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Abstract 

This research is concerned with tracking tennis racket movements. Previously, stereo camera systems have been used to track 

markers attached to rackets, which allows for racket movements to be obtained in three-dimensions. Typically, markers are 

manually selected on the image plane but this can be time consuming and inaccurate. This paper discusses a markerless method 

to measure three-dimensional racket movements using a camera. The method relies on a silhouette of a racket captured with a 

camera whose relative pose (rotation and translation) is unknown. A candidate relative pose is used to measure the 

inconsistency between the silhouette and a set of racket silhouettes captured with a fully calibrated camera. The measure of 

inconsistency can be formulated as a cost function associated with the candidate relative pose. By adjusting parameters of the 

pose to minimise the cost, an accurate estimation for the true pose of the racket can be made. A validation scheme was 

developed to compare pose estimates with data obtained using camera calibration software. Rotation about the axis of x, y, z' 

were accurate to within 2.5° for 88, 90 and 86 % of estimates respectively and resultant translation to within 5 mm for 72% of 

estimates. This research is the first step in a process to fully validate a novel method for measuring tennis racket movements in 

real play conditions.  

© 2014 The Authors. Published by Elsevier Ltd. 

Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University. 
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1. Introduction  

Player testing is an important tool to help understand the effect of racket parameters on rebound ball dynamics 

in real play conditions. Previously, photogrammetric player testing has been performed in two-dimensions (2D) at 
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low (<200 fps) frame rates with a specific aim, whether this be analysis of player accuracy (Blievernicht 1968) or 

studying player biomechanics (Knudson and Blackwell 2005). There has also been some notable three-dimensional 

(3D) work focusing on the kinematics of the serve (Elliott 1986) and backhand (Elliott 1989). Sensor systems 

capable of recording multiple points using 3D coordinates in real time have also been used to track racket and 

upper limb movements. Mitchell et al. (2000) used a CODA (Cartesian optoelectronic dynamic anthropometer) 

system to compare the effect of racket inertial properties on serve speed. Ahmadi et al. (2010) used two inertial 

gyroscopes to measure upper arm rotation during the tennis serve. However, attaching sensors to the racket frame 

and/or upper arm adds mass, altering inertial properties possibly influencing player swing mechanics. Brody 

(2000) found that skilled tennis players were able to distinguish between rackets that differed by as little as 2.5% in 

swingweight (moment of inertia about the racket handle end).   

Camera systems are advantageous because they are easy to setup and less intrusive to the player compared with 

sensor systems. Choppin (2008) developed a portable methodology for 3D player testing using two synchronised 

high speed cameras to track reflective tape markers attached to the racket frame. Calibration using a checkerboard 

(Zhang 1999) allowed for reconstruction of 3D coordinates from 2D position points so that racket and ball 

movements could be measured. The method used manual digitisation to identify markers on the image plane which 

can be time consuming and adds uncertainty.   

Recently, markerless biomechanical analysis of the serve has been performed using a player's visual hull. A 

visual hull is a 3D reconstruction of an object corresponding to a set of fully calibrated silhouette images 

(Laurentini 1994). Previous authors placed 8 synchronised high speed cameras in known positions around a player 

performing a serve to obtain a set of fully calibrated silhouettes (Abrams et al. 2011; Sheets et al. 2011). 

Reconstruction for each time frame allowed joint centre position with six degrees of freedom and racket velocity to 

be measured. Multiple camera systems are costly and lack portability making them impractical to be positioned 

close to a player during real tennis play. 

Price and Morrison (2007) present a method for calculating the 3D trajectory of a rigid particle using a camera. 

With a set of fully calibrated silhouette images of the rigid particle, a pose estimation scheme based on silhouette 

consistency produced 3D trajectories. The application of such a method to track movement of hand-held 

implements used in sports has not yet been explored. Silhouettes contain information about an objects shape and 

have potential to reduce inaccuracies associated with marker-based techniques. The aim of this paper was to 

present a novel method to estimate racket pose based on silhouette consistency and validate the initial results. 

2. Camera calibration 

A camera is fully calibrated if its internal parameters (focal length, principle point and lens distortion) and the 

external parameters (rotation and translation in a common reference frame) are known. The calibration procedure 

used in this study was based on Zhang's algorithm (Zhang 1999) and used a planar calibration object. A first image 

sequence involved capturing a checkerboard of known dimensions in 30 different orientations using a single-lens 

reflex (SLR) camera (Cannon EOS 400D). The images were loaded into the Matlab (MATLAB R2011b, 

MathWorks) camera calibration toolbox (Strobl et al. 2007) to provide enough data to iterate an accurate set of 

internal calibration parameters from initial assumptions. 

The calibration toolbox uses a highly repeatable automatic corner detection method to improve the accuracy of 

the overall calibration. It was necessary to investigate whether the number of squares that made up the 

checkerboard affected the reliability of the extrinsic parameters. An image of a checkerboard with 24 x 24 squares 

was loaded into the software. The software was modified to accept instances where the number of squares along 

each edge was 24, 12, 8, 6, 4, 3, 2 and 1. Over a mean of 3 extrinsic calibrations (3D location of the checkerboard 

in the camera reference frame), for each checkerboard configuration the resultant translation varied by < 1 mm and 

rotation by up to 0.3° about the axis of x, y, z' respectively. Therefore, the extrinsic calibration for the current study 

could be performed using a board with a single rectangle with comparable reliability of a checkerboard with 

multiple squares.                 

For the second image sequence, a model racket (110 x 150 mm) was fixed to a rigid board, with a 150 x 210 

mm red rectangle printed beneath (Fig. 1(a)). Given the existing intrinsic parameters, the extrinsic parameters were 
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(a) (b) 

Red rectangle 

determined by manually selecting the four corners of the rectangle keeping the origin at the top left corner, which 

was later moved to base of the racket handle. Silhouettes were extracted by removing the red colour channel from 

the RGB (Red Green Blue) image before being converted to binary using a threshold operation. In total 44 views 

of the racket were captured by moving the camera into different positions. This produced a well-distributed fully 

calibrated silhouette set (Fig. 1(b)).  

  

                                                                               

 

 

 

 

 

 

 

 

 

 

 
 
Fig.1. (a) Example of an image used to obtain the extrinsic parameters and (b) the 44 camera positions that formed the fully calibrated set 

plotted in the global reference frame. 
 

3. Racket pose estimation 

 

A camera being moved with respect to a stationary racket is the same as a racket moving with respect to a 

stationary camera. The relative pose (R and t) between the world and the reference frame of the camera can be 

specified by a rigid body transformation  

 P = R t , 
 

where R is a 3 x 3 rotation matrix and t is a 3 x 1 translation vector.  Therefore, the pose estimation problem 

corresponds to finding appropriate values for R and t. The method relies on a silhouette of a racket captured with a 

camera whose relative pose is unknown. A candidate relative pose is used to measure the inconsistency between 

the silhouette and a set of racket silhouettes captured with a fully calibrated camera. The measure of inconsistency 

will be based on the epipolar tangency error (ETE) which can be formulated as a cost function associated with the 

candidate relative pose. By adjusting parameters of the pose to minimise the cost, an accurate estimation for the 

true pose of the camera can be made.  

 

3.1. The epipolar tangency error (ETE) 

 

Consider two silhouette views of a racket shown in Fig. 2. The line joining the two camera centres C1 and C2 is 

called the baseline. The projection of each camera centre into the opposite cameras image plane is called an 

epipole. In Fig. 2, epipole e12 is the projection of C2 in the image plane of Camera 1, and epipole e21 is the 

projection of C1in the image plane of Camera 2. The two planes 1 and 2 converge at the baseline and are tangent 

to the racket. The 3D points P1 and P2 indicate where the planes touch the surface of the racket, and are referred to 

as frontier points. Since the planes pass through both the camera centres and touch the surface of the racket, the 

frontier points must project onto the boundaries of the silhouettes on both image planes. A projection of a frontier 

point is called an epipolar tangency point. In Fig. 2, the tangency point's p1 and p'1 are projections of the frontier 

point P1, and the tangency point's p2 and p'2 are projections of the frontier point P2, in the image planes of camera 

1 and camera 2 respectively. Epipolar tangency lines are constructed by plotting a line from the epipoles to the 

corresponding tangency points. Since these points are projections of the same 3D points, the viewing ray passing 

(1) 
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through C2 and p'1must project exactly onto the epipolar tangency line e12p1. This is known as the epipolar 

tangency constraint (Wong 2001) and applies to each of the four epipolar lines in Fig. 2. However, inherent 

inaccuracies in the calibration and the silhouette extraction mean the epipolar lines will not project exactly through 

the tangency points. The perpendicular distance between an epipolar tangency point and the projected epipolar line 

from another view is measured in pixels and called the ETE (Fig. 1(b)). For a pair of silhouettes there are two 

epipolar tangency points for each image, resulting in 4 ETE's. A detailed explanation on computing the ETE can be 

found in Forbes et al. (2003). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. The epipolar geometry (a) between two fully calibrated racket silhouettes with corresponding epipoles and epipolar tangent lines and (b) 
the ETE; since the calibration information and silhouette extraction are incorrect, the epipolar tangent lines do not project exactly onto the 

silhouette tangency points.    

 

3.2. Formulation of the cost function 

The cost function for optimisation is specified by a concatenated vector of ETE's. The vector of ETE's was 

formed by considering all the possible pairings between each silhouette captured with the fully calibrated camera 

and the silhouette whose relative pose is unknown. There are 4  ETE's (from 2  pairs), where  is the number of 

silhouettes in the fully calibrated set and each silhouette has two outer tangency points. Therefore, in vector terms 

the optimisation problem can be stated as 

 min = imin + + +  

 

where x is the vector of ETE values and f(x) is the cost function that returns a vector of minimised ETE values.  

The 3 x 3 rotation matrix R of the candidate relative pose can be parameterised using a four parameter unit 

quaternion Q. This eliminates potential problems caused by gimbal lock, where one of the degrees of freedom in 

3D space is lost. Therefore, the candidate relative pose can be specified by a vector of seven parameters 
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X =  [Q t], 
 

where Q is a 1 x 4 quaternion and t is a 1 x 3 translation vector. The Levenberg-Marquardt algorithm in the Matlab 

Optimisation toolbox was used to adjust the seven pose parameters to minimise the ETE distances.  

It is possible for the Levenberg-Marquardt algorithm to converge to a local minimum that does not correspond 

to the correct pose for the camera. To overcome this problem multiple optimisations with different candidate 

relative poses can be applied (Price and Morrison 2007). In the research presented here, 15 candidate relative poses 

were used. The candidate relative pose corresponding to the ETE vector with the lowest root mean square (RMS) 

value was selected from the 15 optimisations, to reduce the chances of the algorithm providing an incorrect result. 

 

4. Racket pose validation 

Using the 44 view fully calibrated silhouette set of the racket, each silhouette was removed from the set in turn 

and its pose estimated with the method. Pose estimations were validated against previously calculated calibration 

data from the Matlab camera calibration toolbox (Strobl et al. 2007), which were deemed as gold standard. 

Fig.3 (a) shows the number of camera rotations about the axis of x, y, z' accurate to within 2.5° (each bin 

represents 5°) for 88, 90 and 86% of estimates respectively. Camera resultant translation was accurate to within 5 

mm for 72% of estimates (each bin represents 10 mm) (Fig. 3(b)). The small percentage of estimates located at 

bins corresponding to errors above 10° rotation and 20 mm translation, are a direct result of silhouettes 

corresponding to a pose from a side-on view of the racket. Compared to most of the views that make up the 

calibrated silhouette set, a side on view contains little information about the overall shape of the racket hence, for 

these views an acceptable solution was not found. Pose estimates that fell within the first bin for both rotation and 

translation were considered to be of acceptable accuracy. Therefore overall, ~72% of camera pose estimates were 

accurate.   

 

                                                                                                                                          

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3. Error distributions for (a) camera rotation (88, 90 and 86% of estimates were accurate to within 2.5° about the axis of x, y, z' respectively 

(each bin represent 5°)) and (b) camera resultant translation (72% of estimates were accurate to with 5 mm (each bin represents 10 mm)).   

 

5. Discussion 

 

Results from the validation study have shown that with this method it is possible to accurately estimate the 3D 

pose of a racket using a camera. Candidate relative poses measured the inconsistency between a silhouette and a 

fully calibrated set of camera poses. The silhouette was associated with a pose removed from the fully calibrated 

set. This allowed the pose estimate to be compared with the original calibration data obtained using the Matlab 

camera calibration toolbox (Strobl et al. 2007). The method was able to estimate rotation about the axis of x, y, z' 

to within 2.5° for 88, 90 and 86 % of estimates respectively and translation to within 5 mm for 72% of estimates. 

Typical solution time for each pose estimate was approximately 8 minutes on a 3.4 GHz Intel Core i7 machine. 

Solution time depends on the number of silhouettes in the fully calibrated set and the number of candidate relative 

poses. Price and Morrison (2007) employed a similar validation scheme using a fully calibrated silhouette set 

(3) 

(a) (b) 
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containing 6, 24 and 60 views of an irregular particle. For a total of 540 pose estimates, 88% were accurate to 

within 5° which agrees well with the results in this study. Moreover, Price and Morrison (2007) showed that the 

accuracy of the method decreases with the number of views in the fully calibrated silhouette set. Price and 

Morrison (2007) used the pose estimates to accurately predict trajectories of rigid particles captured using a high 

speed video camera. Development of the method to estimate racket trajectories from high speed footage would 

provide a novel approach for measuring their movements. The work presented here is the first step to fully validate 

a new method capable of measuring racket movements in 3D using a camera. The next step will be to apply the 

validation scheme presented in this paper to a full size racket. Thereafter, validate pose estimates associated with 

silhouettes which are not originally part of a fully calibrated set and silhouettes associated with high speed video 

frames of a moving racket. Ultimately, the method could be used to measure racket movements during actual 

tennis strokes using a gold standard motion capture system as a reference for validation. 

 

6. Conclusion 

 

The initial validation of an image based method to estimate the 3D pose of tennis racket has been presented. A 

good agreement was found between pose estimates and data obtained using calibration software. The markerless 

method has potential to track racket movements without interfering with players strokes. Therefore, it could be 

used to inform researchers and manufacturers about racket performance in real play conditions. Since the fully 

calibrated silhouette set could be captured in isolation, only one camera would need to be positioned near the court 

to capture the racket during live play. Currently, there are no systematic approaches to measure racket performance 

in real tennis play. Development of this method is intended to prompt the design of recognised play test protocols. 

This will allow parameters such as racket velocity and angle to be measured for typical tennis shots. Moreover, 

assist player feedback for coaching purposes and the selection of racket prototypes. 
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