
Open Research Online
The Open University’s repository of research publications
and other research outputs

An Evaluation of Design Rule Spaces as Risk
Containers
Conference or Workshop Item
How to cite:

Leigh, Andrew; Wermelinger, Michel and Zisman, Andrea (2016). An Evaluation of Design Rule Spaces as
Risk Containers. In: 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), IEEE pp. 295–298.

For guidance on citations see FAQs.

c© 2016 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/WICSA.2016.34

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/42536759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/WICSA.2016.34
http://oro.open.ac.uk/policies.html

An Evaluation of Design Rule Spaces as Risk
Containers

Andrew Leigh, Michel Wermelinger, Andrea Zisman
Computing and Communications Department, The Open University, Milton Keynes, United Kingdom

andrew.leigh@open.ac.uk

Abstract—It is well understood that software development can
be a risky enterprise and industrial projects often overrun
budget and schedule. Effective risk management is, therefore,
vital for a successful project outcome. Design Rule Spaces
(DRSpaces) have been used by other researchers to understand
why implemented software is error-prone [1, 2]. This industrial
case study evaluates whether such spaces are durable,
meaningful, and isolating risk containers. DRSpaces were
created from UML class diagrams of architectural design
artefacts. In our study, object orientated metrics were
calculated from the UML diagrams, and compared to the
error-proneness of the DRSpace implementation, to determine
whether architectural coupling translated into implementation
difficulties. A correlation between architectural coupling and
error-proneness of DRSpaces was observed in the case study.
Software developers were asked to identify DRSpaces they
found difficult to implement, in order to understand which
factors, other than architectural coupling, were also important.
The qualitative results show agreement between the code areas
developers found difficult to implement and the error-prone
DRSpaces. However, the results also show that architectural
coupling is just one risk factor of many. The case study
suggests that architectural DRSpaces can be used to facilitate a
targeted risk review prior to implementation and manage risk.

Keywords- analysis; architecture; risk; software

I. INTRODUCTION

The motivation for our research is to help software
projects to be more successful in terms of quality, cost, and
schedule. According to Akingbehin [3], errors found during
design stage of software development are only three to six
times more expensive to correct when compared to errors
found during the requirements stage. Moreover, errors found
at the testing stages are 15-70 times more expensive to
correct. In this work, we focus on using architecture analysis
at the design stage to identify technical risks that may
otherwise lead to errors later on in the software development
life-cycle. The specific problem we consider in this paper is
how can architectures be partitioned to aid effective risk
assessment at the design stage of software development and
manage risks during the subsequent implementation stage.

Several approaches have been proposed to support the
application of multi-criteria decision analysis (MCDA)
techniques in order to avoid making wrong architectural
choices and lowering the risk of implementation. Research of
MCDA techniques has been described in recent surveys by
Falessi et al [4] and Rekha & Muccini [5]. A software

architecture decision can be seen as a choice that trades off
various quality attributes important to stakeholders. As stated
by Bengtsson [6], “tradeoffs between qualities are inevitable
and need to be made explicit during architectural design.
This is especially important because architectural designs are
generally very hard to change at a later stage”.

However, tradeoffs need to be assessed for residual risks
that may be carried forth into the software development
process. Once risks have been captured, understood, and
mitigated it is vital that they are not forgotten and are well
managed. Therefore, it is necessary to create risk containers
that are:

1. Durable – they must persist throughout the software
development life-cycle so that attributed risks do not loose
attention;

2. Meaningful – they must be understandable to both
architects and developers so that architects can elicit risks
and manage them during the implementation;

3. Isolating – they should separate areas of low and high
risk within the overall architecture to focus on the areas of
greatest risk.

Baldwin and Clark [7] conceived Design Rules (DRs) to
represent the interfaces that split an architecture into
independent modules. Their concept was used by Xiao et al
[1] to propose DRSpaces, which are graphs that represent
overlapping collections of programs within an architecture.
Each space must have one or more leading classes that relate
to DRs. In DRSpaces, the vertices represent related classes
and the edges are relationships between those classes such as
inheritance, composition, aggregation, realisation, design
patterns, method parameters, and variable types. In this
paper, we evaluate if architectural DRSpaces are durable,
meaningful, and isolating risk containers.

If an architectural DRSpace has high coupling it is more
likely to be difficult to implement and maintain when
compared to other DRSpaces with less coupling. Irrespective
of whether the coupling is to other classes in the same
DRSpace or to classes in other DRSpaces, the resultant risk
has been isolated within that DRSpace. This is because the
source of the difficulty is coupling that stems from fulfilment
of the DR. This hypothesis can be verified by determining
whether there is a correlation between coupling of a
DRSpace and the error-proneness of its implementation.

In the case study used in this paper, we verify the risk
isolating characteristic of architectural DRSpaces. We do not
verify meaningfulness and durability characteristics
explicitly because the software was developed by closely

following the architecture. We therefore assume that the case
study DRSpaces are meaningful and durable

The remainder of this paper is structured as follows. In
Section 2 we present an account of related work. In Section 3
we explain how data was collected before presenting our
analysis in Section 4. Finally, we summarise our conclusions
in Section 5.

II. RELATED WORK

Xiao et al [1] recently proposed DRSpaces as a method
to gain architectural insight. They used a tool called Titan to
parse source code for DRs and attribute files to DRSpaces. In
order to compare DRSpaces for error-proneness they used a
bug space, which is a collection of programs that contains at
least n bugs. Once the programs were attributed to
DRSpaces, error-proneness of each DRSpace was
determined by expressing the percentage of the bug space
occupied by the DRSpace.

Xiao et al [1] observed that DRSpaces were stable over
time and that buggy files within them are architecturally
connected. They also observed lots of files changed together
despite not being structurally related and suggested that these
files may have “shared secrets” that cannot be determined
from structure. They concluded that all error-prone
DRSpaces exhibited multiple structural and evolutionary
coupling issues. Their results support our view that if
DRSpaces can be constructed from architectural plans they
are likely to be risk isolating. Kazman et al [2] used
DRSpaces as a basis for estimating a return on investment
due to preventive maintenance.

Naedele et al [8] have a similar motivation to ours for
their comparison of software development to manufacturing.
They identified a number of gaps in software development
processes including: “Lack of common conceptual
frameworks driving improvement loops from development
data”. They proposed that DRSpaces could be used to fill
this gap owing to their stability. This aspect supports our
view that DRSpaces are durable risk containers.

Although many of the related DRSpace approaches [1, 2,
8] have similar motivation to our work, the majority of the
approaches are based on code analysis to identify
architectural problems. However, code analysis does not
support the identification of architectural risks before
implementation. The main difference between our work and
existing works [1, 2, 8] is that we are investigating DRSpace
analysis during the design stage, instead of during the
implementation stage. This is because identifying and
avoiding potential risks at the design stage will be cheaper.

III. DATA COLLECTION

The case study that we use in this paper is a deployed
system from an organization, which wishes to remain
anonymous. It includes an Application Programming
Interface (API) that enables three clients to integrate with a
database within an enterprise system. The API has 474 Java
classes containing a total of 87.85 thousand lines of code
(KLOC). The data collected covered a period of four years
from the start of the project until the factory acceptance test

(FAT) build. Three developers, each with more than ten
years’ experience, were involved in developing the API.

The case study uses UML class diagrams and key design
decisions documented in the architectural design. The classes
were manually allocated to the DRSpaces. Each key
interface (DR) was used as the basis of a DRSpace.

All classes subordinate to a DR were added to the
respective DRSpace. Subordination was determined by
fulfilment of a design pattern, inheritance, realisation,
composition or aggregation. For example, DRSpace A_1
represents an interface and all its realisations and DRSpace
A_2 represents all classes that comprised a Service Facade.
The implementation classes unreferenced by the UML
diagrams were manually added to DRSpaces by means of
package and class naming convention. For example, if a
DRSpace contained an inheritance tree, any additional
subclasses conceived during implementation would be added
to that DRSpace. This was possible due to strict class naming
conventions. As per the Xiao et al [1] method it was valid for
a class to be a member of more than one DRSpace.

In order to test our hypothesis we used the Coupling
Between Objects (CBO) metric proposed by Chidamber and
Kemerer [9] to measure coupling between API classes. In
addition, we also used Number of Children (NOC) and
Depth in Inheritance Tree (DIT) to measure inheritance
relationships between API classes and Weighted Methods
per Class (WMC) to measure how many methods each API
class has. The relationships and operations on the UML class
diagrams and the DRSpace class allocations were recorded
in files. The metrics were then automatically calculated for
each DRSpace from the file contents, according to the
following rules:

- Coupling Between Objects (CBO): the sum over all
classes in the DRSpace of relationships of types like
aggregation, composition, and dependencies (if the class is
the relationship parent), and generalisation (if the class is the
child).

- Number of Children (NOC): the sum over all classes in
the DRSpace of all subclasses for each class.

- Depth in Inheritance Tree (DIT): the sum over all
classes in the DRSpace of each class position in the
inheritance tree.

- Weighted Methods per Class (WMC): the sum over all
classes in the DRSpace of the explicit and inherited methods
for each class.

A large DRSpace, with many classes, is more likely to
have high values for the metrics. In the next section we
report both the absolute and the normalized by size values of
the metrics.

We automatically extracted data for each Java class from
the Subversion code repository to determine error-proneness.
The captured data are: class name, KLOC, and number of
associated closed bug numbers. The bug space threshold was
defined by the 75th percentile of bugs per KLOC, which was
determined to be 55. Thus, the bug space contained all files
with an error rate of 55 bugs per KLOC or more. Each
DRSpace occupied a percentage of the bug space according
to how many of bug space's files were attributed to the
DRSpace.

Without being given prior knowledge of the DRSpaces,
developers were asked to nominate and justify why they
found particular groups of related classes difficult to
implement and maintain. The nominated classes were
translated to DRSpaces by identifying which spaces
contained those classes. Two groups of the nominated
classes fitted neatly into single DRSpaces. This suggests that
DRSpaces are meaningful to developers as well as architects.
The third group of classes could not be attributed to any of
the DRSpaces because there was insufficient information in
the design document to form the DRSpace that would have
contained those classes.

There were three reasons why developers were asked to
independently nominate areas of code. Firstly, to avoid bias
because an author is the project architect. Secondly, because
discussing the DRSpaces found with architects (or
developers) might influence the interviewee. Thirdly,
because the developer's perception of the difficulties is more
relevant than the architect's perception due to the fact that the
developers are the ones who implement and maintain the
code. Table I shows the DRSpaces which relate to the groups
of classes nominated by the developers.

TABLE I. DRSPACES NOMINATED BY DEVELOPERS AS DIFFICULT TO
IMPLEMENT AND MAINTAIN

DRSpace Justification

A_2
Currently any specific job type data has to be parsed
from the message body.

A_4
There seem to be too many subclasses to maintain and
they are very complicated.

None
Complex synchronization code in Package X is
duplicated amongst concrete subclasses, it should be
consolidated in the abstract class.

IV. ANALYSIS

The results of the DRSpace analysis are shown in Table
II. The column entitled Bug Space % All Bugs indicates that
the top five DRSpaces account for 66% of the bug space
files, and the top ten DRSpaces account for 90% of the bug
space files when considering all bugs. This is in agreement
with Xiao et al [1] that “a few error-prone DRSpaces can
capture a large portion of the project’s error-prone files”. The
results show we were able to attribute 81% of all API classes
to DRSpaces formed from the UML class diagrams and
naming conventions. Table II also lists the values of
Coupling Between Objects (CBO), Depth in Inheritance Tree
(DIT), Number of Children (NOC) and Weighted Methods
per Class (WMC) for each DRSpace.

Our hypothesis predicts agreement between rankings of
DRSpaces by the proportion of the bug spaced occupied and
the CBO metric derived from the architectural design. In
order to test this hypothesis, Spearman's [10] rank correlation
coefficient which is a statistical measurement of the
association between two variables was used (see Table III).
The method used to calculate metrics relied upon the UML
class diagrams to determine the architected coupling. The ρ
value suggests a strong positive correlation between CBO

and error-proneness is present in the data when all bugs are
considered. According to the Spearman's rank critical values,
the α level indicates significance at the 0.001 level for
absolute and normalised metrics and the null hypothesis can
be rejected.

TABLE II. DRSPACE ERROR-PRONENESS AND OO METRICS

DRSpace Size % Bug Space %
All Bugs

Bug Space %
Recent Bugs
(Last 6
Months)

CBO DIT NOC WMC CBO DIT NOC WMC

A_1 14.49 20.00 7.75 65 26 22 140 9.42 3.77 3.19 20.29

A_2 20.34 13.18 12.40 158 15 11 208 32.13 3.05 2.24 42.30

A_3 9.06 12.27 2.33 36 26 11 83 3.26 2.36 1.00 7.52

A_4 10.56 10.91 9.30 77 12 13 185 8.13 1.27 1.37 19.54

A_5 2.92 10.00 2.33 10 10 10 0 0.29 0.29 0.29 0.00

A_6 3.60 8.18 0.00 34 6 6 19 1.22 0.22 0.22 0.68

A_7 5.62 4.55 4.65 28 4 0 10 1.57 0.22 0.00 0.56

A_8 3.67 2.27 4.26 59 13 29 61 2.17 0.48 1.06 2.24

A_9 1.57 1.82 0.00 5 0 0 4 0.08 0.00 0.00 0.06

A_10 3.15 1.82 1.16 25 15 6 133 0.79 0.47 0.19 4.18

A_11 1.99 1.36 4.65 10 8 3 12 0.20 0.16 0.06 0.24

A_12 2.58 0.91 0.00 0 0 0 3 0.00 0.00 0.00 0.08

A_13 1.35 0.00 2.33 2 0 0 0 0.03 0.00 0.00 0.00

Normalised By Size %

Comparison of Table I and Table II suggests

disagreement between the most error-prone DRSpaces and
those nominated when all bugs are considered. This is
because the two nominations that could be resolved to
DRSpaces are ranked 2nd (A_2) and 4th (A_4), respectively.
The precision and recall of the developer nominations is 0.5,
if only the two most error-prone DRSpaces are considered.
However, A_2 and A_4 would be the top two if ranked by
CBO.

The data collected included all fixed bugs including early
developmental bugs. If the data is filtered to include only
recent bugs, those created and fixed within the last six
months, a different error-prone ranking emerges and the two
most error-prone DRSpaces are in complete agreement
(precision and recall of 1) with the groups of classes that
could be resolved to DRSpaces. This seems to indicate that
developers failed to remember older difficulties.

The correlation between the absolute values of CBO and
error-proneness is weakened when only recent bugs are
considered. However, it remains almost as strong when
normalised by DRSpace size. In either case, it is more
significant than the 0.05 level. The metric results suggest all
metrics are useful predictors of error-proneness. This is
because whether considering absolute or size normalized, all
or recent bugs, all results show strong correlations that are
significant to the 0.05 level or greater.

A developer nominated DRSpace A_2 because they
found it difficult to parse specific data from a generic log
format. This difficulty is not related to coupling and affects
only a handful of the operations provided by the DRSpace.
Therefore, based on coupling alone, the real difficulty
highlighted by the developer could not have been identified
as a risk before implementation. However, because this
DRSpace represents the Service Facade pattern, and only the

service classes access the log, the risk is isolated within the
DRSpace due to log coupling.

DRSpace A_4 was nominated because there were too
many subclasses that were complicated to maintain. In Table
II DRSpace A_4 is ranked either 2nd or 3rd for CBO, NOC
and WMC for all bugs when using absolute or size
normalised values. This result is consistent with the
developer’s justification and supportive of the correlation
between architectural coupling and error-proneness. Once
again, due to the fact that all subclasses are within the
DRSpace the risk is isolated.

TABLE III. SPEARMAN’S RANK FOR OO METRICS AND ERROR-
PRONENESS

In the case study, only the root class of the DR was

specified in the architectural design document for the group
of classes nominated as Package X. Thus it was not possible
to form a DRSpace and calculate metrics using our method.
The narrative of the design document specified the creator
pattern should be used to load and cache objects and that a
lazy load policy should be employed for the cache.

The developer’s justification for the nomination is that
complex synchronisation code is duplicated into subclasses.
Synchronisation code is needed to ensure that a second
thread waits until the object is loaded upon first access.
Therefore, the architectural styles of caching and lazy
loading combined with NOC appear to be the reason for
Package X being error-prone when considering recent bugs.
These “shared constraints” are an example of the “shared
secrets” described by Xiao et al [1].

Although Package X did not relate to a DRSpace that
could have been formed at the design stage using our
method, the abstract creator and its implementation
subclasses accounted for 44% of the Bug Space when only
recent bugs are considered. This highlights the importance of
a comprehensive architectural description for an effective
risk analysis. If the DR was documented in the UML class
diagrams, and if our method was applied before
implementation, some types of mitigations such as re-design,
pair programming, and increasing the budget/schedule could
have been considered. This is because this would have
caused relatively high scores for CBO and NOC.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present three key observations about
DRSpaces formed from UML designs. Firstly, a significant
correlation between DRSpace Coupling Between Objects
(CBO) computed from the design and error-proneness.
Secondly, groups of classes nominated by developers as
difficult to implement/maintain fitted neatly inside the

DRSpaces (when they could be matched to design
DRSpaces). Thirdly, the nominated DRSpaces are the most
error-prone when recent bugs are considered. These
observations support our novel use of DRSpaces as a basis
for structured risk analysis based on UML class diagrams
before implementation. Whilst the effect of coupling is well
understood, our contribution is to demonstrate that
DRSpaces are isolating risk containers because coupling
stemming from the DR is contained within the DRSpace, and
greater coupling has a higher risk of resulting in
implementation errors.

Analysis of the developer nominations suggests that
focusing on coupling alone is too crude and that even if DRs
are used to partition the architecture for the purpose of risk
analysis, other factors must be considered to determine the
implementation risks. In their work on technical debt,
Kazman et al [2] noted that “one of our lessons learned is
that we can influence projects to improve their record-
keeping practices”. This study shows the importance of
comprehensively documenting the architectural designs in
both formal (UML) and narrative terms to aid an effective
risk assessment before the implementation stage. Future
work will further evaluate the method by considering why
the developers did not nominate DRSpace A_1 and DRSpace
A_3, which had relatively high metric scores and error-
proneness. In addition, we would like to use other case
studies to verify DRSpaces are meaningful and durable risk
containers.

REFERENCES

[1] L. Xiao, L, et al., “Design rule spaces: A new form of architecture

insight.” in Proceedings of the 36th International Conference on
Software Engineering, ACM, 2014. pp. 967-977.

[2] R. Kazman, R, et al., “A Case Study in Locating the Architectural
Roots of Technical Debt,” in Proceedings of the 37th International
Conference on Software Engineering, IEEE, 2015. pp. 179-188.

[3] K. Akingbehin, "A quantitative supplement to the definition of
software quality," in Third ACIS International Conference on
Software Engineering Research, Management and Applications,
IEEE, 2005. pp. 348-352.

[4] D. Falessi, et al., "Decision-making techniques for software
architecture design." ACM Computing Surveys, vol. 43, no 4, pp. 1-
28, Winter 2011.

[5] S. Rekha and H. Muccini, “Suitability of software architecture
decision making methods for group decisions”, in 8th European
Conference on Software Architecture, Springer, 2014. pp. 17-32.

[6] P. Bengtsson, et al., "Architecture-level modifiability analysis
(ALMA)." in The Journal of Systems and Software, vol. 69, no. 1-2,
pp. 129-147, January 2004.

[7] C. Y. Baldwin and K. B. Clark, Design rules: The power of
modularity, MIT press, 2000.

[8] M. Naedele, et al., "Manufacturing execution systems: A vision for
managing software development." in Journal of Systems and
Software, vol. 101, pp. 59-68, March 2015.

[9] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object
oriented design." in IEEE Transactions on Software Engineering, vol.
20, no. 6, pp. 476-493, June 1994.

[10] C. Spearman, “The proof and measurement of association between
two things.” in The American Journal of Psychology, vol. 15, no. 1,
pp. 72-101, 1904.

