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Abstract  26 

This study investigated a new performance indicator to assess climbing fluency: smoothness 27 

and orientation of the hip trajectory of a climber using normalized jerk coefficients. To 28 

analyse performance fluency, 6 experienced climbers completed 4 repetitions of two 10-m 29 

high routes with similar difficulty levels, but varying in hold graspability (hold with one edge 30 

vs. hold with two edges). An inertial measurement unit was attached to the hip of each 31 

climber to collect 3D acceleration and 3D orientation data in order to compute jerk 32 

coefficients. Results showed high correlations (r = 0.83, p<0.05) between the normalized jerk 33 

coefficient of hip translation and hip oscillation. Results showed higher normalized jerk 34 

coefficients for the route with two graspable edges, perhaps due to more complex decision 35 

making and action regulation. This effect decreased with practice. 36 

 37 

Key words: Movement jerk, climbing, hip translation, hip orientation, inertial measurement 38 

unit, fluency. 39 

  40 
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 41 

1. Introduction  42 

Previous research has revealed that the jerk coefficient (third time derivative of position or the 43 

rate of change of acceleration) is a valid indicator of multi-joint limb movement smoothness 44 

(Flash and Hogan, 1985; Hogan, 1984). An assumption in this previous work is  that 45 

maximizing arm movement smoothness may be modelled by minimizing the mean-square 46 

jerk, reducing energy cost. The validity of this minimizing jerk hypothesis has been 47 

investigated in various tasks involving upper-limb movements  such as pointing (Goldvasser 48 

et al., 2001; Klein Breteler et al., 2002), throwing (Yan et al., 2000), reaching (Wininger et 49 

al., 2009) and drawing (Richardson and Flash, 2002), as well as d in lower-limb tasks such as 50 

walking (Young and Marteniuk, 1997) and kicking (Young and Marteniuk, 1997). 51 

Contrasting results have emerged, suggesting, for instance, that high curvature analysis was 52 

more convenient than jerk computation to distinguish healthy and cerebellopathy patients 53 

performing pointing tasks (Goldvasser et al., 2001). It was also observed that quantifying 54 

spontaneous accelerative transients within a movement when performing reaching tasks 55 

provided more reliable information on regional movement impairments than recording the 56 

jerk coefficient (Wininger et al., 2009).  57 

The sport of rock climbing involves both upper and lower-limbs for reaching and grasping 58 

holds, and climbing up a rock surface with the feet. It is particularly valuable to assess the 59 

validity of the minimizing jerk hypothesis as a potential indicator of fluency in climbing 60 

performance. A previous study exploring self-handicap factors on successful climbing 61 

performance highlighted that competitive climbers exhibited performance anxiety through 62 

rigid posture and jerky movements which could limit performance by reducing movement 63 

fluency (Ferrand et al., 2006). Rock climbing involves interspersed periods of  maintaining 64 

body equilibrium on a more or less vertical climbing surface (Bourdin et al., 1999, 1998; 65 
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Testa et al., 2003, 1999), with combining upper and lower limb movements to ascend these 66 

surfaces rapidly (Boschker et al., 2002; Nougier et al., 1993; Sibella et al., 2007). During 67 

performance, the alternation of periods dedicated to postural regulation and to quadruped 68 

displacement on a vertical surface, might lead to a drop in measures of climbing fluency that 69 

is fundamental to quantify. Previous studies have assessed the fluency of climbing 70 

movements by: (i) implementing a harmonic analysis of the acceleration of the hips (Cordier 71 

et al., 1996), by quantifying the duration of a static position as any point throughout the climb 72 

where the hips were not in motion (Billat et al., 1995; Sanchez et al., 2012; Seifert et al., 73 

2013b); and (ii), by measuring the geometric entropy index value from the displacement of 74 

the hips (Boschker and Bakker, 2002; Cordier et al., 1994, 1993; Sanchez et al., 2010; Sibella 75 

et al., 2007). Harmonic analysis is a tool for observing the structure of the dynamics of a 76 

movement. Using Fourier transformation, Cordier and colleagues (Cordier et al., 77 

1996)conducted a harmonic analysis revealing that the expert climbing performance  could be 78 

characterized by a pendulum oscillating as a mass-spring system that works like a dissipative 79 

system, i.e., a system where dissipation of energy is minimized by harmonic movements. 80 

Although very promising, the study of Cordier et al. (1996) only considered the displacement 81 

of the hips in 2D (i.e., movement projection in the vertical plane), whereas recent studies have 82 

highlighted the prevalence of antero-posterior and lateral sway during climbing performance 83 

(Sibella et al., 2007; Zampagni et al., 2011), supporting the importance of 3D movement 84 

analysis. Similar limitations emerge from the use of the geometric entropy index, (Boschker 85 

and Bakker, 2002; Cordier et al., 1994, 1993; Sanchez et al., 2010; Sibella et al., 2007). The 86 

geometric index of entropy (H) was calculated by recording the distance covered by the body 87 

(L) and the convex hull (c) according to the following equation: H = logn2L/c(Cordier et al., 88 

1994, 1993). According to Cordier et al. (Cordier et al., 1994, 1993),  geometric entropy 89 

measures reveal the amount of fluency/curvature of a curve: the higher the entropy, the higher 90 
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the disorder of the system; therefore, a low entropy value was associated with a low energy 91 

expenditure and  greater climbing fluency. Regardless, geometric entropy index remains a 92 

spatial analysis of the body motion that does not consider the displacement of the hips over 93 

time. This is an omission since both hip translations and oscillations in 3D should be 94 

considered to assess climbing fluency. The aim of this study was to explore whether the 95 

computation of jerk coefficient values could provide an indicator of climbing fluency, 96 

achieved by computing the jerk of hip trajectory and hip orientation and examining their 97 

correlation. We also sought to investigate whether jerk is minimized with practice and 98 

modifications to climbing wall design (simple vs. complex hold grasping patterns).  99 

2. Methods 100 

2.1. Participants 101 

Eight students of a Faculty of Sport Sciences voluntary participated to this study (mean age: 102 

21.4 ± 2.4 yr; mean height: 170.1 ± 9.5 cm; mean weight: 69.9 ± 5.5 kg). These climbers had 103 

climbing experience of  4.1 ± 2.1 yr, trained for 3.4 ± 1.9 hours per week and had a rock 104 

climbing ability of 6a on the French Rating Scale of Difficulty (F-RSD) (Delignières et al., 105 

1993), which corresponds to an intermediate level of performance (Draper et al., 2011). 106 

Climbing ability was defined as the most difficult ascent by top rope (Delignières et al., 107 

1993).  108 

2.2. Protocol 109 

Each climber participated in four testing sessions (separated by two days of rest), each 110 

consisting of two different route ascents. Participants were randomly allocated to climb two 111 

routes of a similar grade rated 5c on the F-RSD. Each route was identifiable by colour and 112 

was set on an artificial indoor climbing wall by two certified route setters who ensured that 113 

they matched intermediate climbing levels). The routes had the same height (10 m) and were 114 

composed of 20 hand holds each,  located at the same place on the artificial wall. Only the 115 
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orientation of the hold was changed between the two routes: the first route was designed to 116 

allow horizontal edge hold grasping, while the second route was designed to allow both 117 

horizontal and vertical edges hold grasping (Fig. 1). This design allowed us to examine 118 

whether the level of grasping uncertainty could constrainclimbing fluency. Participants were 119 

instructed to self-pace their ascent, to climb fluently and to climb without falling. Each route 120 

was top-roped, i.e., routes were climbed with the rope anchored above the climber at all times. 121 

Each ascent wa preceded by 3 minutes of route preview, as pre-ascent visual inspection is  a 122 

key climbing performance parameter (Sanchez et al., 2012). The protocol was approved by 123 

the local University ethics committee and followed the declaration of Helsinki. Procedures 124 

were explained to the climbers, who then gave their written informed consent to participate. 125 

 126 

Figure 1. Orientation and shape of the holds for the two routes. The arrow indicates the 127 

preferential edge grasping allowed by the hold. 128 

 129 

2.3. Data collection 130 

In line with previous studies, climbing fluency was assessed through recording hip 131 

displacements (Cordier et al., 1994, 1993; Sanchez et al., 2010; Sibella et al., 2007). The 132 

original feature of our study was to collect body acceleration data from an IMU located at the 133 

hip, in order to compute jerk. Previous studies have used piezoelectric accelerometers for this 134 
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purpose (Minami et al., 2011, 2010). In our study, an IMU corresponded to a combination of 135 

a tri-axial accelerometer (±8G), tri-axial gyroscope (1600°.s
-1

) and a tri-axial magnetometer 136 

(MotionPod, Movea©, Grenoble, France). Data collected from the IMU (with 137 

MotionDevTool, Movea©, Grenoble, France) were recorded with North magnetic reference 138 

and at a 100 Hz sample frequency.  139 

2.4. Data collection and analysis methods 140 

The first step towards computation of jerk coefficients was to compute hip orientation in 141 

Earth reference frame and follow its orientation changes. Raw accelerometer readings cannot 142 

be used directly to compute the jerk coefficient due to orientation changes during ascent. The 143 

solution to this problem was found by tracking sensor orientation by using the complementary 144 

filter based algorithm (Madgwick, 2010; Madgwick et al., 2011), which integrated the three 145 

sensor information sources (i.e., accelerometer, gyroscope and magnetometer). The gyroscope 146 

measured precise angular changes at very short time durations but could not be used to track 147 

the angle changes by integration due to the problem of drift. The accelerometer provided 148 

absolute, albeit noisy, measurements of hip acceleration and the Earth's gravitational force at 149 

the same time. By combining the two sensor information sources it was possible to reduce 150 

drift of the gyroscope for hip orientation tracking. When magnetometer information was 151 

added, it was possible to compute orientation of the sensor with respect to the fixed frame of 152 

Earth reference (magnetic north, East and gravity directions) (Madgwick, 2010; Madgwick et 153 

al., 2011).  154 

Second, the accelerometer readings were always expressed with respect to the sensor frame 155 

and it was necessary to separate hip acceleration, of interest for jerk computation, and 156 

constant acceleration of gravity. Let 𝑅𝑡 ∈ 𝑆𝑂(3) be the current sensor orientation at time 𝑡 in 157 

the Earth frame of reference, 𝑎𝑡
𝑆𝐹 the measured acceleration of hip in the sensor frame, then 158 
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the acceleration of hip at time 𝑡  in the fixed Earth reference frame can be expressed as 159 

𝑎𝑡
𝐺𝐹 = 𝑅𝑡𝑎𝑡

𝑆𝐹. 160 

The third step consisted of assessing smoothness of the hip trajectory by computing the jerk 161 

coefficient from processed 3D accelerometer signals 𝑎𝑡
𝐺𝐹. Jerk is a measure of the lack of 162 

smoothness of a joint or limb segment during performance. For a smooth trajectory 𝑥𝐺𝐹 ∈ 𝒞3, 163 

the jerk 𝐽𝑥𝐺𝐹(𝑡) was defined as: 𝐽𝑥𝐺𝐹(𝑇) = 𝐶 ∫ ‖𝑥𝑠
𝐺𝐹⃛ ‖

2𝑇

0
𝑑𝑠 164 

where 𝐶  was a normalization constant to make the quantity dimensionless (Hogan and 165 

Sternad, 2009). In practice instead of computing 𝑥𝑡
𝐺𝐹  (position on the wall) from 𝑎𝑡

𝐺𝐹  with 166 

successive integration, the term 𝑥𝑠
𝐺𝐹⃛  was replaced by 𝑎𝑡

𝐺𝐹̇ . By derivation of 𝑎𝑡
𝐺𝐹, the constant 167 

gravity acceleration was removed, leaving only the hip acceleration component. 168 

It is noteworthy that the jerk was minimized when 𝑥𝑡
𝐺𝐹  is a fifth degree polynomial, 169 

corresponding to the smoothest possible hip trajectory. The integral was computed between 170 

time 0 and time 𝑇 which corresponded to a given final position 𝑥𝑇
𝐺𝐹. The constant 𝐶 can be 171 

chosen such that 𝐶 =
𝑇5

(Δ𝑥𝐺𝐹)2
 , where Δ𝑥𝐺𝐹 was the climbing height  and 𝑇 the time needed to 172 

reach it. It should also be noted that the current position 𝑥𝑡
𝐺𝐹 was not available from IMU 173 

sensor data and, therefore, jerk could be computed for an arbitrary position interval. The only 174 

height information was the total height of the ascent; therefore, the jerk coefficient could be 175 

computed for the whole ascent but not for a local displacement path. Thus, the normalized 176 

jerk coefficient was computed by differentiating the processed accelerometer signal and 177 

integrating its squared norm. 178 

A second indicator of climbing fluency consisted of computing jerk coefficient measuring hip 179 

orientation smoothness. Indeed, as stated previously, hip displacements of  climbers not only 180 

correspond to 3D translations, but also to 3D orientation oscillations (Cordier et al., 1996; 181 

Sibella et al., 2007; Zampagni et al., 2011). These results highlighted the interest of studying 182 
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jerk now defined from hip orientation 𝑅𝑡 ∈ 𝑆𝑂(3). In this case the previous equation could 183 

not be used directly and some technical adjustments were required. Due to the structure of 184 

𝑆𝑂(3) , orientation acceleration could not be obtained by directly considering successive 185 

derivation of 𝑅𝑡  as a 3x3 matrix. The solution to this problem in our study consisted of 186 

constructing a process 𝑧𝑡 ∈ ℝ
3 such that its velocity was the angular velocity of 𝑅𝑡 , which 187 

can be differentiated easily (note that 𝑧𝑡  and  𝑅𝑡 are of the same dimensionality). We define 188 

𝑧𝑡 as 𝑧�̇� = 𝑅�̇�𝑅𝑡
−1 189 

where 𝑅𝑡
−1 = 𝑅𝑡

𝑇 which is due to orthogonality of the elements of 𝑆𝑂(3). If 𝑅𝑡 has an angular 190 

velocity 𝜔𝑡, then 𝑧�̇� = 𝜔𝑡. Therefore, working on 𝑧𝑡 allowed us to eliminate all the non-linear 191 

issues inherent to 𝑆𝑂(3) and work in   instead, where derivative was carried out simpler 192 

than in 𝑆𝑂(3). In practice, due to the discretization of observations of 𝑅𝑡 with a sampling 193 

time 𝛿𝑡 , the process 𝑧𝑡  was approximated by 𝑧�̃� ≈ 𝑧𝑘𝛿𝑡 , with �̃�  recursively computed as 194 

𝑧𝑘+1̃ − 𝑧�̃� = 𝑙𝑜𝑔(𝑅(𝑘+1)𝛿𝑡𝑅𝑘𝛿𝑡
−1 )  where 𝑙𝑜𝑔  was the inverse application of the matrix 195 

exponential. In our study, jerk of orientation was defined as 𝐽𝑧(𝑇). 196 

The last indicator computed in our study related to elucidating climbing skill of participants  197 

(e.g., the capability of traversing an ascent quickly) through differentiating the relationship 198 

between touched holds (exploratory movements) and grasped holds (performatory 199 

movements) (Pijpers et al., 2006). Indeed, Pijpers and colleagues (2006) distinguished 200 

exploratory and performatory movements according to whether a potential hold on a climbing 201 

wall was touched, with or without it being used as support. According to this ratio, Sibella et 202 

al. (2007) reported that skilled climbers can move quickly by using fewer than three holds, 203 

signifying that they had touched fewer than three surface holds before grasping the functional 204 

one. 205 

2.5. Statistical analysis 206 

After the computation of the jerk from 𝑧𝑡 for each session, differences of jerk coefficients 207 



 10 

between sessions and route designs were compared by two-way repeated measures ANOVA 208 

(practice across four sessions (4) and climbing wall design across two different routes (2) ) 209 

using SPSS Statistics 20.0. Sphericity was verified by the Mauchly test (Winter et al., 2001). 210 

When the assumption of sphericity was not met, the significance of F-ratios was adjusted 211 

according to the Greenhouse-Geisser procedure. Then, Helmert contrast tests enabled us to 212 

compare each session with the performance mean of the other sessions, in order to determine 213 

whether jerk reduced with practice and whether route design influenced jerk values. Here it 214 

was predicted that routes providing double edges (vertical and horizontal) grasping patterns 215 

would be associated with more jerk compared to the route where only horizontal grasping was 216 

afforded. Partial eta squared (ηP
2
) statistics were calculated as an indicator of effect size, 217 

considering that ηP
2
 = 0.01 represents a small effect, ηP

2
 = 0.06 represents a medium effect 218 

and ηP
2
 = 0.15 represents a large effect (Cohen, 1988). Pearson correlation tests were also 219 

performed to examine the relationships between jerk of hip trajectory 𝐽𝑥(𝑇) and jerk of hip 220 

orientation 𝐽𝑧(𝑇). For all tests, the level of significance was fixed at p < 0.05.  221 

 222 

3. Results 223 

Significantly higher values of normalized jerk for hip trajectory emerged in the double edges 224 

holds route in comparison to the horizontal edge holds route (4.48E+11 ± 1.77E+11 vs. 225 

9.65E+10 ± 4.44E+10; F1,7 = 6.14, p = 0.03, ηP
2
 = 0.463). Similar results were observed for 226 

normalized jerk of hip orientation; this latter measure was higher for the double edges holds 227 

route in comparison to horizontal edge holds route (776846 ± 434836 vs. 155590 ± 96743; 228 

F1,7 = 6.22, p = 0.028, ηP
2
 = 0.442). 229 

To examine session effect, Mauchly’s test indicated significant sphericity (χ2 (5) = 38.55, p = 230 

0.01), so the Greenhouse-Geisser correction was applied and showed significant differences 231 

of normalized jerk of hip trajectory between sessions (session 1: ± 2.93E+11, session 2: 232 
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2.13E+11 ± 9.11E+10, session 3: 8.92E+10 ± 2.18E+10, session 4: 7.93E+10 ± 1.83E+10; 233 

F1.05,7.348 = 5.18, p = 0.034, ηP
2
 = 0.428). According to the outcomes of the Helmert contrast 234 

tests, significant differences occurred between the first session and the others (F1,7 = 5.14, p = 235 

0.038, ηP
2
 = 0.424), and between the second session and the last two sessions (F1,7 = 5.08, p = 236 

0.041, ηP
2
 = 0.413). Mauchly’s test indicated significant sphericity (χ2 (5) = 64.94, p = 0.01) 237 

when differences of normalized jerk of hip orientation were analysed between sessions. Thus, 238 

the Greenhouse-Geisser correction was applied, revealing significant differences between 239 

sessions (session 1: 1314799 ± 575210, session 2: 414744 ± 244049, session 3: 72651 ± 240 

19323, session 4: 62678 ± 18922; F1.013,7.092 = 5.34, p = 0.027, ηP
2
 = 0.436). According to the 241 

Helmert contrast tests, significant differences emerged between the first session and the others 242 

(F1,7 = 5.27, p = 0.032, ηP
2
 = 0.428), and between the second session and the last two sessions 243 

(F1,7 = 5.18, p = 0.034, ηP
2
 = 0.417). Figure 2 illustrates the differences of normalized jerk of 244 

hip trajectory between sessions for the two routes and Figure 3 illustrates the differences of 245 

normalized jerk of hip orientation between sessions for the two routes. 246 
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 247 

Figure 2. Differences of normalized jerk of hip trajectory between sessions for double edges 248 

holds route (black line) and horizontal edge holds route (dotted line). 249 
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 250 

Figure 3. Differences of normalized jerk of hip orientation between sessions for double edges 251 

holds route (black line) and horizontal edge holds route (dotted line). 252 

 253 

A significant positive correlation appears between the normalized jerk of hips trajectory 254 

smoothness and normalized jerk of hips orientation (r = 0.83, p < 0.05) (Figure 4). This 255 

finding signifies that the jerk of the trajectory can be measured via the jerk of its orientation 256 

or equivalently: both measures provide a similar measure  of smoothness, the only difference 257 

being the scale of the two coefficients.  258 
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 259 

Figure 4. Correlation between jerk of hip trajectory (x-axis) and jerk of hip orientation (y-260 

axis). 261 

 262 

Last, our results showed improvement in climbing skills as climbers decreased the number of 263 

exploratory movements with practice in the simple and complex route designs (Table 1). 264 

 265 

Table 1. Sum of number of exploratory movements for the six climbers on the simple and 266 

complex routes 267 

 Session 1 Session 2 Session 3 Session 4 

Simple route design 4 3 1 1 

Complex route design 9 5 5 3 

 268 

 269 

4. Discussion 270 

High correlation values were observed between the normalized jerk values of hip trajectory 271 

and hip orientation revealing that both 3D translations and 3D oscillations of the hips can be 272 
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used to assess climbing fluency. Our results showed that the normalized jerk values of 273 

hiptrajectory and orientation decreased with practice and were lower for the simple route 274 

design (i.e., horizontal edge holds grasping), confirming the usefulness of measuring jerk as 275 

an indicator of climbing fluency.  276 

4.1. Relationships between climbing fluency and climbing wall design 277 

Climbing the route with horizontal edge holds resembled the action of grasping the rungs of a 278 

ladder, explaining how lower normalized jerk values of both hip trajectory and orientation 279 

emerged in the simple route than rather the complex route. Horizontal edge hold grasping led 280 

to a 'face-to-the-wall' body orientation, whereas vertical edge hold grasping induced a 'side-281 

to-the-wall' body orientation (Seifert et al., 2013a). Therefore, the complex route design with 282 

holds offering dual edge orientations invited the climbers to explore two types of grasping 283 

patterns and body orientations (Seifert et al., 2013a) and involved higher jerk in both 3D 284 

translations and 3D oscillations of the hips. Indeed, moving between a right-orientated 285 

vertical edge hold to a left-orientated vertical edge hold would lead the body to oscillate like a 286 

door, a performance feature particularly well captured by recording the jerk of hip orientation. 287 

Previous studies have already shown how route design influences the kinematics of climbers, 288 

notably the value of movement time during hold grasping (Nougier et al., 1993) and the 289 

entropy measure of hip displacement(Sanchez et al., 2010). More precisely, complexity of 290 

manual grips (2 cm vs. 1 cm depth) and posture difficulty (low vs. high inclination of the foot 291 

holds) led to shorter movement time of grasping; in particular, longer times to reach the 292 

maximum acceleration and shorter times to reach the maximum deceleration were observed 293 

(Nougier et al., 1993). Moreover, complex hold grip and difficult posture emerged 294 

occasionally during the route that corresponded to a ‘crux’ (i.e., most difficult section of the 295 

route) or all over the route (Phillips et al., 2012). It was found that the crux led to a higher 296 

entropy value for hip displacement and higher movement time for skilled climbers than for 297 
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less skilled climbers (Sanchez et al., 2010), supporting the utility of computing jerk as 298 

precisely as possible by taking into account both the hip trajectory and orientation. 299 

4.2. Relationships between climbing fluency and practice 300 

Our results showed a critical drop of jerk between the first and remaining three sessions, with 301 

stabilization emerging between the last two sessions. These results clarify contradictory data 302 

from previous studies that analysed the effect of practice on jerk minimization (Schneider and 303 

Zernicke, 1989; Young and Marteniuk, 1997). When arm movements were trained at different 304 

speeds, Schneider and Zernicke (Schneider and Zernicke, 1989) showed that jerk decreased 305 

for the slowest hand movement with practice. Conversely, when learning to kick, participants 306 

(Young and Marteniuk, 1997) revealed different jerk values for movements with similar 307 

trajectories, which did not support the jerk minimizing hypothesis with practice. In our study, 308 

high standard deviation values of jerk for hip trajectory and orientation (i.e., inter-individual 309 

variability) emerged in the first practice session, which could have been due to absence of 310 

prior knowledge of route finding that may have led to a search process in participants 311 

(Cordier et al., 1993).  Indeed, it is commonly accepted that performance could vary 312 

according to prior knowledge of routes (Phillips et al., 2012; Sanchez et al., 2012), which 313 

could explain the increase in climbing fluency observed between the first and second session 314 

in our study. In fact, three different conditions of practice may influence climbing fluency: 315 

on-sight climbing involves successful climbing with no prior knowledge of the climb; flash 316 

climbing means successful climbing at the first attempt after receiving prior knowledge of the 317 

climb; red-point climbing signifies successful climbing without falling after previous 318 

unsuccessful attempts (Phillips et al., 2012). These assumptions have been confirmed by a 319 

recent study that showed significant reductions in the number and duration of stops when 320 

climbing with a route preview (Sanchez et al., 2012). To consider the possible effects of 321 

previewing on climbing fluency, three minutes of previewing were allowed in our study. 322 
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However, route previewing does not appear to be the main constraint on climbing fluency. 323 

Improvement in route finding (i.e., interpretation of the ever-changing structure of the 324 

climbing wall design (Cordier et al., 1994)) could further explain the drop of jerk values and 325 

the decrease in the number of exploratory movements with practice. Indeed, Cordier et al. 326 

(1994, 1993) have already reported that practice can lead to a lower number and duration of 327 

stops, less exploration during route finding and lower entropy values of hip displacement, 328 

imputing greater climbing fluency. To summarise, the computation of jerk of hip trajectory 329 

and orientation in this study provided two complementary indicators of climbing fluency that 330 

seemed to provide a valuable contribution to understanding the effects of practice and route 331 

design on climbing performance.  332 

 333 
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