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ABSTRACT 

Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the 
main challenge lies in the choice of the appropriate model for exploring the data features. Quite often, the choice is 
generally poorly understood and any tentative choice may be too restrictive. Growing volumes of data, disparate data 
sources and modelling techniques entail the need for model optimization via adaptability rather than comparability. We 
propose a novel two-stage algorithm to modelling continuous data consisting of an unsupervised stage whereby the al-
gorithm searches through the data for optimal parameter values and a supervised stage that adapts the parameters for 
predictive modelling. The method is implemented on the sunspots data with inherently Gaussian distributional proper-
ties and assumed bi-modality. Optimal values separating high from lows cycles are obtained via multiple simulations. 
Early patterns for each recorded cycle reveal that the first 3 years provide a sufficient basis for predicting the peak. 
Multiple Support Vector Machine runs using repeatedly improved data parameters show that the approach yields greater 
accuracy and reliability than conventional approaches and provides a good basis for model selection. Model reliability 
is established via multiple simulations of this type. 
 
Keywords: Clustering; Data Mining; Density Estimation; EM Algorithm; Sunspots; Supervised Modelling; Support 

Vector Machines; Unsupervised Modelling 

1. Introduction 

Many real-life problems are tackled via knowledge ex-
traction from data – a process typically associated with 
detecting naturally arising structures in the data. A typi-
cal example is the sunspots dataset [11] – an average 
oscillating sequence of the beginning and ending periods 
of solar cycles with an approximate periodicity of 11 
years [7]. Recorded sunspots span across the first cycle 
(March 1755 to June 1766) to the first few months of the 
current (24th) cycle. Clustered in non-random positions 
above and below the equator, the spots are generated by 
interactions between the sun's surface plasma and its 
magnetic field [19 and 22]. Solar magnetic activity cy-
cles have attracted the attention of scientists for many 
years. Solar flares, for instance, affect our planet in dif-
ferent ways - including ejecting plasma and energetic 
particles and potentially causing geomagnetic storms and 
damaging satellites [16]. The paper is motivated by the 
documented effects of sunspots on terrestrial conditions.  
Correlations between space and terrestrial weather have 

been indicated in solar studies dating back many years 
[13, 18 and 20]. Climatic variations in Lapland via com-
plex variations in the atmosphere, lunar gravitation and 
solar activity have also been explained [11]. 
 

This paper will be subjecting sunspots data to a se-
quential analysis involving unsupervised and supervised 
modeling. The two concepts represent the typical data 
mining problems – data clustering and classification. The 
primary goal of the former is to partition a given dataset 
with a known or unknown distribution into subgroups in 
such a way that data points in each group are as homo-
geneous as possible while those in different groups are as 
heterogeneous as possible. The method is typically ap-
plied in problems in which there is no clear mathematical 
formulation for describing the underlying structures. 
Various approaches to data clustering have been studied 
and are well-documented in the literature [21, 17 and 6]. 

However, determining the number of naturally arising 
structures in data remains a daunting challenge among 
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the data science community. Many clustering tools in the 
literature are based on the conventional mechanics of 
minimization of the distances between data points – a 
feature which inherently constitutes the same challenge 
the methods are designed to address – that is, determin-
ing the optimal number of clusters. The primary goal of 
the latter is to allocate new cases in known classes and 
one of its main challenges is balancing model accuracy 
and reliability. 

Let a dataset of independently identically distributed 
random vectors  1 2 1, , , , d

n nx x x x R represent fea-
tures an underlying density function. The main features 
of interest may include modes (local maxima), an-
ti-modes (local minima) and bumps - regions where the 
second derivative is negative. In an exploratory setting, 
the number and locations of these features are not known 
a priori. Many real-life data take this form and with large 
volumes of data generated from different sources and 
inputted into different models, we are constantly faced 
with the challenge to determine optimal stationery points. 
The challenge is to address model complexity via adapt-
ability rather than comparability. In other words, we seek 
to minimise inherent randomness in training and test data 
via novel adaptive methods of data analysis [10 and 1]. 

This paper proposes a novel approach to detecting 
naturally arising structures in data that searches for gen-
eralising parameter levels and adapts them to supervised 
modeling. Its main research problem is to develop an 
algorithm for predicting future cycles given historical 
solar activity data. We try to address this problem via the 
following objectives. 

1) To determine naturally arising structures in the data. 
For simplicity, we shall be seeking to identify and sepa-
rate high from low solar activity cycles. This objective 
constitutes the unsupervised stage of the algorithm. 

2) To predict future cycles based on information in 
previous cycles. This is the supervised stage. 

3) To search for an optimal solution based on repeated 
simulations at the unsupervised and supervised stages. 

The paper is organised as follows. Section 1 provides 
the introduction followed by methods in Section 2. Data 
analyses and discussions are in Section 3 and concluding 
remarks and potential new directions in Section 4. 

2. Methods 

Choosing a parametric form of the density to explore 
features is generally poorly understood and any tentative 
choice may be too restrictive. Often under such circum-
stances non-parametric density estimation, e.g. Kernel 
Density Estimation (KDE) technique [21] allows for 

practical solutions to the classical problem of choosing 
the level of smoothing (bandwidth), can be efficiently 
used. For example, given the data points  1 2 1, , , , d

n nx x x x R , the KDE approach to clustering 
defines clusters as regions of high density separated by 
regions of no or low density. Its main idea is to first 
compute a kernel density estimate,  t̂f x , say, from the 
data, with a Gaussian kernel and isotropic bandwidth 

0t   controlling the amount of smoothing. In its sim-
plest form, KDE can be thought of as an alternative to 
the histogram as it typically provides a smoother repre-
sentation of the data, and unlike the histogram, its ap-
pearance does not depend on a choice of starting point. 
The scenario represents a problem amenable to the mul-
tivariate kernel function in Equation 1 where T is a 
symmetric positive d by d bandwidth matrix defined as 
the diagonal  1 2 1, , , ,n nT t t t t diag  with a direct 
effect on model complexity. 

   1

1

ˆ
n

T t i
i

f x n K x x


              (1) 

Without loss of generality, consider a phenomenon 
with a binary structure of, say, “highs” and “lows”. De-
pending on the context, a number of models can be ap-
plied. For instance, if we assume a Gaussian kernel, we 
can define a parametric pattern of “lows” and “highs” in 
the form of a normal mixture model and use the parame-
ter estimates  Θ μ,Σ  to track the dynamics of the 
cycles. Further, if we assume that the probability of a 
“high” followed by another “high” structure is Phh and 
that of a “low” followed by a “low” structure is P11, we 
can define a Hidden Markov Model as in Table 1. In this 
case, an HMM provides a formal foundation for linear 
sequence labeling of data. Balancing accuracy and relia-
bility amounts to defining an appropriate way of labeling 
data using the probabilities and interpreting the results 
probabilistically. We could also define associations, the 
corresponding scores and the underlying confidence. 

2.1. Data Description, Research Problem and 
Objectives 

We adopt the sunspots data [11] – an average oscillating 
sequence of the beginning and ending periods of solar 
cycles forming the densities in Figure 1. 
 

Table 1. A state transition matrix for a binary structure. 

 HIGH LOW 

HIGH Phh 1 - Phh 

LOW 1 - P11 P11     
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Figure 1.Density representation of the cycles in Figure 1. 
 

The densities in Figure 1 exhibit different umber of 
modes – a feature typically determined by the adopted 
level of smoothing. By controlling the level of smoothing 
via a kernel function of the form in Equation 1 or other-
wise we are able to identify different structures in data. 
Figure 2 presents a 2-D plot of the sunspots means and 
standard deviations. The numbers in the plot represent 
the indices for each of the last 23 cycles and the current 
cycle (24th). Using a rule of thumb, we can identify the 
high, moderate and low solar activity cycles, say. Fol-
lowing [10 and 1] we can treat each cycle as a separate 
density and then use their distributional behavior to ex-
plore the underlying structures of the cycles. 

2.2. Modelling Strategy 

Conventional approaches to modeling sunspots include 
data assimilation [8] and rotational solar dynamo-based 
predictive models for short-term predictions [2 and 14]. 
The densities in Figure 1 exhibit typically bivariate pat-
terns and so we shall assume that the cycles form a par-
ametric pattern of “lows” and “highs” and define 

   
1 1 1

| , | ,    
  i i i

N K N

k k i k k S k i S k S k
i k i

π f S μ Σ f S μ Σ (2) 

where Si denotes the sunspots numbers, K is the number 
of components,  **f .  is a normal distribution, kπ  is 
the prior probability of class membership and iS k  
are class allocations. Statistically, the high-peaked (more 
than normal) and low-peaked (less than normal) cycles 
imply high and low solar activities respectively while 

those skewed to the right imply few increases and fre-
quent decreases in solar activity and vice versa. Our 
strategy involves two main levels – unsupervised and 
supervised. At the former level, we examine the initial 
and subsequent patterns of the cycles in order to separate 
the “lows” from the “highs”. The maximum likelihood 
estimates (MLEs) of the random finite mixture densities 
are estimated and passed on to a predictive model at the 
supervised level as outlined below. 

 



Using Optimized Distributional Parameters as Inputs in a Sequential Unsupervised  
and Supervised Modeling of Sunspots Data 

Copyright © 2013SciRes.                                                                                 JSEA 

37 

 

Figure 2. Sunspot means and standard deviations. 
 

The above algorithm adapts the EM converging fea-
tures described in [5 and 9]. Its form suits any supervised 
modelling technique. In this paper it is implemented in 
Support Vector Machines (SVM). 

2.3. Supervised Modeling of Labeled Data 

We adopt Support Vector Machines (SVM) - a ker-
nel-based discriminant function the mechanics of which 
rely on supervised learning of the underlying discrimi-
nating rules from the training data [5]. To put it in con-
text, let the “high” and “low” cycles in our modified set i iS ,y : i 1, ,N  ,  iy 1,1   and 2

iS R  be sepa-
rable by the hyper-plane H. Then the points lying on H 
s a t i s f y  t h e  e q u a t i o n  wS a 0   

wherew is normal to the hyper-plane, 
a

w
 is the per-  

pendicular distance from H to the origin and w  is the 
Euclidean norm of w. The points on the hyper-planes 
above and below  H1,H2H  will satisfy the equations 
wS a 1    (both with normal w and distance to the  

original 
1 a

w

 
) which means that the gap  H1,H2

2

w
 . We need to find hyper-planes maximising the  

gap (minimizing
2

w ) subject to  i iy S w a 1 0   . The 
numbers in  H1,H2  are the support vectors (support-
ers) of the optimal location of the decision surface and 
the hardest to classify. Intuitively, the allocation rule is 

 i i
i i i

i i

S w a 1for y 1
y S w a 1 0

S w a 1 for y 1

                (3) 

The SVM kernel [4] is generally defined as  

   V

i i
i 1

F S α Φ S,S a


               (4) 

in which iα  represents the Lagrange multiplier summed 
over the values for which iα 0. The upper index V 
denotes the number of support vectors as described 
above. SVM solution relies on the Lagrangian formula-
tion of the problem – an optimisation method requiring 
V N  positive multipliers ( i 1,2, ,Vα   ) for each of the 
inequalities on the RHS of Equation 3. The general for-
mulation of the Lagrangian is  

 2 V V

i i i i
i 1 i 1

w
L α y S w a 1 0 α

2  
          (5) 

SVM solution is obtained by minimising Equation 5 
with respect to w and a and simultaneously requiring that  

i
i

dL
0

dα
  or equivalently maximising L and require that  

Both w and a disappear. The latter implies that 

i i i
i

w α y S and i i
i

α y 0  transforming Equation 5 

into its dual equivalent d i i j i j i j
i i

1
L α α α y y S .S .

2
    

The SVM model weights are calculated as the product of 
the support vector coefficients and their values and used 
in forming the allocation rule. Other than the support 
vectors ( iα 0 ) the remaining data points have iα 0  
– these are those lying on the two hyper-planes    i iH1,H2 y S w a 1 0    or beyond them if  i iy S w a 1 0 .    

3. Analyses and Discussions 

We now present the two-level analyses described above 
in order to establish whether sunspots follow identifiable 
patterns which can be used as inputs in a predictive mod-
el. 

3.1. Unsupervised: Initial Patterns and 
Maximisation 

Figure 3 exhibits the low and high cycles separation 
based on the cut-off points above alongside their corre-
sponding overall bi-modal densities. It is based on the 
maximum number of sun spots reached by the full cycles 
and the number reached in the first 30 and 40 months. 
The cut-off point in the LHS panel is set to the mean of 
the averaged maximum early sun spots which, in this 
case, is 109 - separating the low cycles 1, 5, 6, 7, 9, 10, 
12, 13, 14 and 16 from the highs 2, 3, 4, 8, 11, 15, 17, 18, 
19, 20, 21, 22 and 23. The densities in the RHS panel 
exhibit the emerging bi-modality as a function of time. 

Figure 3 suggests that the pattern of each solar activity     
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Figure 3.Omega cut-off (LHS) and the corresponding bi-modal density (RHS). 
 
cycle is defined by its early patterns. In particular, the 
maximum values reached by each cycle appear to pro-
vide an insight into the overall activity of the cycle be-
fore it starts to subside. The foregoing structural detec-
tion of patterns in the sunspots data amounts to unsuper-
vised modelling. Adopting these patterns as a guide to 
data labelling rule yields the two class priors as 

N

ili 1
z

ˆ ˆ0.46 0.54
Nl h    

with .l h  computed as  

above. As the average early patterns for cycle 24 fall 
below the cut-off point, it is reasonable to suggest that it 
will be a low activity cycle. Implementation of SVM 
modelling follows below. 

3.2. Supervised Level: SVM Supervised 
Modelling 

Results from SVM modelling based on the initial class 
patterns with prior probabilities l hˆ ˆand   gave an aver-
aged accuracy of 58% on a cost range of 0.005 to 5 and a 
training sample of 500. Posterior class probabilities con-
ditioned on maximised averages of the early low and 
high group means reached an average accuracy of 98% 
on the same cost range and training sample size. The 
support vectors are shown in Figure 4 with the horizon-
tal and vertical axes corresponding to the support vectors 
and indices respectively. 

Figure 5 shows the best discriminating SVM decision 
values at two different bandwidths. The bandwidths and 
hence decision values are chosen from multiple simula-
tions as determined by the binary cut-off point demar-

cating low from high cycles. Notice how each of the 
modes also exhibits sub-modes To avoid spurious modes 
(over-fitting) or masking effects (under-fitting) it is rec-
ommended to use significance test for changes or, for 
clear patterns, graphical visualization. 

Typically, SVM model weights for each of the support 
vectors are obtained as a cross product of the model co-
efficients and support vectors [15]. Weights from multi-
ple SVM runs can be recorded and their graphical pat-
terns be used to guide model selection. Other SVM out-
puts include the individual probabilities and decision 
values as in Figure 6. The difference between the lower 
accuracy case in the top panel - highlighting the random 
nature of class allocation – and the higher accuracy mod-
el in the bottom panel) showing clear concentrations of 

l hˆ ˆand  on either side of the class boundary. The obser-
vations corresponding to the vectors in Figure 4, the 
decision values in Figure 5 and to the corresponding 
probabilities in Figure 6 can be identified by indexing. 

4. Concluding Remarks and Potential Future 
Directions 

Predicting solar activity cycles remains one of the major 
challenges the scientific community faces with intricacy 
being compared to predicting, say, the severity of next 
year’s winter. In this weather analogue, if all that is 
available is a long vector of temperature readings over 
many years, the only sensible approach is to search for     
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Figure 4. Support vectors for the initial patterns (LHS) and maximised parameters (RHS). 
 

 

Figure 5. SVM decision values at two different bandwidths showing well-separated structures. 
 

 

 

Figure6. Sun cycles class probabilities.  
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naturally arising structures in the data with the hope that 
if uncovered they may provide potentially useful infor-
mation. This paper adopted the foregoing philosophy and 
sought to develop a predictive framework for modelling 
sunspots data using inherent distributional properties in 
the data. The paper relied on a continuous flow of data 
for prediction, but rather than assessing model accuracy 
on the NOAA benchmark, an SVM model was trained 
and tested on a notionally infinite dataset of cycles. 

By examining multiple sets of observations from the 
onset of each cycle via graphical visualisation early pat-
terns of sun cycles and their binary nature were deter-
mined. Comparing multiple early patterns for each rec-
orded cycle extracted at different time periods to the cor-
responding full cycles revealed that the first 3 years pro-
vide a sufficient basis for predicting the cycle’s peak. 
The patterns were then adapted as inputs into an inte-
grated unsupervised and supervised modelling algorithm. 
The novel method’s mechanics are geared towards sim-
ultaneously tracing anomalies via an adaptive approach. 
Repeated SVM runs using repeatedly improved parame-
ters showed that the approach yields greater accuracy and 
reliability than conventional approaches. Multiple simu-
lations of this type can be generated based on the algo-
rithm above to assist in selecting the most consistent 
model. The paper’s main substance can be described as 
an enhancement of algorithmic methods for learning un-
derlying rules from data. 

Finally, it is worth noting that while the study was 
confined to the conventional periodicity of 11.11 years 
[22] with a binary pattern of cycles, the definition im-
plies that the periodicities can differ according to defini-
tions. Further, while we assumed a binary scenario of the 
cycles in Figure 1, different bandwidths are likely to 
yield different patterns. To address this limitation, the 
paper’s findings highlight potential investigations paths 
into such variations. Further, the current study, based on 
a single application and a single method, could not con-
firm the algorithm’s robustness. Although we adopted 
SVM for implementation, the approach is amenable to 
any domain-partitioning method. Thus, for model en-
hancement purposes, it will be useful to provide a com-
parative study using other learning algorithms such as 
neural networks and decision trees. 
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