorr
sponding overall bi-modal densities. It is based on the
maximum number of sun spots reached by the full cycles
and the number reached in the first 30 and 40 months.
The cut-off point in the LHS panel is set to the mean of
he averaged maximum early sun spots which, in this
case, is 109 - separating the low cycles 1, 5, 6, 7, 9, 10,
12, 13, 14 and 16 from the highs 2, 3, 4, 8, 11, 1518,
19, 20, 21, 22 and 23. The densities in the RHS panel
exhibit the emerging bi-modality as a function of time.
Figure 3 suggests that the pattern of each solar activity

JSEA
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Figure 3.0mega cut-off (LHS) and the corresponding bi-modal density (RHS).

cycle is defined by its early patterns. In particular, thecating low from high cycles. Notice how each of the
maximum values reached by each cycle appearde pr modes also exhibits sub-modes To avoid spurious modes
vide an insight into the overall activity of the cycle-b  (over-fitting) or masking effects (under-fitting) it iscre
fore it starts to subside. The foregoing structural dete ommended to use significance test for changes or, for
tion of patterns in the sunspots data amounts to unsupeclear patterns, graphical visualization.

vised modelling. Adopting these patterns as a guide to Typically, SVM model weights for each of the support
data labelling rule yields the two class priors as vectors are obtained as a cross product of the madel ¢

X Z~N z, R _ efficients and support vectors [15]. Weights from rault

7 ='T:1=0-46<—> 7, = 0.54with ), computed as ple SVM runs can be recorded and their graphict#l pa

above. As the average early patterns for cycle 24 faIIterns be used to guide model selection. Other SVM ou

below the cut-off point, it is reasonable to suggest that iPuts include the individual probabilities and decision
will be a low activity ,cycle Implementation of SVM values as irFigure 6. The difference between the lower

modelling follows below accuracy case in the top panel - highlighting the random
' nature of class allocationand the higher accuracy oho
3.2. Supervised Level: SVM Supervised el in the bottom panel) showing clear concentrations of
Modelling 7,andz, on either side of the class boundary. The pbse
vations corresponding to the vectors Rigure 4, the
Results from SVM modelling based on the initial class gecision values irFigure 5 and to the corresponding
patterns with prior probabilitieszandz, gave an ave  propabilities inFigure 6 can be identified by indexing.
aged accuracy of 58% on a cost range of 0.005 to 5 and a
tr_a-ining sample qf &?OO. Posterior class probabilities-co 4 Concluding Remarks and Potential Future
ditioned on maximised averages of the early low and . .
: Directions
high group means reached an average accuracy of 98%
on the same cost range and training sample size. Theredicting solar activity cycles remains one of the major

support vectors are shown Higure 4 with the horizo- challenges the scientific community faces with intricacy
tal and vertical axes corresponding to the support vectorbeing compared to predicting, say, the severity of next
and indices respectively. year’s winter. In this weather analogue, if all that is

Figure 5 shows the best discriminating SVM decision available is a long vector of temperature readings over
values at two different bandwidths. The bandwidths andmany years, the only sensible approach is to search for
hence decision values are chosen from multiple simul
tions as determined by the binary cut-off point dema

Copyright © 2@.3SciRes. JSEA
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