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Abstract—It is well understood that software development can 
be a risky enterprise and industrial projects often overrun 
budget and schedule. Effective risk management is, therefore, 
vital for a successful project outcome. Design Rule Spaces 
(DRSpaces) have been used by other researchers to understand 
why implemented software is error-prone [1, 2]. This industrial 
case study evaluates whether such spaces are durable, 
meaningful, and isolating risk containers. DRSpaces were 
created from UML class diagrams of architectural design 
artefacts. In our study, object orientated metrics were 
calculated from the UML diagrams, and compared to the 
error-proneness of the DRSpace implementation, to determine 
whether architectural coupling translated into implementation 
difficulties. A correlation between architectural coupling and 
error-proneness of DRSpaces was observed in the case study. 
Software developers were asked to identify DRSpaces they 
found difficult to implement, in order to understand which 
factors, other than architectural coupling, were also important. 
The qualitative results show agreement between the code areas 
developers found difficult to implement and the error-prone 
DRSpaces. However, the results also show that architectural 
coupling is just one risk factor of many. The case study 
suggests that architectural DRSpaces can be used to facilitate a 
targeted risk review prior to implementation and manage risk. 
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I.  INTRODUCTION 

The motivation for our research is to help software 
projects to be more successful in terms of quality, cost, and 
schedule. According to Akingbehin [3], errors found during 
design stage of software development are only three to six 
times more expensive to correct when compared to errors 
found during the requirements stage. Moreover, errors found 
at the testing stages are 15-70 times more expensive to 
correct. In this work, we focus on using architecture analysis 
at the design stage to identify technical risks that may 
otherwise lead to errors later on in the software development 
life-cycle. The specific problem we consider in this paper is 
how can architectures be partitioned to aid effective risk 
assessment at the design stage of software development and 
manage risks during the subsequent implementation stage. 

Several approaches have been proposed to support the 
application of multi-criteria decision analysis (MCDA) 
techniques in order to avoid making wrong architectural 
choices and lowering the risk of implementation. Research of 
MCDA techniques has been described in recent surveys by 
Falessi et al [4] and Rekha & Muccini [5]. A software 

architecture decision can be seen as a choice that trades off 
various quality attributes important to stakeholders. As stated 
by Bengtsson [6], “tradeoffs between qualities are inevitable 
and need to be made explicit during architectural design. 
This is especially important because architectural designs are 
generally very hard to change at a later stage”.  

However, tradeoffs need to be assessed for residual risks 
that may be carried forth into the software development 
process. Once risks have been captured, understood, and 
mitigated it is vital that they are not forgotten and are well 
managed. Therefore, it is necessary to create risk containers 
that are: 

1. Durable – they must persist throughout the software 
development life-cycle so that attributed risks do not loose 
attention; 

2. Meaningful – they must be understandable to both 
architects and developers so that architects can elicit risks 
and manage them during the implementation; 

3. Isolating – they should separate areas of low and high 
risk within the overall architecture to focus on the areas of 
greatest risk. 

Baldwin and Clark [7] conceived Design Rules (DRs) to 
represent the interfaces that split an architecture into 
independent modules. Their concept was used by Xiao et al 
[1] to propose DRSpaces, which are graphs that represent 
overlapping collections of programs within an architecture. 
Each space must have one or more leading classes that relate 
to DRs. In DRSpaces, the vertices represent related classes 
and the edges are relationships between those classes such as 
inheritance, composition, aggregation, realisation, design 
patterns, method parameters, and variable types. In this 
paper, we evaluate if architectural DRSpaces are durable, 
meaningful, and isolating risk containers. 

If an architectural DRSpace has high coupling it is more 
likely to be difficult to implement and maintain when 
compared to other DRSpaces with less coupling. Irrespective 
of whether the coupling is to other classes in the same 
DRSpace or to classes in other DRSpaces, the resultant risk 
has been isolated within that DRSpace. This is because the 
source of the difficulty is coupling that stems from fulfilment 
of the DR. This hypothesis can be verified by determining 
whether there is a correlation between coupling of a 
DRSpace and the error-proneness of its implementation. 

In the case study used in this paper, we verify the risk 
isolating characteristic of architectural DRSpaces. We do not 
verify meaningfulness and durability characteristics 
explicitly because the software was developed by closely 



following the architecture. We therefore assume that the case 
study DRSpaces are meaningful and durable 

The remainder of this paper is structured as follows. In 
Section 2 we present an account of related work. In Section 3 
we explain how data was collected before presenting our 
analysis in Section 4. Finally, we summarise our conclusions 
in Section 5. 

II. RELATED WORK 

Xiao et al [1] recently proposed DRSpaces as a method 
to gain architectural insight. They used a tool called Titan to 
parse source code for DRs and attribute files to DRSpaces. In 
order to compare DRSpaces for error-proneness they used a 
bug space, which is a collection of programs that contains at 
least n bugs. Once the programs were attributed to 
DRSpaces, error-proneness of each DRSpace was 
determined by expressing the percentage of the bug space 
occupied by the DRSpace.  

Xiao et al [1] observed that DRSpaces were stable over 
time and that buggy files within them are architecturally 
connected. They also observed lots of files changed together 
despite not being structurally related and suggested that these 
files may have “shared secrets” that cannot be determined 
from structure. They concluded that all error-prone 
DRSpaces exhibited multiple structural and evolutionary 
coupling issues. Their results support our view that if 
DRSpaces can be constructed from architectural plans they 
are likely to be risk isolating. Kazman et al [2] used 
DRSpaces as a basis for estimating a return on investment 
due to preventive maintenance. 

Naedele et al [8] have a similar motivation to ours for 
their comparison of software development to manufacturing. 
They identified a number of gaps in software development 
processes including: “Lack of common conceptual 
frameworks driving improvement loops from development 
data”. They proposed that DRSpaces could be used to fill 
this gap owing to their stability. This aspect supports our 
view that DRSpaces are durable risk containers.  

Although many of the related DRSpace approaches [1, 2, 
8] have similar motivation to our work, the majority of the 
approaches are based on code analysis to identify 
architectural problems. However, code analysis does not 
support the identification of architectural risks before 
implementation. The main difference between our work and 
existing works [1, 2, 8] is that we are investigating DRSpace 
analysis during the design stage, instead of during the 
implementation stage. This is because identifying and 
avoiding potential risks at the design stage will be cheaper. 

III. DATA COLLECTION 

The case study that we use in this paper is a deployed 
system from an organization, which wishes to remain 
anonymous. It includes an Application Programming 
Interface (API) that enables three clients to integrate with a 
database within an enterprise system. The API has 474 Java 
classes containing a total of 87.85 thousand lines of code 
(KLOC). The data collected covered a period of four years 
from the start of the project until the factory acceptance test 

(FAT) build. Three developers, each with more than ten 
years’ experience, were involved in developing the API.  

The case study uses UML class diagrams and key design 
decisions documented in the architectural design. The classes 
were manually allocated to the DRSpaces. Each key 
interface (DR) was used as the basis of a DRSpace.  

All classes subordinate to a DR were added to the 
respective DRSpace. Subordination was determined by 
fulfilment of a design pattern, inheritance, realisation, 
composition or aggregation. For example, DRSpace A_1 
represents an interface and all its realisations and DRSpace 
A_2 represents all classes that comprised a Service Facade. 
The implementation classes unreferenced by the UML 
diagrams were manually added to DRSpaces by means of 
package and class naming convention. For example, if a 
DRSpace contained an inheritance tree, any additional 
subclasses conceived during implementation would be added 
to that DRSpace. This was possible due to strict class naming 
conventions. As per the Xiao et al [1] method it was valid for 
a class to be a member of more than one DRSpace. 

In order to test our hypothesis we used the Coupling 
Between Objects (CBO) metric proposed by Chidamber and 
Kemerer [9] to measure coupling between API classes. In 
addition, we also used Number of Children (NOC) and 
Depth in Inheritance Tree (DIT) to measure inheritance 
relationships between API classes and Weighted Methods 
per Class (WMC) to measure how many methods each API 
class has. The relationships and operations on the UML class 
diagrams and the DRSpace class allocations were recorded 
in files. The metrics were then automatically calculated for 
each DRSpace from the file contents, according to the 
following rules: 

- Coupling Between Objects (CBO): the sum over all 
classes in the DRSpace of relationships of types like 
aggregation, composition, and dependencies (if the class is 
the relationship parent), and generalisation (if the class is the 
child). 

- Number of Children (NOC): the sum over all classes in 
the DRSpace of all subclasses for each class. 

- Depth in Inheritance Tree (DIT): the sum over all 
classes in the DRSpace of each class position in the 
inheritance tree. 

- Weighted Methods per Class (WMC): the sum over all 
classes in the DRSpace of the explicit and inherited methods 
for each class. 

A large DRSpace, with many classes, is more likely to 
have high values for the metrics. In the next section we 
report both the absolute and the normalized by size values of 
the metrics.  

We automatically extracted data for each Java class from 
the Subversion code repository to determine error-proneness. 
The captured data are: class name, KLOC, and number of 
associated closed bug numbers. The bug space threshold was 
defined by the 75th percentile of bugs per KLOC, which was 
determined to be 55. Thus, the bug space contained all files 
with an error rate of 55 bugs per KLOC or more. Each 
DRSpace occupied a percentage of the bug space according 
to how many of bug space's files were attributed to the 
DRSpace.  



Without being given prior knowledge of the DRSpaces, 
developers were asked to nominate and justify why they 
found particular groups of related classes difficult to 
implement and maintain. The nominated classes were 
translated to DRSpaces by identifying which spaces 
contained those classes. Two groups of the nominated 
classes fitted neatly into single DRSpaces. This suggests that 
DRSpaces are meaningful to developers as well as architects. 
The third group of classes could not be attributed to any of 
the DRSpaces because there was insufficient information in 
the design document to form the DRSpace that would have 
contained those classes. 

There were three reasons why developers were asked to 
independently nominate areas of code. Firstly, to avoid bias 
because an author is the project architect. Secondly, because 
discussing the DRSpaces found with architects (or 
developers) might influence the interviewee. Thirdly, 
because the developer's perception of the difficulties is more 
relevant than the architect's perception due to the fact that the 
developers are the ones who implement and maintain the 
code. Table I shows the DRSpaces which relate to the groups 
of classes nominated by the developers.  

TABLE I.  DRSPACES NOMINATED BY DEVELOPERS AS DIFFICULT TO 
IMPLEMENT AND MAINTAIN 

DRSpace Justification 

A_2 
Currently any specific job type data has to be parsed 
from the message body. 

A_4 
There seem to be too many subclasses to maintain and 
they are very complicated. 

None 
Complex synchronization code in Package X is 
duplicated amongst concrete subclasses, it should be 
consolidated in the abstract class. 

 

IV. ANALYSIS 

The results of the DRSpace analysis are shown in Table 
II. The column entitled Bug Space % All Bugs indicates that 
the top five DRSpaces account for 66% of the bug space 
files, and the top ten DRSpaces account for 90% of the bug 
space files when considering all bugs. This is in agreement 
with Xiao et al [1] that “a few error-prone DRSpaces can 
capture a large portion of the project’s error-prone files”. The 
results show we were able to attribute 81% of all API classes 
to DRSpaces formed from the UML class diagrams and 
naming conventions. Table II also lists the values of 
Coupling Between Objects (CBO), Depth in Inheritance Tree 
(DIT), Number of Children (NOC) and Weighted Methods 
per Class (WMC) for each DRSpace. 

Our hypothesis predicts agreement between rankings of 
DRSpaces by the proportion of the bug spaced occupied and 
the CBO metric derived from the architectural design. In 
order to test this hypothesis, Spearman's [10] rank correlation 
coefficient which is a statistical measurement of the 
association between two variables was used (see Table III). 
The method used to calculate metrics relied upon the UML 
class diagrams to determine the architected coupling. The ρ 
value suggests a strong positive correlation between CBO 

and error-proneness is present in the data when all bugs are 
considered. According to the Spearman's rank critical values, 
the α level indicates significance at the 0.001 level for 
absolute and normalised metrics and the null hypothesis can 
be rejected.  

TABLE II.  DRSPACE ERROR-PRONENESS AND OO METRICS 

DRSpace Size % Bug Space % 
All Bugs

Bug Space % 
Recent Bugs
(Last 6 
Months)

CBO DIT NOC WMC CBO DIT NOC WMC

A_1 14.49 20.00 7.75 65 26 22 140 9.42 3.77 3.19 20.29

A_2 20.34 13.18 12.40 158 15 11 208 32.13 3.05 2.24 42.30

A_3 9.06 12.27 2.33 36 26 11 83 3.26 2.36 1.00 7.52

A_4 10.56 10.91 9.30 77 12 13 185 8.13 1.27 1.37 19.54

A_5 2.92 10.00 2.33 10 10 10 0 0.29 0.29 0.29 0.00

A_6 3.60 8.18 0.00 34 6 6 19 1.22 0.22 0.22 0.68

A_7 5.62 4.55 4.65 28 4 0 10 1.57 0.22 0.00 0.56

A_8 3.67 2.27 4.26 59 13 29 61 2.17 0.48 1.06 2.24

A_9 1.57 1.82 0.00 5 0 0 4 0.08 0.00 0.00 0.06

A_10 3.15 1.82 1.16 25 15 6 133 0.79 0.47 0.19 4.18

A_11 1.99 1.36 4.65 10 8 3 12 0.20 0.16 0.06 0.24

A_12 2.58 0.91 0.00 0 0 0 3 0.00 0.00 0.00 0.08

A_13 1.35 0.00 2.33 2 0 0 0 0.03 0.00 0.00 0.00

Normalised By Size %

   
Comparison of Table I and Table II suggests 

disagreement between the most error-prone DRSpaces and 
those nominated when all bugs are considered. This is 
because the two nominations that could be resolved to 
DRSpaces are ranked 2nd (A_2) and 4th (A_4), respectively. 
The precision and recall of the developer nominations is 0.5, 
if only the two most error-prone DRSpaces are considered. 
However, A_2 and A_4 would be the top two if ranked by 
CBO.  

The data collected included all fixed bugs including early 
developmental bugs. If the data is filtered to include only 
recent bugs, those created and fixed within the last six 
months, a different error-prone ranking emerges and the two 
most error-prone DRSpaces are in complete agreement 
(precision and recall of 1) with the groups of classes that 
could be resolved to DRSpaces. This seems to indicate that 
developers failed to remember older difficulties. 

The correlation between the absolute values of CBO and 
error-proneness is weakened when only recent bugs are 
considered. However, it remains almost as strong when 
normalised by DRSpace size. In either case, it is more 
significant than the 0.05 level. The metric results suggest all 
metrics are useful predictors of error-proneness. This is 
because whether considering absolute or size normalized, all 
or recent bugs, all results show strong correlations that are 
significant to the 0.05 level or greater. 

A developer nominated DRSpace A_2 because they 
found it difficult to parse specific data from a generic log 
format. This difficulty is not related to coupling and affects 
only a handful of the operations provided by the DRSpace. 
Therefore, based on coupling alone, the real difficulty 
highlighted by the developer could not have been identified 
as a risk before implementation. However, because this 
DRSpace represents the Service Facade pattern, and only the 



service classes access the log, the risk is isolated within the 
DRSpace due to log coupling. 

DRSpace A_4 was nominated because there were too 
many subclasses that were complicated to maintain. In Table 
II DRSpace A_4 is ranked either 2nd or 3rd for CBO, NOC 
and WMC for all bugs when using absolute or size 
normalised values. This result is consistent with the 
developer’s justification and supportive of the correlation 
between architectural coupling and error-proneness. Once 
again, due to the fact that all subclasses are within the 
DRSpace the risk is isolated.  

TABLE III.  SPEARMAN’S RANK FOR OO METRICS AND ERROR-
PRONENESS 

  
In the case study, only the root class of the DR was 

specified in the architectural design document for the group 
of classes nominated as Package X. Thus it was not possible 
to form a DRSpace and calculate metrics using our method. 
The narrative of the design document specified the creator 
pattern should be used to load and cache objects and that a 
lazy load policy should be employed for the cache.  

The developer’s justification for the nomination is that 
complex synchronisation code is duplicated into subclasses. 
Synchronisation code is needed to ensure that a second 
thread waits until the object is loaded upon first access. 
Therefore, the architectural styles of caching and lazy 
loading combined with NOC appear to be the reason for 
Package X being error-prone when considering recent bugs. 
These “shared constraints” are an example of the “shared 
secrets” described by Xiao et al [1].  

Although Package X did not relate to a DRSpace that 
could have been formed at the design stage using our 
method, the abstract creator and its implementation 
subclasses accounted for 44% of the Bug Space when only 
recent bugs are considered. This highlights the importance of 
a comprehensive architectural description for an effective 
risk analysis. If the DR was documented in the UML class 
diagrams, and if our method was applied before 
implementation, some types of mitigations such as re-design, 
pair programming, and increasing the budget/schedule could 
have been considered. This is because this would have 
caused relatively high scores for CBO and NOC. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we present three key observations about 
DRSpaces formed from UML designs. Firstly, a significant 
correlation between DRSpace Coupling Between Objects 
(CBO) computed from the design and error-proneness. 
Secondly, groups of classes nominated by developers as 
difficult to implement/maintain fitted neatly inside the 

DRSpaces (when they could be matched to design 
DRSpaces). Thirdly, the nominated DRSpaces are the most 
error-prone when recent bugs are considered. These 
observations support our novel use of DRSpaces as a basis 
for structured risk analysis based on UML class diagrams 
before implementation. Whilst the effect of coupling is well 
understood, our contribution is to demonstrate that 
DRSpaces are isolating risk containers because coupling 
stemming from the DR is contained within the DRSpace, and 
greater coupling has a higher risk of resulting in 
implementation errors.  

Analysis of the developer nominations suggests that 
focusing on coupling alone is too crude and that even if DRs 
are used to partition the architecture for the purpose of risk 
analysis, other factors must be considered to determine the 
implementation risks. In their work on technical debt, 
Kazman et al [2] noted that “one of our lessons learned is 
that we can influence projects to improve their record-
keeping practices”. This study shows the importance of 
comprehensively documenting the architectural designs in 
both formal (UML) and narrative terms to aid an effective 
risk assessment before the implementation stage. Future 
work will further evaluate the method by considering why 
the developers did not nominate DRSpace A_1 and DRSpace 
A_3, which had relatively high metric scores and error-
proneness. In addition, we would like to use other case 
studies to verify DRSpaces are meaningful and durable risk 
containers. 
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